Battery pack maintenance for electric vehicle

Information

  • Patent Grant
  • 11650259
  • Patent Number
    11,650,259
  • Date Filed
    Thursday, June 28, 2018
    6 years ago
  • Date Issued
    Tuesday, May 16, 2023
    a year ago
Abstract
A method and apparatus for repairing or testing a used battery pack from an electric vehicle include removing the battery pack from the vehicle. Battery tests are performed on at least some of the plurality of batteries and battery test results for each of the batteries tested are obtained. A cradle is configured to receive at least two different types of batteries. The cradle includes connectors to electrically couple circuitry of a battery tester to the battery.
Description
BACKGROUND OF THE INVENTION

The present invention relates to electric vehicles of the types which use battery packs for storing electricity. More specifically, the present invention relates to maintenance of such battery packs.


Traditionally, automotive vehicles have used internal combustion engines as their power source. Petroleum as a source of power. However, vehicles which also store energy in batteries are finding widespread use. Such vehicle can provide increased fuel efficiency and can be operated using alternative energy sources.


Some types of electric vehicles are completely powered using electric motors and electricity. Other types of electric vehicles include an internal combustion engine. The internal combustion engine can be used to generate electricity and supplement the power delivered by the electric motor. These types of vehicles are known as “hybrid” electric vehicles.


Operation of an electric vehicle requires a source of electricity. Typically, electric vehicles store electricity in large battery packs which consist of a plurality of batteries. These batteries may be formed by a number of individual cells or may themselves be individual cells depending on the configuration of the battery and battery pack. The packs are large and replacement can be expensive.


SUMMARY OF THE INVENTION

A method and apparatus for repairing or testing a used battery pack from an electric vehicle include removing the battery pack from the vehicle. Battery tests are performed on at least some of the plurality of batteries and battery test results for each of the batteries tested are obtained. A cradle is configured to receive at least two different types of batteries. The cradle includes connectors to electrically couple circuitry of a battery tester to the battery.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a simplified block diagram of an electric vehicle.



FIG. 2 is simplified schematic diagram of a battery pack for use in the electric vehicle of FIG. 1.



FIG. 3 is a block diagram of a device in accordance with one example embodiment of the present invention.



FIG. 4 is a simplified block diagram of a device for use in selecting batteries for use in refurbishing a battery pack.



FIG. 5 illustrates a database shown in FIGS. 3 and 4.



FIG. 6 is a flow chart showing steps for use in refurbishing a battery pack.



FIG. 7 is a simplified block diagram showing a diagnostic device including a cradle configured to receive battery.



FIG. 8 shows graphs of voltage and current versus time charging of a battery.



FIG. 9 shows graphs of voltage and current versus discharging of a battery.



FIG. 10 is a front perspective view of a configuration of an electric vehicle battery.



FIG. 11 is front perspective view of another configuration of an electric vehicle battery.



FIG. 12A is a front perspective view and FIG. 12B is a rear perspective view of a configuration of a hybrid electric vehicle battery.



FIG. 13A is a front perspective view and FIG. 13B is a rear perspective view of a another configuration of a hybrid electric vehicle battery.



FIG. 14 is a schematic diagram showing polarity reversing circuitry for use in coupling to a battery.



FIG. 15 is a perspective view showing electric vehicle battery encased in a cradle.



FIG. 16 is a perspective view showing a battery of FIG. 15 placed into the cradle.



FIG. 17 is a perspective view showing a battery of FIG. 16 placed into the cradle.



FIG. 18 is a perspective showing a cradle with a cover in the closed position.



FIG. 19 is a top cutaway view of the cradle of FIG. 15.



FIG. 20 is a perspective view of a hybrid electric vehicle battery facing a cradle.



FIG. 21 is a perspective view of a battery positioned in the cradle of FIG. 20.



FIG. 22 is a perspective view of a battery secured in the cradle of FIG. 20.



FIG. 23 is a perspective view showing the cradle of FIG. 20 having a cover in the closed position.



FIG. 24 is a side cross sectional view of the cradle of FIG. 20.



FIG. 25 is a perspective view showing an electrical contacts of FIG. 20.



FIG. 26 is a top plan view of the battery placed in a cradle of FIG. 20.



FIG. 27 is a top plan view showing the battery secured in the cradle of FIG. 20.





DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS

As discussed in the background section, battery packs used with electric vehicles are able to store large amounts of energy. The battery packs are large and difficult to work on and test because of the high voltages involved. Further, the battery packs are expensive. In one aspect, the present application recognizes that a single bad battery within the battery pack can reduce the capabilities of the overall battery pack. A bad battery or (batteries) can reduce the amount of energy the battery pack can store, reduce the rate at which the battery pack can be recharged and cause other batteries with in the battery pack to drain prematurely.


In one aspect of the present invention, a battery pack is removed from the electric vehicle whereby maintenance can be performed on it. More specifically, individual batteries of the pack tested. A refurbished battery pack is made by preparing a new set of batteries for use in creating a refurbished battery pack. The new set of batteries is formed from used batteries from previously used battery pack(s) along with one or more additional batteries. The set of batteries used to form the refurbished battery pack are selected such that they have at least one test result which is similar to the others. The refurbished battery pack can then placed in an electric vehicle and be used as a source of power for the vehicle.



FIG. 1 is a simplified block diagram of an electric vehicle 100. Electric vehicle 100 can be configured to operate solely based upon electric power, or may include an internal combustion engine. Vehicle 100 includes a battery pack 102 and at least one electric motor 104. Vehicle electronics and control system 106 couples to the battery pack and electric motor and is configured to control their operation. Wheels 110 of vehicle 100 are configured to propel the vehicle in response to a mechanical input from electric motor 104. Electric motor 104 operates using energy drawn from the battery 102. In some configurations a regenerative braking system can be used in which a braking energy is recovered from the wheels 110 by the electric motor 104 or other equipment. The recovered energy can be used to recharge the battery pack 102.



FIG. 1 also shows optional components of vehicle 100. These optional components allow the vehicle 100 to operate as “hybrid” vehicle. In such a configuration, an internal combustion engine 120 is provided which operates using, for example, petroleum based fuel 122. The engine 120 can be configured to directly mechanically drive the wheels 110 and/or an electric generator 122. The electric generator 122 can be configured to charge the battery pack 102 and/or provide electrical power directly to electric motor 104.


The battery pack 102 is a critical component of the electric vehicle 100. Operation of the battery pack 102 will determine the efficiency of the vehicle, the overall range of the vehicle, the rate at which the battery pack 102 can be charged and the rate at which the battery pack 102 can be discharged.



FIG. 2 is a simplified diagram of an example configuration of battery pack 102. In FIG. 2, a plurality of individual batteries 140 are shown connected in series and parallel. Each of the individual batteries 140 may comprise a single cell or may comprise multiple cells connected in series and/or parallel. These may be removable battery modules formed by a single cell or a group of cells. If elements 140 are a group of cells, in some configurations individual connections may be available within the battery and used in accordance with the invention.


During the lifetime of vehicle 100, the battery pack 102 will degrade with time and use. This degradation may be gradual, or may occur rapidly based upon a failure of a component within the pack 102. When such a failure occurs, or when the pack has degraded sufficiently, the entire battery pack 102 is typically replaced. The battery pack 102 is one of the primary components of electric vehicle 100 and its replacement can be very expensive. In one aspect, the present invention is directed to performing maintenance on battery pack 102. The maintenance can be performed after the battery pack has failed, or prior to the failure of the battery pack.


In one aspect, the invention includes the recognition that the failure, degradation, or impending failure of battery pack 102 may be due to the failing or degrading of one or more of the individual batteries 140 within the pack 102. In such a case, the battery pack 102 can be refurbished or otherwise repaired by identifying the failed, failing, or degraded batteries 140 and replacing them with operable batteries 140. In another aspect, the present invention includes the recognition that the simple replacement of a faulty battery 140 in a battery pack 102 may not provide the optimum configuration for the repaired or refurbished battery pack 102. More specifically, a “new” battery 140 used to replace a “bad” battery 140 within the battery pack 102 will introduce a battery which is not balanced with respect to other batteries 140 in the pack 102. This unbalanced battery 140 may cause further deterioration in the battery pack 102. Thus, in one aspect, the present invention includes selecting batteries 140 which have a similar characteristic or measured parameter for replacing bad batteries 140 within a battery pack 102.


In one aspect, the present invention provides a method and apparatus in which batteries 140 for use in battery packs 102 are sorted and selected for replacement based upon measured parameters. The measured parameters can be selected such that they are in agreement with one another within a desired range. Example parameters include static parameters in which a static property of a battery is measured using a static function as well as dynamic parameters in which a property of a battery is measured using a dynamic function. Example parameters include dynamic parameters such as conductance resistance, admittance, impedance, etc., as well as static equivalents. Load testing based parameters may also be employed. Other example parameters include battery capacitance, battery state of charge, battery voltage, and others.



FIG. 3 is a simplified block diagram of a battery pack maintenance device 200 for performing maintenance on battery pack 102. FIG. 3 shows one example of battery test circuitry, in FIG. 3 maintenance device 200 is shown coupled to battery 140 having a positive terminal 202 and a negative terminal 204. A connection 206 is provided to terminal 202 and a similar connector 208 is provided to terminal 204. The connectors 204 and 206 are illustrated as Kelvin connectors, however, the invention is not limited to this configuration. Through connections 206 and 208, a forcing function 210 is coupled to battery 140. The forcing function applies a forcing function signal to the battery 140. The forcing function signal may have a time varying component and may be an active signal in which an electrical signal is injected into the battery or maybe a passive signal in which a current is drawn from the battery. Measurement circuitry 212 is configured to measure a response to the battery 140 to the applied forcing function signal from the forcing function 210. Measurement circuitry 212 provides a measurement signal to microprocessor 214. Microprocessor 214 operates in accordance with instructions stored in memory 220. Memory 220 may also be configured to contain parameters measured from battery 140. A user input/output circuitry 220 is provided for use by an operator. Further, the device 200 is configured to store data in database 220. The battery testing may be optionally performed in accordance with techniques pioneered by Midtronics, Inc. of Willowbrook, Ill., and Dr. Keith S. Champlin, including for example, those discussed in U.S. Pat. No. 3,873,911, issued Mar. 25, 1975, to Champlin; U.S. Pat. No. 3,909,708, issued Sep. 30, 1975, to Champlin; U.S. Pat. No. 4,816,768, issued Mar. 28, 1989, to Champlin; U.S. Pat. No. 4,825,170, issued Apr. 25, 1989, to Champlin; U.S. Pat. No. 4,881,038, issued Nov. 14, 1989, to Champlin; U.S. Pat. No. 4,912,416, issued Mar. 27, 1990, to Champlin; U.S. Pat. No. 5,140,269, issued Aug. 18, 1992, to Champlin; U.S. Pat. No. 5,343,380, issued Aug. 30, 1994; U.S. Pat. No. 5,572,136, issued Nov. 5, 1996; U.S. Pat. No. 5,574,355, issued Nov. 12, 1996; U.S. Pat. No. 5,583,416, issued Dec. 10, 1996; U.S. Pat. No. 5,585,728, issued Dec. 17, 1996; U.S. Pat. No. 5,589,757, issued Dec. 31, 1996; U.S. Pat. No. 5,592,093, issued Jan. 7, 1997; U.S. Pat. No. 5,598,098, issued Jan. 28, 1997; U.S. Pat. No. 5,656,920, issued Aug. 12, 1997; U.S. Pat. No. 5,757,192, issued May 26, 1998; U.S. Pat. No. 5,821,756, issued Oct. 13, 1998; U.S. Pat. No. 5,831,435, issued Nov. 3, 1998; U.S. Pat. No. 5,871,858, issued Feb. 16, 1999; U.S. Pat. No. 5,914,605, issued Jun. 22, 1999; U.S. Pat. No. 5,945,829, issued Aug. 31, 1999; U.S. Pat. No. 6,002,238, issued Dec. 14, 1999; U.S. Pat. No. 6,037,751, issued Mar. 14, 2000; U.S. Pat. No. 6,037,777, issued Mar. 14, 2000; U.S. Pat. No. 6,051,976, issued Apr. 18, 2000; U.S. Pat. No. 6,081,098, issued Jun. 27, 2000; U.S. Pat. No. 6,091,245, issued Jul. 18, 2000; U.S. Pat. No. 6,104,167, issued Aug. 15, 2000; U.S. Pat. No. 6,137,269, issued Oct. 24, 2000; U.S. Pat. No. 6,163,156, issued Dec. 19, 2000; U.S. Pat. No. 6,172,483, issued Jan. 9, 2001; U.S. Pat. No. 6,172,505, issued Jan. 9, 2001; U.S. Pat. No. 6,222,369, issued Apr. 24, 2001; U.S. Pat. No. 6,225,808, issued May 1, 2001; U.S. Pat. No. 6,249,124, issued Jun. 19, 2001; U.S. Pat. No. 6,259,254, issued Jul. 10, 2001; U.S. Pat. No. 6,262,563, issued Jul. 17, 2001; U.S. Pat. No. 6,294,896, issued Sep. 25, 2001; U.S. Pat. No. 6,294,897, issued Sep. 25, 2001; U.S. Pat. No. 6,304,087, issued Oct. 16, 2001; U.S. Pat. No. 6,310,481, issued Oct. 30, 2001; U.S. Pat. No. 6,313,607, issued Nov. 6, 2001; U.S. Pat. No. 6,313,608, issued Nov. 6, 2001; U.S. Pat. No. 6,316,914, issued Nov. 13, 2001; U.S. Pat. No. 6,323,650, issued Nov. 27, 2001; U.S. Pat. No. 6,329,793, issued Dec. 11, 2001; U.S. Pat. No. 6,331,762, issued Dec. 18, 2001; U.S. Pat. No. 6,332,113, issued Dec. 18, 2001; U.S. Pat. No. 6,351,102, issued Feb. 26, 2002; U.S. Pat. No. 6,359,441, issued Mar. 19, 2002; U.S. Pat. No. 6,363,303, issued Mar. 26, 2002; U.S. Pat. No. 6,377,031, issued Apr. 23, 2002; U.S. Pat. No. 6,392,414, issued May 21, 2002; U.S. Pat. No. 6,417,669, issued Jul. 9, 2002; U.S. Pat. No. 6,424,158, issued Jul. 23, 2002; U.S. Pat. No. 6,441,585, issued Aug. 17, 2002; U.S. Pat. No. 6,437,957, issued Aug. 20, 2002; U.S. Pat. No. 6,445,158, issued Sep. 3, 2002; U.S. Pat. Nos. 6,456,045; 6,466,025, issued Oct. 15, 2002; U.S. Pat. No. 6,465,908, issued Oct. 15, 2002; U.S. Pat. No. 6,466,026, issued Oct. 15, 2002; U.S. Pat. No. 6,469,511, issued Nov. 22, 2002; U.S. Pat. No. 6,495,990, issued Dec. 17, 2002; U.S. Pat. No. 6,497,209, issued Dec. 24, 2002; U.S. Pat. No. 6,507,196, issued Jan. 14, 2003; U.S. Pat. No. 6,534,993; issued Mar. 18, 2003; U.S. Pat. No. 6,544,078, issued Apr. 8, 2003; U.S. Pat. No. 6,556,019, issued Apr. 29, 2003; U.S. Pat. No. 6,566,883, issued May 20, 2003; U.S. Pat. No. 6,586,941, issued Jul. 1, 2003; U.S. Pat. No. 6,597,150, issued Jul. 22, 2003; U.S. Pat. No. 6,621,272, issued Sep. 16, 2003; U.S. Pat. No. 6,623,314, issued Sep. 23, 2003; U.S. Pat. No. 6,633,165, issued Oct. 14, 2003; U.S. Pat. No. 6,635,974, issued Oct. 21, 2003; U.S. Pat. No. 6,707,303, issued Mar. 16, 2004; U.S. Pat. No. 6,737,831, issued May 18, 2004; U.S. Pat. No. 6,744,149, issued Jun. 1, 2004; U.S. Pat. No. 6,759,849, issued Jul. 6, 2004; U.S. Pat. No. 6,781,382, issued Aug. 24, 2004; U.S. Pat. No. 6,788,025, filed Sep. 7, 2004; U.S. Pat. No. 6,795,782, issued Sep. 21, 2004; U.S. Pat. No. 6,805,090, filed Oct. 19, 2004; U.S. Pat. No. 6,806,716, filed Oct. 19, 2004; U.S. Pat. No. 6,850,037, filed Feb. 1, 2005; U.S. Pat. No. 6,850,037, issued Feb. 1, 2005; U.S. Pat. No. 6,871,151, issued march 22, 2005; U.S. Pat. No. 6,885,195, issued Apr. 26, 2005; U.S. Pat. No. 6,888,468, issued May 3, 2005; U.S. Pat. No. 6,891,378, issued May 10, 2005; U.S. Pat. No. 6,906,522, issued Jun. 14, 2005; U.S. Pat. No. 6,906,523, issued Jun. 14, 2005; U.S. Pat. No. 6,909,287, issued Jun. 21, 2005; U.S. Pat. No. 6,914,413, issued Jul. 5, 2005; U.S. Pat. No. 6,913,483, issued Jul. 5, 2005; U.S. Pat. No. 6,930,485, issued Aug. 16, 2005; U.S. Pat. No. 6,933,727, issued Aug. 23, 200; U.S. Pat. No. 6,941,234, filed Sep. 6, 2005; U.S. Pat. No. 6,967,484, issued Nov. 22, 2005; U.S. Pat. No. 6,998,847, issued Feb. 14, 2006; U.S. Pat. No. 7,003,410, issued Feb. 21, 2006; U.S. Pat. No. 7,003,411, issued Feb. 21, 2006; U.S. Pat. No. 7,012,433, issued Mar. 14, 2006; U.S. Pat. No. 7,015,674, issued Mar. 21, 2006; U.S. Pat. No. 7,034,541, issued Apr. 25, 2006; U.S. Pat. No. 7,039,533, issued May 2, 2006; U.S. Pat. No. 7,058,525, issued Jun. 6, 2006; U.S. Pat. No. 7,081,755, issued Jul. 25, 2006; U.S. Pat. No. 7,106,070, issued Sep. 12, 2006; U.S. Pat. No. 7,116,109, issued Oct. 3, 2006; U.S. Pat. No. 7,119,686, issued Oct. 10, 2006; and U.S. Pat. No. 7,126,341, issued Oct. 24, 2006; U.S. Pat. No. 7,154,276, issued Dec. 26, 2006; U.S. Pat. No. 7,198,510, issued Apr. 3, 2007; U.S. Pat. No. 7,363,175, issued Apr. 22, 2008; U.S. Pat. No. 7,208,914, issued Apr. 24, 2007; U.S. Pat. No. 7,246,015, issued Jul. 17, 2007; U.S. Pat. No. 7,295,936, issued Nov. 13, 2007; U.S. Pat. No. 7,319,304, issued Jan. 15, 2008; U.S. Pat. No. 7,363,175, issued Apr. 22, 2008; U.S. Pat. No. 7,398,176, issued Jul. 8, 2008; U.S. Pat. No. 7,408,358, issued Aug. 5, 2008; U.S. Pat. No. 7,425,833, issued Sep. 16, 2008; U.S. Pat. No. 7,446,536, issued Nov. 4, 2008; U.S. Pat. No. 7,479,763, issued Jan. 20, 2009; U.S. Pat. No. 7,498,767, issued Mar. 3, 2009; U.S. Pat. No. 7,501,795, issued Mar. 10, 2009; U.S. Pat. No. 7,505,856, issued Mar. 17, 2009; U.S. Pat. No. 7,545,146, issued Jun. 9, 2009; U.S. Pat. No. 7,557,586, issued Jul. 7, 2009; U.S. Pat. No. 7,595,643, issued Sep. 29, 2009; U.S. Pat. No. 7,598,699, issued Oct. 6, 2009; U.S. Pat. No. 7,598,744, issued Oct. 6, 2009; U.S. Pat. No. 7,598,743, issued Oct. 6, 2009; U.S. Pat. No. 7,619,417, issued Nov. 17, 2009; U.S. Pat. No. 7,642,786, issued Jan. 5, 2010; U.S. Pat. No. 7,642,787, issued Jan. 5, 2010 U.S. Pat. No. 7,656,162, issued Feb. 2, 2010 U.S. Pat. No. 7,688,074, issued Mar. 30, 2010; U.S. Pat. No. 7,705,602, issued Apr. 27, 2010; U.S. Pat. No. 7,706,992, issued Apr. 27, 2010; U.S. Pat. No. 7,710,119, issued May 4, 2010; U.S. Pat. No. 7,723,993, issued May 25, 2010; U.S. Pat. No. 7,728,597, issued Jun. 1, 2010; U.S. Pat. No. 7,772,850, issued Aug. 10, 2010; U.S. Pat. No. 7,774,151, issued Aug. 10, 2010; U.S. Pat. No. 7,777,612, issued Aug. 17, 2010; U.S. Pat. No. 7,791,348, issued Sep. 7, 2010; U.S. Pat. No. 7,808,375, issued Oct. 5, 2010; U.S. Ser. No. 09/780,146, filed Feb. 9, 2001, entitled STORAGE BATTERY WITH INTEGRAL BATTERY TESTER; U.S. Ser. No. 09/756,638, filed Jan. 8, 2001, entitled METHOD AND APPARATUS FOR DETERMINING BATTERY PROPERTIES FROM COMPLEX IMPEDANCE/ADMITTANCE; U.S. Ser. No. 09/862,783, filed May 21, 2001, entitled METHOD AND APPARATUS FOR TESTING CELLS AND BATTERIES EMBEDDED IN SERIES/PARALLEL SYSTEMS; U.S. Ser. No. 09/880,473, filed Jun. 13, 2001; entitled BATTERY TEST MODULE; U.S. Ser. No. 10/042,451, filed Jan. 8, 2002, entitled BATTERY CHARGE CONTROL DEVICE; U.S. Ser. No. 10/109,734, filed Mar. 28, 2002, entitled APPARATUS AND METHOD FOR COUNTERACTING SELF DISCHARGE IN A STORAGE BATTERY; U.S. Ser. No. 10/112,998, filed Mar. 29, 2002, entitled BATTERY TESTER WITH BATTERY REPLACEMENT OUTPUT; U.S. Ser. No. 10/263,473, filed Oct. 2, 2002, entitled ELECTRONIC BATTERY TESTER WITH RELATIVE TEST OUTPUT; U.S. Ser. No. 10/310,385, filed Dec. 5, 2002, entitled BATTERY TEST MODULE; U.S. Ser. No. 09/653,963, filed Sep. 1, 2000, entitled SYSTEM AND METHOD FOR CONTROLLING POWER GENERATION AND STORAGE; U.S. Ser. No. 10/174,110, filed Jun. 18, 2002, entitled DAYTIME RUNNING LIGHT CONTROL USING AN INTELLIGENT POWER MANAGEMENT SYSTEM; U.S. Ser. No. 10/258,441, filed Apr. 9, 2003, entitled CURRENT MEASURING CIRCUIT SUITED FOR BATTERIES; U.S. Ser. No. 10/681,666, filed Oct. 8, 2003, entitled ELECTRONIC BATTERY TESTER WITH PROBE LIGHT; U.S. Ser. No. 10/791,141, filed Mar. 2, 2004, entitled METHOD AND APPARATUS FOR AUDITING A BATTERY TEST; U.S. Ser. No. 10/867,385, filed Jun. 14, 2004, entitled ENERGY MANAGEMENT SYSTEM FOR AUTOMOTIVE VEHICLE; U.S. Ser. No. 10/958,812, filed Oct. 5, 2004, entitled SCAN TOOL FOR ELECTRONIC BATTERY TESTER; U.S. Ser. No. 60/587,232, filed Dec. 14, 2004, entitled CELLTRON ULTRA, U.S. Ser. No. 60/653,537, filed Feb. 16, 2005, entitled CUSTOMER MANAGED WARRANTY CODE; U.S. Ser. No. 60/665,070, filed Mar. 24, 2005, entitled OHMMETER PROTECTION CIRCUIT; U.S. Ser. No. 60/694,199, filed Jun. 27, 2005, entitled GEL BATTERY CONDUCTANCE COMPENSATION; U.S. Ser. No. 60/705,389, filed Aug. 4, 2005, entitled PORTABLE TOOL THEFT PREVENTION SYSTEM, U.S. Ser. No. 11/207,419, filed Aug. 19, 2005, entitled SYSTEM FOR AUTOMATICALLY GATHERING BATTERY INFORMATION FOR USE DURING BATTERY TESTER/CHARGING, U.S. Ser. No. 60/712,322, filed Aug. 29, 2005, entitled AUTOMOTIVE VEHICLE ELECTRICAL SYSTEM DIAGNOSTIC DEVICE, U.S. Ser. No. 60/713,168, filed Aug. 31, 2005, entitled LOAD TESTER SIMULATION WITH DISCHARGE COMPENSATION, U.S. Ser. No. 60/731,881, filed Oct. 31, 2005, entitled PLUG-IN FEATURES FOR BATTERY TESTERS; U.S. Ser. No. 60/731,887, filed Oct. 31, 2005, entitled AUTOMOTIVE VEHICLE ELECTRICAL SYSTEM DIAGNOSTIC DEVICE; U.S. Ser. No. 11/304,004, filed Dec. 14, 2005, entitled BATTERY TESTER THAT CALCULATES ITS OWN REFERENCE VALUES; U.S. Ser. No. 60/751,853, filed Dec. 20, 2005, entitled BATTERY MONITORING SYSTEM; U.S. Ser. No. 11/304,004, filed Dec. 14, 2005, entitled BATTERY TESTER WITH CALCULATES ITS OWN REFERENCE VALUES; U.S. Ser. No. 60/751,853, filed Dec. 20, 2005, entitled BATTERY MONITORING SYSTEM; U.S. Ser. No. 11/356,443, filed Feb. 16, 2006, entitled ELECTRONIC BATTERY TESTER WITH NETWORK COMMUNICATION; U.S. Ser. No. 11/519,481, filed Sep. 12, 2006, entitled BROAD-BAND LOW-CONDUCTANCE CABLES FOR MAKING KELVIN CONNECTIONS TO ELECTROCHEMICAL CELLS AND BATTERIES; U.S. Ser. No. 60/847,064, filed Sep. 25, 2006, entitled STATIONARY BATTERY MONITORING ALGORITHMS; U.S. Ser. No. 11/641,594, filed Dec. 19, 2006, entitled METHOD AND APPARATUS FOR MEASURING A PARAMETER OF A VEHICLE ELECTRONIC SYSTEM; U.S. Ser. No. 60/950,182, filed Jul. 17, 2007, entitled BATTERY TESTER FOR HYBRID VEHICLE; U.S. Ser. No. 60/973,879, filed Sep. 20, 2007, entitled ELECTRONIC BATTERY TESTER FOR TESTING STATIONARY BATTERIES; U.S. Ser. No. 11/931,907, filed Oct. 31, 2007, entitled BATTERY MAINTENANCE WITH PROBE LIGHT; U.S. Ser. No. 60/992,798, filed Dec. 6, 2007, entitled STORAGE BATTERY AND BATTERY TESTER; U.S. Ser. No. 61/061,848, filed Jun. 16, 2008, entitled KELVIN CLAMP FOR ELECTRONICALLY COUPLING TO A BATTERY CONTACT; U.S. Ser. No. 12/168,264, filed Jul. 7, 2008, entitled BATTERY TESTERS WITH SECONDARY FUNCTIONALITY; U.S. Ser. No. 12/174,894, filed Jul. 17, 2008, entitled BATTERY TESTER FOR ELECTRIC VEHICLE; U.S. Ser. No. 12/204,141, filed Sep. 4, 2008, entitled ELECTRONIC BATTERY TESTER OR CHARGER WITH DATABUS CONNECTION; U.S. Ser. No. 12/328,022, filed Dec. 4, 2008, entitled STORAGE BATTERY AND BATTERY TESTER; U.S. Ser. No. 12/416,457, filed Apr. 1, 2009, entitled SYSTEM FOR AUTOMATICALLY GATHERING BATTERY INFORMATION; U.S. Ser. No. 12/416,453, filed Apr. 1, 2009, entitled INTEGRATED TAG READER AND ENVIRONMENT SENSOR; U.S. Ser. No. 12/416,445, filed Apr. 1, 2009, entitled SIMPLIFICATION OF INVENTORY MANAGEMENT; U.S. Ser. No. 12/485,459, filed Jun. 16, 2009, entitled CLAMP FOR ELECTRONICALLY COUPLING TO A BATTERY CONTACT; U.S. Ser. No. 12/498,642, filed Jul. 7, 2009, entitled ELECTRONIC BATTERY TESTER; U.S. Ser. No. 12/697,485, filed Feb. 1, 2010, entitled ELECTRONIC BATTERY TESTER; U.S. Ser. No. 12/698,375, filed Feb. 2, 2010, entitled ELECTRONIC BATTERY TESTER; U.S. Ser. No. 12/712,456, filed Feb. 25, 2010, entitled METHOD AND APPARATU FOR DETECTING CELL DETERIORATION IN AN ELECTROCHEMICAL CELL OR BATTERY; U.S. Ser. No. 61/311,485, filed Mar. 8, 2010, entitled BATTERY TESTER WITH DATABUS FOR COMMUNICATING WITH VEHICLE ELECTRICAL SYSTEM; U.S. Ser. No. 61/313,893, filed Mar. 15, 2010, entitled USE OF BATTERY MANUFACTURE/SELL DATE IN DIAGNOSIS AND RECOVERY OF DISCHARGED BATTERIES; U.S. Ser. No. 12/758,407, filed Apr. 12, 2010, entitled ELECTRONIC BATTERY TESTER WITH NETWORK COMMUNICATION; U.S. Ser. No. 12/765,323, filed Apr. 22, 2010, entitled AUTOMOTIVE VEHICLE ELECTRICAL SYSTEM DIAGNOSTIC DEVICE; U.S. Ser. No. 12/769,911, filed Apr. 29, 2010, entitled STATIONARY BATTERY TESTER; U.S. Ser. No. 61/330,497, filed May 3, 2010, entitled MAGIC WAND WITH ADVANCED HARNESS DETECTION; U.S. Ser. No. 12/774,892, filed May 6, 2010, entitled SCAN TOOL FOR ELECTRONIC BATTERY TESTER; U.S. Ser. No. 12/786,890, filed May 25, 2010, entitled BATTERY TESTER WITH PROMOTION FEATURE; U.S. Ser. No. 61/348,901, filed May 27, 2010, entitled ELECTRTONIC BATTERY TESTER; U.S. Ser. No. 29/362,827, filed Jun. 1, 2010, entitled ELECTRONIC BATTERY TESTER; U.S. Ser. No. 61/351,017, filed Jun. 3, 2010, entitled IMPROVED ELECTRIC VEHICLE AND HYBRID ELECTRIC VEHICLE BATTERY MODULE BALANCER; U.S. Ser. No. 12/818,290, filed Jun. 18, 2010, entitled BATTERY MAINTENANCE DEVICE WITH THERMAL BUFFER; U.S. Ser. No. 61/373,045, filed Aug. 12, 2010, entitled ELECTRONIC BATTERY TESTER FOR TESTING STATIONERY STORAGE BATTERY; U.S. Ser. No. 12/888,689, filed Sep. 23, 2010, entitled BATTERY TESTER FOR ELECTRIC VEHICLE; U.S. Ser. No. 12/894,951, filed Sep. 30, 2010, entitled BATTERY PACK MAINTENANCE FOR ELECTRIC VEHICLES; U.S. Ser. No. 61/411,162, filed Nov. 8, 2010, entitled ELECTRONIC BATTERY TESTER; U.S. Ser. No. 13/037,641, filed Mar. 1, 2011, entitled MONITOR FOR FRONT TERMINAL BATTERIES; which are incorporated herein by reference in their entirety.


During operation, device 200 is capable of measuring a parameter of battery 140 through the Kelvin connections 206 and 208. For example, a forcing function can be applied by forcing function 210. Measurement circuitry 212 can monitor the effect of the applied forcing function signal on the battery 140 and responsively provide an output to microprocessor 214. This can be used to measure a dynamic parameter of the battery such as dynamic conductance, etc. The present invention is not limited to this particular testing method and other techniques may also be employed. Further, the testing of battery 140 or group of batteries 140 may be performed using sensors within battery pack 102. In such a configuration, the testing may be performed without disassembling the battery pack 102. Microprocessor 214 can operate in accordance with programming instructions stored in memory 220. Memory 220 can also store information by microprocessor 214. Operation of device 200 can be controlled by user I/O 220 which can comprise, for example, a manual input such as a keyboard and/or an output such as a display. As discussed below in greater detail, measured parameters of battery can be stored in database 222 for subsequent retrieval.



FIG. 4 is simplified block diagram of a battery selection system 250 in accordance with one example embodiment of the invention. Battery selection system 250 can be embodied in the device 200 shown in FIG. 3 or can be a separate system. System 250 may typically be implemented in a computer or microprocessor system and is configured to access information from the database 222. System 250 includes a controller 252 coupled to the database 222 and battery selection criteria 254. Controller 252 examines battery parameters stored in database 222 based upon the selection criteria 254. Based upon this examination, controller 252 provides a selection information output 255. The selection information output 255 provides information related to which of the batteries identified in the database 222 should be used to form a refurbished battery pack 102. The selection information output 255 may also include information related to specifically where in the physical or electrical configuration of the battery pack 102 a specific battery 140 should be positioned. A user I/O 256 is also provided which may include a physical input such as a keypad and/or an output such as a display. The user I/O can be used to provide instructions to controller 252 and provide a mechanism for controller 252 to provide an output to an operator. The selection information 255 output may be delivered through the user I/O 256 or through some other means. Further, the selection criteria 254 can be updated as desired. In some configurations, controller 252 can also be configured to modify data within the database 222. The selection criteria 254 and the database 222 can be implemented in a memory such as memory 220 shown in FIG. 3.



FIG. 5 shows an example configuration of database 222. Database 222 includes a number of different fields. A battery identification field 224 is used to store information which identifies a battery 140. The battery 140 may be a battery from within an existing battery pack 102 or may be a new battery 140. At least one battery parameter 226 is associated with an identified battery. In some configurations, more than one battery parameter 226 is associated with one specific battery 140.


The battery identification 224 can be in accordance with any technique which will provide information which can be used to identify a battery. This may include, for example, a serial number or the like. The identifying information can be created during the refurbishing process, or at some other time, for example, during manufacture of a battery 140 or pack 102. This information may be manually entered into the database 222 using, for example, user I/O 220 shown in FIG. 3 or user I/O 256 shown in FIG. 4, or may be entered into database 222 using more automated techniques such as a barcode scanner, RFID tag, etc. User I/O 220 and 256 may comprise such inputs. The battery parameter 226 can comprise any information which is related to an identified battery 140. The information can be information obtained through a battery test or may be information obtained through other means. For example, information related to the age of the battery may be used, information related to whether the battery 140 came from a battery pack 102 in which an operator has or has not identified any problems, manufacturing information, geographic location information, information related to a location of a battery within the battery pack 102, etc. Examples of other parameters include parameters collected by testing the battery may include temperature, etc. These parameters may include the results of any type of battery test or data measured or collected prior to, during, or after a test is performed and are not limited to those discussed herein.



FIG. 6 is simplified block diagram 300 shown in steps in accordance with one example embodiment of the present invention. The steps begin at start block 302. At block 304 battery parameters are collected as discussed above. These battery parameters are stored in the database 222 and associated with information which identifies a respective battery 140. At block 306, the selection criteria 254 is applied to the data contained in database 222. Based upon this selection criteria, at block 308, the controller 352 shown in FIG. 4 provides the selection information output 255 which identifies refurbished battery pack information as discussed above.


During operation of the system discussed above, any bad batteries 140 within the battery pack 102 are identified by testing and removed from the battery pack. This may require that the battery pack 102 be charged and discharged. Further, remaining batteries 140 in the battery pack 102, as well as any replacement batteries 140, may be charged or discharged such that they are all at the approximately the same state of charge.


The batteries may be tested while remaining in the pack through connections at individual points between multiple batteries. In another example, the batteries are tested by collecting data over an internal databus of vehicle 100 using techniques described in copending application Ser. No. 12/174,894 which is entitled BATTERY TESTER FOR ELECTRIC VEHICLE, filed Jul. 17, 2008. In another example, the entire battery pack 102 may be tested by supplying a known current to the entire pack 102, or a portion of the pack 102. This current may be a DC current, a time varying DC current, a bi-polar current, a uni-polar AC current, etc. While is current is applied, a battery 140 or groups of batteries 140 within the battery pack 102 can be monitored. This monitoring may be through sensors which are internal to the battery pack 102 or through sensors which are separably applied to the battery 102. In another example, individual batteries are removed from the pack and tested.


The present invention includes the recognition that in a high voltage string of batteries, simply replacing one faulty battery 140 with a new battery 140 may not provide an optimal solution in refurbishing the battery pack 102. This is because the replacement battery 140 may be out of balance with the other batteries 140 in the battery pack 102. Thus, it is desirable that the batteries 140 in the battery pack 102 be balanced in such a way that they have a similar capacity, state of charge, voltage, impedance, conductance, or other parameter, depending upon the selection criteria 254.


The particular selection criteria 254 can be selected as desired. For example, the selection criteria 254 can be determined by testing many batteries 140 across many different battery packs 102 and identifying which parameter 226 or parameters 226 will have a detrimental impact if they are “out of balance” with other batteries 140 within a battery pack 102, identifying a range of acceptable values of a particular parameter 226, identifying an interrelationship between multiple parameters 226 and/or identifying a particular physical or electrical configuration of such batteries 140 within a battery pack 102. Using a load test as an example, a group of batteries 140 may be fully charged and then discharged for a period of time at a desired discharged rate. The voltage of the batteries 140 during or following the discharge can be measured. Batteries 140 having a voltage which is within a selected percentage of the voltage of other batteries 140 may be identified for use in a refurbished battery pack 102. This selection process may be applied only to batteries 140 which are used to replace faulty batteries 140 within a battery pack 102, or may be applied to additional batteries 140 within the battery pack 102 including all of the batteries 140 within a particular battery pack 102. Further, the batteries 140 which are used to replace faulty batteries 140 may themselves be retrieved from other battery packs 102 which are in the process of being refurbished or otherwise disassembled. The replacement batteries 140 may also comprise new or otherwise unused batteries 140. The battery 140 discussed herein may comprise an individual cell or may comprise multiple cells or batteries. The battery 140 and/or cells may operate in accordance with any suitable battery technology. The database 222 discussed above may be implemented in any suitable database 222 format. In one configuration, the database 222 may be implemented manually. In another configuration, the database is stored in a memory, for example, a computer memory.



FIG. 7 is a simplified block diagram showing battery tester 200 including a battery cradle 350. Tester 200 includes test circuitry 352 coupled to user I/O 220. FIG. 7 also illustrates a remote I/O connection 354 for communicating with a remote location such as over a network, to a centralized data system, to other electrical equipment, to a remote user, etc. An optional printer 356 is also illustrated in FIG. 7 and can be used to provide a physical hard copy of test results or other information.


The test circuitry 352 couples to the battery 350 to a removable cable 360. Cable 360 has ends 362 and 364 which plug into the battery cradle 350 and the test circuitry 352, respectively. The battery 140 can be placed into the cradle 350 whereby tests may be performed by the battery 140. Battery 140 is illustrated as including battery terminals 202 and 204 which couple to Kelvin connections 206 and 208 in cradle 350. These may be Kelvin connections or single connections. A midpoint connector 370 is also illustrated which allows a midpoint test connector 372 to connect to one or more connections between cells or groups of cells within the battery 140.


The configuration shown in FIG. 7 simplifies the technical requirements of connecting a battery to the battery test circuitry. The use of an individual cradle allows the battery to simply be “snapped” into place for testing. The cradle can include a protective case cover and integrated safety lock to protect the operator and circuitry during testing. Mechanical and/or electrical polarity detection can be used as discussed below in greater detail. The cable 360 can be replaceable as if it becomes worn through extended use. Additionally, different types of cradles can be used for different types of batteries 140 and simply plugged into the cable 360. Some particular types of cradles 350 may use different types of cabling connections 360. This allows the particular cable to be easily exchanged and/or plugged into a different type of cradle 350. In one configuration, the cable 360 represents a wireless communication link such as an RF link using BlueTooth®, WIFI, etc. In such a configuration, part of the test circuitry maybe located within the cradle 350 in order to sense voltages directed and/or apply forcing functions. The remote I/O 354 can then communicate as appropriate including wireless or wired connections such as Ethernet, WIFI, etc. The battery test circuitry 352 can be configured for testing, discharging and charging the battery 140. Some tests or battery maintenance may require discharging or recharging as well as testing the battery 140.


In one configuration, the test circuitry 352 receives information regarding the state of charge and/or voltage of batteries within a battery pack. A replacement battery 140 is then connected to the device 200 and the circuitry 352 adjust the state of charge and/or voltage of the replacement battery 140 to more closely match the state of charge and/or the voltage of the other batteries within the pack. As specified above, similar techniques can be used to balance the state of charge for all the batteries within a battery pack. The information regarding the state of charge and/or voltage can be received by the test circuitry by a user I/O 220 or through remote I/O 354. For example, the information may be received from the onboard databus of the vehicle such as OBDII databus, over wireless connection, input by service personnel. The state of charge of the battery may be determined using an approximate relationship between voltage of the battery, and/or current in/out of the battery, and state of charge. Other techniques may be used including measurement of dynamic parameter as discussed above. When charging a battery, the circuitry can be charged using a constant current or can charge in a constant current or constant voltage mode as desired. In such embodiments, the forcing function 210 is configured as a constant current source, a constant voltage source as well as a load including a constant current load.


Preferably, the test circuitry includes a fail safe configuration whereby if a voltage of a battery is out of a predetermined range, such as 2.5 volts to 4.25 volts, the current or voltage applied to the battery 140 may be terminated. As described below in more detail, the test circuitry can selectively couple to individual cells within the battery 140 if appropriate midpoint connections are provided. A power on self test (POST) and/or watchdog timer can be selectively provided within test circuitry 252 in order to improve the reliability of the device. In one configuration, a “start” button is provided on the user I/O 220 which can be used to initiate the charge/discharge cycle. Over voltage, current and temperature protection is preferably provided in order to protect the battery and the test circuitry.



FIG. 8 shows graphs of battery voltage and battery current during a constant voltage charging mode. As illustrated in FIG. 8, during a first phase of operation, a constant current is applied to the battery. In a second period, a constant voltage is applied to the battery followed by a waiting time. These periods can be cycled in order to maximize battery charge. Similarly, FIG. 9 shows a constant current discharging mode. In such a configuration a constant is applied to the battery for a first period of time. The discharge current is then brought to zero amps.



FIG. 10 is a front perspective view of battery 140 when configured as an electrical vehicle (EV) type battery. In such a configuration, the battery is made up of four cells in which two parallel pairs of cells are connected in series providing a total of four cells. The battery includes a positive connector 400 and a negative connector 402 including a midpoint connector 404. There are two different versions of this type of battery. FIG. 11 illustrates a second configuration in which the positive and negative connections 400, 402 are reversed. In one aspect, the present invention includes a cradle 350 configure to couple to electrical (EV) vehicle batteries configured either in the configuration shown in FIG. 10 or 11.


Similarly, hybrid electric vehicles (HEV) include two types of battery packs. FIG. 12A is a front perspective view and FIG. 12B is a rear perspective view of a first type of hybrid electric battery pack 140. In FIG. 12A, battery 140 includes end terminals 420 and 422. Typically, the hybrid electrical vehicle (HEV) battery consists of eight individual cells connected in series. The inner cell connectors provide inner cell connections between each of the eight batteries for a total of seven inner cell connections in addition to the two end connections. An inner cell connector 424 is provided having a “key” on the left side. In FIG. 12B, a second inner cell connector 426 is shown in which the “key” is opposite the key shown of connector 424 and is positioned on the right side. FIGS. 13A and 13B are front and rear perspective view, respectively, of a second hybrid electric battery 140. In FIG. 13A, end connectors 430 and 432 are illustrated along with an inner cell connector 434 having a “key” on the right side of the illustration. In FIG. 13B, a second inner cell connector 436 is illustrated in which the “key” is positioned on the left side of the figure. In one aspect, the present invention provides a cradle 350 for coupling to either the battery pack configuration shown in FIGS. 12A, 12B or the configuration shown in FIG. 12A, 12B or 13A, 13B.



FIG. 14 is an electrical schematic diagram of switching circuitry 450 used to selectively couple test circuitry 352 to cells within the battery 140 through the inner cell connector 372. In FIG. 14, two inner cell connectors 372A and 372B are illustrated for use in coupling to opposed ends of battery 140 when configured for a hybrid electric vehicle as illustrated in FIGS. 13A and 13B. Switching circuitry 450 includes four relay type switches 452A, 452B, 452C and 452D. Each of the relays 452 include two switches which each have an electrical connection to one of two connections in connector 372A, 372B connecting to an inner cell battery. A switch controller 454 is optically isolated from other circuitry and includes a transistor which drives coils within each of the relay switches 452A, B, C, and D. By selectively actuating the relays 452A, B, C, and D, the polarity of the electrical connections to the inner cell batteries can be reversed. Thus, in one embodiment, circuitry within test circuitry, for example measurement circuitry 272 shown in FIG. 3, senses a voltage of the inner cell connection and selectively actuates relays 452A, B, C and D through controller 454 to obtain the desired polarity on the electrical connection. Similarly circuitry can be used to select a desired polarity of electrical connections to the end points 400, 402 shown in FIGS. 10 and 11 as well as the end point connections 420, 422 and 430, 432 shown in FIGS. 12A and 13A, respectively. Circuitry 450 can be located in test circuitry 352 or can be located within cradle 350 as desired.


In one aspect, the present invention provides one or more cradle configuration for receiving a battery 140 and coupling the battery 140 to circuitry device 200. The cradle configuration allows coupling process to be at least partially automated thereby reducing the time required by an operator as well as the likelihood of operator error in providing the coupling. The cradle and associated circuitry can be configured to select a desired polarity of the connections to the battery and physically secure the battery for testing, charging, discharging, etc. This also allows a single cradle to be used with more than one battery configuration.



FIG. 15 is an exploded perspective view of battery 140 adjacent to cradle 350. In the configuration of FIG. 15, battery 140 is configured as an electric vehicle (EV) battery. In FIG. 15, cradle 350 is illustrated as including a base 500, a cover 502 and latches 504 to secure cover 502 to base 500. Locking tabs 508 are illustrated in open position. A safety switch 510 is also shown and configured to actuate when lid 502 is closed. FIG. 16 is a perspective view showing battery 140 and inserted into base 500. Connectors 206 and 208, and midpoint test connector 372 are shown. These are configured to make contact with battery terminals 202 and 204 and 370. In FIG. 17, the locking tabs 508 are rotated into position thereby secure the battery 140 against Kelvin connections 206, 208 and midpoint connector 372. This also secures the battery 140 within the base 350 whereby cover 502 may be closed and latched and secured with latches 504 as illustrated in FIG. 18. FIG. 19 is a partial cutaway view plan view of base 500. In FIG. 19, operating of locking tabs 508 is shown further. Connectors 206, 208 and midpoint connector 372 are shown as being spring-loaded and urged against connectors 208, 202 and 370, respectively, of battery 140. Note that when the cover 502 is closed, switch 510 is pushed downward and can thereby be used to provide fail safe operation of device without having a cover 502 in the closed position. A temperature sensor 509 such as a thermometer is positioned adjacent battery 140 to measure its temperature during charging and discharging.



FIG. 20 is a perspective view of cradle 350 configured to receive a hybrid electric vehicle (HEV) style battery 140. In the configuration of FIG. 20, cradle 350 contains a base 550, a cover 552 and latches 554. In order to couple to a hybrid electric vehicle battery, the base 550 includes inner cell electrical (or midpoint) connectors 372A, 372B which are configured to couple to inter cell connector 424 and 436 (or 434 and 436), respectively, of battery 140. A safety switch 560 is also illustrated. When battery 140 is inserted into base 550, a slidable portion 555 can be pushed towards battery whereby the battery is secured and electrical contact is made. In rotatable actuator 564 is turned to thereby secure moveable portion 565 in place. Once the battery is secured, the cover 552 can be closed and latched as illustrated in FIG. 23. In this position, the switch 560 is actuated to thereby ensure that the cover 552 has been closed prior operation of the device.



FIG. 24 is a side cross-sectional view of base 550 showing the actuator 564 in greater detail. As illustrated in FIG. 24, the actuator 564 can be rotated. Prior to rotation of actuator 564, moveable portion 565 is slid toward the battery 140 to thereby secure the battery into base 550. A locking disc 590 is slidably received in a track 592. The rotation of actuator 564 causes the locking disc 590 to be urged against track surface 594 to thereby secure the moveable portion 565 in position.



FIG. 25 is a perspective view of Kelvin connections 206 and 208 and midpoint connector 372A in greater detail. As illustrated in FIG. 25, midpoint connector 372A includes four electrical connectors 580 configured to couple to the midpoint connections between four of the batteries or cells within the hybrid electric vehicle battery 140. Alignment tabs 582 are arranged to position the battery 140 within the base 580 and align the electrical connectors 580 with the midpoint connectors to the individual cells. The connectors 580 are arranged to couple to electrical connections inner cell connectors 424 and 434. A similar connector 372B is provided opposite connector 372A and arranged to couple to inner cell connectors 426 and 436.



FIG. 26 is a top perspective view of base 550 having the battery 140 inserted therein prior to rotation of actuator 564. FIG. 27 is a top view showing battery 140 positioned in base 550 prior to movement of moveable portion 565 into position against the battery 140. In FIG. 27, moveable portion 565 has been moved into position and secured in position by rotating rotatable actuator 564.


Although the present invention has been described with reference to preferred embodiments, workers skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the invention. As discussed above, the step of identifying can be performed based upon various parameters. Some of these parameters can be independently adjusted by the testing device or otherwise, for example voltage or state of charge for a particular battery or cell. Other parameters cannot be changed, for example, conductance, impedance, etc. In preparing a replacement battery pack, the parameters which can be adjusted independently may be changed as desired, for example, by charging or discharging a battery in order to provide a better match with other batteries in the replacement pack. The step of identifying can be configured such that a greater weight can be given to those parameters which cannot be adjusted. In such a configuration, prior to assembling the replacement battery pack, parameters which can be adjusted to more closely match one another can be changed accordingly. Further, an information in a database can be developed that relates a voltage or state of charge to conductance or impedance for a specific type of battery. In such a situation, if the database information indicates that a match will be difficult to obtain following equalization of adjustable parameters, the measurement device and/or method can be configured such that that particular battery will not be used and thereby saving time during the refurbishing process. Typically, a battery will comprise a lithium ion battery; another example technology is a nickel metal hydrate battery. However, the present invention is not limited to these battery configurations and may be implemented with other battery technologies. Typically electrical vehicle batteries will include four cells for battery module while hybrid electric vehicle batteries will include eight cells per battery module. The connections to a cell or battery can be single connections or Kelvin connections.

Claims
  • 1. An apparatus for testing a battery of a battery pack from an electric vehicle, comprising: test circuitry configured to perform a battery test on the battery;a cradle configured to receive the battery, the cradle comprising: first and second connectors configured to electrically connect the test circuitry to end connectors of the battery, wherein the first and second connectors comprise Kelvin connectors;at least one midpoint test connector configured to electrically connect the test circuitry to an electrical midpoint between the end connectors, wherein the midpoint test connector is keyed and arranged to fit with a battery midpoint connector on the battery;a base arranged to receive the battery therein;switch circuitry coupled to the at least one midpoint test connector arranged to reverse a polarity of a connection to the battery through the at least one midpoint test connector, the switch circuitry including: at least one relay type switch electrically connected to first and second input connections of the at least one midpoint test connector and first and second output connections of the test circuitry, each relay type switch includes a first switch and a second switch, wherein when the first and second switches are selectively in a first polarity configuration the first switch electrically connects the first input connection to the first output connection and the second switch electrically connects the second input connection to the second output connection and wherein when the first and second switches are selectively in a second polarity configuration that is reversed from the first polarity configuration the first switch electrically connects the second input connection to the first output connection and the second switch electrically connects the first input connection to the second output connection;a switch controller operated by the test circuitry including an optoisolator and a transistor arranged to energize the at least one relay type switch;an actuator arranged to lock the battery in the base and urge the battery into electrical contact with the first, second and midpoint connectors; anda cover arranged to cover the base.
  • 2. The apparatus of claim 1 wherein the actuator comprises a lock mechanism to secure the battery in the cradle.
  • 3. The apparatus of claim 1 wherein the cradle includes a temperature sensor.
  • 4. The apparatus of claim 1 wherein the at least one midpoint test connector includes a plurality of electrical connectors configured to couple to a plurality of electrical midpoints between the end connectors of the battery.
  • 5. The apparatus of claim 1 including a second midpoint test connector configured to couple to additional midpoint connections between the end connectors of the battery.
  • 6. The apparatus of claim 5 wherein the second midpoint connector is carried on a slidable portion.
  • 7. The apparatus of claim 6 including a lock mechanism to secure the slidable portion to the base of the cradle.
  • 8. The apparatus of claim 1 wherein the cradle includes a switch actuated by the cover when the cover is in a closed position.
  • 9. The apparatus of claim 1 wherein the test circuitry is configured to measure a dynamic parameter of the battery.
  • 10. The apparatus of claim 1 wherein the actuator comprises a locking tab.
  • 11. The apparatus of claim 1 wherein the actuator comprises a rotatable actuator.
  • 12. The apparatus of claim 1 wherein the switch circuitry coupled to the at least one midpoint test connector comprises a second relay type switch electrically connected to third and fourth input connections of the at least one midpoint test connector and third and fourth output connections of the test circuitry, the second relay type switch including a first switch and a second switch.
  • 13. The apparatus of claim 12 wherein when the first and second switches of the second relay type switch are selectively in a third polarity configuration the first switch of the second relay type switch electrically connects the third input connection to the third output connection and the second switch of the second relay type switch electrically connects the fourth input connection to the fourth output connection and wherein when the first and second switches of the second relay type switch are selectively in a fourth polarity configuration that is reversed from the first polarity configuration the first switch of the second relay type switch electrically connects the fourth input connection to the third output connection and the second switch of the second relay type switch electrically connects the third input connection to the fourth output connection.
CROSS-REFERENCE TO RELATED APPLICATION

The present application is a continuation of U.S. patent application Ser. No. 14/039,746, filed Sep. 27, 2013 which is a continuation of U.S. patent application Ser. No. 13/152,711, filed Jun. 3, 2011, which is based on and claims the benefit of U.S. provisional patent application Ser. No. 61/351,017, filed Jun. 3, 2010, and is also a Continuation of and claims priority of U.S. patent application Ser. No. 12/894,951, filed Sep. 30, 2010, the contents of which are hereby incorporated by reference in their entirety.

US Referenced Citations (1132)
Number Name Date Kind
85553 Adams Jan 1869 A
2000665 Neal May 1935 A
2254846 Heyer Sep 1941 A
2417940 Lehman Mar 1947 A
2437772 Wall Mar 1948 A
2514745 Dalzell Jul 1950 A
2727221 Springg Dec 1955 A
3025455 Jonsson Mar 1962 A
3178686 Mills Apr 1965 A
3215194 Sununu et al. Nov 1965 A
3223969 Alexander Dec 1965 A
3267452 Wolf Aug 1966 A
3356936 Smith Dec 1967 A
3562634 Latner Feb 1971 A
3593099 Scholl Jul 1971 A
3607673 Seyl Sep 1971 A
3652341 Halsall et al. Mar 1972 A
3676770 Sharaf et al. Jul 1972 A
3699433 Smith, Jr. Oct 1972 A
3704439 Nelson Nov 1972 A
3729989 Little May 1973 A
3745441 Soffer Jul 1973 A
3750011 Kreps Jul 1973 A
3753094 Furuishi et al. Aug 1973 A
3776177 Bryant et al. Dec 1973 A
3796124 Crosa Mar 1974 A
2689939 Godshalk Apr 1974 A
3808401 Wright et al. Apr 1974 A
3808522 Sharaf Apr 1974 A
3808573 Cappell Apr 1974 A
3811089 Strezelewicz May 1974 A
3816805 Terry Jun 1974 A
3850490 Zehr Nov 1974 A
3857082 Van Opijnen Dec 1974 A
3873911 Champlin Mar 1975 A
3876931 Godshalk Apr 1975 A
3879654 Kessinger Apr 1975 A
3886426 Daggett May 1975 A
3886443 Miyakawa et al. May 1975 A
3889248 Ritter Jun 1975 A
3906329 Bader Sep 1975 A
3909708 Champlin Sep 1975 A
3920284 Lane et al. Nov 1975 A
3936744 Perlmutter Feb 1976 A
3939400 Steele Feb 1976 A
3946299 Christianson et al. Mar 1976 A
3947757 Grube et al. Mar 1976 A
3969667 McWilliams Jul 1976 A
3979664 Harris Sep 1976 A
3984762 Dowgiallo, Jr. Oct 1976 A
3984768 Staples Oct 1976 A
3989544 Santo Nov 1976 A
3997830 Newell et al. Dec 1976 A
4008619 Alcaide et al. Feb 1977 A
4023882 Pettersson May 1977 A
4024953 Nailor, III May 1977 A
4047091 Hutchines et al. Sep 1977 A
4053824 Dupuis et al. Oct 1977 A
4056764 Endo et al. Nov 1977 A
4057313 Polizzano Nov 1977 A
4070624 Taylor Jan 1978 A
4086531 Bernier Apr 1978 A
4106025 Katz Aug 1978 A
4112351 Back et al. Sep 1978 A
4114083 Benham et al. Sep 1978 A
4126874 Suzuki et al. Nov 1978 A
4160916 Papasideris Jul 1979 A
4176315 Sunnarborg Nov 1979 A
4178546 Hulls et al. Dec 1979 A
4193025 Frailing et al. Mar 1980 A
4207610 Gordon Jun 1980 A
4207611 Gordon Jun 1980 A
4217645 Barry et al. Aug 1980 A
4218745 Perkins Aug 1980 A
4280457 Bloxham Jul 1981 A
4295468 Bartelt Oct 1981 A
4297639 Branham Oct 1981 A
4307342 Peterson Dec 1981 A
4315204 Sievers et al. Feb 1982 A
4316185 Watrous et al. Feb 1982 A
4322685 Frailing et al. Mar 1982 A
4351405 Fields et al. Jun 1982 A
4352067 Ottone Sep 1982 A
4360780 Skutch, Jr. Nov 1982 A
4361809 Bil et al. Nov 1982 A
4363407 Buckler et al. Dec 1982 A
4369407 Korbell Jan 1983 A
4379989 Kurz et al. Apr 1983 A
4379990 Sievers et al. Apr 1983 A
4385269 Aspinwall et al. May 1983 A
4390828 Converse et al. Jun 1983 A
4392101 Saar et al. Jul 1983 A
4396880 Windebank Aug 1983 A
4408157 Beaubien Oct 1983 A
4412169 Dell'Orto Oct 1983 A
4423378 Marino et al. Dec 1983 A
4423379 Jacobs et al. Dec 1983 A
4424491 Bobbett et al. Jan 1984 A
4425791 Kling Jan 1984 A
4441359 Ezoe Apr 1984 A
4459548 Lentz et al. Jul 1984 A
4502000 Mashikian Feb 1985 A
4514694 Finger Apr 1985 A
4520353 McAuliffe May 1985 A
4521498 Juergens Jun 1985 A
4544312 Stencel Oct 1985 A
4560230 Inglis Dec 1985 A
4564798 Young Jan 1986 A
4620767 Woolf Nov 1986 A
4626765 Tanaka Dec 1986 A
4633418 Bishop Dec 1986 A
4637359 Cook Jan 1987 A
4643511 Gawlik Feb 1987 A
4659977 Kissel et al. Apr 1987 A
4663580 Wortman May 1987 A
4665370 Holland May 1987 A
4667143 Cooper et al. May 1987 A
4667279 Maier May 1987 A
4678998 Muramatsu Jul 1987 A
4679000 Clark Jul 1987 A
4680528 Mikami et al. Jul 1987 A
4686442 Radomski Aug 1987 A
4697134 Burkum et al. Sep 1987 A
4707795 Alber et al. Nov 1987 A
4709202 Koenck et al. Nov 1987 A
4710861 Kanner Dec 1987 A
4719428 Liebermann Jan 1988 A
4723656 Kiernan et al. Feb 1988 A
4743855 Randin et al. May 1988 A
4745349 Palanisamy et al. May 1988 A
4773011 VanHoose Sep 1988 A
4781629 Mize Nov 1988 A
D299909 Casey Feb 1989 S
4816768 Champlin Mar 1989 A
4820966 Fridman Apr 1989 A
4825170 Champlin Apr 1989 A
4826457 Varatta May 1989 A
4847547 Eng, Jr. et al. Jul 1989 A
4849700 Morioka et al. Jul 1989 A
4874679 Miyagawa Oct 1989 A
4876495 Palanisamy et al. Oct 1989 A
4881038 Champlin Nov 1989 A
4885523 Koench Dec 1989 A
4888716 Ueno Dec 1989 A
4901007 Sworm Feb 1990 A
4907176 Bahnick et al. Mar 1990 A
4912416 Champlin Mar 1990 A
4913116 Katogi et al. Apr 1990 A
4926330 Abe et al. May 1990 A
4929931 McCuen May 1990 A
4931738 MacIntyre et al. Jun 1990 A
4932905 Richards Jun 1990 A
4933845 Hayes Jun 1990 A
4934957 Bellusci Jun 1990 A
4937528 Palanisamy Jun 1990 A
4947124 Hauser Aug 1990 A
4949046 Seyfang Aug 1990 A
4956597 Heavey et al. Sep 1990 A
4965738 Bauer et al. Oct 1990 A
4968941 Rogers Nov 1990 A
4968942 Palanisamy Nov 1990 A
4969834 Johnson Nov 1990 A
4983086 Hatrock Jan 1991 A
5004979 Marino et al. Apr 1991 A
5030916 Bokitch Jul 1991 A
5032825 Kuznicki Jul 1991 A
5034893 Fisher Jul 1991 A
5037335 Campbell Aug 1991 A
5037778 Stark et al. Aug 1991 A
5047722 Wurst et al. Sep 1991 A
5081565 Nabha et al. Jan 1992 A
5083076 Scott Jan 1992 A
5087881 Peacock Feb 1992 A
5095223 Thomas Mar 1992 A
5108320 Kimber Apr 1992 A
5109213 Williams Apr 1992 A
5126675 Yang Jun 1992 A
5130658 Bohmer Jul 1992 A
5140269 Champlin Aug 1992 A
5144218 Bosscha Sep 1992 A
5144248 Alexandres et al. Sep 1992 A
D330338 Wang Oct 1992 S
5159272 Rao et al. Oct 1992 A
5160881 Schramm et al. Nov 1992 A
5164653 Reem Nov 1992 A
5167529 Verge Dec 1992 A
5168208 Schultz et al. Dec 1992 A
5170124 Blair et al. Dec 1992 A
5179335 Nor Jan 1993 A
5187382 Kondo Feb 1993 A
5194799 Tomantschger Mar 1993 A
5202617 Nor Apr 1993 A
5204611 Nor et al. Apr 1993 A
5214370 Harm et al. May 1993 A
5214385 Gabriel et al. May 1993 A
5223747 Tschulena Jun 1993 A
5241275 Fang Aug 1993 A
5254952 Salley et al. Oct 1993 A
5266880 Newland Nov 1993 A
5278759 Berra et al. Jan 1994 A
5281919 Palanisamy Jan 1994 A
5281920 Wurst Jan 1994 A
5295078 Stich et al. Mar 1994 A
5296823 Dietrich Mar 1994 A
5298797 Redl Mar 1994 A
5300874 Shimamoto et al. Apr 1994 A
5302902 Groehl Apr 1994 A
5309052 Kim May 1994 A
5313152 Wozniak et al. May 1994 A
5315287 Sol May 1994 A
5321231 Schmalzriedt et al. Jun 1994 A
5321626 Palladino Jun 1994 A
5321627 Reher Jun 1994 A
5323337 Wilson et al. Jun 1994 A
5325041 Briggs Jun 1994 A
5331268 Patino et al. Jul 1994 A
5332927 Paul et al. Jul 1994 A
5336993 Thomas et al. Aug 1994 A
5338515 Dalla Betta et al. Aug 1994 A
5339018 Brokaw Aug 1994 A
5343380 Champlin Aug 1994 A
5345384 Przybyla et al. Sep 1994 A
5347163 Yoshimura Sep 1994 A
5349535 Gupta Sep 1994 A
5352968 Reni et al. Oct 1994 A
5357519 Martin et al. Oct 1994 A
5365160 Leppo et al. Nov 1994 A
5365453 Startup et al. Nov 1994 A
5369364 Renirie et al. Nov 1994 A
5381096 Hirzel Jan 1995 A
5384540 Dessel Jan 1995 A
5387871 Tsai Feb 1995 A
5394093 Cervas Feb 1995 A
5402007 Center et al. Mar 1995 A
5410754 Klotzbach et al. Apr 1995 A
5412308 Brown May 1995 A
5412323 Kato et al. May 1995 A
5425041 Seko et al. Jun 1995 A
5426371 Salley et al. Jun 1995 A
5426416 Jefferies et al. Jun 1995 A
5430645 Keller Jul 1995 A
5432025 Cox Jul 1995 A
5432426 Yoshida Jul 1995 A
5432429 Armstrong, II et al. Jul 1995 A
5434495 Toko Jul 1995 A
5435185 Eagan Jul 1995 A
5442274 Tamai Aug 1995 A
5445026 Eagan Aug 1995 A
5449996 Matsumoto et al. Sep 1995 A
5449997 Gilmore et al. Sep 1995 A
5451881 Finger Sep 1995 A
5453027 Buell et al. Sep 1995 A
5457377 Jonsson Oct 1995 A
5459660 Berra Oct 1995 A
5462439 Keith Oct 1995 A
5469043 Cherng et al. Nov 1995 A
5485090 Stephens Jan 1996 A
5486123 Miyazaki Jan 1996 A
5488300 Jamieson Jan 1996 A
5504674 Chen et al. Apr 1996 A
5508599 Koenck Apr 1996 A
5519383 De La Rosa May 1996 A
5528148 Rogers Jun 1996 A
5537967 Tashiro et al. Jul 1996 A
5541489 Dunstan Jul 1996 A
5546317 Andrieu Aug 1996 A
5548273 Nicol et al. Aug 1996 A
5550485 Falk Aug 1996 A
5555498 Berra Sep 1996 A
5561380 Sway-Tin et al. Oct 1996 A
5562501 Kinoshita et al. Oct 1996 A
5563496 McClure Oct 1996 A
5572136 Champlin Nov 1996 A
5573611 Koch et al. Nov 1996 A
5574355 McShane et al. Nov 1996 A
5578915 Crouch, Jr. et al. Nov 1996 A
5583416 Klang Dec 1996 A
5585416 Audett et al. Dec 1996 A
5585728 Champlin Dec 1996 A
5589292 Rozon Dec 1996 A
5589757 Klang Dec 1996 A
5592093 Klingbiel Jan 1997 A
5592094 Ichikawa Jan 1997 A
5596260 Moravec et al. Jan 1997 A
5596261 Suyama Jan 1997 A
5598098 Champlin Jan 1997 A
5602462 Stich et al. Feb 1997 A
5606242 Hull et al. Feb 1997 A
5614788 Mullins et al. Mar 1997 A
5621298 Harvey Apr 1997 A
5631536 Tseng May 1997 A
5631831 Bird et al. May 1997 A
5633985 Severson et al. May 1997 A
5637978 Kellett et al. Jun 1997 A
5642031 Brotto Jun 1997 A
5644212 Takahashi Jul 1997 A
5650937 Bounaga Jul 1997 A
5652501 McClure et al. Jul 1997 A
5653659 Kunibe et al. Aug 1997 A
5654623 Shiga et al. Aug 1997 A
5656920 Cherng et al. Aug 1997 A
5661368 Deol et al. Aug 1997 A
5666040 Bourbeau Sep 1997 A
5675234 Greene Oct 1997 A
5677077 Faulk Oct 1997 A
5684678 Barrett Nov 1997 A
5685734 Kutz Nov 1997 A
5691621 Phuoc et al. Nov 1997 A
5699050 Kanazawa Dec 1997 A
5701089 Perkins Dec 1997 A
5705929 Caravello et al. Jan 1998 A
5707015 Guthrie Jan 1998 A
5710503 Sideris et al. Jan 1998 A
5711648 Hammerslag Jan 1998 A
5712795 Layman et al. Jan 1998 A
5717336 Basell et al. Feb 1998 A
5717937 Fritz Feb 1998 A
5721688 Bramwell Feb 1998 A
5732074 Spaur et al. Mar 1998 A
5739667 Matsuda et al. Apr 1998 A
5744962 Alber et al. Apr 1998 A
5745044 Hyatt, Jr. et al. Apr 1998 A
5747189 Perkins May 1998 A
5747909 Syverson et al. May 1998 A
5747967 Muljadi et al. May 1998 A
5754417 Nicollini May 1998 A
5757192 McShane et al. May 1998 A
5760587 Harvey Jun 1998 A
5772468 Kowalski et al. Jun 1998 A
5773962 Nor Jun 1998 A
5773978 Becker Jun 1998 A
5778326 Moroto et al. Jul 1998 A
5780974 Pabla et al. Jul 1998 A
5780980 Naito Jul 1998 A
5789899 van Phuoc et al. Aug 1998 A
5793359 Ushikubo Aug 1998 A
5796239 van Phuoc et al. Aug 1998 A
5808469 Kopera Sep 1998 A
5811979 Rhein Sep 1998 A
5818201 Stockstad et al. Oct 1998 A
5818234 McKinnon Oct 1998 A
5820407 Morse et al. Oct 1998 A
5821756 McShane et al. Oct 1998 A
5821757 Alvarez et al. Oct 1998 A
5825174 Parker Oct 1998 A
5826467 Huang Oct 1998 A
5831435 Troy Nov 1998 A
5832396 Moroto et al. Nov 1998 A
5850113 Weimer et al. Dec 1998 A
5862515 Kobayashi et al. Jan 1999 A
5865638 Trafton Feb 1999 A
5869951 Takahashi Feb 1999 A
5870018 Person Feb 1999 A
5871858 Thomsen et al. Feb 1999 A
5872443 Williamson Feb 1999 A
5872453 Shimoyama et al. Feb 1999 A
5883306 Hwang Mar 1999 A
5884202 Arjomand Mar 1999 A
5895440 Proctor et al. Apr 1999 A
5903154 Zhang et al. May 1999 A
5903716 Kimber et al. May 1999 A
5912534 Benedict Jun 1999 A
5914605 Bertness Jun 1999 A
5916287 Arjomand et al. Jun 1999 A
5927938 Hammerslag Jul 1999 A
5929609 Joy et al. Jul 1999 A
5935180 Fieramosca et al. Aug 1999 A
5939855 Proctor et al. Aug 1999 A
5939861 Joko et al. Aug 1999 A
5945829 Bertness Aug 1999 A
5946605 Takahisa et al. Aug 1999 A
5950144 Hall et al. Sep 1999 A
5951229 Hammerslag Sep 1999 A
5953322 Kimball Sep 1999 A
5955951 Wischerop et al. Sep 1999 A
5961561 Wakefield, II Oct 1999 A
5961604 Anderson et al. Oct 1999 A
5963012 Garcia et al. Oct 1999 A
5969625 Russo Oct 1999 A
5973598 Beigel Oct 1999 A
5978805 Carson Nov 1999 A
5982138 Krieger Nov 1999 A
5990664 Rahman Nov 1999 A
6002238 Champlin Dec 1999 A
6005489 Siegle et al. Dec 1999 A
6005759 Hart et al. Dec 1999 A
6008652 Theofanopoulos et al. Dec 1999 A
6009369 Boisvert et al. Dec 1999 A
6009742 Balko Jan 2000 A
6016047 Notten et al. Jan 2000 A
6031354 Wiley et al. Feb 2000 A
6031368 Klippel et al. Feb 2000 A
6037745 Koike et al. Mar 2000 A
6037751 Klang Mar 2000 A
6037777 Champlin Mar 2000 A
6037778 Makhija Mar 2000 A
6037749 Parsonage Apr 2000 A
6046514 Rouillard et al. Apr 2000 A
6051976 Bertness Apr 2000 A
6055468 Kaman et al. Apr 2000 A
6061638 Joyce May 2000 A
6064372 Kahkoska May 2000 A
6072299 Kurle et al. Jun 2000 A
6072300 Tsuji Jun 2000 A
6075339 Reipur et al. Jun 2000 A
6081098 Bertness et al. Jun 2000 A
6081109 Seymour et al. Jun 2000 A
6081154 Ezell et al. Jun 2000 A
6087815 Pfeifer et al. Jul 2000 A
6091238 McDermott Jul 2000 A
6091245 Bertness Jul 2000 A
6094033 Ding et al. Jul 2000 A
6097193 Bramwell Aug 2000 A
6100670 Levesque Aug 2000 A
6100815 Pailthorp Aug 2000 A
6104167 Bertness et al. Aug 2000 A
6113262 Purola et al. Sep 2000 A
6114834 Parise Sep 2000 A
6118252 Richter Sep 2000 A
6121880 Scott et al. Sep 2000 A
6130519 Whiting et al. Oct 2000 A
6136914 Hergenrother et al. Oct 2000 A
6137261 Kurle et al. Oct 2000 A
6137269 Champlin Oct 2000 A
6140797 Dunn Oct 2000 A
6141608 Rother Oct 2000 A
6144185 Dougherty et al. Nov 2000 A
6147598 Murphy et al. Nov 2000 A
6149653 Deslauriers Nov 2000 A
6150793 Lesesky et al. Nov 2000 A
6158000 Collins Dec 2000 A
6161640 Yamaguchi Dec 2000 A
6163156 Bertness Dec 2000 A
6164063 Mendler Dec 2000 A
6167349 Alvarez Dec 2000 A
6172483 Champlin Jan 2001 B1
6172505 Bertness Jan 2001 B1
6177737 Palfey et al. Jan 2001 B1
6177878 Tamura Jan 2001 B1
6181545 Amatucci et al. Jan 2001 B1
6184655 Malackowski Feb 2001 B1
6184656 Karunasiri et al. Feb 2001 B1
6191557 Gray et al. Feb 2001 B1
6202739 Pal et al. Mar 2001 B1
6211651 Nemoto Apr 2001 B1
6211653 Stasko Apr 2001 B1
6215275 Bean Apr 2001 B1
6218805 Melcher Apr 2001 B1
6218936 Imao Apr 2001 B1
6222342 Eggert et al. Apr 2001 B1
6222369 Champlin Apr 2001 B1
D442503 Lundbeck et al. May 2001 S
6225808 Varghese et al. May 2001 B1
6225898 Kamiya et al. May 2001 B1
6236186 Helton et al. May 2001 B1
6236332 Conkright et al. May 2001 B1
6236949 Hart May 2001 B1
6238253 Qualls May 2001 B1
6242887 Burke Jun 2001 B1
6242921 Thibedeau et al. Jun 2001 B1
6249124 Bertness Jun 2001 B1
6250973 Lowery et al. Jun 2001 B1
6252942 Zoiss Jun 2001 B1
6254438 Gaunt Jul 2001 B1
6255826 Ohsawa Jul 2001 B1
6259170 Limoge et al. Jul 2001 B1
6259254 Klang Jul 2001 B1
6262563 Champlin Jul 2001 B1
6262692 Babb Jul 2001 B1
6263268 Nathanson Jul 2001 B1
6263322 Kirkevold et al. Jul 2001 B1
6271643 Becker et al. Aug 2001 B1
6271748 Derbyshire et al. Aug 2001 B1
6272387 Yoon Aug 2001 B1
6275008 Arai et al. Aug 2001 B1
6285191 Gollomp et al. Sep 2001 B1
6294896 Champlin Sep 2001 B1
6294897 Champlin Sep 2001 B1
6304087 Bertness Oct 2001 B1
6307349 Koenck et al. Oct 2001 B1
6310481 Bertness Oct 2001 B2
6313607 Champlin Nov 2001 B1
6313608 Varghese et al. Nov 2001 B1
6316914 Bertness Nov 2001 B1
6320385 Ng et al. Nov 2001 B1
6323650 Bertness et al. Nov 2001 B1
6324042 Andrews Nov 2001 B1
6329793 Bertness et al. Dec 2001 B1
6331762 Bertness Dec 2001 B1
6332113 Bertness Dec 2001 B1
6346795 Haraguchi et al. Feb 2002 B2
6347958 Tsai Feb 2002 B1
6351102 Troy Feb 2002 B1
6356042 Kahlon et al. Mar 2002 B1
6356083 Ying Mar 2002 B1
6359441 Bertness Mar 2002 B1
6359442 Henningson et al. Mar 2002 B1
6363303 Bertness Mar 2002 B1
RE37677 Irie Apr 2002 E
6377031 Karuppana et al. Apr 2002 B1
6384608 Namaky May 2002 B1
6388448 Cervas May 2002 B1
6389337 Kolls May 2002 B1
6392414 Bertness May 2002 B2
6396278 Makhija May 2002 B1
6407554 Godau et al. Jun 2002 B1
6411098 Laletin Jun 2002 B1
6417669 Champlin Jul 2002 B1
6420852 Sato Jul 2002 B1
6424157 Gollomp et al. Jul 2002 B1
6424158 Klang Jul 2002 B2
6433512 Birkler et al. Aug 2002 B1
6437957 Karuppana et al. Aug 2002 B1
6441585 Bertness Aug 2002 B1
6445158 Bertness et al. Sep 2002 B1
6448778 Rankin Sep 2002 B1
6449726 Smith Sep 2002 B1
6456036 Thandiwe Sep 2002 B1
6456045 Troy et al. Sep 2002 B1
6465908 Karuppana et al. Oct 2002 B1
6466025 Klang Oct 2002 B1
6466026 Champlin Oct 2002 B1
6469511 Vonderhaar et al. Oct 2002 B1
6473659 Shah et al. Oct 2002 B1
6477478 Jones et al. Nov 2002 B1
6495990 Champlin Dec 2002 B2
6497209 Karuppana et al. Dec 2002 B1
6500025 Moenkhaus et al. Dec 2002 B1
6501243 Kaneko Dec 2002 B1
6505507 Imao Jan 2003 B1
6507196 Thomsen et al. Jan 2003 B2
6526361 Jones et al. Feb 2003 B1
6529723 Bentley Mar 2003 B1
6531847 Tsukamoto et al. Mar 2003 B1
6531848 Chitsazan et al. Mar 2003 B1
6532425 Boost et al. Mar 2003 B1
6533316 Breed et al. Mar 2003 B2
6534992 Meissner et al. Mar 2003 B2
6534993 Bertness Mar 2003 B2
6536536 Gass et al. Mar 2003 B1
6544078 Palmisano et al. Apr 2003 B2
6545599 Derbyshire et al. Apr 2003 B2
6556019 Bertness Apr 2003 B2
6566883 Vonderhaar et al. May 2003 B1
6570385 Roberts et al. May 2003 B1
6573685 Nakanishi et al. Jun 2003 B2
6577107 Kechmire Jun 2003 B2
6586941 Bertness et al. Jul 2003 B2
6597150 Bertness et al. Jul 2003 B1
6599243 Woltermann et al. Jul 2003 B2
6600815 Walding Jul 2003 B1
6611740 Lowrey et al. Aug 2003 B2
6614349 Proctor et al. Sep 2003 B1
6618644 Bean Sep 2003 B2
6621272 Champlin Sep 2003 B2
6623314 Cox et al. Sep 2003 B1
6624635 Lui Sep 2003 B1
6628011 Droppo et al. Sep 2003 B2
6629054 Makhija et al. Sep 2003 B2
6633165 Bertness Oct 2003 B2
6635974 Karuppana et al. Oct 2003 B1
6636790 Lightner et al. Oct 2003 B1
6667624 Raichle et al. Dec 2003 B1
6679212 Kelling Jan 2004 B2
6686542 Zhang Feb 2004 B2
6696819 Bertness Feb 2004 B2
6707303 Bertness et al. Mar 2004 B2
6732031 Lightner et al. May 2004 B1
6736941 Oku et al. May 2004 B2
6737831 Champlin May 2004 B2
6738697 Breed May 2004 B2
6740990 Tozuka et al. May 2004 B2
6744149 Karuppana et al. Jun 2004 B1
6745153 White et al. Jun 2004 B2
6759849 Bertness Jul 2004 B2
6771073 Henningson et al. Aug 2004 B2
6777945 Roberts et al. Aug 2004 B2
6781344 Hedegor et al. Aug 2004 B1
6781382 Johnson Aug 2004 B2
6784635 Larson Aug 2004 B2
6784637 Raichle et al. Aug 2004 B2
6788025 Bertness et al. Sep 2004 B2
6795782 Bertness et al. Sep 2004 B2
6796841 Cheng et al. Sep 2004 B1
6805090 Bertness et al. Oct 2004 B2
6806716 Bertness et al. Oct 2004 B2
6825669 Raichle et al. Nov 2004 B2
6832141 Skeen et al. Dec 2004 B2
6842707 Raichle et al. Jan 2005 B2
6845279 Gilmore et al. Jan 2005 B1
6850037 Bertness Feb 2005 B2
6856162 Greatorex et al. Feb 2005 B1
6856972 Yun et al. Feb 2005 B1
6871151 Bertness Mar 2005 B2
6885195 Bertness Apr 2005 B2
6888468 Bertness May 2005 B2
6891378 Bertness et al. May 2005 B2
6895809 Raichle May 2005 B2
6904796 Pacsai et al. Jun 2005 B2
6906522 Bertness et al. Jun 2005 B2
6906523 Bertness et al. Jun 2005 B2
6906624 McClelland et al. Jun 2005 B2
6909287 Bertness Jun 2005 B2
6909356 Brown et al. Jun 2005 B2
6911825 Namaky Jun 2005 B2
6913483 Restaino et al. Jul 2005 B2
6914413 Bertness et al. Jul 2005 B2
6919725 Bertness et al. Jul 2005 B2
6930485 Bertness et al. Aug 2005 B2
6933727 Bertness et al. Aug 2005 B2
6941234 Bertness et al. Sep 2005 B2
6957133 Hunt et al. Oct 2005 B1
6961445 Jensen et al. Nov 2005 B1
6966676 Chabert et al. Nov 2005 B2
6967484 Bertness Nov 2005 B2
6972662 Ohkawa et al. Dec 2005 B1
6983212 Burns Jan 2006 B2
6988053 Namaky Jan 2006 B2
6993421 Pillar et al. Jan 2006 B2
6998847 Bertness et al. Feb 2006 B2
7003410 Bertness et al. Feb 2006 B2
7003411 Bertness Feb 2006 B2
7012433 Smith et al. Mar 2006 B2
7015674 VonderHaar Mar 2006 B2
7029338 Orange et al. Apr 2006 B1
7034541 Bertness et al. Apr 2006 B2
7039533 Bertness et al. May 2006 B2
7042346 Paulsen May 2006 B2
7049822 Kung May 2006 B2
7058525 Bertness et al. Jun 2006 B2
7069979 Tobias Jul 2006 B2
7081755 Klang et al. Jul 2006 B2
7089127 Thibedeau et al. Aug 2006 B2
7098666 Patino Aug 2006 B2
7102556 White Sep 2006 B2
7106070 Bertness et al. Sep 2006 B2
7116109 Klang Oct 2006 B2
7119686 Bertness et al. Oct 2006 B2
7120488 Nova et al. Oct 2006 B2
7126341 Bertness et al. Oct 2006 B2
7129706 Kalley Oct 2006 B2
7154276 Bertness Dec 2006 B2
7170393 Martin Jan 2007 B2
7173182 Katsuyama et al. Feb 2007 B2
7177925 Carcido et al. Feb 2007 B2
7182147 Cutler et al. Feb 2007 B2
7184866 Squires Feb 2007 B2
7184905 Stefan Feb 2007 B2
7198510 Bertness Apr 2007 B2
7200424 Tischer et al. Apr 2007 B2
7202636 Reynolds et al. Apr 2007 B2
7208914 Klang Apr 2007 B2
7209850 Brott et al. Apr 2007 B2
7209860 Trsar et al. Apr 2007 B2
7212887 Shah et al. May 2007 B2
7212911 Raichle et al. May 2007 B2
7219023 Banke et al. May 2007 B2
7233128 Brost et al. Jun 2007 B2
7235977 Koran et al. Jun 2007 B2
7246015 Bertness et al. Jul 2007 B2
7251551 Mitsueda Jul 2007 B2
7272519 Lesesky et al. Sep 2007 B2
7287001 Falls et al. Oct 2007 B1
7295936 Bertness et al. Nov 2007 B2
7301303 Hulden Nov 2007 B1
7319304 Veloo et al. Jan 2008 B2
7339477 Puzio et al. Mar 2008 B2
7363175 Bertness et al. Apr 2008 B2
7376497 Chen May 2008 B2
7398176 Bertness Jul 2008 B2
7408358 Knopf Aug 2008 B2
7425833 Bertness et al. Sep 2008 B2
7446536 Bertness Nov 2008 B2
7453238 Melichar Nov 2008 B2
7479763 Bertness Jan 2009 B2
7498767 Brown et al. Mar 2009 B2
7501795 Bertness et al. Mar 2009 B2
7504830 Keuss Mar 2009 B2
7505856 Restaino et al. Mar 2009 B2
7538571 Raichle et al. May 2009 B2
7545146 Klang et al. Jun 2009 B2
7557586 Vonderhaar et al. Jul 2009 B1
7571035 Raichle Aug 2009 B2
7590476 Shumate Sep 2009 B2
7592776 Tsukamoto et al. Sep 2009 B2
7595643 Klang Sep 2009 B2
7596437 Hunt et al. Sep 2009 B1
7598699 Restaino et al. Oct 2009 B2
7598743 Bertness Oct 2009 B2
7598744 Bertness et al. Oct 2009 B2
7619417 Klang Nov 2009 B2
7642786 Philbrook Jan 2010 B2
7642787 Bertness et al. Jan 2010 B2
7656162 Vonderhaar et al. Feb 2010 B2
7657386 Thibedeau et al. Feb 2010 B2
7667437 Johnson et al. Feb 2010 B2
7679325 Seo Mar 2010 B2
7684908 Ogilvie et al. Mar 2010 B1
7688074 Cox et al. Mar 2010 B2
7690573 Raichle et al. Apr 2010 B2
7696759 Raichle et al. Apr 2010 B2
7698179 Leung et al. Apr 2010 B2
7705602 Bertness Apr 2010 B2
7706991 Bertness et al. Apr 2010 B2
7706992 Ricci et al. Apr 2010 B2
7710119 Bertness May 2010 B2
7723993 Klang May 2010 B2
7728556 Yano et al. Jun 2010 B2
7728597 Bertness Jun 2010 B2
7729880 Mashburn Jun 2010 B1
7743788 Schmitt Jun 2010 B2
7751953 Namaky Jul 2010 B2
7772850 Bertness Aug 2010 B2
7774130 Pepper Aug 2010 B2
7774151 Bertness Aug 2010 B2
7777612 Sampson et al. Aug 2010 B2
7791348 Brown et al. Sep 2010 B2
7797995 Schaefer Sep 2010 B2
7808375 Bertness et al. Oct 2010 B2
7848857 Nasr et al. Dec 2010 B2
7883002 Jin et al. Feb 2011 B2
7902990 Delmonico et al. Mar 2011 B2
7914350 Bozich Mar 2011 B1
7924015 Bertness Apr 2011 B2
7940052 Vonderhaar May 2011 B2
7940053 Brown et al. May 2011 B2
7959476 Smith et al. Jun 2011 B2
7977914 Bertness Jul 2011 B2
D643759 Bertness Aug 2011 S
7990155 Henningson Aug 2011 B2
7999505 Bertness Aug 2011 B2
8024083 Chenn Sep 2011 B2
8047868 Korcynski Nov 2011 B1
8164343 Bertness Apr 2012 B2
8198900 Bertness et al. Jun 2012 B2
8203345 Bertness Jun 2012 B2
8222868 Buckner Jul 2012 B2
8226008 Raichle et al. Jul 2012 B2
8237448 Bertness Aug 2012 B2
8306690 Bertness Nov 2012 B2
8310271 Raichle et al. Nov 2012 B2
8344685 Bertness et al. Jan 2013 B2
8436619 Bertness et al. May 2013 B2
8442877 Bertness et al. May 2013 B2
8449560 Roth May 2013 B2
8493022 Bertness Jul 2013 B2
D687727 Kehoe et al. Aug 2013 S
8509212 Sanjeev Aug 2013 B2
8513949 Bertness Aug 2013 B2
8594957 Gauthier Nov 2013 B2
8674654 Bertness Mar 2014 B2
8674711 Bertness Mar 2014 B2
8704483 Bertness et al. Apr 2014 B2
8738309 Bertness May 2014 B2
8754653 Volderhaar et al. Jun 2014 B2
8810200 Kondo Aug 2014 B2
8825272 Chinnadurai Sep 2014 B1
8827729 Gunreben Sep 2014 B2
8872516 Bertness Oct 2014 B2
8872517 Philbrook et al. Oct 2014 B2
8901888 Beckman Dec 2014 B1
8958998 Bertness Feb 2015 B2
8963550 Bertness et al. Feb 2015 B2
9018958 Bertness Apr 2015 B2
9037394 Fernandes May 2015 B2
9052366 Bertness Jun 2015 B2
9056556 Hyde et al. Jun 2015 B1
9166261 Ibi Oct 2015 B2
9201120 Stukenburg Dec 2015 B2
9229062 Stukenberg Jan 2016 B2
9244100 Coleman et al. Jan 2016 B2
9255955 Bertness Feb 2016 B2
9274157 Bertness Mar 2016 B2
9312575 Stukenberg Apr 2016 B2
9335362 Bertness May 2016 B2
9419311 Bertness Aug 2016 B2
9425487 Bertness Aug 2016 B2
9496720 McShane Nov 2016 B2
9588185 Champlin Mar 2017 B2
9639899 Gersitz May 2017 B1
9923289 Bertness Mar 2018 B2
9966676 Salo, III et al. May 2018 B2
10046649 Bertness Aug 2018 B2
10222397 Salo et al. Mar 2019 B2
10317468 Bertness Jun 2019 B2
10429449 Arnoldus Oct 2019 B2
10473555 Bertness Nov 2019 B2
10525841 Zhou et al. Jan 2020 B2
10608353 Lipkin et al. Mar 2020 B2
10843574 Palmisano et al. Nov 2020 B2
11054480 Bertness Jul 2021 B2
11325479 Bertness May 2022 B2
20010012738 Duperret Aug 2001 A1
20010033169 Singh Oct 2001 A1
20010035737 Nakanishi et al. Nov 2001 A1
20010048215 Breed et al. Dec 2001 A1
20010048226 Nada Dec 2001 A1
20020003423 Bertness et al. Jan 2002 A1
20020004694 McLeod Jan 2002 A1
20020007237 Phung et al. Jan 2002 A1
20020010558 Bertness et al. Jan 2002 A1
20020021135 Li et al. Feb 2002 A1
20020027346 Breed et al. Mar 2002 A1
20020030495 Kechmire Mar 2002 A1
20020036504 Troy et al. Mar 2002 A1
20020041175 Lauper et al. Apr 2002 A1
20020044050 Derbyshire et al. Apr 2002 A1
20020047711 Bertness et al. Apr 2002 A1
20020050163 Makhija et al. May 2002 A1
20020065619 Bertness May 2002 A1
20020074398 Lancos et al. Jun 2002 A1
20020116140 Rider Aug 2002 A1
20020118111 Brown et al. Aug 2002 A1
20020121877 Smith et al. Sep 2002 A1
20020121901 Hoffman Sep 2002 A1
20020128985 Greenwald Sep 2002 A1
20020130665 Bertness et al. Sep 2002 A1
20020152791 Cardinale Oct 2002 A1
20020153864 Bertness Oct 2002 A1
20020171428 Bertness Nov 2002 A1
20020176010 Wallach et al. Nov 2002 A1
20020193955 Bertness Dec 2002 A1
20030006779 H. Youval Jan 2003 A1
20030009270 Breed Jan 2003 A1
20030017753 Palmisano et al. Jan 2003 A1
20030025481 Bertness Feb 2003 A1
20030030442 Sugimoto Feb 2003 A1
20030036909 Kato Feb 2003 A1
20030040873 Lesesky et al. Feb 2003 A1
20030060953 Chen Mar 2003 A1
20030078743 Bertness et al. Apr 2003 A1
20030088375 Bertness et al. May 2003 A1
20030090272 Bertness May 2003 A1
20030114206 Timothy Jun 2003 A1
20030124417 Bertness et al. Jul 2003 A1
20030128011 Bertness et al. Jul 2003 A1
20030128036 Henningson et al. Jul 2003 A1
20030137277 Mori et al. Jul 2003 A1
20030155930 Thomsen Aug 2003 A1
20030164073 Chen Sep 2003 A1
20030169018 Berels et al. Sep 2003 A1
20030169019 Oosaki Sep 2003 A1
20030171111 Clark Sep 2003 A1
20030173971 Bertness Sep 2003 A1
20030177417 Malhotra et al. Sep 2003 A1
20030184262 Makhija Oct 2003 A1
20030184264 Bertness Oct 2003 A1
20030184306 Bertness et al. Oct 2003 A1
20030187556 Suzuki Oct 2003 A1
20030194672 Roberts et al. Oct 2003 A1
20030197512 Miller et al. Oct 2003 A1
20030212311 Nova et al. Nov 2003 A1
20030214395 Flowerday et al. Nov 2003 A1
20030224241 Takada et al. Dec 2003 A1
20030236656 Dougherty Dec 2003 A1
20040000590 Raichle et al. Jan 2004 A1
20040000891 Raichle et al. Jan 2004 A1
20040000893 Raichle et al. Jan 2004 A1
20040000913 Raichle et al. Jan 2004 A1
20040000915 Raichle et al. Jan 2004 A1
20040002824 Raichle et al. Jan 2004 A1
20040002825 Raichle et al. Jan 2004 A1
20040002836 Raichle et al. Jan 2004 A1
20040032264 Schoch Feb 2004 A1
20040036443 Bertness Feb 2004 A1
20040044452 Bauer et al. Mar 2004 A1
20040044454 Ross et al. Mar 2004 A1
20040046564 Klang Mar 2004 A1
20040049361 Hamdan et al. Mar 2004 A1
20040051532 Smith et al. Mar 2004 A1
20040051533 Namaky Mar 2004 A1
20040051534 Kobayashi et al. Mar 2004 A1
20040054503 Namaky Mar 2004 A1
20040064225 Jammu et al. Apr 2004 A1
20040065489 Aberle Apr 2004 A1
20040088087 Fukushima et al. May 2004 A1
20040104728 Bertness et al. Jun 2004 A1
20040108855 Raichle Jun 2004 A1
20040108856 Johnson Jun 2004 A1
20040113494 Karuppana et al. Jun 2004 A1
20040113588 Mikuriya et al. Jun 2004 A1
20040145342 Lyon Jul 2004 A1
20040145371 Bertness Jul 2004 A1
20040150494 Yoshida Aug 2004 A1
20040157113 Klang Aug 2004 A1
20040164706 Osborne Aug 2004 A1
20040172177 Nagai et al. Sep 2004 A1
20040178185 Yoshikawa et al. Sep 2004 A1
20040189309 Bertness et al. Sep 2004 A1
20040199343 Cardinal et al. Oct 2004 A1
20040207367 Taniguchi et al. Oct 2004 A1
20040221641 Moritsugu Nov 2004 A1
20040227523 Namaky Nov 2004 A1
20040239332 Mackel et al. Dec 2004 A1
20040251876 Bertness et al. Dec 2004 A1
20040251907 Kalley Dec 2004 A1
20040257084 Restaino Dec 2004 A1
20050007068 Johnson et al. Jan 2005 A1
20050009122 Whelan et al. Jan 2005 A1
20050017726 Koran et al. Jan 2005 A1
20050017952 His Jan 2005 A1
20050021197 Zimmerman Jan 2005 A1
20050021294 Trsar et al. Jan 2005 A1
20050021475 Bertness Jan 2005 A1
20050025299 Tischer et al. Feb 2005 A1
20050035752 Bertness Feb 2005 A1
20050043868 Mitcham Feb 2005 A1
20050057256 Bertness Mar 2005 A1
20050060070 Kapolka et al. Mar 2005 A1
20050073314 Bertness et al. Apr 2005 A1
20050076381 Gross Apr 2005 A1
20050077904 Bertness Apr 2005 A1
20050096809 Skeen et al. May 2005 A1
20050099185 Klang May 2005 A1
20050102073 Ingram May 2005 A1
20050119809 Chen Jun 2005 A1
20050128083 Puzio et al. Jun 2005 A1
20050128902 Tsai Jun 2005 A1
20050133245 Katsuyama et al. Jun 2005 A1
20050134282 Averbuch Jun 2005 A1
20050143882 Umezawa Jun 2005 A1
20050159847 Shah et al. Jul 2005 A1
20050162172 Bertness Jul 2005 A1
20050168226 Quint et al. Aug 2005 A1
20050173142 Cutler et al. Aug 2005 A1
20050182536 Doyle et al. Aug 2005 A1
20050184732 Restaino Aug 2005 A1
20050192045 Lowles Sep 2005 A1
20050206346 Smith et al. Sep 2005 A1
20050212521 Bertness et al. Sep 2005 A1
20050213874 Kline Sep 2005 A1
20050218902 Restaino et al. Oct 2005 A1
20050231205 Bertness et al. Oct 2005 A1
20050254106 Silverbrook et al. Nov 2005 A9
20050256617 Cawthorne et al. Nov 2005 A1
20050258241 McNutt et al. Nov 2005 A1
20050264296 Philbrook Dec 2005 A1
20050269880 Konishi Dec 2005 A1
20050273218 Breed Dec 2005 A1
20060012330 Okumura et al. Jan 2006 A1
20060017447 Bertness Jan 2006 A1
20060026017 Walkder Feb 2006 A1
20060030980 St. Denis Feb 2006 A1
20060038572 Philbrook Feb 2006 A1
20060043976 Gervais Mar 2006 A1
20060061469 Jaeger Mar 2006 A1
20060076923 Eaves Apr 2006 A1
20060079203 Nicolini Apr 2006 A1
20060089767 Sowa Apr 2006 A1
20060090554 Krampitz May 2006 A1
20060090555 Krampitz May 2006 A1
20060091597 Opsahl May 2006 A1
20060092584 Raichle May 2006 A1
20060095230 Grier et al. May 2006 A1
20060102397 Buck May 2006 A1
20060125482 Klang Jun 2006 A1
20060136119 Raichle Jun 2006 A1
20060139167 Davie Jun 2006 A1
20060152224 Kim et al. Jul 2006 A1
20060155439 Slawinski Jul 2006 A1
20060161313 Rogers et al. Jul 2006 A1
20060161390 Namaky et al. Jul 2006 A1
20060217914 Bertness Sep 2006 A1
20060244456 Henningson Nov 2006 A1
20060244457 Henningson et al. Nov 2006 A1
20060282227 Bertness Dec 2006 A1
20060282323 Walker et al. Dec 2006 A1
20070005201 Chenn Jan 2007 A1
20070024460 Clark Feb 2007 A1
20070026916 Juds et al. Feb 2007 A1
20070046261 Porebski Mar 2007 A1
20070082652 Hartigan Apr 2007 A1
20070088472 Ganzhorn et al. Apr 2007 A1
20070108942 Johnson et al. May 2007 A1
20070159177 Bertness et al. Jul 2007 A1
20070182576 Proska et al. Aug 2007 A1
20070194791 Huang Aug 2007 A1
20070194793 Bertness Aug 2007 A1
20070205752 Leigh Sep 2007 A1
20070205983 Naimo Sep 2007 A1
20070210801 Krampitz Sep 2007 A1
20070244660 Bertness Oct 2007 A1
20070259256 Le Canut et al. Nov 2007 A1
20070279066 Chism Dec 2007 A1
20080023547 Raichle Jan 2008 A1
20080036421 Seo Feb 2008 A1
20080053716 Scheucher Mar 2008 A1
20080059014 Nasr et al. Mar 2008 A1
20080064559 Cawthorne Mar 2008 A1
20080086246 Bolt et al. Apr 2008 A1
20080087479 Kang Apr 2008 A1
20080094068 Scott Apr 2008 A1
20080103656 Lipscomb May 2008 A1
20080106267 Bertness May 2008 A1
20080169818 Lesesky et al. Jul 2008 A1
20080179122 Sugawara Jul 2008 A1
20080194984 Keefe Aug 2008 A1
20080256815 Schafer Oct 2008 A1
20080303528 Kim Dec 2008 A1
20080303529 Nakamura et al. Dec 2008 A1
20080315830 Bertness Dec 2008 A1
20090006476 Andreasen et al. Jan 2009 A1
20090011327 Okumura et al. Jan 2009 A1
20090013521 Okumura et al. Jan 2009 A1
20090024266 Bertness Jan 2009 A1
20090024419 McClellan Jan 2009 A1
20090085571 Bertness Apr 2009 A1
20090146610 Trigiani Jun 2009 A1
20090146800 Grimlund et al. Jun 2009 A1
20090160395 Chen Jun 2009 A1
20090184165 Bertness et al. Jul 2009 A1
20090198372 Hammerslag Aug 2009 A1
20090203247 Fifelski Aug 2009 A1
20090237029 Andelfinger Sep 2009 A1
20090237086 Andelfinger Sep 2009 A1
20090247020 Gathman et al. Oct 2009 A1
20090251151 Miyashita Oct 2009 A1
20090259432 Liberty Oct 2009 A1
20090265121 Rocci Oct 2009 A1
20090273451 Soppera et al. Nov 2009 A1
20090276115 Chen Nov 2009 A1
20090311919 Smith Dec 2009 A1
20100023198 Hamilton Jan 2010 A1
20100039065 Kinkade Feb 2010 A1
20100052193 Sylvester Mar 2010 A1
20100066283 Kitanaka Mar 2010 A1
20100088050 Keuss Apr 2010 A1
20100094496 Hershkovitz et al. Apr 2010 A1
20100117603 Makhija May 2010 A1
20100145780 Nishikawa et al. Jun 2010 A1
20100214055 Fuji Aug 2010 A1
20100265131 Fabius Oct 2010 A1
20100314950 Rutkowski et al. Dec 2010 A1
20110004427 Gorbold et al. Jan 2011 A1
20110015815 Bertness Jan 2011 A1
20110106280 Zeier May 2011 A1
20110127960 Plett Jun 2011 A1
20110161025 Tomura Jun 2011 A1
20110215767 Johnson et al. Sep 2011 A1
20110218747 Bertness Sep 2011 A1
20110258112 Eder et al. Oct 2011 A1
20110265025 Bertness Oct 2011 A1
20110267067 Bertness et al. Nov 2011 A1
20110273181 Park et al. Nov 2011 A1
20110294367 Moon Dec 2011 A1
20110300416 Bertness Dec 2011 A1
20120041697 Stukenberg Feb 2012 A1
20120046807 Ruther Feb 2012 A1
20120046824 Ruther et al. Feb 2012 A1
20120062237 Robinson Mar 2012 A1
20120074904 Rutkowski et al. Mar 2012 A1
20120086399 Choi Apr 2012 A1
20120116391 Houser May 2012 A1
20120182132 McShane Jul 2012 A1
20120249069 Ohtomo Oct 2012 A1
20120256494 Kesler Oct 2012 A1
20120256568 Lee Oct 2012 A1
20120274331 Liu Nov 2012 A1
20120293372 Amendolare Nov 2012 A1
20130099747 Baba Apr 2013 A1
20130106362 Mackintosh et al. May 2013 A1
20130106596 Mouchet May 2013 A1
20130115821 Golko May 2013 A1
20130134926 Yoshida May 2013 A1
20130158782 Bertness et al. Jun 2013 A1
20130172019 Youssef Jul 2013 A1
20130200855 Christensen et al. Aug 2013 A1
20130218781 Simon Aug 2013 A1
20130288706 Yu Oct 2013 A1
20130297247 Jardine Nov 2013 A1
20130311124 Van Bremen Nov 2013 A1
20130314041 Proebstle Nov 2013 A1
20130325405 Miller Dec 2013 A1
20140002021 Bertness Jan 2014 A1
20140002094 Champlin Jan 2014 A1
20140029308 Cojocaru Jan 2014 A1
20140081527 Miller Mar 2014 A1
20140099830 Byrne Apr 2014 A1
20140117997 Bertness May 2014 A1
20140145670 Van Zwan et al. May 2014 A1
20140194084 Noonan Jul 2014 A1
20140225622 Kudo Aug 2014 A1
20140239964 Gach Aug 2014 A1
20140260577 Chinnadurai Sep 2014 A1
20140266061 Wachal Sep 2014 A1
20140278159 Chinnadurai Sep 2014 A1
20140354237 Cotton Dec 2014 A1
20140368156 Aloe Dec 2014 A1
20140374475 Kallfelz et al. Dec 2014 A1
20150093922 Bosscher Apr 2015 A1
20150115720 Hysell Apr 2015 A1
20150166518 Boral et al. Jun 2015 A1
20150168499 Palmisano Jun 2015 A1
20150221135 Hill Aug 2015 A1
20150239365 Hyde et al. Aug 2015 A1
20150353192 Morrison Dec 2015 A1
20160011271 Bertness Jan 2016 A1
20160091571 Salo, III Mar 2016 A1
20160154044 Bertness Jun 2016 A1
20160171799 Bertness Jun 2016 A1
20160216335 Bertness Jul 2016 A1
20160232736 Holtappels et al. Aug 2016 A1
20160238667 Palmisano et al. Aug 2016 A1
20160253852 Bertness et al. Sep 2016 A1
20160266212 Carlo Sep 2016 A1
20160285284 Matlapudi et al. Sep 2016 A1
20160321897 Lee Nov 2016 A1
20160336623 Nayar Nov 2016 A1
20170093056 Salo, III et al. Mar 2017 A1
20170146602 Samp May 2017 A1
20170158058 Lee et al. Jun 2017 A1
20170373410 Lipkin et al. Dec 2017 A1
20180009328 Hinterberger et al. Jan 2018 A1
20180113171 Bertness Apr 2018 A1
20180306867 Bertness Oct 2018 A1
20190105998 Bertness Apr 2019 A1
20190152332 Bertness May 2019 A1
20190154763 Bertness May 2019 A1
20190204392 Bertness Jul 2019 A1
20200086757 Vain et al. Mar 2020 A1
20200174078 Salo, III et al. Jun 2020 A1
20200274370 Krieg Aug 2020 A1
20210048374 Sampson et al. Feb 2021 A1
20210049480 Kale et al. Feb 2021 A1
20210135462 Sampson et al. May 2021 A1
20210141021 Salo, III et al. May 2021 A1
20210141043 Bertness May 2021 A1
20210203016 Bertness Jul 2021 A1
20210231737 Salo, III et al. Jul 2021 A1
20210325471 Bertness Oct 2021 A1
20220050142 Bertness Feb 2022 A1
20220258619 Bertness Aug 2022 A1
Foreign Referenced Citations (96)
Number Date Country
2470964 Jan 2002 CN
201063352 May 2008 CN
103091633 May 2013 CN
206658084 Nov 2017 CN
29 26 716 Jan 1981 DE
40 07 883 Sep 1991 DE
196 38 324 Sep 1996 DE
601 12 502 Jun 2006 DE
10 2009 013 857 Oct 2009 DE
10 2008 036 595 Feb 2010 DE
10 2018 001885 Sep 2018 DE
0 022 450 Jan 1981 EP
0 391 694 Apr 1990 EP
0 476 405 Sep 1991 EP
0 476 405 Mar 1992 EP
0 637 754 Feb 1995 EP
0 772 056 May 1997 EP
0 982 159 Mar 2000 EP
1 810 869 Nov 2004 EP
1 786 057 May 2007 EP
1 807 710 Jul 2007 EP
1 807 710 Jan 2010 EP
2 302 724 Mar 2011 EP
2 749 397 Dec 1997 FR
154 016 Nov 1920 GB
2 029 586 Mar 1980 GB
2 088 159 Jun 1982 GB
2 246 916 Oct 1990 GB
2 266 150 Oct 1993 GB
2 275 783 Jul 1994 GB
2 353 367 Feb 2001 GB
2 387 235 Oct 2003 GB
59-17892 Jan 1984 JP
59-17893 Jan 1984 JP
59017894 Jan 1984 JP
59215674 Dec 1984 JP
60225078 Nov 1985 JP
62-180284 Aug 1987 JP
63027776 Feb 1988 JP
03274479 Dec 1991 JP
03282276 Dec 1991 JP
4-8636 Jan 1992 JP
04095788 Mar 1992 JP
04131779 May 1992 JP
04372536 Dec 1992 JP
05211724 Aug 1993 JP
5216550 Aug 1993 JP
7-128414 May 1995 JP
09061505 Mar 1997 JP
10056744 Feb 1998 JP
10232273 Sep 1998 JP
11103503 Apr 1999 JP
11-150809 Jun 1999 JP
11-271409 Oct 1999 JP
2001-023037 Jan 2001 JP
2001057711 Feb 2001 JP
2003-346909 Dec 2003 JP
2005-238969 Sep 2005 JP
2006242674 Sep 2006 JP
2006331976 Dec 2006 JP
2009-244166 Oct 2009 JP
2009-261174 Nov 2009 JP
2010-172122 May 2010 JP
2010-172142 Aug 2010 JP
2089015 Aug 1997 RU
WO 9322666 Nov 1993 WO
WO 9405069 Mar 1994 WO
WO 9601456 Jan 1996 WO
WO 9606747 Mar 1996 WO
WO 9628846 Sep 1996 WO
WO 9701103 Jan 1997 WO
WO 9744652 Nov 1997 WO
WO 9804910 Feb 1998 WO
WO 9821132 May 1998 WO
WO 9858270 Dec 1998 WO
WO 9923738 May 1999 WO
WO 9956121 Nov 1999 WO
WO 0016083 Mar 2000 WO
WO 0062049 Oct 2000 WO
WO 0067359 Nov 2000 WO
WO 0159443 Feb 2001 WO
WO 0116614 Mar 2001 WO
WO 0116615 Mar 2001 WO
WO 0151947 Jul 2001 WO
WO 03047064 Jun 2003 WO
WO 03076960 Sep 2003 WO
WO 2004047215 Jun 2004 WO
WO 2007059935 May 2007 WO
WO 2007075403 Jul 2007 WO
WO 2009004001 Jan 2009 WO
WO 2010007681 Jan 2010 WO
WO 2010035605 Apr 2010 WO
WO 2010042517 Apr 2010 WO
WO 2011153419 Dec 2011 WO
WO 2012078921 Jun 2012 WO
WO 2013070850 May 2013 WO
Non-Patent Literature Citations (136)
Entry
Office Action from Chinese Patent Application No. 201480066251.8, dated Dec. 13, 2018.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for PCT/US2019/014487, dated Apr. 11, 2019.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for PCT/US2019/014494, dated Apr. 24, 2019.
U.S. Appl. No 16/695,705, filed Nov. 26, 2019, 26 pgs.
“Electrochemical Impedance Spectroscopy in Battery Development and Testing”, Batteries International, Apr. 1997, pp. 59 and 62-63.
“Battery Impedance”, by E. Willihnganz et al., Electrical Engineering, Sep. 1959, pp. 922-925.
“Determining the End of Battery Life”, by S. DeBardelaben, IEEE, 1986, pp. 365-368.
“A Look at the Impedance of a Cell”, by S. Debardelaben, IEEE, 1988, pp. 394- 397.
“The Impedance of Electrical Storage Cells”, by N.A. Hampson et al., Journal of Applied Electrochemistry, 1980, pp. 3-11.
“A Package for Impedance/Admittance Data Analysis”, by B. Boukamp, Solid State Ionics, 1986, pp. 136-140.
“Precision of Impedance Spectroscopy Estimates of Bulk, Reaction Rate, and Diffusion Parameters”, by J. Macdonald et al., J. Electroanal, Chem., 1991, pp. 1-11.
Internal Resistance: Harbinger of Capacity Loss in Starved Electrolyte Sealed Lead Acid Batteries, by Vaccaro, F.J. et al., AT&T Bell Laboratories, 1987 IEEE, Ch. 2477, pp. 128,131.
IEEE Recommended Practice for Maintenance, Testings, and Replacement of Large Lead Storage Batteries for Generating Stations and Substations, The Institute of Electrical and Electronics Engineers, Inc., ANSI/IEEE Std. 450-1987, Mar. 9, 1987, pp. 7-15.
“Field and Laboratory Studies to Assess the State of Health of Valve-Regulated Lead Acid Batteries: Part I Conductance/Capacity Correlation Studies”, by D. Feder et al., IEEE, Aug. 1992, pp. 218-233.
“JIS Japanese Industrial Standard-Lead Acid Batteries for Automobiles”, Japanese Standards Association UDC, 621.355.2:629.113.006, Nov. 1995.
“Performance of Dry Cells”, by C. Hambuechen, Preprint of Am. Electrochem. Soc., Apr. 18-20, 1912, paper No. 19, pp. 1-5.
“A Bridge for Measuring Storage Battery Resistance”, by E. Willihncanz, The Electrochemical Society, preprint 79-20, Apr. 1941, pp. 253-258.
National Semiconductor Corporation, “High Q Notch Filter”, Mar. 1969, Linear Brief 5, Mar. 1969.
Burr-Brown Corporation, “Design A 60 Hz Notch Filter with the UAF42”, Jan. 1994, AB-071, 1994.
National Semiconductor Corporation, “LMF90-4th-Order Elliptic Notch Filter”, Dec. 1994, RRD-B30M115, Dec. 1994.
“Alligator Clips with Wire Penetrators” J.S. Popper, Inc. product information, downloaded from http://www.jspopper.com/, prior to Oct. 1, 2002.
“#12: LM78S40 Simple Switcher DC to DC Converter”, ITM e-Catalog, downloaded from http://www.pcbcafe.com, prior to Oct. 1, 2002.
“Simple DC-DC Converts Allows Use of Single Battery”, Electronix Express, downloaded from http://www.elexp.com/t_dc-dc.htm, prior to Oct. 1, 2002.
“DC-DC Converter Basics”, Power Designers, downloaded from http://www.powerdesigners.com/InforWeb.design_center/articles/DC-DC/converter.shtm, prior to Oct. 1, 2002.
“Notification of Transmittal of the International Search Report or the Declaration”, PCT/US02/29461, filed Sep. 17, 2002 and dated Jan. 3, 2003.
“Notification of Transmittal of the International Search Report or the Declaration”, PCT/US03/07546, filed Mar. 13, 2003 and dated Jul. 4, 2001.
“Notification of Transmittal of the International Search Report or the Declaration”, PCT/US03/06577, filed Mar. 5, 2003 and dated Jul. 24, 2003.
“Notification of Transmittal of the International Search Report or the Declaration”, PCT/US03/07837, filed Mar. 14, 2003 and dated Jul. 4, 2003.
“Improved Impedance Spectroscopy Technique for Status Determination of Production Li/SO2 Batteries” Terrill Atwater et al., pp. 10-113, (1992).
“Notification of Transmittal of the International Search Report or the Declaration”, PCT/US03/41561; Search Report completed Apr. 13, 2004, dated May 6, 2004.
“Notification of Transmittal of the International Search Report or the Declaration”, PCT/US03/27696, filed Sep. 4, 2003 and dated Apr. 15, 2004.
“Programming Training Course, 62-000 Series Smart Engine Analyzer”, Testproducts Division, Kalamazoo, Michigan, pp. 1-207, (1984).
“Operators Manual, Modular Computer Analyzer Model MCA 3000”, Sun Electric Corporation, Crystal Lake, Illinois, pp. 1-1-14-13, (1991).
Supplementary European Search Report Communication for Appl. No. 99917402.2; dated Sep. 7, 2004.
“Dynamic modelling of lead/acid batteries using impedance spectroscopy for parameter identification”, Journal of Power Sources, pp. 69-84, (1997).
Notification of Transmittal of the International Search Report for PCT/US03/30707, filed Sep. 30, 2003 and dated Nov. 24, 2004.
“A review of impedance measurements for determination of the state-of-charge or state-of-health of secondary batteries”, Journal of Power Sources, pp. 59-69, (1998).
“Search Report Under Section 17” for Great Britain Application No. GB0421447.4, date of search Jan. 27, 2005, dated Jan. 28, 2005.
“Results of Discrete Frequency Immittance Spectroscopy (DFIS) Measurements of Lead Acid Batteries”, by K.S. Champlin et al., Proceedings of 23rd International Teleco Conference (INTELEC), published Oct. 2001, IEE, pp. 433-440.
“Examination Report” from the UK Patent Office for App. No. 0417678.0; dated Jan. 24, 2005.
Wikipedia Online Encyclopedia, Inductance, 2005, http://en.wikipedia.org/wiki/inductance, pp. 1-5, mutual Inductance, pp. 3,4.
“Professional BCS System Analyzer Battery-Charger-Starting”, pp. 2-8, (2001).
Young Illustrated Encyclopedia Dictionary of Electronics, 1981, Parker Publishing Company, Inc., pp. 318-319.
“DSP Applications in Hybrid Electric Vehicle Powertrain”, Miller et al., Proceedings of the American Control Conference, San Diego, CA, Jun. 1999; 2 ppg.
“Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration” for PCT/US2008/008702 filed Jul. 2008; 15 pages.
“A Microprocessor-Based Control System for a Near-Term Electric Vehicle”, Bimal K. Bose; IEEE Transactions on Industry Applications, vol. IA-17, No. 6, Nov./Dec. 1981; 0093-9994/81/1100-0626$00.75 © 1981 IEEE, 6 pages.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for PCT/US2011/038279 filed May 27, 2011, dated Sep. 16, 2011, 12 pages.
U.S. Appl. No. 60/387,912, filed Jun. 13, 2002 which is related to U.S. Pat. No. 7,089,127.
“Conductance Testing Compared to Traditional Methods of Evaluating the Capacity of Valve-Regulated Lead-Acid Batteries and Predicting State-of-Health”, by D. Feder et al., May 1992, pp. 1-8; (13 total pgs.).
“Field and Laboratory Studies to Assess the State of Health of Valve-Regulated Lead Acid Batteries: Part I-Conductance/Capacity Correlation Studies”, by D. Feder at al., Oct. 1992, pp. 1-15; (19 total pgs.).
“Field Application of Conductance Measurements Use to Ascertain Cell/Battery and Inter-Cell Connection State-of-Health in Electric Power Utility Applications”, by M. Hlavac et al., Apr. 1993, pp. 1-14; (19 total pgs.).
“Conductance Testing of Standby Batteries in Signaling and Communications Applications for the Purpose of Evaluating Battery State-of-Health”, by S. McShane, Apr. 1993, pp. 1-9; (14 total pgs.).
“Condutance Monitoring of Recombination Lead Acid Batteries”, by B. Jones, May 1993, pp. 1-6; (11 total pgs.).
“Evaluating the State-of-Health of Lead Acid Flooded and Valve-Regulated Batteries: A Comparison of Conductance Testing vs. Traditional Methods”, by M. Hlavac et al., Jun. 1993, pp. 1-15; (20 total pgs.).
“Updated State of Conductance/Capacity Correlation Studies to Determine the State-of-Health of Automotive SLI and Standby Lead Acid Batteries”, by D. Feder et al., Sep. 1993, pp. 1-17; (22 total pgs.).
“Field and Laboratory Studies to Access the State-of-Health of Valve-Regulated Lead-Acid Battery Technologies Using Conductance Testing Part II—Further Conductance/Capacity Correlation Studies”, by M. Hlavac et al., Sep. 1993, pp. 1-9; (14 total pgs.).
“Field Experience of Testing VRLA Batteries by Measuring Conductance”, by M.W. Kniveton, May 1994, pp. 1-4; (9 total pgs.).
“Reducing the Cost of Maintaining VRLA Batteries in Telecom Applications”, by M.W. Kniveton, Sep. 1994, pp. 1-5; (10 total pgs.).
“Analysis and Interpretation of Conductance Measurements used to Access the State-of-Health of Valve Regulated Lead Acid Batteries Part III: Analytical Techniques”, by M. Hlavac, Nov. 1994, 9 pgs; (13 total pgs.).
“Testing 24 Volt Aircraft Batteries Using Midtronics Conductance Technology”, by M. Hlavac et al., Jan. 1995, 9 pgs; (13 total pgs.).
“VRLA Battery Monitoring Using Conductance Technology Part IV: On-Line State-of-Health Monitoring and Thermal Runaway Detection/Prevention”, by M. Hlavac et al., Oct. 1995, 9 pgs; (13 total pgs.).
“VRLA Battery Conductance Monitoring Part V: Strategies for VRLA Battery Testing and Monitoring in Telecom Operating Environments”, by M. Hlavac et al., Oct. 1996, 9 pgs; (13 total pgs.).
“Midpoint Conductance Technology Used in Telecommunication Stationary Standby Battery Applications Part VI: Considerations for Deployment of Midpoint Conductance in Telecommunications Power Applications”, by M. Troy et al., Oct. 1997, 9 pgs; (13 total pgs.).
“Impedance/Conductance Measurements as an Aid to Determining Replacement Strategies”, M. Kniveton, Sep. 1998, pp. 297-301; (9 total pgs.).
“A Fundamentally New Approach to Battery Performance Analysis Using DFRA™/DTIS™ Technology”, by K. Champlin et al., Sep. 2000, 8 pgs; (12 total pgs.).
“Battery State of Health Monitoring, Combining Conductance Technology With Other Measurement Parameters for Real-Time Battery Performance Analysis”, by D. Cox et al., Mar. 2000, 6 pgs; (10 total pgs.).
Search Report and Written Opinion from PCT Application No. PCT/US2011/026608, dated Aug. 29, 2011, 9 pgs.
Examination Report under section 18(3) for corresponding Great Britain Application No. GB1000773.0, dated Feb. 6, 2012, 2 pages.
Communication from GB1216105.5, dated Sep. 21, 2012.
Notification of Transmittal of the International Search Report and Written Opinion from PCT/US2011/039043, dated Jul. 26, 2012.
Notification of Transmittal of the International Search Report and Written Opinion from PCT/US2011/053886, dated Jul. 27, 2012.
“Field Evaluation of Honda's EV Plus Battery Packs”, by A. Paryani, IEEE AES Systems Magazine, Nov. 2000, pp. 21-24.
Search Report from PCT/US2011/047354, dated Nov. 11, 2011.
Written Opinion from PCT/US2011/047354, dated Nov. 11, 2011.
First Office Action (Notification of Reasons for Rejections) dated Dec. 3, 2013 in related Japanese patent application No. 2013-513370, 9 pgs. Including English Translation.
Official Action dated Jan. 22, 2014 in Korean patent application No. 10-2012-7033020, 2 pgs including English Translation.
Official Action dated Feb. 20, 2014 in Korean patent application No. 10-2013-7004814, 6 pgs including English Translation.
First Office Action for Chinese Patent Application No. 201180011597.4, dated May 6, 2014, 20 pages.
Office Action from Korean Application No. 10/2012-7033020, dated Jul. 29, 2014.
Office Action for Chinese Patent Application No. 201180038844.X, dated Jul. 1, 2014.
Office Action for Chinese Patent Application No. 201180030045.8, dated Jul. 21, 2014.
Office Action for German Patent Application No. 1120111020643 dated Aug. 28, 2014.
Office Action from Japanese Patent Application No. 2013-513370, dated Aug. 5, 2014.
Office Action from Japanese Patent Application No. 2013-531839, dated Jul. 8, 2014.
Office Action for German Patent Application No. 103 32 625.1, dated Nov. 7, 2014, 14 pages.
Office Action from Chinese Patent Application No. 201180038844.X, dated Dec. 8, 2014.
Office Action from CN Application No. 201180011597.4, dated Jan. 6, 2015.
Office Action for Chinese Patent Application No. 201180030045.8, dated Mar. 24, 2015.
Office Action for Japanese Patent Application No. 2013-531839, dated Mar. 31, 2015.
Notification of Transmittal of the International Search Report and Written Opinion from PCT/US2014/069661, dated Mar. 26, 2015.
Office Action for Chinese Patent Application No. 201180038844.X, dated Jun. 8, 2015.
Office Action from Chinese Patent Application No. 201180011597.4 dated Jun. 3, 2015.
European Search Report from European Application No. EP 15151426.2, dated Jun. 1, 2015.
Notification of Transmittal of the International Search Report and the Written Opinion from PCT/US2016/014867, dated Jun. 3, 2016.
Office Action from Japanese Patent Application No. 2015-014002, dated Jul. 19, 2016.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority from PCT/US2016/029696, dated Aug. 24, 2016.
Office Action from German Patent Application No. 10393251.8, dated Nov. 4, 2016, including English translation.
Office Action from European Patent Application No. 15 151 426.2-1801, dated Aug. 28, 2017, 2 pages.
Office Action from German Patent Application No. 112011101892.4, dated Sep. 7, 2017.
Office Action from Japanese Patent Application No. 2017-026740, dated Jan. 9, 2018.
Office Action from Chinese Patent Application No. 201480066251.8, dated May 29, 2018.
Brochure: “Sensors Intelligent Battery Sensors, Measuring Battery Capacity and Ageing”, by Hella, 6 pgs.
Office Action from Japanese Patent Application No. 2017-026740, dated May 8, 2018.
Office Action from Parent U.S. Appl. No. 14/039,746, dated Aug. 27, 2015, 14 pages.
Final Office Action from Parent U.S. Appl. No. 14/039,746, dated Jan. 13, 2016, 14 pages.
Office Action from Parent U.S. Appl. No. 14/039,746, dated Aug. 17, 2016, 15 pages.
Final Office Action from Parent U.S. Appl. No. 14/039,746, dated Feb. 15, 2017, 12 pages.
Office Action from Parent U.S. Appl. No. 14/039,746, dated Jun. 14, 2017, 15 pages.
Final Office Action from Parent U.S. Appl. No. 14/039,746, dated Oct. 3, 2017, 14 pages.
Office Action from Parent U.S. Appl. No. 14/039,746, dated Apr. 5, 2018, 17 pages.
Office Action from Parent U.S. Appl. No. 13/152,711, dated Oct. 25, 2011, 20 pages.
Final Office Action from Parent U.S. Appl. No. 13/152,711, dated Apr. 25, 2012, 27 pages.
Office Action from Parent U.S. Appl. No. 13/152,711, dated Jan. 14, 2013, 27 pages.
Office Action from Parent U.S. Appl. No. 12/894,951, dated Dec. 28, 2012, 13 pages.
Office Action from Parent U.S. Appl. No. 12/894,951, dated May 30, 2013, 12 pages.
Final Office Action from Parent U.S. Appl. No. 12/894,951, dated Oct. 11, 2013, 12 pages.
U.S. Appl. No. 12/697,485, filed Feb. 1, 2010, 36 pgs.
Office Action from U.S. Appl. No. 16/253,526, dated Apr. 16, 2021.
Office Action from U.S. Appl. No. 16/253,526, dated Jul. 20, 2021.
Office Action from U.S. Appl. No. 16/297,975, dated Jul. 29, 2021.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for PCT/US2020/059015, dated Jan. 22, 2021.
Office Action from U.S. Appl. No. 16/297,975, dated Nov. 10, 2021.
U.S. Appl. No. 17/504,897, filed Oct. 19, 2021.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for PCT/US2021/040313 dated Oct. 25, 2021; 14 pages.
U.S. Office Action for U.S. Appl. No. 16/297,975, dated Nov. 10, 2021.
Office Action from German Patent Application No. 11 2011 101 892.4, dated Oct. 1, 2020, and translation using Google Translate.
Wikipedia Online Encyclopedia, https: // de.wikipedia.org/w/index.php?title= four-wire measurement & oldid=67143514-4 (Retrieved Sep. 15, 2020) along with Google Translation.
U.S. Appl. No. 16/943,120, filed Jul. 30, 2020.
U.S. Appl. No. 17/088,824, filed Nov. 4, 2020.
U.S. Appl. No. 17/086,629, filed Nov. 2, 2020.
U.S. Appl. No. 17/090,129, filed Nov. 5, 2020.
U.S. Appl. No. 17/136,600, filed Dec. 29, 2020.
Office Action from U.S. Appl. No. 16/297,975, dated Oct. 14, 2022.
Office Action from U.S. Appl. No. 17/504,897, dated Sep. 13, 2022.
U.S. Appl. No. 17/750,719, filed May 23, 2022.
U.S. Appl. No. 17/893,412, filed Aug. 23, 2022.
Related Publications (1)
Number Date Country
20180306867 A1 Oct 2018 US
Provisional Applications (1)
Number Date Country
61351017 Jun 2010 US
Continuations (3)
Number Date Country
Parent 14039746 Sep 2013 US
Child 16021538 US
Parent 13152711 Jun 2011 US
Child 14039746 US
Parent 12894951 Sep 2010 US
Child 13152711 US