1. Field of the Invention
The present invention relates to a battery pack in which a plurality of rechargeable unit cells are stored in an external case, in particular, relates to a battery pack in which the external case and a battery holder are integrated.
2. Description of the Related Art
The battery pack is connected to a multitude of unit cells in series, thereby increasing an output voltage, and connected to the multitude of unit cells in parallel, thereby increasing an output current. In particular, in recent years, while the number of unit cells to be stored increases due to demands on the enhancement of capacity, it is necessary to arrange the unit cells congregated in a limited space of an external case, in view of demands on reduction in size of the battery pack. However, when the unit cells are charged and discharged at a large current, heat is generated, and it is necessary to arrange power semiconductor elements such as transistors and diodes, in order to perform charging and discharging, which makes it important to secure heat radiation.
In this battery pack, the unit cells are stored in the battery holder, thereby constituting the battery block, which is welded with a lead plate on the side surface, and further, a circuit board is arranged and stored in the external case. As is illustrated by an exploded perspective view of
Refer to Japanese Laid-Open Patent Publication No. 2008-251262.
In this constitution, it is necessary to fix the battery holding cylinders adjacently disposed. However, as is described above, when the unit cells are charged and discharged at a large current, heat is generated, and when the unit cells that generate the heat are congregated, it is difficult to radiate the heat. In particular, a request for high output characteristics in recent years increases a demand on a large current, and securing heat radiation is extremely important in terms of reliability. In contrast, when the battery holding cylinders are detached, the battery holder cannot be constituted, and the unit cells cannot be retained.
The present invention has been made to solve the above-described problems. It is a main object of the present invention to provide a battery pack that can improve heat radiation of unit cells and efficiently perform an assembly operation.
In order to achieve the object described hereinabove, the battery pack according to the first aspect of the present invention may include a plurality of unit cells 11 whose exterior is extended in one direction and formed in an approximately cylindrical shape, a first external case 12A whose external shape is formed in an approximately rectangular shape, and in which a plurality of approximately cylindrical battery storage sections 13 that individually store the plurality of unit cells 11 are provided on an inner surface, and a second external case 12B which is configured to include the battery storage sections 13 that individually store the plurality of unit cells 11 on an inner surface, join the first external case 12A, and hold the unit cells 11 in such a manner as to sandwich the unit cells 11 between both sides in a longitudinal direction, and the second external case 12B whose external shape is formed in an approximately rectangular shape, and in which a gap GP can be provided between the battery storage sections 13 that are adjacently disposed. Accordingly, this eliminates a double structure in which the battery holder is stored in the external case, while the unit cells are held with a conventional battery holder, whereby the external case can directly hold the unit cells. Accordingly, the number of components can be reduced, which is contributed to reduction in costs and reduction in weight. Also, the battery holder and the external case are integrally constituted, which allows lead plates and the like to be embedded in the external case in advance, so that an advantage in that operation efficiency at the time of assembly can be improved is obtained. In addition, it is possible to provide a gap between the battery storage sections, thereby improving the heat radiation of the unit cells.
Furthermore, also, according to the battery pack of the second aspect of the present invention, the first external case 12A and the second external case 12B may each include an open frame 19 communicated with each battery storage sections 13, and the battery pack can further include a first external panel 30A and a second external panel 30B that each have thermal conductivity to block the open frame 19 provided in the first external case 12A and the second external case 12B. Accordingly, this allows the unit cells to face the open frame, and the external panel having excellent thermal conductivity is disposed on the open frame, so that the heat radiation of the unit cells can be improved.
Furthermore, also, according to the battery pack of the third aspect of the present invention, the first external panel 30A and the second external panel 30B may each include a plurality of slits to be opened. Accordingly, the unit cells, which are conventionally surrounded by the external case and the battery holder and involved with difficulty in radiating heat to the outside, can be communicated with the outside through the open frame of the external case and the slits of the external panel, and the advantage in that the heat radiation can be improved is obtained.
Furthermore, also, according to the battery pack of the fourth aspect of the present invention, at least any of the first external case 12A and the second external case 12B may be configured to include a first ventilation port 14 to be opened on a first surface constituted in a rectangular shape and a second ventilation port 15 to be opened on a second surface opposite to the first surface, and the battery pack can be held in a posture in which the first ventilation port 14 and the second ventilation port 15 are each opened approximately in a vertical direction. Accordingly, the battery pack is arranged in such a manner that the first ventilation port and the second ventilation port provided on the opposite surface are opened approximately in the vertical direction, and air, which is upwardly transferred by natural convection of heat in the external case, is discharged through the ventilation port which is upwardly opened, and fresh outside air is taken in through the ventilation port which is downwardly opened, whereby it can be configured to achieve natural heat radiation.
Furthermore, also, according to the battery pack of the fifth aspect of the present invention, the first surface and the second surface may be intersected with a surface on which the opening surface is provided. Accordingly, heat on the end surface of the unit cells is radiated from the opening surface, while the side surface of the unit cells can be cooled by the cooling gas flowing through the first ventilation port and the second ventilation port, whereby realizing the constitution in which the periphery of the unit cells can efficiently be radiated.
Furthermore, also, according to the battery pack of the sixth aspect of the present invention, on a third surface, at least any of the first external case 12A and the second external case 12B may include an inclined surface 24a that is provided in a manner as to be partially depressed on a surface of the third surface, and the battery pack is held in a posture in which the third surface, on which the inclined surface 24a is provided, serves as an approximately perpendicular surface, and the inclined surface 24a is further inclined upwardly in a separating direction with respect to a flat surface of the third surface, and a connector section 16 to connect an external apparatus can be provided on an end surface of the inclined surface 24a. Accordingly the connector is arranged at an end surface of the inclined surface, whereby avoiding the state where the connector is protruded from the side surface of the external case and avoiding the situation where there occurs the interference and flexure of the connector. Furthermore, the upper surface of the inclined surface is formed in an eave shape, whereby obtaining an advantage in that infiltration of dust can be reduced.
Furthermore, also, according to the battery pack of the seventh aspect of the present invention, the first external case 12A and the second external case 12B may be made of resin, and the first insulation sheet 25A and the second insulation sheet 25B may have high thermal conductivity and may be made of resin having insulation properties, and the first external panel 30A and the second external panel 30B which are made of metal may be provided. Accordingly, while the external case has insulation properties, an insulation resin sheet having high thermal conductivity is applied as the insulation sheet with respect to a portion where the heat radiation of the unit cells is easily facilitated, and further, the external panel is made of metal, thereby facilitating the heat radiation.
Hereinafter, the embodiment of the present invention will be described referring to drawings. However, the following embodiments illustrate a battery pack which is aimed at embodying the technological concept of the present invention, and the present invention is not limited to the battery pack described below. Furthermore, in this specification, reference numbers corresponding to members illustrated in the embodiments are added to members illustrated in “Claims” and “Means of Solving the Problems” for the better understanding of Claims. However, the members illustrated in Claims are not limited to the members in the embodiments. In particular, as long as specific descriptions are not provided, it is not intended that the claims be limited to sizes, materials, shapes, and relative arrangements of constitutional members described in the embodiments, which are mere descriptive examples. It is noted that the magnitude or positional relation of the members illustrated in each diagram is sometimes grandiloquently represented, in order to clarify the description. Furthermore, in the description below, identical names and reference numbers represent identical or homogeneous members, and detailed descriptions are appropriately omitted. Moreover, mode may be applied where each element constituting the present invention constitutes a plurality of elements with the use of the same member, thereby serving the plurality of elements with the use of one member, or, in contrast, mode may be realized where a function of the one member is shared by a plurality of members. Also, a portion of examples and the content described in the embodiments can be applied to other examples and another embodiment.
The battery pack of the present invention can be utilized as mount-type facilities for storage of electricity and can be applied for a power supply system in which electricity is charged by sunlight or by means of midnight power services and discharged as needed, for example, as a power source for household use and factory use. For these purposes, a plural sets of battery packs are coupled, and the battery packs are connected in series and/or in parallel, thereby increasing output, so that the power supply system can be constructed. In the power supply system, the plural sets of battery packs are connected in a row and connected with a controller at the end edge thereof, thereby controlling the battery packs. Also, the present embodiment is not limited to the mode where plural sets of the battery packs are coupled. Needless to say, the battery pack can be used as a single unit. For example, the battery pack can be used for a power supply for street lights, which is charged by sunlight in the daytime and discharged in the nighttime, or a back-up power supply for traffic lights that are driven during power failure.
Herein, an example will be described where a battery pack 100 according to the embodiment of the present invention is applied to a power supply apparatus for a system, based on
Furthermore, also,
The battery storage sections 13 are provided in such a manner as to protrude approximately perpendicularly from the main surfaces of the first external case 12A and the second external case 12B. The length of each battery storage section 13 is about a third of the length of the unit cell 11. Then, the unit cells 11 are joined in such a manner to be caught between the first external case 12A and the second external case 12B on both sides thereof, whereby the two battery storage sections 13 hold the both end portions of the unit cells 11, and the central portion of the unit cells 11 are exposed to the interior of the external case 12. Accordingly, a space between the unit cells 11, which is abutted by the intermediate portion of the side surface of the unit cells 11, can be separated, so that the cooling effect of the unit cells 11 can be improved.
Thus, the battery storage sections 13 are provided in the first external case 12A and the second external case 12B, so that the unit cells 11 can directly be held with the external case 12 without the use of an inner case such as a battery holder, and the constitution of the case can be simplified. In particular, the external case and the battery holder are integrated, so that the number of components can be reduced, thereby achieving weight reduction and reduction in costs and simplifying assembly processes. Also, the intermediate portions of the side surface of the unit cells 11 are exposed, so that a space through which each unit cell 11 directly receives cooling gas can be formed, and in this point, cooling capacity can be enhanced, compared with a constitution in which the periphery of the unit cells is fully covered as a conventional battery holder.
Also, the battery holder and the external case are integrally constituted, an advantage in that an operating efficiency at the time of assembly can be improved is obtained by installing the lead plates 20A and 20B in the external case 12 in advance. In the examples illustrated in
Furthermore, based on this constitution, as is illustrated in an enlarged cross-sectional view in
Also, as is illustrated by a vertical cross-sectional view in
The first external case 12A and the second external case 12B are constituted by materials having excellent insulation properties. For example, resin is applied. Herein, a cylindrical secondary battery is used for the unit cells 11, and a plurality of cylindrical battery storage sections 13 are provided in the first external case 12A and the second external case 12B inwardly, so that the cylindrical unit cells 11 can be stored.
In this example, 13 sets of unit cells 11 are connected in series, and further, 24 groups of those are connected in parallel, whereby 312 sets of unit cells are totally used. Accordingly, the large-capacity battery pack 100 is constituted, in which a voltage ranges from about 40 V to 52 V, and the maximum capacity is approximately 50 Ah. It is noted that the number of unit cells 11, the arrangement, and the connection are not limited thereto. Needless to say, these can be changed corresponding to the voltages and output capacity as needed.
(Unit Cell 11)
The exterior of the unit cells 11 is formed in a cylindrical shape. The unit cells serve as a lithium ion secondary battery, thereby increasing the output with respect to capacity and weight. Moreover, in place of the lithium ion secondary battery, a lithium polymer battery or a nickel-hydrogen battery can be used for the unit cells. Accordingly, in the present invention, the unit cells are not specified by the lithium ion battery, and all rechargeable batteries can be applied to the unit cells. Also, although the unit cells in the battery pack in the diagram are cylindrical unit cells, rectangular unit cells can be used in place of the cylindrical unit cells. Furthermore, a temperature sensor to detect a temperature is provided in the unit cells 11. The temperature sensor is provided in each unit cell, and it may be such that only the unit cell disposed at a representative position is monitored. Herein, one end of the direction that the cylindrical shape of the unit cell 11 extends is provided as a positive electrode, and the other end of the direction is provided as a negative electrode.
(Open Frame 19)
Furthermore, as is illustrated in
Each open frame 19 is blocked by a first external panel 30A and a second external panel 30B. As is illustrated in the exploded perspective view of
For example, the external panel 30 may be of metal having excellent thermal conductivity. In the example illustrated by the exploded perspective view of
Although other constitution is not illustrated, a plurality of slits to be opened can be provided for the first external panel 30A and the second external panel 30B. Accordingly, the end surface of the unit cells 11 can directly be exposed to the outside air, and the heat radiation can be improved further. That is, the unit cells, which are conventionally surrounded by the external case and the battery holder and involved with difficulty in radiating heat to the outside, can be communicated with the outside through the open frame 19 of the external case 12 and the slits of the external panel 30, and the advantage in that the heat radiation can be improved is obtained.
Furthermore, as another example, a plurality of heat-radiation fins can be provided for the first external panel 30A and the second external panel 30B. Accordingly, the surface area of the external panel 30 is increased, so that the effect of heat radiation on the side surface of the external case 12 can be enhanced.
(Ventilation Port)
Furthermore, as is illustrated in
Preferably, the first ventilation port 14 and the second ventilation port 15 are each opened approximately in the vertical direction. That is, in a posture for fixing the battery pack, the first ventilation port 14 and the second ventilation port 15 are each opened upwardly and downwardly. Accordingly, air, which is upwardly transferred by natural convection of heat in the interior of the external case 12, is discharged through the second ventilation port 15 which is upwardly opened, and fresh outside air is taken in through the first ventilation port 14 which is downwardly opened, whereby it can be configured to achieve natural heat radiation.
The example of
Also, a ventilation fan FN may be provided in the vicinity of the first ventilation port 14 or the second ventilation port 15, in order to allow the cooling gas to flow easily. In the example illustrated in
Then, as is described above, the opening surface is provided on the side surface of the external case 12, so that heat is radiated from the end surface of the unit cells 11 via the external panel 30, and in contrast, heat exchange is carried out by the flow of the cooling air on the side surface of the unit cells 11, and the unit cells 11 can efficiently be radiated as a whole. As a result, a larger electric current can flow through the unit cells 11, which achieves the high output characteristics of the battery pack.
(Connector)
A protection circuit to monitor temperatures, voltages, and the like of the plurality of unit cells 11 is built in the battery pack 100. The protection circuit is mounted on a battery circuit board 22. Information detected by the protection circuit is outputted to an external apparatus via a connector section 16. Also, the connector section 16 performs communication with the external apparatus, so that signals from the external apparatus can be received on the side of the battery pack, thereby carrying out the processing. For example, it may be configured such that an anomalous signal is detected by the battery pack and transmitted to the external apparatus, and the stop of the power output is instructed by the external apparatus. The input-output connection of the connector section 16, for example, is electrically, magnetically, or optically connected via serial connections such as RS-422, RS-423, RS-485, and USB, parallel connections, or networks such as LAN and the like, so that communication can be performed. In the examples of
Also, in the example of
Also, the connector section 16 is fixed on a connector circuit board 17. Herein, with regards to the connector section 16 on the side surface of the external case 12, a depression is provided, not on the flat surface, but on the side surface, and the connector section 16 is configured to be arranged in the depression. Thus, when a connector jack of the cable 101 is connected to the connector section 16, the situation where the connector jack protrudes from the side surface of the external case 12 can be avoided, and an advantage in that the cable 101 can be arranged in limited space with a high space efficiency can be obtained. Also, the steps in a concave shape are provided for the depression of the side surface of the external case 12, and preferably, as is illustrated by the cross-sectional view of
Also, the connector circuit board 17 is held in the interior of the external case 12 in such a manner as to keep the connector circuit board 17 in a slanted posture, which is not parallel to the side surface of the external case 12. In the external case 12, as is illustrated in
The inclined surface 24a described above is integrally molded with the side surface of the external case 12, so that the inclined surface 24a can be formed. However, preferably, as is illustrated in
Furthermore, regarding the connector cover 24, preferably, as is illustrated in the cross-sectional view in
(Battery Circuit Board 22)
Regarding the information for the aforementioned connector section 16, as is illustrated in the exploded perspective view of the battery pack 100 in
The battery circuit board 22 is inserted into a circuit board holder 27. The circuit board holder 27 is formed in a bottomed box shape and formed in a size which is large enough for the battery circuit board 22 to be inserted, and encloses the periphery of the battery circuit board 22 with the peripheral walls thereof in a state where the battery circuit board 22 is inserted. The battery circuit board 22 is arranged at a home position in the external case 12 via the circuit board holder 27. Also, the lead plates 20A and 20B connected to the end surface of the unit cells 11 are extended and conducted to the battery circuit board 22 in order to connect the battery circuit board 22 to the unit cells 11. In the examples of
The electrode terminals of 14 systems, which is the sum of seven systems on the side of the first external case 12A by means of the lead plate 20A on the external side surface of the external case 12 and seven systems on the side of the second external case 12B by means of the lead plate 20B, are connected to the battery circuit board 22 as the bent piece 20a. Accordingly, the voltages of the plurality of unit cells 11 are detected by the voltage detection circuit for every parallel circuit, thereby managing the voltages. Accordingly, the overdischarging and overcharging can be prevented.
Furthermore, the battery circuit board 22 is configured to include a circuit that outputs information in which a CPU or other device determines whether the information detected by each detection circuit is in a normal operation state or in an abnormal operation state, and a circuit that collects information from other external controllers.
The direct transmission of information to the controllers is performed, so that it is possible to rapidly determine defective portions (defective battery packs), and it is possible to avoid the delay in determining the defective portions and obtain an advantage in that immediate replacement can be carried out.
(Connection Terminal 21)
On the other hand, regarding the connection terminal 21 as an output terminal for a high voltage of the battery pack, as is illustrated in
Furthermore, as is illustrated in
Also, the battery pack can appropriately be utilized for a back-up power source apparatus that can be mounted on the rack 200 of a computer server illustrated in
Number | Date | Country | Kind |
---|---|---|---|
2011-078170 | Mar 2011 | JP | national |
Filing Document | Filing Date | Country | Kind | 371c Date |
---|---|---|---|---|
PCT/JP2011/079134 | 12/16/2011 | WO | 00 | 9/27/2013 |