Battery powered surgical instrument

Information

  • Patent Grant
  • 10779876
  • Patent Number
    10,779,876
  • Date Filed
    Tuesday, November 15, 2016
    7 years ago
  • Date Issued
    Tuesday, September 22, 2020
    3 years ago
Abstract
A medical instrument is disclosed. The medical instrument includes at least one electrical contact element, a battery, a radio frequency (RF) generation circuit coupled to and operated by the battery and operable to generate an RF drive signal and to provide the RF drive signal to the at least one electrical contact, and a battery discharge circuit coupled to the battery. A processor is coupled to the battery discharge circuit and a memory is coupled to the processor. The memory stores machine executable instructions that when executed cause the processor to monitor activation of the RF generation circuit and disable the RF generation circuit when the RF drive signal is fired a predetermined number of times. The medical instrument may include an activation switch and/or a disposal switch supported by the housing.
Description
BACKGROUND

The present disclosure relates to the field of medical instruments and in particular, although not exclusively, to electrosurgical instruments. The present disclosure also relates to drive circuits and methods for driving such medical instruments. Additionally, the present disclosure is directed to lockout mechanisms, user interfaces, initialization techniques, and battery power conservation circuits and methods for such medical instruments.


Many surgical procedures require cutting or ligating blood vessels or other internal tissue. Many surgical procedures are performed using minimally invasive techniques where a handheld instrument is used by the surgeon to perform the cutting or ligating. Conventional hand-held electrosurgical instruments are generally large and bulky and require large power supplies and control electronics that are connected to the instrument through an electrical supply line.


Conventional corded electrosurgical instruments are large in size, have large power supplies and control electronics, and take up a lot of space in the operating room. Corded electrosurgical instruments are particularly cumbersome and difficult to use during a surgical procedure in part due to tethering of the hand-held electrosurgical instrument to the power supply and control electronics and the potential for cord entanglement. Some of these deficiencies have been overcome by providing battery powered hand-held electrosurgical instruments in which the power and control electronics are mounted within the instrument itself, such as within the handle of the instrument, to reduce the size of the electrosurgical instrument and make such instruments easier to use during surgical procedures.


Electrosurgical medical instruments generally include an end effector having an electrical contact, a radio frequency (RF) generation circuit for generating an RF drive signal and to provide the RF drive signal to the at least one electrical contact where the RF generation circuit also includes a resonant circuit. The RF circuit includes circuitry to generate a cyclically varying signal, such as a square wave signal, from a direct current (DC) energy source and the resonant circuit is configured to receive the cyclically varying signal from the switching circuitry. The DC energy source is generally provided by one or more batteries that can be mounted in a handle portion of the housing of the instrument, for example.


The design of battery powered hand-held electrosurgical instruments requires the electronics in the power supply and RF amplifier sections to have the highest efficiency possible in order to minimize the heat rejected into the relatively small handheld package. Increased efficiency also improves the storage and operational life of the battery. Increased efficiency also minimizes the size of the required battery or extends the life of a battery of a given size. Thus, there is a need for battery powered hand-held electrosurgical instruments having higher efficiency power supply and RF amplifier sections.


SUMMARY

In one embodiment, a medical instrument includes at least one electrical contact, a battery, a radio frequency (RF) generation circuit coupled to and operated by the battery and operable to generate an RF drive signal and to provide the RF drive signal to the at least one electrical contact, a battery discharge circuit coupled to the battery, a processor coupled to the battery discharge circuit, and a memory coupled to the processor. The memory stores machine executable instructions that when executed cause the processor to monitor activation of the RF generation circuit and disable the RF generation circuit when the RF drive signal is fired a predetermined number of times.





FIGURES


FIG. 1 illustrates the form of an electrosurgical medical instrument that is designed for minimally invasive medical procedures, according to one embodiment.



FIG. 2 illustrates another view of the electrosurgical medical instrument shown in FIG. 1.



FIG. 3 illustrates another view of the electrosurgical medical instrument shown in FIG. 1.



FIG. 4 illustrates a sectional view of the electrosurgical medical instrument illustrating elements thereof contained within a housing, according to one embodiment.



FIG. 5 illustrates a partial sectional view of the electrosurgical medical instrument in a locked out position to prevent the actuation of the control lever, according to one embodiment.



FIG. 6 illustrates a partial sectional view of the electrosurgical medical instrument in a full stroke position, according to one embodiment.



FIG. 7 illustrates the electrosurgical medical instrument comprising an initialization clip interfering with the handle, according to one embodiment.



FIG. 8 is another view of the electrosurgical medical instrument comprising an initialization clip as shown in FIG. 7, according to one embodiment.



FIG. 9 illustrates a sectional view of a housing portion of an electrosurgical medical instrument showing an electronic circuit device portion of an electronics system, according to one embodiment.



FIG. 10 illustrates a second electronic substrate comprising an inductor and a transformer that form a part of the RF energy circuit, according to one embodiment.



FIG. 11 illustrates two separate substrates provided where the digital circuit elements are located on a first substrate and the RF amplifier section and other analog circuit elements are located on a second substrate, according to one embodiment.



FIG. 12 illustrates a partial cutaway view of a housing to show an electrical contact system, according to one embodiment.



FIG. 13 illustrates a partial cutaway view of a housing to show an electrical contact system and an inner sheath removed, according to one embodiment.



FIG. 14 illustrates a partial cutaway view of a housing with an electrically conductive shaft removed to show an electrical contact element, according to one embodiment.



FIG. 15 illustrates a partial sectional view of the electrosurgical medical instrument in a locked position, according to one embodiment.



FIG. 16 illustrates another partial sectional view of the electrosurgical medical instrument in a locked position, according to one embodiment.



FIG. 17 illustrates another partial sectional view of the electrosurgical medical instrument with an activation button partially depressed to activate the energy circuit without releasing the knife lockout mechanism, according to one embodiment.



FIG. 18 illustrates another partial sectional view of the electrosurgical instrument with the activation button fully depressed to activate the energy circuit and release the knife lockout mechanism, according to one embodiment.



FIG. 19 illustrates another partial sectional view of the electrosurgical medical instrument with the activation button fully depressed to activate the energy circuit with the knife lockout mechanism released and the knife fully thrown, according to one embodiment.



FIG. 20 is a perspective view of an initialization clip, according to one embodiment.



FIG. 21 is a partial cutaway view of the initialization clip shown in FIG. 20, according to one embodiment.



FIG. 22 illustrates an RF drive and control circuit, according to one embodiment.



FIG. 23 illustrates a perspective view of one embodiment of a transformer employed in the RF drive circuit illustrated in FIG. 22.



FIG. 24 illustrates a perspective view of one embodiment of a primary coil of the transformer illustrated in FIG. 23.



FIG. 25 illustrates a perspective view of one embodiment of a secondary coil of the transformer illustrated in FIG. 23.



FIG. 26 illustrates a bottom view of the primary coil illustrated in FIG. 24.



FIG. 27 illustrates a side view of the primary coil illustrated in FIG. 24.



FIG. 28 illustrates a sectional view of the primary coil illustrated in FIG. 24 taken along section 28-28.



FIG. 29 illustrates a bottom view of the secondary coil illustrated in FIG. 25.



FIG. 30 illustrates a side view of the secondary coil illustrated in FIG. 25.



FIG. 31 illustrates a sectional view of the secondary coil illustrated in FIG. 30 taken along section 31-31.



FIG. 32 illustrates a perspective view of an inductor employed in the RF drive circuit illustrated in FIG. 22.



FIG. 33 illustrates a bottom view of the inductor illustrated in FIG. 32.



FIG. 34 illustrates a side view of the inductor illustrated in FIG. 32.



FIG. 35 illustrates a sectional view of the inductor illustrated in FIG. 34 taken along section 35-35.



FIG. 36 illustrates main components of a controller, according to one embodiment.



FIG. 37 is a signal plot illustrating the switching signals applied to a field effect transistor (FET), a sinusoidal signal representing the measured current or voltage applied to a load, and the timings when a synchronous sampling circuit samples the sensed load voltage and load current, according to one embodiment.



FIG. 38 illustrates a drive waveform for driving an FET gate drive circuit, according to one embodiment.



FIG. 39 illustrates a diagram of a digital processing system located on a first substrate, according to one embodiment.



FIG. 40 illustrates a battery discharge circuit, according to one embodiment.



FIG. 41 illustrates a RF amplifier section with an output sensing test circuit and magnetic switch element, according to one embodiment.



FIG. 42 illustrates a fused battery connected to a substrate-mounted FET, according to one embodiment.



FIG. 43 illustrates a fused battery connected to a substrate-mounted control relay, according to one embodiment.



FIG. 44 illustrates a potted fused battery connected to a substrate-mounted FET, according to one embodiment.



FIG. 45 illustrates a potted fused battery connected to a substrate-mounted control relay, according to one embodiment.



FIG. 46 illustrates a potted fused battery including a reed relay and control FET, according to one embodiment.



FIG. 47 illustrates a potted fused battery including a reed relay and control relay, according to one embodiment.



FIGS. 48A and 48B represent a flow diagram of a process for initializing a medical instrument fitted with an initialization clip, according to one embodiment.



FIGS. 49-57 illustrates the ornamental design for a surgical instrument handle assembly as shown and described, according to one embodiment, where:



FIG. 49 is a left perspective view of a handle assembly for a surgical instrument.



FIG. 50 is a right perspective view thereof.



FIG. 51 is a left perspective view thereof.



FIG. 52 is a left view thereof.



FIG. 53 is a front view thereof.



FIG. 54 is a right view thereof.



FIG. 55 is a rear view thereof.



FIG. 56 is a top view thereof.



FIG. 57 is a bottom view thereof.





DESCRIPTION

Before explaining various embodiments of medical instruments in detail, it should be noted that the illustrative embodiments are not limited in application or use to the details of construction and arrangement of parts illustrated in the accompanying drawings and description. The illustrative embodiments may be implemented or incorporated in other embodiments, variations and modifications, and may be practiced or carried out in various ways. Further, unless otherwise indicated, the terms and expressions employed herein have been chosen for the purpose of describing the illustrative embodiments for the convenience of the reader and are not for the purpose of limitation thereof.


Further, it is understood that any one or more of the following-described embodiments, expressions of embodiments, examples, can be combined with any one or more of the other following-described embodiments, expressions of embodiments, and examples.


The present disclosure is directed generally to medical instruments and in particular, although not exclusively, to electrosurgical instruments. The present disclosure also is directed to drive circuits and methods for driving such medical instruments. Additionally, the present disclosure is directed to lockout mechanisms, user interfaces, initialization techniques, and battery power conservation circuits and methods for such surgical instruments.


For clarity of disclosure, the terms “proximal” and “distal” are defined herein relative to a surgeon grasping the electrosurgical instrument. The term ‘proximal” refers the position of an element closer to the surgeon and the term “distal” refers to the position of an element further away from the surgeon.


Many surgical procedures require cutting or ligating blood vessels or other vascular tissue. With minimally invasive surgery, surgeons perform surgical operations through a small incision in the patient's body. As a result of the limited space, surgeons often have difficulty controlling bleeding by clamping and/or tying-off transected blood vessels. By utilizing electrosurgical forceps, a surgeon can cauterize, coagulate/desiccate, and/or simply reduce or slow bleeding by controlling the electrosurgical energy applied through jaw members of the electrosurgical forceps, otherwise referred to as clamp arms.



FIG. 1 illustrates the form of an electrosurgical medical instrument 100 that is designed for minimally invasive medical procedures, according to one embodiment. As shown, the instrument 100 is a self contained device, having an elongate shaft 102 that has a housing 112 with a handle 104 connected to the proximal end of the shaft 102 and an end effector 106 connected to the distal end of the shaft 102. In this embodiment, the end effector 106 comprises medical forceps 108 having a movable jaw member and a cutting blade or knife (not shown) coupled to an inner sheath (not shown) located within the shaft 102 that are controlled by the user manipulating a control lever 110 (e.g., hand trigger) portion of the handle 104. In the illustrated embodiment, the control lever 110 (e.g., hand trigger) is in the form of a hook (e.g., shepherd's hook) having a curved front portion and a rear portion where the rear portion extends below the front portion. The curved front portion and the rear portion define an aperture therebetween to receive the user's hand to operate the control lever 110. During a surgical procedure, the shaft 102 is inserted through a trocar to gain access to the patient's interior and the operating site.


The surgeon will manipulate the forceps 108 using the handle 104, the control lever 110, and rotation knob 116 until the forceps 108 are located around the vessel to be cauterized. The rotation knob 116 is coupled to the shaft 102 and the end effector 106. Rotation of the rotation knob 116 causes rotation of the shaft 102 and the end effector 106. In one embodiment, the shaft 102 is continuously rotatable greater than 360° using the rotation knob 116. To perform the desired cauterization Electrical energy at an RF frequency (it has been found that frequencies above about 50 kHz (e.g., ˜100 kHz and higher) do not affect the human nervous system) is then applied by, in a controlled manner, to the forceps 108 by actuating an activation button 114. The activation button 114 has a partial activation position and a full activation position.


As shown in FIG. 1, in this embodiment, the handle 104 houses batteries and the housing houses control electronics for generating and controlling the electrical energy required to perform the cauterization. In this way, the instrument 100 is self contained in the sense that it does not need a separate control box and supply wire to provide the electrical energy to the forceps 108. The instrument 100 also comprises a first visual feedback element 118a on the proximal end of the housing 112 to indicate that the device is ready for use and functioning normally, that there are a limited number of transections remaining, that RF energy is being delivered, that an alert condition or fault exists, that the initialization clip was removed, among other indications. In one embodiment, the first visual feedback element 118a is a light emitting diode (LED), without limitation. In one embodiment, the first visual feedback element 118a is a tri-color LED. In one embodiment, the instrument 100 comprises an integral generator and a non-reusable battery.



FIG. 2 illustrates another view of the electrosurgical medical instrument 100 shown in FIG. 1. In one embodiment, the instrument 100 comprises a second visual feedback element 118b located on the proximal end of the housing 112. In one embodiment, the second visual feedback element 118b performs the same function as the first visual feedback element 118a. In one embodiment, the second visual feedback element 118b is an LED, without limitation. In one embodiment, the second visual feedback element 118b is a tri-color LED.



FIG. 3 illustrates another view of the electrosurgical medical instrument 100 shown in FIG. 1. In one embodiment, the instrument 100 comprises a disposal button 120 located on the bottom of the handle 104, for example. The disposal button 120 is used to deactivate the instrument 100. In one embodiment, the instrument 100 may be deactivated by pushing and holding the disposal button 120 for a predetermined period. For example, the instrument 100 may be deactivated by pushing and holding the disposal button 120 for about four seconds. In one embodiment, the instrument 100 will automatically deactivate after a predetermined period. For example, the instrument 100 will automatically deactivate either eight or 10 hours after completion of the first cycle. An aperture 115 formed in the handle 104 provides a path for audio waves or a means for sound generated by an audio feedback element such as a piezoelectric buzzer to escape, for example, from within the handle 104. In one embodiment, the piezoelectric buzzer operates at 65 dBa at one meter at a frequency between about 2.605 kHz to 2.800 kHz, for example. The aperture 115 enables the sound to escape the handle 104 so that it is comfortably audible to the surgeon while operating the medical instrument 100.



FIG. 4 illustrates a sectional view of the electrosurgical medical instrument 100 illustrating elements thereof contained within the housing 112, according to one embodiment. In one embodiment, the instrument 100 comprises a knife lockout mechanism 200 to prevent the advancement of an inner sheath 202, which is coupled to a blade (not shown) portion of the medical forceps 108. In the illustrated embodiments, the medical forceps 108 having a movable jaw member that is pivotally movable to clamp down on a vessel when the control lever 110 is squeezed proximally in the direction of arrow 122. The cutting blade or knife (not shown) portion of the medical forceps 108 also advances distally when the control lever 110 is squeezed proximally. The cutting blade, sometime referred to as the knife, is for cutting the vessel after it has been cauterized. To prevent a “cold cut” of the vessel, which is defined as cutting with no application of energy to the vessel, a knife lockout mechanism 200 prevents the control lever 110 from being squeezed and thus prevents the blade from being advanced until the activation button 114 is fully engaged and a suitable amount of RF energy is applied to the vessel to properly cauterize it.


The knife lockout mechanism 200 ensures that the activation button 114 is fully depressed to activate the RF energy source such that energy is delivered to the vessel prior to cutting. When the activation button 114 is fully engaged, the knife lockout mechanism 200 enables the control lever 110 to be squeezed proximally in the direction of arrow 122. This action advances the inner sheath 202 distally to close the jaw members of the electrosurgical forceps 108 while the cutting blade is simultaneously advanced to cut the vessel after it is fully cauterized. Therefore, electrosurgical energy is applied to the vessel through the jaw members of the electrosurgical forceps 108 before the cutting blade advances.


Also shown in FIG. 4 is an integral energy source 300, according to one embodiment. In the embodiment illustrated in FIG. 4, the integral energy source 300 may be a non-replaceable DC energy source such as a battery 300 that fits within the handle portion 104 of the housing 112. One embodiment of the energy source 300 is described in more detail hereinbelow.


In one embodiment, the battery 300 is a 1000 mAh, triple-cell Lithium Ion Polymer battery, Lithium battery, among others. The battery 300 will be fully charged prior to Ethylene Oxide (EtO) sterilization, and will have a fully charged voltage of about 12V to about 12.6V. The battery 300 will have two 20 A fuses fitted to the substrate which connects the cells, one in line with each terminal. In other embodiments, the battery capacity may be greater than 1000 mAh, such as, up to about 3000 mAh, for example.


In one embodiment, the minimum distance between terminals of the battery 300 may be about 3 mm such that sparking conditions require an atmosphere with a dielectric breakdown of 4200V/m. Even at the lowest pressures encountered in an EtO cycle, for a condition of pure EtO, across a 3 mm gap the breakdown voltage is approximately 450V. This is more than an order of magnitude greater than the maximum battery voltage, and this is further mitigated by the use of a Nitrogen blanket during the sterilization process.


Also shown in FIG. 4 is an electronics system 400, according to one embodiment. In one embodiment, the electronics system 400 comprises an RF generation circuit to generate an RF drive signal and to provide the RF drive signal to the at least one electrical contact where the RF generation circuit also includes a resonant circuit. The electronics system 400 also comprises control elements such as one or more than one microprocessor (or micro-controller) and additional digital electronic elements to control the logical operation of the instrument 100. One embodiment of the electronics system 400 is described hereinbelow. The electronics system 400 including the RF generation circuit is supported by the housing 112. In one embodiment, RF generation circuit to generate an RF drive signal is integral to the housing 112 and the battery 300 is non-reusable.


Also referenced in FIG. 4 is a logical lockout mechanism 500, in accordance with one embodiment. The logical lockout mechanism works in cooperation with an initialization clip 600 (see FIGS. 7-9) and 650 (see FIGS. 20-21) to prevent operation of the instrument 100 until it is removed. One embodiment of the logical lockout mechanism 500 is described hereinbelow.



FIG. 5 illustrates the electrosurgical medical instrument 100 in a locked out position to prevent the actuation of the control lever 110, according to one embodiment. The control lever 110 comprises a trigger lever 212 portion that is configured to rotate about a trigger pivot 214 when the control lever 110 is squeezed in the direction of arrow 122 (FIG. 4), unless the instrument is in locked out mode.


In the locked out mode, the trigger lever 212 portion of the control lever 110 is prevented from rotating about the trigger pivot 214 because a projection 218 of the trigger lever 212 engages a top surface 216 of an activation button lever 234 that rotates about activation button pivot 232 when the activation button 114 is squeezed in the direction of arrow 220. A contact button torsion spring 224 keeps the activation button 114 in an outwardly position to disable the electrosurgical energy from being applied while simultaneously engaging the projection 218 of the trigger lever 212 with the top surface 216 to lockout the instrument 100 until the activation button 114 is fully engaged in the direction of arrow 220.


A second trigger lever 210 comprises a first end that defines a pin slot 206 and a second end that defines a tab 226. The pin slot 206 engages a pin 208 portion of the trigger lever 212. As the trigger lever 212 rotates in the direction of arrow 236 about trigger pivot 214 the pin 208 moves within the pin slot 206 to apply a rotation movement to the second trigger lever 210. The tab 226 engages an aperture 228 to mechanically couple the second trigger lever 210 to the inner sheath 202. Thus, as the trigger lever 212 moves in the direction of arrow 236, the second trigger lever 210 rotates about lever pivot 204 to apply a linear translation motion to the inner sheath 202 in the direction of arrow 238. A trigger torsion spring 222 engages the second trigger lever 210 at a notch 240 formed on the second trigger lever 210. The trigger torsion spring 222 torque balances the hand force applied to the second trigger lever 210 through the control lever 110 about the trigger pivot 214.



FIG. 6 illustrates the electrosurgical medical instrument 100 in a full stroke position, according to one embodiment. In order to release the lockout mechanism 200, the activation button 114 is fully engaged in the direction of arrow 220 to cause the activation button lever 234 to rotate about activation button pivot 232 and release the top surface 216 from engaging the projection 218. This allows the projection 218 to slidably rotate past a surface 230 of the activation button lever 234 as the trigger lever 212 slidably rotates in the direction of arrow 236 about trigger pivot 214 as the control lever 110 is squeezed, or actuated, proximally by the surgeon. During the control lever 110 actuation period, the pin 208 is engaged by the pin slot 206 slidably moving therein and rotating the second trigger lever 210 about the lever pivot 204. As shown in FIG. 6, in the full stroke position, the inner sheath 202 is fully advanced in the distal direction in accordance with the translation motion applied by the tab 26 and aperture 228 as the second trigger lever 210 is fully rotated about the lever pivot 204. Also of note, the trigger and contact button torsion springs 222, 224, respectively, are torqued in order to return the control lever 110 and contact button 114, respectively, to their normal locked out deactivated positions.



FIG. 7 illustrates the electrosurgical medical instrument 100 comprising an initialization clip 600, according to one embodiment. The clip 600 prevents firing the medical instrument 100 without enabling and also provides some protection during shipment. The initialization clip 600 is applied to the instrument 100 after initialization at the factory and stays on the instrument 100 during storage. Upon removal of the clip 600, the instrument 100 is enabled. In one embodiment, if the instrument 100 has completed one full energy activation cycle (described in more detail hereinbelow) and the clip 600 is re-installed, the instrument 100 will not function upon removal of the clip 600 a second time.


In addition to the clip 600, other techniques for activating the battery 300 are contemplated by the present disclosure. In one embodiment, described but not shown, a “Pull Tab” may be employed to activate the battery 300. In one embodiment, the Pull Tab may comprise a plastic strip that physically separates the battery contacts acting as an insulator. A multi-stage version of this embodiment enables production testing.


In another embodiment, described but not shown, a breakaway plastic tab may be employed to activate the battery 300. In one embodiment, the breakaway plastic tab separates the battery 300 contacts and cannot be replaced.


In another embodiment, described but not shown, a mechanical mechanism may be employed to activate the battery 300. In one embodiment, the mechanical mechanism may be activated from outside the battery 300 to open the battery 300 contacts via a mechanical means.


In another embodiment, described but not shown, a removable battery is provided, where the battery is removed prior to the sterilizing the medical instrument 100. The removable battery may be sterilized using a separate sterilization method. For example, the medical instrument 100 may be sterilized by EtO and the battery by H2O2 (hydrogen peroxide), e-beam sterilization, or any suitable sterilization technique that is non-destructive to the battery.


In another embodiment, described but not shown, a Hall-effect device may be employed as an activation means. The Hall-effect device is responsive to a magnetic field and can be used to detect the presence or absence of a magnetic field.


In yet another embodiment, a remotely activated switch element 606 (such as a reed relay, Hall-effect sensor, RF device, optical element, for example, see FIGS. 8, 10, 41) that disables the electronics system 400 when a remote switch activation element 602 (such as, for example, a magnet as shown in FIG. 8, RF device, optical element) is brought into proximity to the magnetically operated element 606. This particular embodiment is described in more detail hereinbelow in connection with FIGS. 8, 10, 41, and 42-47, for example.


Also shown in FIG. 7 is the activation button 114 in multiple positions. In one embodiment, the activation button 114 is movable over multiple actuation positions to control multiple functions. In the embodiment illustrated in FIG. 7, the activation button 114 is shown in three separate positions 114a, 114b, 114c, where in a first position 114a the activation button 114 is full extended distally outwardly and does not result in energizing the RF energy circuit. In a second position 114b the activation button 114 is in a partial depression mode and in a third position 114c the activation button 114 is in a full depression mode. During normal operation, e.g., when the clip 600 is removed, when the activation button is in the first position 114a, the lockout mechanism is engaged and the operation of the control lever 110 is inhibited as previously described in connection with FIGS. 4-6 and the energy source 300 (FIG. 4) is disconnected from the electronics system 400 (FIG. 4). When the activation switch 114 is partially depressed in the second position 114b, the device is still mechanically locked out to inhibit the operation of the control lever 110, as previously described in connection with FIGS. 4-6, but the circuit is connected to the energy source 300 and becomes partially functional. For example, in one embodiment, several logic functions may be enabled while keeping the RF energy activation circuit disabled. When the activation switch 114 is fully depressed in the third position 114c, the device is mechanically unlocked and enables the operation of the control lever 110, as previously described in connection with FIGS. 4-6, but the circuit is connected to the energy source 300 and becomes fully functional, including enabling the operation of the logic and the RF energy circuit. It will be appreciated, however, that in the configuration of the instrument 100 shown in FIG. 7, the clip 600 mechanically prevents the operation of the control lever 110 and also inhibits the operation of the electronics system 400 by electrically disconnecting the energy source 300 from the electronics system 400. The functionality of the multi-position activation button 114 as it relates to the mechanical and electrical lockout will be described in more detail hereinbelow.



FIG. 8 is another view of the electrosurgical medical instrument 100 comprising an initialization clip 600 as shown in FIG. 7, according to one embodiment. In FIG. 7, the clip 600 is shown without a cover plate to show the internal structure of the clip 600. As shown in FIG. 8, the clip 600 defines an internal cavity that contains a magnet 602. The magnetic flux generated by the magnet 602 acts on a magnetically operated element 606 located on the electronics system 400. The magnetically operated element 606 is coupled to the electronics system 400 and the energy source 300 and acts as a switch to disconnect and connect the energy source to the electronics system 400.


In the embodiment illustrated in FIG. 8, the magnetic flux generated by the magnet 602 causes the magnetically operated element 606 to electrically disconnect the energy source 300 from the electronics system 400, including a transformer 404 and an inductor 406. When the magnet 602 is removed, by removing the clip 600 from the instrument 100, for example, the magnetically operated element 606 electrically connects the energy source 300 to the electronics system 400. Accordingly, as long as the clip 600 with the magnet 602 is located on the instrument 100, the instrument 100 is mechanically and electrically locked out. As previously described, when the clip 600 is located on the instrument 100, depressing the 114 in the first position 114a, second position 114b, or third position 114c does not activate the electronics system 400 because the magnetically operated element 606 electrically disconnects or decouples the energy source 300 from the electronics system 400. In one embodiment, the magnetically operated element 606 may be a reed switch, a hall-effect sensor, or any other switch type device that can be activated by a magnetic field. Still, in another embodiment, the medical instrument 100 may comprise an accelerometer to detect motion. When the accelerometer is at rest, indicating that the medical instrument 100 is at rest, the instrument 100 is completely powered down by disconnecting the battery 300 from the electronics system 400. When the accelerometer detects motion, indicating that the medical instrument 100 is no longer at rest, the instrument is powered up by connecting the battery 300 to the electronic system 400.


While undergoing sterilization, the electronics system 400 will not be powered and will draw only a leakage current of about 1 pA. The electronics system 400 may be disabled by the magnetically operated element 606 (e.g., a reed switch) and magnet 602 which is encased in the clip 600. The clip 600 is fitted to the medical instrument 100 as part of the manufacturing process, and must be removed to enable power from the battery 300. When powered, in the idle condition the load circuit draws an average of 10 mA, with peaks of up to 65 mA. When the activation button 114 is pressed, the device draws an average of 5 A, with peaks of 15.5 A from the battery 300. When packaged, the jaws are closed and there is no material between them. In one non-limiting embodiment, the voltage generated across the jaws is a maximum of 85V rms. This arrangement means there are two methods for preventing the generation of high voltages or currents—the magnetic clip 600 is the primary disabling mechanism, and the activation button 114 is the second. Several connection options for the battery 300 are described herein below with reference to FIGS. 42-47.


Mechanical fastening elements 604 and 608 are used to hold the clip 600 coupled to the medical instrument 100. In the embodiment illustrated in FIG. 8, the clip comprises a first half 612a and a second 612b that can be fastened using mechanical fastening elements to form an interference fit, press fit, or friction fit, such that friction holds the two halves 612a, b after they are pushed or compressed together. In other embodiments, other fastening techniques may be employed to fasten the two halves 612a, b such as by ultrasonic welding, snap fitting, gluing, screwing, riveting, among others. Another embodiment of an initialization clip 650 is described below in connection with FIGS. 20 and 21.



FIG. 9 illustrates a sectional view of the housing 112 portion of the electrosurgical medical instrument 100 showing an electronic circuit device 402 portion of the electronics system 400, according to one embodiment. In one embodiment, the electronic circuit device 402 can be configured as a data gathering/programming interface, for example. In one embodiment, the electronic circuit device 402 can be programmed by a programming device (not shown). The electronic circuit device 402 can output real-time data such as tissue voltage, current, and impedance to an external data recording device (not shown). In one embodiment, the electronic circuit device 402 is a non-volatile memory device that can store computer program instructions and/or tissue voltage, current, and impedance data.


In one embodiment, the data transfer/device programming function can be implemented by a connector provided on the housing 112 to couple an external data transfer/device programmer device to the electronic circuit device 402. The external data transfer/device programmer device may be employed for two-way communication with the electronic circuit device 402. To upload a new program to the medical instrument 100, for example, the external data transfer/device programmer device can be plugged into the connector to couple to the electronic circuit device 402 and then upload the program. Data stored in the electronic circuit device 402 could be read just as easily via the connector. The data may include, for example, voltage (V), current (I), impedance (Z), device parameters, among others, without limitation.


In one embodiment, the data transfer/device programming function can be implemented via at least one of the LED 118a, b interfaces. For example, either through the tri-color LEDs 118a, b or the addition of an infrared (IR) LED (not shown), an optical data interface can be implemented. The optical data interface can be employed to transfer data to and from the instrument 100 and/or program the instrument 100. In one embodiment, a separate hood (not shown) comprising a cavity to receive the proximal end of the housing 112 comprising the LEDs 118a, b may be provided. The hood also comprises optical elements (e.g., IR LEDs) configured for optical communication in order to communicate via the optical interface comprised of LEDs 118a, b. In operation, the hood may be slidably inserted over the proximal end of the housing 112 such that the LEDs 118a, b are optically aligned with the optical elements located inside the hood.



FIGS. 10 and 11 illustrate the electrosurgical medical instrument 100 without the housing 112 portion to reveal the internal components of the instrument 100, according to one embodiment. The electronics system 400 comprises both digital and RF analog circuit elements. Accordingly, as shown in FIG. 11, two separate substrates 408a and 408b are provided where the digital circuit elements are located on a first substrate 408a and the RF amplifier section and other analog circuit elements are located on a second substrate 408b. The first and second substrates 408a, b are interconnected by a interconnect device 412. Still in FIG. 11, the first substrate 408a also includes digital circuit components including, for example, the electronic circuit device 402 for storing program and tissue information. The first substrate 408a also includes an audio feedback element 410. In one embodiment, the audio feedback element 410 is a piezo device. In other embodiments, however, different types of audio feedback devices may be employed without limitation. It will be appreciated that in various embodiments, the first and second substrates 408a, b are formed of printed circuit boards. In other embodiments, however, these substrates can be formed of any suitable materials, such as alumina ceramics, for example. The substrates 408a, b may comprise discrete, integrated, and/or hybrid circuit elements and combinations thereof. With reference now to FIG. 10, the second electronic substrate 408b comprises an inductor 404 and a transformer 406 that form a part of the RF energy circuit. With reference now to the embodiments disclosed in FIGS. 10 and 11, also shown are the dual tri-color LEDs 118a, b. Also shown is the electrical contact system 700 that couple RF energy produced by the RF energy circuits on the second substrate 408b to the medical forceps 108 (FIGS. 1 and 2). An electrical conductor 702 is coupled to the electrical contact system 700. The other end of the electrical conductor 702 is coupled to the RF energy circuit.



FIGS. 12-14 illustrate various views of the electrical contact system 700, according to one embodiment. FIG. 12 illustrates a partial cutaway view of the housing 112 to show the electrical contact system 700, according to one embodiment. The electrical contact system 700 comprises an electrically conductive shaft 716 that is rotatable over 360° and comprises first and second rotatable electrodes 706, 708. The rotatable electrodes 706, 708 are electrically coupled to corresponding first and second electrical contact elements 704a, 704b where the electrical contact elements 704a, b are electrically coupled to the electrical conductor 702 (FIGS. 10-11) coupled to the RF energy circuit. Each the first and second electrical contact elements 704a, 704b comprise first and second electrical contact points 710a, 710b and 712a, 712b. The electrical contact points 710a and 712a are electrically coupled to a side wall 718 of the first rotatable electrode 706 and the electrical contact points 710b and 712b are electrically coupled to a side wall 720 of the second rotatable electrode 708. In one embodiment, the two electrical contact elements 704a, b provide four contact points 710a, 712a, 710b, 712b for redundancy. The electrical contact elements 704a, b and corresponding four contact points 710a, 712a, 710b, 712b allow the rotatable electrodes 706, 708 of the electrically conductive shaft 716 to rotate over 360°. The two electrical contact elements 704a, b may be formed of any suitable electrically conductive element such as copper, aluminum, gold, silver, iron, and any alloy including at least one of these element, without limitation. In one embodiment, the two electrical contact elements 704a, b are formed of beryllium copper (BeCu) and are gold plated for corrosion resistance and good electrical contact properties. In FIG. 12 the inner sheath 202 is shown slidably inserted within the electrically conductive shaft 716.



FIG. 13 illustrates a partial cutaway view of the housing 112 to show the electrical contact system 700 and the inner sheath 202 removed, according to one embodiment. FIG. 13, also shows an electrical element 714 that is electrically coupled to the electrical conductor 702 (FIGS. 10-11) coupled to the RF energy circuit. The electrical element 714 is coupled to the electrical contact elements 704a, b. Accordingly, the RF energy circuit is coupled to the electrical contact element 704a, b.



FIG. 14 illustrates a partial cutaway view of the housing 112 with the electrically conductive shaft 716 removed to show the electrical contact element 714, according to one embodiment. As shown in FIG. 14, the electrical contact element 714 is located in a partial circular wall 724 that separates the circular cavities 722, 726 configured to rotatably receive the respective rotatable electrodes 706, 708 (FIGS. 12-13). The electrical contact element 714 is electrically coupled to the two electrical contact elements 704a, b. As shown, the two electrical contact elements 704a, b are located on top of the electrical contact element 714.



FIG. 15 illustrates a partial sectional view of the electrosurgical medical instrument 100 in a locked position, according to one embodiment. FIG. 15 illustrates the electrosurgical medical instrument 100 in a locked out position to prevent the actuation of the control lever 110, according to one embodiment. The control lever 110 comprises a trigger lever 212 portion that is configured to rotate about a trigger pivot 214 when the control lever 110 is squeezed in the direction of arrow 122 (FIG. 4), unless the instrument is in locked out mode.


In the locked out mode, the trigger lever 212 portion of the control lever 110 is prevented from rotating about the trigger pivot 214 because a projection 218 of the trigger lever 212 engages a top surface 216 of an activation button lever 234 that rotates about activation button pivot 232 when the activation button 114 is squeezed in the direction of arrow 220. A contact button torsion spring 224 keeps the activation button 114 in an outwardly position to disable the electrosurgical energy from being applied while simultaneously engaging the projection 218 of the trigger lever 212 with the top surface 216 to lockout the instrument 100 until the activation button 114 is fully engaged in the direction of arrow 220.


A second trigger lever 210 comprises a first end that defines a pin slot 206 and a second end that defines a tab 226. The pin slot 206 engages a pin 208 portion of the trigger lever 212. As the trigger lever 212 rotates in the direction of arrow 236 about trigger pivot 214 the pin 208 moves within the pin slot 206 to apply a rotation movement to the second trigger lever 210. The tab 226 engages an aperture 228 to mechanically couple the second lever to the inner sheath 202. Thus, as the trigger lever 212 moves in the direction of arrow 236, the second trigger lever 210 rotates about lever pivot 204 to apply a linear translation motion to the inner sheath 202 in the direction of arrow 238. A trigger torsion spring 222 engages the second trigger lever 210 at a notch 240 formed on the second trigger lever 210. The trigger torsion spring 222 torque balances the hand force applied to the second trigger lever 210 through the control lever 110 about the trigger pivot 214.



FIG. 16 illustrates another partial sectional view of the electrosurgical medical instrument 100 in a locked position, according to one embodiment. In the locked position, the knife lockout mechanism 200 prevents the control lever 110 from rotating about the trigger pivot 214 when the projection 218 of the trigger lever 212 engages a top surface 216 of the activation button lever 234. The activation button lever 234 rotates about the activation button pivot 232 when the activation button 114 is squeezed or depressed in the direction of arrow 220. The activation button 114 is supported independently from the activation button pivot 232 by a mechanism 254 such that the activation button 114 is independently operable from the actuation of the control lever 110 actuate the cutting blade (knife). Thus, the activation button 114 can be depressed to energize the instrument 100 without actuating the cutting blade (knife). When the activation button 114 is squeezed or depressed in the direction of arrow 220, the activation button 114 actuates a switch 250, which enables energy actuation of the instrument 100. Thus, electrosurgical RF energy is applied through jaw members of the electrosurgical forceps, otherwise referred to as clamp arms of the instrument 100. The cutting blade, however, is still locked out by the knife lockout mechanism 200. A tang 252 prevents the activation button 114 from being removed by pulling forward on it.



FIG. 17 illustrates another partial sectional view of the electrosurgical medical instrument 100 with the activation button 114 partially depressed to activate the energy circuit without releasing the knife lockout mechanism 200, according to one embodiment. Although the activation button 114 is partially depressed to actuate the switch 250 and energize the instrument 100, but the knife lockout mechanism 200 is still engaged to prevent the knife from being actuated by the control lever 110. As shown, the projection 218 of the trigger lever 212 is still engaged with the top surface 216 of the activation button lever 234 to prevent the trigger lever 212 from rotating about the trigger pivot 214 when the control lever 110 is squeezed.



FIG. 18 illustrates another partial sectional view of the electrosurgical instrument 100 with the activation button 114 fully depressed to activate the energy circuit and release the knife lockout mechanism 200, according to one embodiment. The activation button 114 is fully depressed to actuate the switch 250 and energize the instrument 100 and also releasing the knife lockout mechanism 200. In the fully depressed mode, the activation button 114 rests on a pin 256. As shown, the projection 218 of the trigger lever 212 is disengaged from the top surface 216 of the activation button lever 234 that rotates about activation button pivot 232 to enable the trigger lever 212 to rotate about the trigger pivot 214 when the control lever 110 is squeezed to throw the knife. As shown, the inner sheath 202 can now be advanced in the direction indicated by the direction of arrow 238.



FIG. 19 illustrates another partial sectional view of the electrosurgical medical instrument 100 with the activation button 114 fully depressed to activate the energy circuit with the knife lockout mechanism 200 released and the knife fully thrown, according to one embodiment. As shown, the inner sheath 202 has advanced in the direction indicated by the direction of arrow 238.



FIG. 20 is a perspective view of an initialization clip 650, according to one embodiment. The initialization clip 650 is similar to the initialization clip 600 described in connection with FIGS. 7-9. FIG. 21 is partial cutaway view of the initialization clip 650 shown in FIG. 20, according to one embodiment. With reference to FIGS. 20 and 21, the initialization clip 650 is attached to the electrosurgical medical instrument 100 to prevent firing the medical instrument 100 without enabling and also provides some protection during shipment. The initialization clip 650 is applied to the instrument 100 after initialization at the factory and stays on the instrument 100 during storage. Upon removal of the clip 650, the instrument 100 activates in the manner described with respect to the initialization clip 600 of FIGS. 6-9. In one embodiment, if the instrument 100 has completed one full energy activation cycle (described in more detail hereinbelow) and the clip 650 is re-installed, the instrument 100 will not function upon removal of the clip 650 a second time. The initialization clip 650 comprises a snap button 652 to secure the clip 650 to the instrument 100 and a tilted magnetic pocket 654. The magnetic pocket 654 contains a magnet that works in conjunction with a reed switch, or other suitable sensing element, to detect the presence of the initialization clip 650, and thus determine whether it is attached or removed from the instrument 100. In other respects, the initialization clip 650 operates similarly to the initialization clip 600 described in connection with FIGS. 7-9.


The description now turns to the RF drive and control circuitry sections of the battery powered electrosurgical instrument 100, according to one embodiment. As described in FIGS. 10-11, the RF drive and control circuitry sections of the electronics system 400 are located on a second substrate 408b. The electronics elements of the power supply and RF amplifier sections should be designed to have the highest efficiency possible in order to minimize the heat rejected into the relatively small handheld housing 112. Efficiency also provides the longest storage and operational battery life possible. As described in the embodiments illustrated in FIGS. 23-35, litz wire may be wound around a bobbin core to reduce AC losses due to high frequency RF. The litz wire construction provides greater efficiency and thus also prevents heat generation in the device.


In various embodiments, efficiency of the power supply and RF drive and control circuitry sections also may minimize the size of the battery 300 required to fulfill the mission life, or to extend the mission life for a given size battery 300. In one embodiment, the battery 300 provides a low source impedance at a terminal voltage of 12.6V (unloaded) and a 1030 mA-Hour capacity. Under load, the battery voltage is a nominal 11.1V, for example.


Radio frequency drive amplifier topologies may vary according to various embodiments. In one embodiment, for example, a series resonant approach may be employed where the operating frequency is varied to change the output voltage to force the medical instrument 100 to operate according to a pre-programmed load curve. In a series resonant approach, the impedance of a series resonant network is at a minimum at the resonant frequency, because the reactance of the capacitive and inductive elements cancel, leaving a small real resistance. The voltage maximum for a series resonant circuit also occurs at the resonant frequency (and also depends upon the circuit Q). Accordingly, to produce a high voltage on the output, the series resonant circuit should operate closer to the resonant frequency, which increases the current draw from the DC supply (e.g., battery 300) to feed the RF amplifier section with the required current. Although the series resonant approach may be referred to as a resonant mode boost converter, in reality, the design is rarely operated at the resonant frequency, because that is the point of maximum voltage. The benefit of a resonant mode topology is that if it is operated very close to the resonant frequency, the switching field effect transistors (FETs) can be switched “ON” or “OFF” at either a voltage or current zero crossing, which dissipates the least amount of power in the switching FETs as is possible.


Another feature of the RF drive and control circuitry section according to one embodiment, provides a relatively high turns ratio transformer which steps up the output voltage to about 85 VRMS from the nominal battery 300 voltage of about 11.1V. This provides a more compact implementation because only one transformer and one other inductor are required. In such a circuit, high currents are necessary on the transformer primary to create the desired output voltage or current. Such device, however, cannot be operated at the resonant frequency because allowances are made to take into account for the battery voltage dropping as it is expended. Accordingly, some headroom is provided to maintain the output voltage at the required level. A more detailed description of a series resonant approach is provided in commonly assigned international PCT Patent Application No. PCT/GB2011/000778, titled “Medical Device,” filed May 20, 2011, now International Application Publication No. WO 2011/144911, the disclosure of which is incorporated herein by reference in its entirety.


According to another embodiment, an RF instrument topology comprising a novel and unique architecture is provided for a handheld battery powered RF based generator for the electrosurgical medical instrument 100. Accordingly, in one embodiment, the present disclosure provides an RF instrument topology with an architecture configured such that each power section of the device operate at maximum efficiency regardless of the load resistance presented by the tissue or what voltage, current, or power level is commanded by the controller. In one embodiment, this may be implemented by employing the most efficient modalities of energy transformation presently known and by minimizing the component size to provide a small and light weight electronics package to fit within the housing 112, for example.


In one embodiment, the RF power electronics section of the electronics system 400 may be partitioned as a boost mode converter, synchronous buck converter, and a parallel resonant amplifier. According to one embodiment, a resonant mode boost converter section of the medical instrument 100 may be employed to convert the DC battery 300 voltage to a higher DC voltage for use by the synchronous mode buck converter. One aspect to consider for achieving a predetermined efficiency of the resonant mode boost converter section is ratio between input and output voltages of the boost converter. In one embodiment, although a 10:1 ratio is achievable, the cost is that for any appreciable power on the secondary the input currents to the boost mode transformer become quite heavy, in the range of about 15-25 A, depending on the load. In another embodiment a transformer turns ratio of about 5:1 is provided. It will be appreciated that transformer ratios in the range of about 5:1 to about 10:1 also may be implemented, without limitation. In a 5:1 transformer turns ratio, the design tradeoff is managing the Q of the parallel resonant output against the boost ratio. The resonant output network performs two functions. First, it filters the square, digital pulses from the Class D output amplifier and removes all but the fundamental frequency sine wave from the output. Second, it provides a passive voltage gain due to the Q of the filter network. In other words, current from the amplifier is turned into output voltage, at a gain determined by the circuit's unloaded Q and the load resistance, which affects the Q of the circuit.


Another aspect to consider for achieving a predetermined efficiency in the resonant mode boost converter section is to utilize a full bridge switcher topology, which allows half the turns ratio for the boost transformer for the same input voltage. The tradeoff is that this approach may require additional FET transistors, e.g., an additional two FETs are required over a half bridge approach, for example. Presently available switchmode FETs, however, are relatively small, and while the gate drive power is not negligible, it provides a reasonable design tradeoff.


Yet another aspect to consider for achieving a predetermined efficiency in the resonant mode boost converter section and operating the boost converter at maximum efficiency, is to always run the circuit at the resonant frequency so that the FETs are always switching at either a voltage or current minima, whichever is selected by the designer (ZCS vs. ZVS switching), for example. This can include monitoring the resonant frequency of the converter as the load changes, and making adjustments to the switching frequency of the boost converter to allow ZVS or ZCS (Zero Voltage Switching/Zero Current Switching) to occur for minimum power dissipation.


Yet another aspect to consider for achieving a predetermined efficiency in the resonant mode boost converter section is to utilize a synchronous rectifier circuit instead of a conventional full-wave diode rectifier block. Synchronous rectification employs FETs as diodes because the on-resistance of the FET is so much lower than that of even a Schottky power diode optimized for low forward voltage drop under high current conditions. A synchronous rectifier requires gate drive for the FETs and the logic to control them, but offers significant power savings over a traditional full bridge rectifier.


In accordance with various embodiments, the predetermined efficiency of a resonant mode boost converter is approximately 98-99% input to output, for example. Any suitable predetermined efficiency may be selected based on the particular implementation. Accordingly, the embodiments described herein are limited in this context.


According to one embodiment, a synchronous buck converter section of the medical instrument 100 may be employed to reduce the DC voltage fed to the RF amplifier section to the predetermined level to maintain the commanded output power, voltage or current as dictated by the load curve, with as little loss as is possible. The buck converter is essentially an LC lowpass filter fed by a low impedance switch, along with a regulation circuit to control the switch to maintain the commanded output voltage. The operating voltage is dropped to the predetermined level commanded by the main controller, which is running the control system code to force the system to follow the assigned load curve as a function of sensed tissue resistance. In accordance with various embodiments, the predetermined efficiency of a synchronous buck regulator is approximately 99%, for example. Any suitable predetermined efficiency may be selected based on the particular implementation. Accordingly, the embodiments described herein are limited in this context.


According to one embodiment, a resonant mode RF amplifier section comprising a parallel resonant network on the RF amplifier section output is provided. In one embodiment, a predetermined efficiency may be achieved by a providing a parallel resonant network on the RF amplifier section output. The RF amplifier section may be driven at the resonant frequency of the output network which accomplished three things. First, the high Q network allows some passive voltage gain on the output, reducing the boost required from the boost regulator in order to produce high voltage output levels. Second, the square pulses produced by the RF amplifier section are filtered and only the fundamental frequency is allowed to pass to the output. Third, a full-bridge amplifier is switched at the resonant frequency of the output filter, which is to say at either the voltage zero crossings or the current zero crossings in order to dissipate minimum power. Accordingly, a predetermined efficiency of the RF amplifier section is approximately 98%. Gate drive losses may limit the efficiency to this figure or slightly lower. Any suitable predetermined efficiency may be selected based on the particular implementation. Accordingly, the embodiments described herein are limited in this context.


In view of the RF instrument topology and architecture described above, an overall system efficiency of approximately 0.99*0.99*0.98, which is approximately 96%, may be achieved. Accordingly, to deliver approximately 45 W, approximately 1.8 W would be dissipated by the electronics exclusive of the power required to run the main and housekeeping microprocessors, and the support circuits such as the ADC and analog amplifiers and filters. To deliver approximately 135 W, approximately 5.4 W would be dissipated. This is the amount of power that would be required to implement a large jaw class generator in a hand held electrosurgical medical instrument. Overall system efficiency would likely only be a weak function of load resistance, instead of a relatively strong one as it may be the case in some conventional instruments.


In various other embodiments of the electrosurgical medical instrument 100, a series resonant topology may be employed to achieve certain predetermined efficiency increase by employing a full bridge amplifier for the primary circuit and isolate the full bridge amplifier from ground to get more voltage on the primary. This provides a larger primary inductance and lower flux density due to the larger number of turns on the primary.



FIG. 22 illustrates an RF drive and control circuit 800, according to one embodiment. FIG. 22 is a part schematic part block diagram illustrating the RF drive and control circuitry 800 used in this embodiment to generate and control the RF electrical energy supplied to the forceps 108. As will be explained in more detail below, in this embodiment, the drive circuitry 800 is a resonant mode RF amplifier comprising a parallel resonant network on the RF amplifier output and the control circuitry operates to control the operating frequency of the drive signal so that it is maintained at the resonant frequency of the drive circuit, which in turn controls the amount of power supplied to the forceps 108. The way that this is achieved will become apparent from the following description.


As shown in FIG. 22, the RF drive and control circuit 800 comprises the above described battery 300 are arranged to supply, in this example, about 0V and about 12V rails. An input capacitor (Cin) 802 is connected between the 0V and the 12V for providing a low source impedance. A pair of FET switches 803-1 and 803-2 (both of which are N-channel in this embodiment to reduce power losses) is connected in series between the 0V rail and the 12V rail. FET gate drive circuitry 805 is provided that generates two drive signals—one for driving each of the two FETs 803. The FET gate drive circuitry 805 generates drive signals that causes the upper FET (803-1) to be on when the lower FET (803-2) is off and vice versa. This causes the node 807 to be alternately connected to the 12V rail (when the FET 803-1 is switched on) and the 0V rail (when the FET 803-2 is switched on). FIG. 22 also shows the internal parasitic diodes 808-1 and 808-2 of the corresponding FETs 803, which conduct during any periods that the FETs 803 are open.


As shown in FIG. 22, the node 807 is connected to an inductor-inductor resonant circuit 810 formed by an inductor Ls 812 and an inductor Lm 814, which is the primary coil of a transformer 815. The transformer 815 is the schematic symbol for the transformer 404 shown in FIGS. 8 and 10 and described in more detail below in connection with FIGS. 23-35. Turning back to FIG. 22, the FET gate driving circuitry 805 is arranged to generate drive signals at a drive frequency (fd) that opens and crosses the FET switches 803 at the resonant frequency of the parallel resonant circuit 810. As a result of the resonant characteristic of the resonant circuit 810, the square wave voltage at node 807 will cause a substantially sinusoidal current at the drive frequency (fd) to flow within the resonant circuit 810. As illustrated in FIG. 22, the inductor Lm 814 is the primary coil of a transformer 815, the secondary coil of which is formed by inductor Lsec 816. The inductor Lsec 816 of the transformer 815 secondary is connected to a resonant circuit 817 formed by inductor L2, capacitor C4 820, capacitor C2 822, and capacitor C3825. The transformer 815 up-converts the drive voltage (Vd) across the inductor Lm 814 to the voltage that is applied to the output parallel resonant circuit 817. The load voltage (VL) is output by the parallel resonant circuit 817 and is applied to the load (represented by the load resistance Rload 819 in FIG. 22) corresponding to the impedance of the forceps' jaws and any tissue or vessel gripped by the forceps 108. As shown in FIG. 15, a pair of DC blocking capacitors Cbl 840-1 and 840-2 is provided to prevent any DC signal being applied to the load 819.


In one embodiment, the transformer 815 may be implemented with a Core Diameter (mm), Wire Diameter (mm), and Gap between secondary windings in accordance with the following specifications:


Core Diameter, D (mm)

D=19.9×10−3


Wire diameter, W (mm) for 22 AWG wire

W=7.366×10−4


Gap between secondary windings, in gap=0.125

G=gap/25.4


In this embodiment, the amount of electrical power supplied to the forceps 108 is controlled by varying the frequency of the switching signals used to switch the FETs 803. This works because the resonant circuit 810 acts as a frequency dependent (loss less) attenuator. The closer the drive signal is to the resonant frequency of the resonant circuit 810, the less the drive signal is attenuated. Similarly, as the frequency of the drive signal is moved away from the resonant frequency of the circuit 810, the more the drive signal is attenuated and so the power supplied to the load reduces. In this embodiment, the frequency of the switching signals generated by the FET gate drive circuitry 805 is controlled by a controller 841 based on a desired power to be delivered to the load 819 and measurements of the load voltage (VL) and of the load current (IL) obtained by conventional voltage sensing circuitry 843 and current sensing circuitry 845. The way that the controller 841 operates will be described in more detail below.


In one embodiment, the voltage sensing circuitry 843 and the current sensing circuitry 845 may be implemented with high bandwidth, high speed rail-to-rail amplifiers (e.g., LMH6643 by National Semiconductor). Such amplifiers, however, consume a relatively high current when they are operational. Accordingly, a power save circuit may be provided to reduce the supply voltage of the amplifiers when they are not being used in the voltage sensing circuitry 843 and the current sensing circuitry 845. In one-embodiment, a step-down regulator (e.g., LT3502 by Linear Technologies) may be employed by the power save circuit to reduce the supply voltage of the rail-to-rail amplifiers and thus extend the life of the battery 300.


In one embodiment, the transformer 815 and/or the inductor Ls 812 may be implemented with a configuration of litz wire conductors to minimize the eddy-current effects in the windings of high-frequency inductive components. These effects include skin-effect losses and proximity effect losses. Both effects can be controlled by the use of litz wire, which are conductors made up of multiple individually insulated strands of wire twisted or woven together. Although the term litz wire is frequently reserved for conductors constructed according to a carefully prescribed pattern, in accordance with the present disclosure, any wire strands that are simply twisted or grouped together may be referred to as litz wire. Accordingly, as used herein, the term litz wire refers to any insulated twisted or grouped strands of wires.


By way of background, litz wire can reduce the severe eddy-current losses that otherwise limit the performance of high-frequency magnetic components, such as the transformer 815 and/or the inductor Ls 812 used in the RF drive and control circuit 800 of FIG. 22. Although litz wire can be very expensive, certain design methodologies provide significant cost reduction without significant increases in loss, or more generally, enable the selection of a minimum loss design at any given cost. Losses in litz-wire transformer windings have been calculated by many authors, but relatively little work addresses the design problem of how to choose the number and diameter of strands for a particular application. Cost-constrained litz wire configurations are described in C. R. Sullivan, “Cost-Constrained Selection of Strand Wre and Number in a Litz-Wire Transformer Winding,” IEEE Transactions on Power Electronics, vol. 16, no. 2, pp. 281-288, which is incorporated herein by reference. The choice of the degree of stranding in litz wire for a transformer winding is described in C. R. Sullivan, “Optimal Choice for Number of Strands in a Litz-Wire Transformer Winding,” IEEE Transactions on Power Electronics, vol. 14, no. 2, pp. 283-291, which is incorporated herein by reference.


In one embodiment, the transformer 815 and/or the inductor Ls 812 may be implemented with litz wire by HM Wire International, Inc., of Canton, Ohio or New England Wire Technologies of Lisbon, N.H., which has a slightly different construction in terms of the number of strands in the intermediate windings, but has the same total number of strands of either 44 gauge or 46 gauge wire by HM Wire International, Inc. Accordingly, the disclosure now turns to FIGS. 23-35, which illustrate one embodiment of the transformer 815 and the inductor Ls 812 implemented with litz wire.



FIG. 23 illustrates a perspective view of one embodiment of the transformer 404 shown in FIGS. 8 and 10 and shown as transformer 815 in connection with the RF drive circuit 800 illustrated in FIG. 22. As shown in FIG. 23, in one embodiment, the transformer 404 comprises a bobbin 804, a ferrite core 806, a primary coil 821 (e.g., inductor Lm 814 in FIG. 22), and a secondary coil 823 (e.g., inductor Lsec 816 in FIG. 22). In one embodiment, the bobbin 804 may be a 10-pin surface mounted device (SMD) provided by Ferroxcube International Holding B.V. In one embodiment, the ferrite core 806 may be an EFD 20/107 N49. In one embodiment, the transformer 815 has a power transfer of ˜45 W, a maximum secondary current of ˜1.5 A RMS, maximum secondary voltage of ˜90V RMS, maximum primary current of ˜15.5 A RMS, and a turns ratio of 20:2 (secondary turns:primary turns), for example. The operating frequency range of the transformer 404 is from ˜370 kHz to ˜550 kHz, and a preferred frequency of ˜430 kHz. It will be appreciated that these specification are provided as examples and should not be construed to be limiting of the scope of the appended claims.


In one embodiment, the transformer 404 comprises a ferrite core material having particular characteristics. The core used for both the inductor 406 and the transformer 404, albeit with a different gap to yield the required AL for each component. AL has units of Henrys/turns2, so the inductance of a winding may be found by using NTURNS2*AL. In one embodiment, an AL of 37 is used for the inductor 406, and an AL of 55 is used for the transformer 406. This corresponds to a gap of approximately 0.8 mm and 2.0 mm respectively, although the AL or the inductance is the parameter to which the manufacturing process controls, with the AL being an intermediate quantity that we are not measuring directly.


In one embodiment, the inductance of the inductor 406 and transformer 404 winding may be measured directly with “golden bobbins,” which are squarely in the middle of the tolerance bands for the winding statistical distributions. Cores that are ground are then tested using the “golden bobbin” to assess whether the grind is good on the cores. Better results were yielded than the industry standard method, which is to fill a bobbin with as many windings as they can fit on the bobbin, and then back calculating the AL of the core, and controlling AL instead of the inductance. It was found that using a “golden bobbin” in the manufacturing process yielded better results. The bobbin is what the copper windings are secured to, and the ferrite E cores slip through a hole in the bobbin, and are secured with clips.



FIG. 24 illustrates a perspective view of one embodiment of the primary coil 821 (e.g., inductor Lm 814 in FIG. 22) of the transformer 404 illustrated in FIG. 23. In one embodiment, the primary coil 821 windings may be constructed using 300 strand/46 gauge litz wire as indicated in TABLE 1 below, among other suitable configurations. In one embodiment, primary coil 821 has an inductance of ˜270 nH, an AC resistance<46 mΩ, and a DC resistance of ≤5 mΩ, for example.









TABLE 1





Primary Coil 821 (Lm 814)


46 Gauge Litz Wire

















300 Strands 46 AWG - 24 turns per foot (TPF)



Single Build MW80 155*C



Single Nylon Served



Construction: 5 × 3 × 20/46 AWG



Ft per lb: 412 Nominal



OD: 0.039″ Nominal











FIG. 26 illustrates a bottom view of the primary coil 821 (e.g., inductor Lm 814 in FIG. 22) illustrated in FIG. 24. FIG. 27 illustrates a side view of the primary coil 821 illustrated in FIG. 24. FIG. 28 illustrates a sectional view of the primary coil 821 illustrated in FIG. 24 taken along section 28-28.



FIG. 25 illustrates a perspective view of one embodiment of a secondary coil 823 (e.g., inductor Lsec 816 in FIG. 22) of the transformer 404 illustrated in FIG. 23. In one embodiment, the secondary coil 823 windings may be constructed using 105 strand/44 gauge litz wire as indicated in TABLE 2 below, among other suitable configurations. In one embodiment, the secondary coil 823 has an inductance of 22 μH±5%@430 kHz, an AC resistance<2.5Ω, and a DC resistance 80 mΩ, for example.









TABLE 2





Secondary Coil 823 (Lsec 816)


44 Gauge Litz Wire

















105 Strands 44 AWG 24 TPF



Single Build MW80 155*C



Single Nylon Served



Construction: 5 × 21/44 AWG



Ft per lb: 1214 Nominal



OD: 0.023″ Nominal











FIG. 29 illustrates a bottom view of the secondary coil 823 (e.g., inductor Lsec 816 in FIG. 22) illustrated in FIG. 25. FIG. 30 illustrates a side view of the secondary coil 823 illustrated in FIG. 25. FIG. 31 illustrates a sectional view of the secondary coil 823 illustrated in FIG. 30 taken along section 31-31.



FIG. 32 is a perspective view of one embodiment of the inductor 406 shown in FIGS. 8 and 10 and shown as inductor Ls 812 in connection with the RF drive circuit 800 illustrated in FIG. 22. As shown in FIG. 32, in one embodiment, the inductor 406 comprises a bobbin 809, a ferrite core 811, and a coil 813. In one embodiment, the bobbin 809 may be a 10-pin surface mounted device (SMD) provided by Ferroxcube International Holding B.V. In one embodiment, the ferrite core 811 may be an EFD 20/107 N49. In one embodiment, the coil 813 windings may be constructed using 300 strand/46 gauge litz wire wound at 24 TPF. In one embodiment, the inductor Ls 812 may have an inductance of ˜345 nH±6%@430 kHz, an AC resistance<50 mΩ, and a DC resistance 7 mΩ, for example. The operating frequency range of the inductor Ls 812 is from ˜370 kHz to ˜550 kHz, and a preferred frequency of ˜430 kHz, and an operating current of ˜15.5 A rms. It will be appreciated that these specification are provided as examples and should not be construed to be limiting of the scope of the appended claims.



FIG. 33 illustrates a bottom view of the inductor 406 (e.g., inductor Ls 812 in FIG. 22) illustrated in FIG. 32. FIG. 34 illustrates a side view of the inductor 406 illustrated in FIG. 32. FIG. 35 illustrates a sectional view of the inductor 406 illustrated in FIG. 34 taken along section 35-35.


Accordingly, as described above in connection with FIGS. 23-35, in one embodiment, the transformer 404 (e.g., transformer 815) and/or the inductor 406 (e.g., inductor 812) used in the RF drive and control circuit 800 of FIG. 22 may be implemented with litz wire. One litz wire configuration may be produced by twisting 21 strands of 44 AWG SPN wire at 18 twists per foot (left direction twisting). Another litz wire configuration may be produced by twisting 5×21/44 AWG (105/44 AWG SPN), also at 18 twists per foot (left direction twisting). Other litz wire configurations include 300/46 AWG litz wire as well as 46 AWG or finer gauge size wire.



FIG. 36 illustrates the main components of the controller 841, according to one embodiment. In the embodiment illustrated in FIG. 36, the controller 841 is a microprocessor based controller and so most of the components illustrated in FIG. 16 are software based components. Nevertheless, a hardware based controller 841 may be used instead. As shown, the controller 841 includes synchronous I, Q sampling circuitry 851 that receives the sensed voltage and current signals from the sensing circuitry 843 and 845 and obtains corresponding samples which are passed to a power, Vrms and Irms calculation module 853. The calculation module 853 uses the received samples to calculate the RMS voltage and RMS current applied to the load 819 (FIG. 22; forceps 108 and tissue/vessel gripped thereby) and from them the power that is presently being supplied to the load 839. The determined values are then passed to a frequency control module 855 and a medical device control module 857. The medical device control module 857 uses the values to determine the present impedance of the load 819 and based on this determined impedance and a pre-defined algorithm, determines what set point power (Pset) should be applied to the frequency control module 855. The medical device control module 857 is in turn controlled by signals received from a user input module 859 that receives inputs from the user (for example pressing buttons or activating the control levers 114, 110 on the handle 104) and also controls output devices (lights, a display, speaker or the like) on the handle 104 via a user output module 861.


The frequency control module 855 uses the values obtained from the calculation module 853 and the power set point (Pset) obtained from the medical device control module 857 and predefined system limits (to be explained below), to determine whether or not to increase or decrease the applied frequency. The result of this decision is then passed to a square wave generation module 863 which, in this embodiment, increments or decrements the frequency of a square wave signal that it generates by 1 kHz, depending on the received decision. As those skilled in the art will appreciate, in an alternative embodiment, the frequency control module 855 may determine not only whether to increase or decrease the frequency, but also the amount of frequency change required. In this case, the square wave generation module 863 would generate the corresponding square wave signal with the desired frequency shift. In this embodiment, the square wave signal generated by the square wave generation module 863 is output to the FET gate drive circuitry 805, which amplifies the signal and then applies it to the FET 803-1. The FET gate drive circuitry 805 also inverts the signal applied to the FET 803-1 and applies the inverted signal to the FET 803-2.



FIG. 37 is a signal plot illustrating the switching signals applied to the FETs 803, a sinusoidal signal representing the measured current or voltage applied to the load 819, and the timings when the synchronous sampling circuitry 851 samples the sensed load voltage and load current, according to one embodiment. In particular, FIG. 37 shows the switching signal (labeled PWM1 H) applied to upper FET 803-1 and the switching signal (labeled PWM1 L) applied to lower FET 803-2. Although not illustrated for simplicity, there is a dead time between PVVM1H and PVVM1L to ensure that that both FETs 803 are not on at the same time. FIG. 17 also shows the measured load voltage/current (labeled OUTPUT). Both the load voltage and the load current will be a sinusoidal waveform, although they may be out of phase, depending on the impedance of the load 819. As shown, the load current and load voltage are at the same drive frequency (fd) as the switching Signals (PWM1 H and PWM1 L) used to switch the FETs 803. Normally, when sampling a sinusoidal signal, it is necessary to sample the signal at a rate corresponding to at least twice the frequency of the signal being sampled—i.e. two samples per period. However, as the controller 841 knows the frequency of the switching signals, the synchronous sampling circuit 851 can sample the measured voltage/current signal at a lower rate. In this embodiment, the synchronous sampling circuit 851 samples the measured signal once per period, but at different phases in adjacent periods. In FIG. 37, this is illustrated by the “I” sample and the “Q” sample. The timing that the synchronous sampling circuit 51 makes these samples is controlled, in this embodiment, by the two control signals PWM2 and PWM3, which have a fixed phase relative to the switching signals (PWM1 H and PWM1 L) and are out of phase with each other (preferably by quarter of the period as this makes the subsequent calculations easier). As shown, the synchronous sampling circuit 851 obtains an “I” sample on every other rising edge of the PWM2 signal and the synchronous sampling circuit 851 obtains a “0” sample on every other rising edge of the PWM3 signal. The synchronous sampling circuit 851 generates the PWM2 and PWM3 control signals from the square wave signal output by the square wave generator 863 (which is at the same frequency as the switching signals PWM1 H and PWM1 L). Thus control signals PWM2 and PWM3 also changes (whilst their relative phases stay the same). In this way, the sampling circuitry 851 continuously changes the timing at which it samples the sensed voltage and current signals as the frequency of the drive signal is changed so that the samples are always taken at the same time points within the period of the drive signal. Therefore, the sampling circuit 851 is performing a “synchronous” sampling operation instead of a more conventional sampling operation that just samples the input signal at a fixed sampling rate defined by a fixed sampling clock.


The samples obtained by the synchronous sampling circuitry 851 are then passed to the power, Vrms and Irms calculation module 853 which can determine the magnitude and phase of the measured signal from just one “I” sample and one “Q” sample of the load current and load voltage. However, in this embodiment, to achieve some averaging, the calculation module 853 averages consecutive “I” samples to provide an average “I” value and consecutive “Q” samples to provide an average “0” value; and then uses the average I and Q values to determine the magnitude and phase of the measured signal (in a conventional manner). As those skilled in the art will appreciate, with a drive frequency of about 400 kHz and sampling once per period means that the synchronous sampling circuit 851 will have a sampling rate of 400 kHz and the calculation module 853 will produce a voltage measure and a current measure every 0.01 ms. The operation of the synchronous sampling circuit 851 offers an improvement over existing products, where measurements can not be made at the same rate and where only magnitude information is available (the phase information being lost).


In one embodiment, the RF amplifier and drive circuitry for the electrosurgical medical instrument 100 employs a resonant mode step-up switching regulator, running at the desired RF electrosurgical frequency to produce the required tissue effect. The waveform illustrated in FIG. 18 can be employed to boost system efficiency and to relax the tolerances required on several custom components in the electronics system 400. In one embodiment, a first generator control algorithm may be employed by a resonant mode switching topology to produce the high frequency, high voltage output signal necessary for the medical instrument 100. The first generator control algorithm shifts the operating frequency of the resonant mode converter to be nearer or farther from the resonance point in order to control the voltage on the output of the device, which in turn controls the current and power on the output of the device. The drive waveform to the resonant mode converter has heretofore been a constant, fixed duty cycle, with frequency (and not amplitude) of the drive waveform being the only means of control.



FIG. 38 illustrates a drive waveform for driving the FET gate drive circuitry 805, according to one embodiment. Accordingly, in another embodiment, a second generator control algorithm may be employed by a resonant mode switching topology to produce the high frequency, high voltage output signal necessary for the medical instrument 100. The second generator control algorithm provides an additional means of control over the amplifier in order to reduce power output in order for the control system to track the power curve while maintaining the operational efficiency of the converter. As shown in FIG. 38, according to one embodiment, the second generator control algorithm is configured to not only modulate the drive frequency that the converter is operating at, but to also control the duty cycle of the drive waveform by duty cycle modulation. Accordingly, the drive waveform 890 illustrated in FIG. 38 exhibits two degrees of freedom. Advantages of utilizing the drive waveform 890 modulation include flexibility, improved overall system efficiency, and reduced power dissipation and temperature rise in the amplifier's electronics and passive inductive components, as well as increased battery life due to increased system efficiency.



FIG. 39 illustrates a diagram of the digital processing system 900 located on the first substrate 408a, according to one embodiment. The digital processing system 900 comprises a main processor 902, a safety processor 904, a controller 906, a memory 908, and a non-volatile memory 402, among other components that are not shown for clarity of disclosure. The dual processor architecture comprises a first operation processor referred to as the main processor 902, which is the primary processor for controlling the operation of the medical instrument 100. In one aspect, the main processor 902 executes the software instructions to implement the controller 841 shown in FIG. 22. In one embodiment, the main processor 902 also may comprise an analog-to-digital (A/D) converter and pulse width modulators (PWM) for timing control.


The main processor 902 controls various functions of the overall medical instrument 100. In one embodiment, the main processor receives voltage sense (V Sense) and current sense (I Sense) signals measured at the load (represented by the load resistance Rload 819 in FIG. 22) corresponding to the impedance of the forceps' jaws and any tissue or vessel gripped by the forceps 108. For example, the main processor 902 receives the V Sense and I Sense signals for the voltage sensing circuitry 843 and current sensing circuitry 845, as shown in FIG. 15. The main processor 902 also receives tissue temperature (T sense) measurement at the load. Using the V Sense, I Sense, and T Sense, the processor 902 can execute a variety of algorithms to detect the state of the tissue based on impedance Z, where Z=V Sense/I Sense. In one embodiment, the medical instrument 100 is frequency agile from about 350 kHz to about 650 kHz. As previously discussed, the controller 841 changes the resonant operating frequency of the RF amplifier sections, controlling the pulse width modulation (PWM), reducing the output voltage (V) to the load, and enhancing the output current (I) to the load as described in connection with FIGS. 22 and 36-38, for example.


Examples of frequency agile algorithms that may be employed to operate the present surgical instrument 100 are described in the following commonly owned U.S. Patent Applications, each of which is incorporated herein by reference in its entirety: (1) U.S. patent application Ser. No. 12/896,351, entitled DEVICES AND TECHNIQUES FOR CUTTING AND COAGULATING TISSUE, now U.S. Pat. No. 9,089,360; (2) U.S. patent application Ser. No. 12/896,479, entitled SURGICAL GENERATOR FOR ULTRASONIC AND ELECTROSURGICAL DEVICES, now U.S. Pat. No. 8,956,349; (3) U.S. patent application Ser. No. 12/896,345, entitled SURGICAL GENERATOR FOR ULTRASONIC AND ELECTROSURGICAL DEVICES, now U.S. Pat. No. 8,986,302; (4) U.S. patent application Ser. No. 12/896,384, entitled SURGICAL GENERATOR FOR ULTRASONIC AND ELECTROSURGICAL DEVICES, now U.S. Pat. No. 8,951,248; (5) U.S. patent application Ser. No. 12/896,467, entitled SURGICAL GENERATOR FOR ULTRASONIC AND ELECTROSURGICAL DEVICES, now U.S. Pat. No. 9,050,093; (6) U.S. patent application Ser. No. 12/896,451, entitled SURGICAL GENERATOR FOR ULTRASONIC AND ELECTROSURGICAL DEVICES, now U.S. Pat. No. 9,039,695; (7) U.S. patent application Ser. No. 12/896,470, entitled SURGICAL GENERATOR FOR ULTRASONIC AND ELECTROSURGICAL DEVICES, now U.S. Pat. No. 9,060,776; and (8) U.S. patent application Ser. No. 12/503,775, entitled ULTRASONIC DEVICE FOR CUTTING AND COAGULATING WITH STEPPED OUTPUT, now U.S. Pat. No. 8,058,771.


In one embodiment, the main processor 902 also detects the limit switch end of stroke position (Lmt Sw Sense). The limit switch is activated when the knife reaches the end of stroke limit. The signal generated by the limit switch Lmt Sw Sense is provided to the main processor 902 to indicate the end-of-stroke condition of the knife.


In one embodiment, the main processor 902 also senses an actuation signal (Reed Sw Sense) associated with the magnetically operated element 606 located on the electronics system 400. As previously described the magnetically operated element 606 is initially actuated when the initialization clip 600, 650 is removed. When the Reed Sw Sense is detected by the main processor 902, an algorithm is executed to control the operation of the medical instrument 100. One embodiment of such an algorithm is described in more detail hereinbelow. Further, on initial power up, when the magnetically operated element 606 connects the battery 300 supply to the electronics system 400, a low resistance load is applied to the terminals of the battery 300 to check the internal resistance of the battery 300. This enables the main processor 902 to determine the charge state of the battery 300 or in other words, determines the ability of the battery 300 to deliver power to the electronics system 400. In one embodiment, the main processor 902 may simply determine the absolute value of the difference between the unloaded and loaded battery 300. If the main processor 902 determines that the battery 300 does not have enough capacity to deliver a suitable amount of power, the main processor 902 disables the medical instrument 100 and outputs a Discharge Battery signal, as discussed in more detail hereinbelow, to controllably discharge the battery 300 such that it cannot be reused and is classified as an out-of-the box failure.


In one embodiment, as part of the algorithm, the main processor 902 enables one or more visual feedback elements 118. As shown in FIG. 39, the visual feedback elements 118 comprise at least one red LED, at least one green LED, and at least one blue LED. Each of the LEDs are energized based on algorithms associated with the medical instrument 100. The main processor 902 also actuates an audio feedback element 410 based on algorithm associated with the medical instrument 100. In one embodiment, the audio feedback element 410 includes a piezoelectric buzzer operating at 65 dBa at 1 meter at a frequency between about 2.605 kHz to 2.800 kHz, for example. As previously discussed, the visual and audio feedback elements 118, 410 are not limited to the devices disclosed herein and are intended to encompass other visual and audio feedback elements.


In one embodiment, the main processor 902 executes battery shut-off and battery-drain/kill algorithms to shut-off the instrument 100 and/or drain the battery 300 under certain conditions described below. The algorithms monitor instrument usage and battery voltage and trigger shutdown of the instrument 100 and the drain the battery 300 in the event of unrecoverable faults or as a natural way to shutdown the instrument 100 and drain the battery 300.


In one embodiment, an unrecoverable event triggers the medical instrument 100 to shutdown and drain the battery 330. Events that can trigger the medical instrument 100 to shutdown and drain the battery 300 include, without limitation, (1) the detection of five consecutive firing short circuits; (2) activation of RF power when the activation button 114 is not pressed; (3) activation of RF power without activation of the audible feedback; (4) activation of the audible feedback without RF power; (5) the switch is stuck at power up for >30 seconds; (6) the resting voltage of the battery 300 is less than 10.848V after any firing; and (7) three consecutive firings that are over or under the established load curve extremes of +/−20%.


In one embodiment, the medical instrument 100 may be shutdown and the battery 300 drained as a result natural usage of the instrument 100, which includes, without limitation: (1) when the medical instrument 100 completes five firings after detecting a resting voltage of the battery 300 of 11.02V; (2) after the clip 600, 650 has been removed from the medical instrument 100, if the instrument 100 has completed a real firing (more than three joules and the user gets the cycle complete tone 3) and if the user replaces the initialization clip 600, 650 on the instrument 100, the instrument 100 will no longer be useable when they clip 600, 650 is once again removed from the instrument 100; (3) when the user depresses the disposal button 120 located on the bottom of the handle 104 of the instrument 100 for four seconds; (4) upon reaching a time limit: (a) after at least eight hours of use and if not used between hours six through eight, the instrument 100 it will shutdown; and (b) if used at least once between hours six and eight, the instrument 100 will extend the time limit to ten hours and then shutdown.


In one embodiment, the main processor 902 provides certain output signals. For example, one output signal is provided to the circuitry to discharge the battery 300 (Discharge Battery) signal. This is explained in more detail with reference to FIG. 40. There may be a need to discharge the battery 300 under several conditions according to algorithms associated with the medical instrument 100. Such conditions and algorithm are discussed in more detail hereinbelow. In one embodiment, the battery 300 used to power the medical instrument 100 has an initial out of the box capacity ranging from about 6 to about 8 hours up to about 10 hours under certain circumstances. After a medical procedure, some capacity will remain in the battery 300. Since the battery 300 is designed as a single use battery and is not rechargeable, the battery 300 is controllably discharged after use to prevent reuse of the medical instrument 100 when the battery 300 has a partial capacity.


In one embodiment, the main processor 902 can verify the output voltage (V) and current (I) sensing function by an artificial injection of voltage and current into the load. The main processor 902 then reads back the voltage and current from the load and determines whether the medical instrument 100 can operate or fail in safe mode. In one embodiment, the test voltage and current are applied to the dummy load via an electronically controlled switch. For example, the electronic switch may comprise a two-pole relay. The main processor 902 verifies the output sensing function once per hour when it is inactive and once prior to every firing. It will be appreciated that these periods may vary based on the particular implementation. To verify the output sensing function, the main processor 902 outputs inject test voltage (Inject Test V) and inject test current (Inject test I) signals to the output sensing test circuit described in connection with FIG. 41 hereinbelow. As previously described, the main processor 902 reads the sensed voltage and current signals V Sense and I Sense to determine the operation of the voltage (V) and current (I) sensing function of the medical instrument 100.


The main processor 902 is also coupled to a memory 908 and the nonvolatile memory 402. The computer program instructions executed by the main processor 902 are stored in the nonvolatile memory 902 (e.g., EEPROM, FLASH memory, and the like). The memory 908, which may be random access memory (RAM) may be used for storing instructions during execution, measured data, variables, among others. The memory 908 is volatile and its contents are erased when the battery 300 is discharged below a predetermine voltage level. The nonvolatile memory 402 is nonvolatile and its contents are not erased when the battery 300 is discharged below a predetermined level. In one embodiment, it may be desirable to erase the contents of the nonvolatile memory 402 to prevent its reuse, for example, when the medical instrument 100 has already been utilized in a procedure, the instrument 100 is determined to be an out-of-the box failure, or when the instrument 100 otherwise fails. In each of these circumstances, the main processor 902 initiates a battery 300 discharge operation. In such circumstances, program instructions in the nonvolatile memory 402 for erasing nonvolatile memory are transferred to the memory 908 where program execution resumes. The instructions executed from the memory 908 then erase the contents of the nonvolatile memory 402.


The safety processor 904 is coupled to the main processor 902 and monitors the operation of the main processor 902. If the safety processor 904 determines a malfunction of the main processor 902, the safety processor 904 can disable the operation of the main processor 902 and shuts down the medical instrument 100 in a safe mode.


The controller 906 is coupled to both the main processor 902 and the safety processor 904. In one embodiment, the controller 906 also monitors the operation of the main processor 902 and if the main processor 902 loses control, the controller 906 enables the safety processor to shut down the RF amplifier section in a safe manner. In one embodiment the controller 906 may be implemented as complex programmable logic device (CPLD), without limitation.


To preserve or extend the life of the battery 300, the main processor 902, the safety processor 904, and/or the controller 906 may be powered down (e.g., placed in sleep mode) when they are not in use. This enables the digital processing system 900 to conserve energy to preserve or extend the life of the battery 300.


In various embodiments, the main processor 902, the safety processor 904, or the controller 906 may comprise several separate functional elements, such as modules and/or blocks. Although certain modules and/or blocks may be described by way of example, it can be appreciated that a greater or lesser number of modules and/or blocks may be used and still fall within the scope of the embodiments. Further, although various embodiments may be described in terms of modules and/or blocks to facilitate description, such modules and/or blocks may be implemented by one or more than one hardware component, e.g., processor, Complex Programmable Logic Device (CPLD), Digital Signal Processor (DSP), Programmable Logic Devices (PLD), Application Specific Integrated Circuit (ASIC), circuits, registers and/or software components, e.g., programs, subroutines, logic and/or combinations of hardware and software components.


In one embodiment, the digital processing system 900 may comprise one or more embedded applications implemented as firmware, software, hardware, or any combination thereof. The digital processing system 900 may comprise various executable modules such as software, programs, data, drivers, application program interfaces (APIs), and so forth. The firmware may be stored in the nonvolatile memory 402 (NVM), such as in bit-masked read-only memory (ROM) or flash memory. In various implementations, storing the firmware in ROM may preserve flash memory. The NVM may comprise other types of memory including, for example, programmable ROM (PROM), erasable programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or battery backed random-access memory 908 (RAM) such as dynamic RAM (DRAM), Double-Data-Rate DRAM (DDRAM), and/or synchronous DRAM (SDRAM).



FIG. 40 illustrates a battery discharge circuit 1000, according to one embodiment. Under normal operation line 1004 is held at a low potential and a current control device, such as a silicon controlled rectifier 1002, is in the OFF state and the battery voltage Vbatt is applied to the electronics system 400 since no current flows from the anode “A” to the cathode “C” of the silicon controlled rectifier 1002. When, a high potential control signal “Discharge Battery” is applied by the main processor 902 on line 1004, the gate “G” of the silicon controlled rectifier 1002 is held high by capacitor C1 and the silicon controlled rectifier 1002 conducts current from the anode “A” to the “C.” The discharge current is limited by resistor R4. In alternate embodiments, rather then using the silicon controlled rectifier 1002, the current control device may be implemented using one or more diodes, transistors (e.g., FET, bipolar, unipolar), relays (solid state or electromechanical), optical isolators, optical couplers, among other electronic elements that can be configured to for an electronic switch to control the discharge of current from the battery 300.



FIG. 41 illustrates a RF amplifier section with an output sensing test circuit and magnetic switch element, according to one embodiment. As previously discussed, in one embodiment, the main processor 902 can verify the output current (I) and output voltage (V) sensing function by injecting a corresponding first test current 1102 and second test current 1104 into a dummy load 1114. The main processor 902 then reads back the corresponding output sense current (I Out Sense 1) through current sense terminal 1120 and output sense current (I Out Sense 2) through voltage sense terminal 1122 from the dummy load 1114 and determines whether the medical instrument 100 can operate or fail in safe mode. In one embodiment, the test current and voltage are applied to the dummy load via electronically controlled switches such as FET transistors, solid state relay, two-pole relay, and the like. The main processor 902 verifies the output sensing functions once per hour when it is inactive and once prior to every firing. It will be appreciated that these periods may vary based on the particular implementation.


To verify the output sensing function, the main processor 902 disables the operation of the RF amplifier section 1112 by disabling the driver circuit 1116. Once the RF amplifier section 1112 is disabled, the main processor 902 outputs a first inject test current (Inject Test I) signal and a second inject test voltage (Inject Test V) signal to the output sensing test circuit 1100. As a result a first test current 1102 is injected into resistors that turn ON transistor T11106, which turns ON transistor T21108 to generate I Out Sense 1 current through the transistor T21108. The current I Out Sense 1 flows out of the current sense terminal 1120 and is detected by the main processor 902 as the I Sense signal. A second test current 1104 is applied through the input section of a solid state relay 1110 (SSR). This causes a current I Out Sense 2 to flow through the dummy load 1114. The current I Out Sense 2 flows out of the current sense terminal 1122 and is detected by the main processor 902 as the V Sense signal. The dummy load 1114 load comprises a first voltage divider network comprised of resistors R1-R4 and a second voltage divider network comprised of R5-R8. As previously described, the main processor 902 reads the sensed voltage and current signals V Sense and I Sense to determine the operation of the voltage (V) and current (I) sensing function of the medical instrument 100.


In one embodiment, the magnetically actuated element 606, which works in conjunction with the magnet 602 located in the clip 600, 650. As shown in FIG. 41, in one embodiment, the magnetically operated element 606 may be implemented as a reed switch 1118. The reed switch 1118 electrically disconnects the battery power from the electronics system 400 while it is held in a first state by the magnetic flux generated by the magnet 602. When the magnet 602 is removed and the magnetic flux does not influence the reed switch 1118, battery power is connected to the electronics system 400 and the system undergoes an initialization algorithm, as described hereinbelow.


Before the describing the initialization algorithm, several connection options for the battery 300 are now described with reference to FIGS. 42-47. As previously discussed, the electronics system 400 will not be powered when undergoing sterilization, and will draw no current. In one embodiment, the electronics system 400 is disabled by a magnetically operated element located in the clip 600, 650, one example of which is the reed switch 1118 shown in FIG. 41, and the magnet 602 which is encased in the clip 600 and the tilted magnetic pocket 654 of the clip 650. The clip 600, 650 is fitted to the medical instrument 100 as part of the manufacturing process, and must be removed to enable power from the battery 300. When powered, in the idle condition the load circuit draws an average of about 10 mA, with peaks of up to about 65 mA. When the activation button 114 is pressed, the device draws an average of about 5 A, with peaks of about 15.5 A from the battery 300. When packaged, the jaws are closed and there is no material between them. The voltage generated across the jaws is about 85V rms. This arrangement means there are two methods for preventing the generation of high voltages or currents—the magnetic clip 600, 650 is the primary disabling mechanism, and the activation button 114 is the second.


As previously discussed, certain sections of the hardware circuits may be shut down or placed in sleep mode to conserve energy and thus extend the life of the battery 300. In particular, amplifier circuits associated with the injection of the test current and test voltage and sensing the output sense currents may be placed in sleep mode or periodically shut down to conserve energy.



FIG. 42 illustrates a fused battery connected to a substrate-mounted field effect transistor (FET), according to one embodiment. In the embodiment shown in FIG. 42, a battery connection circuit 1200 comprises the battery 300, the magnet 602, the reed switch 1118, an FET 1202, two resistors R1, R21204, 1206, and the electronics system 400. In this implementation, when the protective clip 600 is removed, the reed switch 1118 closes, enabling current to flow through the control FET 1202, thus coupling the electronics system 400 to the return (−) terminal of the battery 300. Leakage current through the FET is approximately 1 uA. The battery is coupled to the (+) and (−) terminals via corresponding fuses 1208, 1210.



FIG. 43 illustrates a fused battery connected to a substrate-mounted control relay, according to one embodiment. In the embodiment shown in FIG. 43, a battery connection circuit 1300 comprises the battery 300, the magnet 602, the reed switch 1118, and a control relay 1302 comprising a primary winding 1304 that controls a switch 1306. In this implementation, when the protective clip 600 is removed, the reed switch 1118 closes, energizing the relay 1302 and connecting the electronics system 400 to the return (−) terminal of the battery 300. Leakage current is zero, because the switch 1306 is physically open when the primary winding 1304 in not energized. The operating current, however, to hold the relay 1304 open is approximately 5 mA, which could involve increasing battery size.



FIG. 44 illustrates a potted fused battery connected to a substrate-mounted FET, according to one embodiment. The connection circuit 1400 is similar to the connection circuit 1200 shown in FIG. 42, but with the top of the battery 300 potted in potting compound 1402. Thus, EtO sterilization gas will have no access to the individual battery cells 300a, 300b, 300c, and the first exposed contact is to the fused contacts.



FIG. 45 illustrates a potted fused battery connected to a substrate-mounted control relay, according to one embodiment. The connection circuit 1500 is similar to the connection circuit 1300 shown in FIG. 23, but with the top of the battery 300 potted in potting compound 1402. Thus, EtO sterilization gas will have no access to the individual battery cells 300a, 300b, 300c, and the first exposed contact is to the fused contacts.



FIG. 46 illustrates a potted fused battery including a reed relay and control FET, according to one embodiment. The connection circuit 1600 is similar to the connection circuit 1400 shown in FIG. 24, but with reed relay 1118 and the control FET 1202 included in the potting compound 1402 as well as the top of the battery 300. Thus, EtO sterilization gas will have no access to the individual battery cells 300a, 300b, 300c, the reed relay 1118, and the control FET 1202, and the first exposed contact is to the fused contacts.



FIG. 47 illustrates a potted fused battery including a reed relay and control relay, according to one embodiment. The connection circuit 1700 is similar to the connection circuit 1500 shown in FIG. 45, but with reed relay 1118 and the control relay 1302 included in the potting compound 1402 as well as the top of the battery 300. Thus, EtO sterilization gas will have no access to the individual battery cells 300a, 300b, 300c, the reed relay 1118, and the control relay 1302, and the first exposed contact is to the fused contacts.


Having described various systems associated with the medical instrument 100, the description now turns to a user interface specification of the medical instrument 100, according to one embodiment. Accordingly, in one embodiment, the medical instrument 100 comprises visual feedback elements 118a, 118b. In one embodiment, the visual feedback elements 118a, 118b each comprises RED, GREEN, BLUE (RGB) LEDs as shown in FIG. 39.


The state of the medical instrument 100 can be determined by the state of the visual feedback elements 118a, 118b as follows:


Solid Green: indicates that the medical instrument 100 is ready to be used, everything is functioning normally.


Flashing Green: indicates that medical instrument 100 is ready to be used, but there is only enough energy for a limited, e.g., low, number of operations such as transections remaining (a minimum of 5 transections are left when flashing first begins). In one embodiment, the rate of flashing is 300 ms on, 300 ms off, 300 ms on, 300 ms off.


Solid Blue: indicates that energy is being delivered to the medical instrument 100.


Solid Red: indicates a terminal failure and the medical instrument 100 can no longer be used. Energy is not being delivered to the medical instrument 100. All Solid Red light conditions have a 4 second timeout; after which the LED goes OFF. Power cannot be activated when the LED is Solid Red—can only activate power when LED is Green or Flashing Green.


Flashing Red: indicates a fault that may be recoverable and to wait for the light to change to Green or Red before operation can be resumed. Energy is not being delivered to the medical instrument 100 when the LED is Flashing Red. The rate of flashing is 300 ms on, 300 ms off, 300 ms on, 300 ms off. Power cannot be activated when the LED is Flashing Red—can only activate power when the LED Is Green or Flashing Green.


OFF: If before the plastic clip 600 has been removed, indicates that device has not yet been powered ON by removing the clip 600. If any time after the clip 600 has been removed, indicates that device is permanently powered OFF, and can be disposed of.


In one embodiment, the medical instrument 100 comprises an audio feedback element 410. The state of the medical instrument 100 can be determined by the state of the audio feedback element 410 as follows:


Power ON Tone: indicates that the medical instrument 100 has been powered ON. This occurs when the plastic clip 600 is removed. The audio feedback element 410 emits an audible 2.55 kHz 800 ms beep.


Activation Tone: indicates that energy is being delivered. This occurs when the hand activation button 114 is pressed by the user. The audio feedback element 410 emits an audible 2.55 kHz 150 ms beep, 200 ms pause, 2.55 kHz 150 ms beep, 200 ms pause, an so on. The beeping pattern continues as long as power is being activated and upper impedance limit has not been reached.


Activation Tone2: indicates that the upper impedance threshold has been reached. This occurs when the hand activation button 114 is pressed by user, and the upper impedance limit has been reached. The audio feedback element 410 emits an audible 2.8 kHz 150 ms beep, 200 ms pause, 2.8 kHz 150 ms beep, 200 ms pause, and so on. The Tone2 beeping pattern latches. After it has been reached, it continues as long as power is being activated or until Cycle Complete.


Cycle Complete Tone: indicates that the activation cycle is complete. The audio feedback element 410 emits an audible 2.8 kHz 800 ms beep.


Alert Tone: indicates an alert. The LED visual feedback element 118a, 118b provides further information. The audio feedback element 410 emits an audible 2.9 kHz 250 ms beep, 50 ms pause, 2.55 kHz 350 ms beep, 200 ms pause, 2.9 kHz 250 ms beep, 50 ms pause 2.55 kHz 350 ms beep, 200 ms pause, 2.9 kHz 250 ms beep, 50 ms pause, 2.55 kHz 350 ms beep. The two-tone beep repeats three times, then does not repeat after that). Power to the medical instrument 100 cannot be activated until “alert” sound has completed.


Timeout: indicates that activation cycle has timed out. Reactivate to continue. The audio feedback element 410 emits an audible 2.8 kHz 50 ms beep, 50 ms pause, 2.8 kHz 50 ms beep.


Solid Tone: indicates that the user disable button is being pressed. The audio feedback element 410 emits an audible continuous 2.55 kHz tone while being held, up to 4 seconds.


TABLE 3 below summarizes one embodiment of a user interface indicating the status (e.g., event/scenario) of the medical instrument 100 and the corresponding visual and audible feedback provided by the user interface.












TABLE 3





Device Status
LED Feedback
Audible Feedback
Notes







Power is OFF
No light
None



Turn power ON by
Solid Green
One long beep


removing the
Illuminates immediately when
immediately when


initialization Clip.
initialization Clip is removed.
initialization Clip is



Indicates device is ready to be used,
removed indicates



everything functioning normally.
power in ON.


Power is ON but not
Solid Green
None


being activated,
Device ready to be used, everything


device ready, above
functioning normally.


the “low transections


remaining”


threshold.


Power ON, device
Flashing Green
Two tone beeps:


ready, power not
Indicates that device is ready to be
Indicates an alert:


being activated,
used, but a low number of
look at LED


below the “low
transections remain; a minimum of
indicators for


transections
five transections are left when
further information.


remaining”
flashing first begins.


threshold.


Power ON, device
Solid Red
Two tone beeps:


ready, power not
Indicates a terminal failure, device
Indicates an alert:


being activated, “No
can no longer be used. Energy is
look at LED


transections
not being delivered.
indicators for


remaining”

further information.


Activating power
Solid Blue
Continuous
Feedback for



Energy is being delivered.
beeping during
activation power is




power activation.
not affected by the




Indicates energy is
‘low transections




being delivered.
remaining’





threshold-





behaves the same





whether above or





below threshold


Activation cycle
Solid Blue until two short beep
Two short beeps.
Upon detection of


timeout occurs after
sound completes, then changes to
Indicates that the
timeout, activation


25 sec of power
Solid Green. Indicates device is
activation cycle
beeping will be


activation without
ready to be used, everything
has timed out.
immediately


reaching Cycle
functioning normally.
Reactivate to
interrupted. After


Complete.

continue.
the interruption of





activation beeping





there will be a





100 ms pause.





After the 100 ms





pause, there will





be the “Timeout”





audio feedback.


Cycle Complete
Solid Blue until Cycle Complete
One long beep.
Cycle complete



sound finishes, then changes to
Indicates that
sound should



Solid Green.
activation cycle
occur after the first




is complete.
(200 ms) activation





beeping pause





following system





detection of cycle





complete.


Short Detected
Flashing Red, while in short circuit
Two tone beeps.
There will be a



mode. LED returns to Solid Green
Indicates an alert:
“five strikes and



when short circuit mode is cleared,
look at LED
out’ approach to



or goes to Solid Red if terminal
indicators for
this condition: if a



failure.
further information.
short is detected



Flashing Red indicates a fault that

on five



may be recoverable: wait for LED to

consecutive



change to Green or Red.

activations, the



Energy is not being detected when

fifth detection will



LED is Flashing Red.

result in a terminal





system failure.





Upon detection of





short, the





activation beeping





will be immediately





interrupted. After





the interruption of





activation beeping





there will be a





100 ms pause.





After the 100 ms





pause, there will





be the “Alert”





audio feedback.


Over-temperature
Flashing Red, while in over-
Two tone beeps.
Upon detection of


condition
temperature condition.
Indicates an alert:
a temporary over-



LED returns to Solid Green when
look at LED
temperature



temperature drops below threshold.
indicator for
condition during



Flashing Red indicates a fault that
further information.
activation,



may be recoverable: wait for LED to

activation/



change to Green or Red.

beeping will not be



Energy is not being delivered when

interrupted. After



LED is Flashing Red.

the activation/





beeping has been





completed, there





will be a 100 ms





pause. After the





100 ms pause,





there will be the





‘Alert’ audio





feedback.


Terminal System
Solid Red
Two tone beeps.
Upon detection of


failure
LED red light stays on for four
Indicates an alert:
terminal system



seconds and then goes off.
look at LED
failure, any



Indicates a terminal failure, device
indicator for
activation beeping



can no longer be used.
further information.
(if applicable) will



Energy is not being delivered when

be immediately



LED is Solid Red.

interrupted. After





the interruption of





any activation





beeping there will





be a 100 ms





pause. After the





100 ms pause,





there will be the





‘Alert’ audio





feedback.





All Solid Red light





conditions have a





4 second timeout,





after which the





LED goes OFF


User initiates device
While User Disable Button is
Solid continuous


disabling before
pressed and held continuously up to
tone while


disposal. Note:
four seconds, LED is Flashing Red.
pressing and


User can disable the
After four continuous seconds of
holding User


device by pressing
User Disable Button being held,
Disable Button


and holding User
LED goes to Solid Red.
continuously up to


Disable Button on
NOTE: LED red light stays on four
four seconds.


bottom of handle for
seconds and then goes off.
After four


four continuous
Indicates a terminal failure, and
continuous


seconds.
device can no longer be used.
seconds of



Energy is not being delivered.
pressing User



If User Disable Button is released at
Disable Button,



any time before four continuous
sound changes to



seconds have passed, LED will
two tone beeps.



return to Solid Green or Flashing
Indicates an alert:



Green as appropriate.
look at LED




indicators for




further information.









TABLE 4 below summarizes an additional or alternative embodiment of the status (e.g., event/scenario) of the medical instrument 100 and the corresponding visual and audible feedback provided by the user interface.












TABLE 4





Device Status
LED Feedback
Audible Feedback
Notes







Power is OFF
No light
None



Incomplete Cycle:
Solid Blue, until activation button is
None


user releases
released, then Solid Green


activation button


prior to cycle


complete and before


the 15 second


activation timeout.


Power ON, ready,
Flashing Green
Alert Tone
After the


power not being


appearance of the


activated, below the


Green Flashing


Low Transections


LED, there will be


Remaining


5 transections


threshold.


remaining. Ad





If an activation





ends with a





detection of an





activation timeout,





short detection, or





over-temperature





detection-and-





the system has





also crossed the





low-uses





remaining





threshold after the





same activation-





then-the ‘Alert’





would sound once





(as opposed to





twice, or multiple





times).





In terms of alert





hierarchy in this





scenario in regard





to the LED





behavior, a short





detection or over





temperature takes





precedence over





the low-uses





remaining indicator





Once either the





short or over-





temperature





condition is





cleared by the





system, the LED





would then go to





Flashing Green to





indicate the device





is ready to be





used, but there are





a low number of





transections





remaining.


power ON, ready,
Solid Red
Alert Tone
All Solid Red light


power not being


conditions have a


activated, No


4 second timeout,


Transections


after which the


Remaining.


LED goes OFF.


User Disables
Flashing Red while pressing &
Solid Tone
User can disable


Device before
holding user disable button 120
Alert Tone
the device by


disposal
continuously up to 4 seconds. After

pressing & holding



four continuous seconds of pressing

the user disable



user disable button, the LED goes to

button on the



Solid Red, then the LED goes OFF

bottom of the



after 4 seconds timeout. If user

handle for 4



releases user disable button at any

continuous



time before 4 continuous seconds,

seconds.



the LED will return to Solid Green

The “Solid Tone”





audio feedback is





a solid continuous





tone that occurs as





long as user





presses & holds





user disable





button, up to 4





seconds. If user





releases user





disable button at





any time before 4





continuous





seconds, sound





goes off. At the





end of 4 seconds





of continuous





pressing, the





“Solid Tone”





stops, followed by





a 100 ms pause,





followed by the





“Alert” audio





feedback. The





“Alert” audio





feedback is





accompanied by





the LED changing





to Solid Red, then





LED goes OFF





after 4 second





timeout.


Activating Power -
Solid Blue
Activation Tone2
Tone2 indicates


Tone 2


that the upper





impedance limit





has been reached





during activation,





and that the knife





is ready to be fully





advanced.










FIGS. 48A and 48B is a flow diagram of a process 1800 for initializing the medical instrument 100 fitted with the initialization clip 600, 650, according to one embodiment. As shown in the process 1800, at 1802 the medical instrument 100 is programmed with an application code. The application code is a set of computer instructions stored in the nonvolatile memory 402 that may be executed by the main processor 902, the safety processor 904, the controller 906, or any combination thereof. The Production Test Complete flag is set to FALSE and the Device Used flag also is set to FALSE.


The instrument 100 is then fitted with the clip 600, 650 and is turned OFF at 1804 and the instrument 100 enters what is referred to as the “assembly state.” The Production Test Complete flag remains set to FALSE and the Device Used flag also remains set to FALSE.


At 1806 the instrument 100 is placed in the production mode after the clip 600, 650 is removed. In the production mode, the BLUE and GREEN LEDs 118a, b are turned ON and activation is inhibited. The Production Test Complete flag remains set to FALSE and the Device Used flag also remains set to FALSE. A timeout counter is started.


After a 1 second timeout, at 1808 the instrument 100 is still in the production mode, but remains idle. The user interface operates as per normal mode. From the production mode 1808 the process can continue to 1804 or to 1810. If the clip 600, 650 is fitted on the instrument 100 prior to a ten minute timeout, the process 1800 returns to 1804 were the instrument 100 is turned OFF and is placed in the assembly state. After a ten minute timeout period, the process 1800 continues at 1810. The instrument 100 is still in the production mode, but in a low power consumption state. The BLUE and GREEN LEDs 118a, b are intermittently ON (0.1 s ON and 1.9 s OFF). The clip 600, 650 is fitted back on the instrument 100, which turns the instrument 100 OFF, and the process 1800 returns to 1804. If at 1808 the instrument 100 is activated before the clip 600 is restored or before the ten-minute timeout period, the process continues to test mode at 1812. The Production Test Complete flag remains set to FALSE and the Device Used flag also remains set to FALSE. In test mode activations may be limited to four and timeout may be set to ten minutes. Furthermore, upon entry to test mode, the GREEN and BLUE LEDs 118a, b are illuminated for 1 s. Subsequently, the LEDs 118a, b and the audio feedback element 410 follow the user interface specification.


At 1812, the instrument 100 is placed in test mode where the RF amplifier subsection 800 is turned ON. The user interface operates per normal mode. The Production Test Complete flag is set to TRUE and the Device Used flag remains set to FALSE.


From 1812, the clip 600, 650 may be fitted to the instrument 100 turning the instrument 100 OFF and the process 1800 may continue at 1818 where the instrument 100 is placed in a shipping state. The Production Test Complete flag remains set to TRUE and the Device Used flag remains set to FALSE.


From 1812, the process may continue at 1814 after the instrument 100 is de-activated for the first three times. At 1814 the instrument 100 is placed in idle mode. The UI operates as pre normal. The Production Test Complete flag remains set to TRUE and the Device Used flag remains set to FALSE. The instrument 100 is activated once more and the process 1800 continues to 1812. The instrument 100 is de-activated a fourth time, the clip 600, 650 is fitted to the instrument 100, and the process 1800 continues to 1816 where the instrument 100 is placed in low power mode and the BLUE and GREEN LEDs 118a, b are flashed intermittently ON (0.1 s ON and 1.9 s OFF). The Production Test Complete flag remains set to TRUE and the Device Used flag remains set to FALSE. The clip 600, 650 is fitted back on the instrument 100, which is turned OFF and placed in the shipping state. The instrument 100 enters low power mode after the instrument 100 has been activated twice by pressing the activation button 114 or following expiration of the 10 minute timeout period.


From 1814, rather than activating the instrument 100, a 10 minute timeout period may be allowed to lapse or the clip 600, 650 may be fitted back on the instrument 100. If the 10 minute timeout period is allowed to lapse, the process 1800 continues 1816. If the clip 600, 650 is fitted back on the instrument, the process 1800 continues at 1818.


From 1818, the instrument 100 may be shipped to the user. Before using the instrument 100, the user has to remove the clip 600, 650 from the instrument 100 and then must activate the instrument 100. After the clip 600, 650 is removed from the instrument 100 but before the activation button 114 is pressed, the process continues at 1820 where the instrument is placed in normal mode but is in idle. The Production Test Complete flag remains set to TRUE and the Device Used flag remains set to FALSE. If the clip 600, 650 is fitted back on the instrument 100, the process 1800 continues back to 1818. If the activation button 114 is activated, however, the process 1800 continues 1822 where the instrument is placed in normal mode and the RF section is turned ON. Now Production Test Complete flag remains set to TRUE and the Device Used flag is set to TRUE. The instrument 100 only gets marked for disposal (Device Used Flag is TRUE) if the instrument 100 has been activated and the limit switch is pressed during normal mode. If the instrument 100 is now de-activated, the process 1800 continues to 1824 where the instrument is placed in normal mode idle. From 1824, if the instrument is activated by pressing the activation button 114, the process 1800 continues at 1822. From either 1822 or 1824, if the clip 600, 650 is fitted back on the instrument 100, the process continues to 1826 where the instrument 100 is turned OFF and enters an end of use state. Both the Production Test Complete flag and the Device Used flag remain set to TRUE. The clip 600, 650 should be removed at the end of test as a final check to ensure the GREEN LED 118a, b comes on. If the RED LED 118a, b comes on instead, the instrument 100 has entered self destruct mode.


From 1826, if the clip 600, 650 is removed, the instrument 100 initiates discharging the battery 300 and the process 1800 continues to 1828 where the battery 300 continues discharging until the battery 300 is fully discharged at 1830. From 1828, the clip 600, 650 may be fitted back on the instrument 100, in which case, the process 1800 continues to 1826. If any fatal hardware errors occur from any instrument state such as, five short circuits, battery end of life, 8/10 hour timeout, disposal switch 120 is pressed for more than 4 seconds, or the battery 300 initiates discharge, the process 1800 continues to 1828.



FIG. 49-57 illustrates the ornamental design for a surgical instrument handle assembly as shown and described, according to one embodiment.



FIG. 49 is a left perspective view of a handle assembly for a surgical instrument.



FIG. 50 is a right perspective view thereof.



FIG. 51 is a left perspective view thereof.



FIG. 52 is a left view thereof.



FIG. 53 is a front view thereof.



FIG. 54 is a right view thereof.



FIG. 55 is a rear view thereof.



FIG. 56 is a top view thereof.



FIG. 57 is a bottom view thereof.


It is worthy to note that any reference to “one aspect” or “an aspect” means that a particular feature, structure, or characteristic described in connection with the aspect is included in at least one aspect. Thus, appearances of the phrases “in one aspect” or “in an aspect” in various places throughout the specification are not necessarily all referring to the same aspect. Furthermore, the particular features, structures or characteristics may be combined in any suitable manner in one or more aspects.


Some aspects may be described using the expression “coupled” and “connected” along with their derivatives. It should be understood that these terms are not intended as synonyms for each other. For example, some aspects may be described using the term “connected” to indicate that two or more elements are in direct physical or electrical contact with each other. In another example, some aspects may be described using the term “coupled” to indicate that two or more elements are in direct physical or electrical contact. The term “coupled,” however, also may mean that two or more elements are not in direct contact with each other, but yet still co-operate or interact with each other.


While certain features of the aspects have been illustrated as described herein, many modifications, substitutions, changes and equivalents will now occur to those skilled in the art. It is therefore to be understood that the appended claims are intended to cover all such modifications and changes as fall within the true scope of the disclosed embodiments.


Various aspects of the subject matter described herein are set out in the following numbered clauses:


1. A medical instrument comprising: a handle for gripping by a user, an end effector coupled to the handle and having at least one electrical contact; a radio frequency (RF) generation circuit coupled to the handle and operable to generate an RF drive signal and to provide the RF drive signal to the at least one electrical contact; wherein the RF generation circuit comprises a parallel resonant circuit.


2. The medical instrument according to clause 1, wherein the RF generation circuit comprises switching circuitry that generates a cyclically varying signal, such as a square wave signal, from a direct current (DC) supply and wherein the resonant circuit is configured to receive the cyclically varying signal and wherein the cyclically varying signal is duty cycle modulated.


3. The medical instrument according to clause 1, comprising a battery compartment for holding one or more batteries for providing power to the RF generation circuit for generating said RF drive signal.


4. The medical instrument according to clause 3, wherein the battery compartment is configured to hold a module comprising the one or more batteries and the RF generation circuit.


5. A device according to clause 1, further comprising: battery terminals for connecting to one or more batteries; wherein the RF generation circuit is coupled to the battery terminals; wherein the frequency generation circuit comprises: switching circuitry for generating a cyclically varying signal from a potential difference across the battery terminals; and the resonant circuit, being a resonant drive circuit coupled to the switching circuitry and operable to filter the cyclically varying signal generated by the switching circuitry; and wherein the RF drive signal is controlled by an output from said resonant drive circuit.


6. The medical instrument according to clause 1, comprising a control circuit configured to vary the frequency of the RF drive signal.


7. The medical instrument according to clause 1, comprising a control circuit configured to vary the amplitude of the RF drive signal.


8. The medical instrument according to clause 1, comprising a control circuit configured to vary the duty cycle of the RF drive signal.


9. The medical instrument according to clause 8, wherein the control circuit is operable to receive a measurement of the RF drive signal and is operable to vary the frequency of the of the RF drive signal to control the power, voltage and/or current delivered to the at least one electrical contact of the end effector.


10. The medical instrument according to clause 9, wherein the measurement is obtained from a sampling circuit that samples a sensed voltage or current signal at a sampling frequency that varies in synchronism with the frequency and phase of the RF drive signal.


11. The medical instrument according to clause 10, wherein the frequency at which the sampling circuit is operable to sample the sensed signal is an integer fraction of the frequency of the RF drive signal.


12. The medical instrument according to clause 8, wherein the control circuit is configured to vary the frequency of the RF drive signal around the resonant frequency of the resonant circuit.


13. The medical instrument according to clause 12, wherein the resonant characteristic of the resonant circuit varies with a load connected to the at least one electrical contact and wherein the control circuit is configured to vary the RF drive frequency to track changes in the resonant characteristic of the resonant circuit.


14. The medical instrument according to clause 1, wherein the handle comprises: a control lever to operate the end effector; and an activation button to operate the RF generation circuit and deliver RF energy to the end effector.


15. The medical instrument according to clause 14, comprising a rotation knob coupled to end effector to rotate the end effector about an angle greater than 360°.


16. The medical instrument according to clause 14, comprising at least one visual feedback element to indicate a state of the medical instrument.


17. The medical instrument according to clause 14, comprising an audio feedback element to indicate a state of the medical instrument.


18. The medical instrument according to clause 17, comprising an aperture formed in the handle to provide a path for audio waves to escape an interior portion of the handle.


19. The medical device according to clause 14, comprising a knife lockout mechanism.


20. The medical device according to clause 14, comprising a clip coupled to the control lever.


21. The medical instrument according to clause 20, comprising a magnet located within the clip.


22. The medical instrument according to clause 21, comprising a magnetically operated element coupled to an electronics system of the medical instrument and a battery of the medical instrument, wherein when the magnet is located within the clip and the clip is coupled to the control lever, the magnetically operated element disconnects the battery from the system electronics.

Claims
  • 1. A battery powered surgical instrument, comprising: a rotatable electrically conductive shaft, comprising: a first rotatable electrode; anda second rotatable electrode;a housing in mechanical communication with the rotatable electrically conductive shaft, comprising: a first electrical contact element;a second electrical contact element,wherein the first rotatable electrode and the second rotatable electrode are in electrical communication with the first electrical contact element and the second electrical contact element, respectively;a battery;a radio frequency (RF) generation circuit configured to be electrically coupled to the battery and to the first electrical contact element and to the second electrical contact element, wherein the RF generation circuit is configured to generate an RF drive signal and wherein the RF generation circuit is configured to provide the RF drive signal to the first electrical contact element and to the second electrical contact element;a battery discharge circuit coupled to the battery, wherein the battery discharge circuit comprises an electrical switch configured to receive a battery discharge signal and is further configured to controllably discharge the battery to prevent reuse of the battery;an initialization clip defining an internal cavity comprising a magnet, wherein the initialization clip is removably connectable to the battery powered surgical instrument, and wherein the initialization clip is configured to electrically decouple the battery from the RF generation circuit;a processor coupled to the battery discharge circuit; anda memory coupled to the processor, the memory stores machine executable instructions that when executed cause the processor to: monitor activation of the RF generation circuit;disable the RF generation circuit when the RF generation circuit is activated a predetermined number of times; andsend the battery discharge signal to the battery discharge circuit to discharge the battery when the RF generation circuit is activated the predetermined number of times.
  • 2. The battery powered surgical instrument according to claim 1, wherein execution of the machine executable instructions causes the processor to disable the RF generation circuit when the RF drive signal is fired five consecutive times.
  • 3. The battery powered surgical instrument according to claim 2, wherein execution of the machine executable instructions causes the processor to: monitor a battery voltage; anddisable the RF generation circuit when the RF drive signal is fired five consecutive times after the battery voltage drops below a predetermined threshold.
  • 4. The battery powered surgical instrument according to claim 3, wherein the first electrical contact element comprises a first pair of electrical contact points and the second electrical contact element comprises a second pair of electrical contact points.
  • 5. The battery powered surgical instrument according to claim 4, wherein the first pair of electrical contact points are electrically coupled to a side wall of the first rotatable electrode, and the second pair of electrical contact points are electrically coupled to a side wall of the second rotatable electrode.
  • 6. The battery powered surgical instrument according to claim 5, wherein the first electrical contact element and the first pair of electrical contact points are in electrical communication with the first rotatable electrode throughout a rotation of the rotatable electrically conductive shaft over a 360° rotation about a shaft longitudinal axis, and the second electrical contact element and the second pair of electrical contact points are in electrical communication with the second rotatable electrode throughout a rotation of the rotatable electrically conductive shaft over a 360° rotation about the shaft longitudinal axis.
  • 7. The battery powered surgical instrument according to claim 1, wherein execution of the machine executable instructions causes the processor to deactivate the RF generation circuit when a battery voltage drops below a predetermined threshold.
  • 8. The battery powered surgical instrument according to claim 1, wherein execution of the machine executable instructions causes the processor to deactivate the RF generation circuit after a predetermined number of consecutive RF drive signal firings that are over or under a predetermined load curve extreme.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 13/658,786, entitled “BATTERY SHUT-OFF ALGORITHM IN A BATTERY POWERED DEVICE,” filed on Oct. 23, 2012, which claims the benefit of U.S. Provisional Patent Application Ser. No. 61/550,768, entitled “MEDICAL INSTRUMENT,” filed on Oct. 24, 2011, which is incorporated herein by reference in its entirety. This application is related to the following commonly assigned U.S. and PCT International Patent Applications: U.S. patent application Ser. No. 13/658,784, entitled “LITZ WIRE BATTERY POWERED DEVICE,” now U.S. Pat. No. 9,421,060, which is incorporated herein by reference in its entirety. U.S. patent application Ser. No. 13/658,787, entitled “USER INTERFACE IN A BATTERY POWERED DEVICE,” now published as U.S. Pat. No. 9,414,880, which is incorporated herein by reference in its entirety. U.S. patent application Ser. No. 13/658,790, entitled “BATTERY INITIALIZATION CLIP,” now U.S. Pat. No. 9,333,025, which is incorporated herein by reference in its entirety. U.S. patent application Ser. No. 13/658,791, entitled “BATTERY DRAIN KILL FEATURE IN A BATTERY POWERED DEVICE,” now U.S. Pat. No. 9,283,027, which is incorporated herein by reference in its entirety. U.S. patent application Ser. No. 13/658,792, entitled “TRIGGER LOCKOUT MECHANISM,” now U.S. Pat. No. 9,314,292, which is incorporated herein by reference in its entirety. PCT International patent application Ser. No. PCT/US12/61504, entitled “MEDICAL INSTRUMENT,” concurrently filed, which is incorporated herein by reference in its entirety.

US Referenced Citations (1653)
Number Name Date Kind
2366274 Luth et al. Jan 1945 A
2458152 Eakins Jan 1949 A
2510693 Green Jun 1950 A
2736960 Armstrong Mar 1956 A
2849788 Creek Sep 1958 A
2867039 Zach Jan 1959 A
3015961 Roney Jan 1962 A
3043309 McCarthy Jul 1962 A
3166971 Stoecker Jan 1965 A
3358676 Frei et al. Dec 1967 A
3525912 Wallin Aug 1970 A
3526219 Balamuth Sep 1970 A
3580841 Cadotte et al. May 1971 A
3614484 Shoh Oct 1971 A
3636943 Balamuth Jan 1972 A
3703651 Blowers Nov 1972 A
3710399 Hurst Jan 1973 A
3776238 Peyman et al. Dec 1973 A
3777760 Essner Dec 1973 A
3805787 Banko Apr 1974 A
3862630 Balamuth Jan 1975 A
3900823 Sokal et al. Aug 1975 A
3906217 Lackore Sep 1975 A
3918442 Nikolaev et al. Nov 1975 A
3946738 Newton et al. Mar 1976 A
3955859 Stella et al. May 1976 A
3956826 Perdreaux, Jr. May 1976 A
3988535 Hickman et al. Oct 1976 A
4005714 Hiltebrandt Feb 1977 A
4034762 Cosens et al. Jul 1977 A
4047136 Satto Sep 1977 A
4058126 Leveen Nov 1977 A
4063561 McKenna Dec 1977 A
4099192 Aizawa et al. Jul 1978 A
4156187 Murry et al. May 1979 A
4188927 Harris Feb 1980 A
4200106 Douvas et al. Apr 1980 A
4203430 Takahashi May 1980 A
4220154 Semm Sep 1980 A
4237441 van Konynenburg et al. Dec 1980 A
4278077 Mizumoto Jul 1981 A
4281785 Brooks Aug 1981 A
4304987 van Konynenburg Dec 1981 A
4314559 Allen Feb 1982 A
4384584 Chen May 1983 A
4445063 Smith Apr 1984 A
4463759 Garito et al. Aug 1984 A
4491132 Aikins Jan 1985 A
4492231 Auth Jan 1985 A
4535773 Yoon Aug 1985 A
4545926 Fouts, Jr. et al. Oct 1985 A
4550870 Krumme et al. Nov 1985 A
4582236 Hirose Apr 1986 A
4585282 Bosley Apr 1986 A
4597390 Mulhollan et al. Jul 1986 A
4617927 Manes Oct 1986 A
4633874 Chow et al. Jan 1987 A
4634420 Spinosa et al. Jan 1987 A
4640279 Beard Feb 1987 A
4655746 Daniels et al. Apr 1987 A
4671287 Fiddian-Green Jun 1987 A
4708127 Abdelghani Nov 1987 A
4735603 Goodson et al. Apr 1988 A
4761871 O'Connor et al. Aug 1988 A
4777951 Cribier et al. Oct 1988 A
4797803 Carroll Jan 1989 A
4798588 Aillon Jan 1989 A
4802461 Cho Feb 1989 A
4803506 Diehl et al. Feb 1989 A
4830462 Karny et al. May 1989 A
4832683 Idemoto et al. May 1989 A
4838853 Parisi Jun 1989 A
4849133 Yoshida et al. Jul 1989 A
4850354 McGurk-Burleson et al. Jul 1989 A
4860745 Farin et al. Aug 1989 A
4865159 Jamison Sep 1989 A
4878493 Pasternak et al. Nov 1989 A
4880015 Nierman Nov 1989 A
4896009 Pawlowski Jan 1990 A
4910389 Sherman et al. Mar 1990 A
4910633 Quinn Mar 1990 A
4911148 Sosnowski et al. Mar 1990 A
4919129 Weber, Jr. et al. Apr 1990 A
4920978 Colvin May 1990 A
4922902 Wuchinich et al. May 1990 A
4936842 D'Amelio et al. Jun 1990 A
4961738 Mackin Oct 1990 A
4967670 Morishita et al. Nov 1990 A
4981756 Rhandhawa Jan 1991 A
5007919 Silva et al. Apr 1991 A
5019075 Spears et al. May 1991 A
5020514 Heckele Jun 1991 A
5026387 Thomas Jun 1991 A
5061269 Muller Oct 1991 A
5093754 Kawashima Mar 1992 A
5099216 Pelrine Mar 1992 A
5099840 Goble et al. Mar 1992 A
5104025 Main et al. Apr 1992 A
5106538 Barma et al. Apr 1992 A
5108383 White Apr 1992 A
5112300 Ureche May 1992 A
5123903 Quaid et al. Jun 1992 A
5150102 Takashima Sep 1992 A
5150272 Danley et al. Sep 1992 A
5156633 Smith Oct 1992 A
5160334 Billings et al. Nov 1992 A
5162044 Gahn et al. Nov 1992 A
5167725 Clark et al. Dec 1992 A
D332660 Rawson et al. Jan 1993 S
5176695 Dulebohn Jan 1993 A
5184605 Grzeszykowski Feb 1993 A
5188102 Idemoto et al. Feb 1993 A
5190541 Abele et al. Mar 1993 A
5196007 Ellman et al. Mar 1993 A
5205459 Brinkerhoff et al. Apr 1993 A
5205817 Idemoto et al. Apr 1993 A
5209719 Baruch et al. May 1993 A
5213569 Davis May 1993 A
5217460 Knoepfler Jun 1993 A
5221282 Wuchinich Jun 1993 A
5226910 Kajiyama et al. Jul 1993 A
5234428 Kaufman Aug 1993 A
5241236 Sasaki et al. Aug 1993 A
5253647 Takahashi et al. Oct 1993 A
5254130 Poncet et al. Oct 1993 A
5257988 L'Esperance, Jr. Nov 1993 A
5258004 Bales et al. Nov 1993 A
5258006 Rydell et al. Nov 1993 A
5261922 Hood Nov 1993 A
5263957 Davison Nov 1993 A
5267091 Chen Nov 1993 A
5282800 Foshee et al. Feb 1994 A
5285945 Brinkerhoff et al. Feb 1994 A
5290286 Parins Mar 1994 A
5293863 Zhu et al. Mar 1994 A
5304115 Pflueger et al. Apr 1994 A
D347474 Olson May 1994 S
5309927 Welch May 1994 A
5312023 Green et al. May 1994 A
5313306 Kuban et al. May 1994 A
5318563 Malis et al. Jun 1994 A
5318564 Eggers Jun 1994 A
5318565 Kuriloff et al. Jun 1994 A
5318570 Hood et al. Jun 1994 A
5318589 Lichtman Jun 1994 A
5322055 Davison et al. Jun 1994 A
5324260 O'Neill et al. Jun 1994 A
5324299 Davison et al. Jun 1994 A
5326013 Green et al. Jul 1994 A
5330471 Eggers Jul 1994 A
5330502 Hassler et al. Jul 1994 A
5333624 Tovey Aug 1994 A
5339723 Huitema Aug 1994 A
5342359 Rydell Aug 1994 A
5344420 Hilal et al. Sep 1994 A
5346502 Estabrook et al. Sep 1994 A
5352219 Reddy Oct 1994 A
5359992 Hori et al. Nov 1994 A
5361583 Huitema Nov 1994 A
5366466 Christian et al. Nov 1994 A
5370640 Kolff Dec 1994 A
D354564 Medema Jan 1995 S
5381067 Greenstein et al. Jan 1995 A
5383874 Jackson et al. Jan 1995 A
5387207 Dyer et al. Feb 1995 A
5389098 Tsuruta et al. Feb 1995 A
5395033 Byrne et al. Mar 1995 A
5395312 Desai Mar 1995 A
5395331 O'Neill et al. Mar 1995 A
5395363 Billings et al. Mar 1995 A
5395364 Anderhub et al. Mar 1995 A
5396266 Brimhall Mar 1995 A
5396900 Slater et al. Mar 1995 A
5403312 Yates et al. Apr 1995 A
5409483 Campbell et al. Apr 1995 A
D358887 Feinberg May 1995 S
5411481 Allen et al. May 1995 A
5413575 Haenggi May 1995 A
5417709 Slater May 1995 A
5419761 Narayanan et al. May 1995 A
5421829 Olichney et al. Jun 1995 A
5428504 Bhatla Jun 1995 A
5429131 Scheinman et al. Jul 1995 A
5431640 Gabriel Jul 1995 A
5443463 Stern et al. Aug 1995 A
5445615 Yoon Aug 1995 A
5445638 Rydell et al. Aug 1995 A
5449370 Vaitekunas Sep 1995 A
5451227 Michaelson Sep 1995 A
5456684 Schmidt et al. Oct 1995 A
5458598 Feinberg et al. Oct 1995 A
5462604 Shibano et al. Oct 1995 A
5465895 Knodel et al. Nov 1995 A
5472443 Cordis et al. Dec 1995 A
5476479 Green et al. Dec 1995 A
5477788 Morishita Dec 1995 A
5478003 Green et al. Dec 1995 A
5480409 Riza Jan 1996 A
5483501 Park et al. Jan 1996 A
5484436 Eggers et al. Jan 1996 A
5486162 Brumbach Jan 1996 A
5486189 Mudry et al. Jan 1996 A
5489256 Adair Feb 1996 A
5496317 Goble et al. Mar 1996 A
5500216 Julian et al. Mar 1996 A
5501654 Failla et al. Mar 1996 A
5504650 Katsui et al. Apr 1996 A
5505693 Mackool Apr 1996 A
5509922 Aranyi et al. Apr 1996 A
5511556 DeSantis Apr 1996 A
5520704 Castro et al. May 1996 A
5522839 Pilling Jun 1996 A
5531744 Nardella et al. Jul 1996 A
5540648 Yoon Jul 1996 A
5540681 Strul et al. Jul 1996 A
5542916 Hirsch et al. Aug 1996 A
5542938 Avellanet et al. Aug 1996 A
5558671 Yates Sep 1996 A
5562609 Brumbach Oct 1996 A
5562610 Brumbach Oct 1996 A
5562657 Griffin Oct 1996 A
5563179 Stone et al. Oct 1996 A
5569164 Lurz Oct 1996 A
5571121 Heifetz Nov 1996 A
5573534 Stone Nov 1996 A
5584830 Ladd Dec 1996 A
5599350 Schulze et al. Feb 1997 A
5601601 Tal et al. Feb 1997 A
5604531 Iddan et al. Feb 1997 A
5607436 Pratt et al. Mar 1997 A
5607450 Zvenyatsky et al. Mar 1997 A
5611813 Lichtman Mar 1997 A
5618307 Donlon et al. Apr 1997 A
5618492 Auten et al. Apr 1997 A
5624452 Yates Apr 1997 A
5626578 Tihon May 1997 A
5628760 Knoepfler May 1997 A
5630420 Vaitekunas May 1997 A
5632432 Schulze et al. May 1997 A
D381077 Hunt Jul 1997 S
5643175 Adair Jul 1997 A
5645065 Shapiro et al. Jul 1997 A
5647871 Levine et al. Jul 1997 A
5651780 Jackson et al. Jul 1997 A
5653677 Okada et al. Aug 1997 A
5653713 Michelson Aug 1997 A
5657697 Murai Aug 1997 A
5658281 Heard Aug 1997 A
5662667 Knodel Sep 1997 A
5665085 Nardella Sep 1997 A
5665100 Yoon Sep 1997 A
5669922 Hood Sep 1997 A
5674219 Monson et al. Oct 1997 A
5674220 Fox et al. Oct 1997 A
5674235 Parisi Oct 1997 A
5681260 Ueda et al. Oct 1997 A
5688270 Yates et al. Nov 1997 A
5690269 Bolanos et al. Nov 1997 A
5693051 Schulze et al. Dec 1997 A
5694936 Fujimoto et al. Dec 1997 A
5700243 Narciso, Jr. Dec 1997 A
5700261 Brinkerhoff Dec 1997 A
5704900 Dobrovolny et al. Jan 1998 A
5709680 Yates et al. Jan 1998 A
5711472 Bryan Jan 1998 A
5713896 Nardella Feb 1998 A
5716366 Yates Feb 1998 A
5720742 Zacharias Feb 1998 A
5720744 Eggleston et al. Feb 1998 A
5722326 Post Mar 1998 A
5722426 Kolff Mar 1998 A
5732636 Wang et al. Mar 1998 A
5733074 Stock et al. Mar 1998 A
5735848 Yates et al. Apr 1998 A
5738652 Boyd et al. Apr 1998 A
5741226 Strukel et al. Apr 1998 A
5741305 Vincent Apr 1998 A
5743906 Parins et al. Apr 1998 A
5752973 Kieturakis May 1998 A
5755717 Yates et al. May 1998 A
5762255 Chrisman et al. Jun 1998 A
5776130 Buysse et al. Jul 1998 A
5779701 McBrayer et al. Jul 1998 A
5782834 Lucey et al. Jul 1998 A
5792135 Madhani et al. Aug 1998 A
5792138 Shipp Aug 1998 A
5796188 Bays Aug 1998 A
5797941 Schulze et al. Aug 1998 A
5800432 Swanson Sep 1998 A
5800449 Wales Sep 1998 A
5805140 Rosenberg et al. Sep 1998 A
5807393 Williamson, IV et al. Sep 1998 A
5810718 Akiba et al. Sep 1998 A
5810811 Yates et al. Sep 1998 A
5810859 DiMatteo et al. Sep 1998 A
5817033 DeSantis et al. Oct 1998 A
5817084 Jensen Oct 1998 A
5817093 Williamson, IV et al. Oct 1998 A
5827323 Klieman et al. Oct 1998 A
5828160 Sugishita Oct 1998 A
5836867 Speier et al. Nov 1998 A
5836909 Cosmescu Nov 1998 A
5836943 Miller, III Nov 1998 A
5836990 Li Nov 1998 A
5843109 Mehta et al. Dec 1998 A
5853412 Mayenberger Dec 1998 A
5876401 Schulze et al. Mar 1999 A
5878193 Wang et al. Mar 1999 A
5879364 Bromfield et al. Mar 1999 A
5880668 Hall Mar 1999 A
5883454 Hones et al. Mar 1999 A
5887018 Bayazitoglu et al. Mar 1999 A
5891142 Eggers et al. Apr 1999 A
5893835 Witt et al. Apr 1999 A
5897569 Kellogg et al. Apr 1999 A
5902239 Buurman May 1999 A
5904147 Conlan et al. May 1999 A
5906579 Vander Salm et al. May 1999 A
5906625 Bito et al. May 1999 A
5910129 Koblish et al. Jun 1999 A
5921956 Grinberg et al. Jul 1999 A
5929846 Rosenberg et al. Jul 1999 A
5935143 Hood Aug 1999 A
5935144 Estabrook Aug 1999 A
5938633 Beaupre Aug 1999 A
5944298 Koike Aug 1999 A
5944718 Austin et al. Aug 1999 A
5944737 Tsonton et al. Aug 1999 A
5954736 Bishop et al. Sep 1999 A
5954746 Holthaus et al. Sep 1999 A
5957849 Munro Sep 1999 A
5957882 Nita et al. Sep 1999 A
5957943 Vaitekunas Sep 1999 A
5968007 Simon et al. Oct 1999 A
5968060 Kellogg Oct 1999 A
D416089 Barton et al. Nov 1999 S
5984938 Yoon Nov 1999 A
5989182 Hori et al. Nov 1999 A
5989274 Davison et al. Nov 1999 A
5989275 Estabrook et al. Nov 1999 A
5993972 Reich et al. Nov 1999 A
6003517 Sheffield et al. Dec 1999 A
6007484 Thompson Dec 1999 A
6013052 Durman et al. Jan 2000 A
6014580 Blume et al. Jan 2000 A
6024741 Williamson, IV et al. Feb 2000 A
6024744 Kese et al. Feb 2000 A
6033375 Brumbach Mar 2000 A
6033399 Gines Mar 2000 A
6039734 Goble Mar 2000 A
6050996 Schmaltz et al. Apr 2000 A
6053172 Hovda et al. Apr 2000 A
6063098 Houser et al. May 2000 A
6066132 Chen et al. May 2000 A
6068629 Haissaguerre et al. May 2000 A
6068647 Witt et al. May 2000 A
6074389 Levine et al. Jun 2000 A
6077285 Boukhny Jun 2000 A
6080152 Nardella et al. Jun 2000 A
6083151 Renner et al. Jul 2000 A
6083191 Rose Jul 2000 A
6086584 Miller Jul 2000 A
6090120 Wright et al. Jul 2000 A
6091995 Ingle et al. Jul 2000 A
6099483 Palmer et al. Aug 2000 A
6099550 Yoon Aug 2000 A
6109500 Alli et al. Aug 2000 A
6113594 Savage Sep 2000 A
6113598 Baker Sep 2000 A
6123466 Persson et al. Sep 2000 A
H1904 Yates et al. Oct 2000 H
6127757 Swinbanks Oct 2000 A
6132368 Cooper Oct 2000 A
6139320 Hahn Oct 2000 A
6144402 Norsworthy et al. Nov 2000 A
6152902 Christian et al. Nov 2000 A
6152923 Ryan Nov 2000 A
6154198 Rosenberg Nov 2000 A
6159160 Hsei et al. Dec 2000 A
6159175 Strukel et al. Dec 2000 A
6162208 Hipps Dec 2000 A
6173199 Gabriel Jan 2001 B1
6173715 Sinanan et al. Jan 2001 B1
6174309 Wrublewski et al. Jan 2001 B1
6176857 Ashley Jan 2001 B1
6190386 Rydell Feb 2001 B1
6206844 Reichel et al. Mar 2001 B1
6206876 Levine et al. Mar 2001 B1
6206877 Kese et al. Mar 2001 B1
6210403 Klicek Apr 2001 B1
6214023 Whipple et al. Apr 2001 B1
6219572 Young Apr 2001 B1
6221007 Green Apr 2001 B1
6228080 Gines May 2001 B1
6231565 Tovey et al. May 2001 B1
6233476 Strommer et al. May 2001 B1
6238366 Savage et al. May 2001 B1
6241724 Fleischman et al. Jun 2001 B1
6248074 Ohno et al. Jun 2001 B1
D444365 Bass et al. Jul 2001 S
6254623 Haibel, Jr. et al. Jul 2001 B1
6258034 Hanafy Jul 2001 B1
6258086 Ashley et al. Jul 2001 B1
6259230 Chou Jul 2001 B1
6267761 Ryan Jul 2001 B1
6270831 Kumar et al. Aug 2001 B2
6273852 Lehe et al. Aug 2001 B1
6273887 Yamauchi et al. Aug 2001 B1
6274963 Estabrook et al. Aug 2001 B1
6277115 Saadat Aug 2001 B1
6277117 Tetzlaff et al. Aug 2001 B1
6278218 Madan et al. Aug 2001 B1
6283981 Beaupre Sep 2001 B1
6292700 Morrison et al. Sep 2001 B1
6309400 Beaupre Oct 2001 B2
6315789 Cragg Nov 2001 B1
6319221 Savage et al. Nov 2001 B1
6325799 Goble Dec 2001 B1
6325811 Messerly Dec 2001 B1
6328751 Beaupre Dec 2001 B1
6340878 Oglesbee Jan 2002 B1
6352532 Kramer et al. Mar 2002 B1
6364888 Niemeyer et al. Apr 2002 B1
6371952 Madhani et al. Apr 2002 B1
6379320 Lafon et al. Apr 2002 B1
D457958 Dycus et al. May 2002 S
6383194 Pothula May 2002 B1
6387094 Eitenmuller May 2002 B1
6387109 Davison et al. May 2002 B1
6388657 Natoli May 2002 B1
6391026 Hung et al. May 2002 B1
6391042 Cimino May 2002 B1
6398779 Buysse et al. Jun 2002 B1
6409722 Hoey et al. Jun 2002 B1
H2037 Yates et al. Jul 2002 H
6416469 Phung et al. Jul 2002 B1
6416486 Wampler Jul 2002 B1
6419675 Gallo, Sr. Jul 2002 B1
6423073 Bowman Jul 2002 B2
6423082 Houser et al. Jul 2002 B1
6430446 Knowlton Aug 2002 B1
6432118 Messerly Aug 2002 B1
6436114 Novak et al. Aug 2002 B1
6436115 Beaupre Aug 2002 B1
6443968 Holthaus et al. Sep 2002 B1
6443969 Novak et al. Sep 2002 B1
6454781 Witt et al. Sep 2002 B1
6454782 Schwemberger Sep 2002 B1
6458128 Schulze Oct 2002 B1
6458130 Frazier et al. Oct 2002 B1
6458142 Faller et al. Oct 2002 B1
6461363 Gadberry et al. Oct 2002 B1
6464689 Qin et al. Oct 2002 B1
6464702 Schulze et al. Oct 2002 B2
6464703 Bartel Oct 2002 B2
6471172 Lemke et al. Oct 2002 B1
6475211 Chess et al. Nov 2002 B2
6475216 Mulier et al. Nov 2002 B2
6480796 Wiener Nov 2002 B2
6485490 Wampler et al. Nov 2002 B2
6491690 Goble et al. Dec 2002 B1
6491691 Morley et al. Dec 2002 B1
6491701 Tierney et al. Dec 2002 B2
6491708 Madan et al. Dec 2002 B2
6497715 Satou Dec 2002 B2
6500112 Khouri Dec 2002 B1
6500176 Truckai et al. Dec 2002 B1
6500188 Harper et al. Dec 2002 B2
6503248 Levine Jan 2003 B1
6506208 Hunt et al. Jan 2003 B2
6511480 Tetzlaff et al. Jan 2003 B1
6514252 Nezhat et al. Feb 2003 B2
6517565 Whitman et al. Feb 2003 B1
6520960 Blocher et al. Feb 2003 B2
6522909 Garibaldi et al. Feb 2003 B1
6524316 Nicholson et al. Feb 2003 B1
6531846 Smith Mar 2003 B1
6533784 Truckai et al. Mar 2003 B2
6537196 Creighton, IV et al. Mar 2003 B1
6537272 Christopherson et al. Mar 2003 B2
6537291 Friedman et al. Mar 2003 B2
6540693 Burbank et al. Apr 2003 B2
6543456 Freeman Apr 2003 B1
6544260 Markel et al. Apr 2003 B1
6551309 LePivert Apr 2003 B1
6554829 Schulze et al. Apr 2003 B2
6558376 Bishop May 2003 B2
6561983 Cronin et al. May 2003 B2
6562037 Paton et al. May 2003 B2
6572632 Zisterer et al. Jun 2003 B2
6572639 Ingle et al. Jun 2003 B1
6575969 Rittman, III et al. Jun 2003 B1
6582451 Marucci et al. Jun 2003 B1
6584360 Francischelli et al. Jun 2003 B2
6585735 Frazier et al. Jul 2003 B1
6589200 Schwemberger et al. Jul 2003 B1
6589239 Khandkar et al. Jul 2003 B2
6594517 Nevo Jul 2003 B1
6599321 Hyde, Jr. Jul 2003 B2
6602252 Mollenauer Aug 2003 B2
6610060 Mulier et al. Aug 2003 B2
6616450 Mossle et al. Sep 2003 B2
6616600 Pauker Sep 2003 B2
6619529 Green et al. Sep 2003 B2
6620129 Stecker et al. Sep 2003 B2
6620161 Schulze et al. Sep 2003 B2
6622731 Daniel et al. Sep 2003 B2
6623482 Pendekanti et al. Sep 2003 B2
6623501 Heller et al. Sep 2003 B2
6626926 Friedman et al. Sep 2003 B2
6633234 Wiener et al. Oct 2003 B2
6635057 Harano et al. Oct 2003 B2
6644532 Green et al. Nov 2003 B2
6648817 Schara et al. Nov 2003 B2
6651669 Burnside Nov 2003 B1
6656177 Truckai et al. Dec 2003 B2
6656198 Tsonton et al. Dec 2003 B2
6662127 Wiener et al. Dec 2003 B2
6663941 Brown et al. Dec 2003 B2
6673248 Chowdhury Jan 2004 B2
6676660 Wampler et al. Jan 2004 B2
6678621 Wiener et al. Jan 2004 B2
6679882 Kornerup Jan 2004 B1
6679899 Wiener et al. Jan 2004 B2
6682501 Nelson et al. Jan 2004 B1
6682544 Mastri et al. Jan 2004 B2
6695840 Schulze Feb 2004 B2
6716215 David et al. Apr 2004 B1
6719684 Kim et al. Apr 2004 B2
6719765 Bonutti Apr 2004 B2
6722552 Fenton, Jr. Apr 2004 B2
6726686 Buysse et al. Apr 2004 B2
6731047 Kauf et al. May 2004 B2
6733498 Paton et al. May 2004 B2
6733506 McDevitt et al. May 2004 B1
6736813 Yamauchi et al. May 2004 B2
6743229 Buysse et al. Jun 2004 B2
6746443 Morley et al. Jun 2004 B1
6752815 Beaupre Jun 2004 B2
6762535 Take et al. Jul 2004 B2
6766202 Underwood et al. Jul 2004 B2
6767349 Ouchi Jul 2004 B2
6770072 Truckai et al. Aug 2004 B1
6773409 Truckai et al. Aug 2004 B2
6773434 Ciarrocca Aug 2004 B2
6773435 Schulze et al. Aug 2004 B2
6773444 Messerly Aug 2004 B2
6775575 Bommannan et al. Aug 2004 B2
6776165 Jin Aug 2004 B2
6783524 Anderson et al. Aug 2004 B2
6786382 Hoffman Sep 2004 B1
6786383 Stegelmann Sep 2004 B2
6789939 Schrodinger et al. Sep 2004 B2
6790216 Ishikawa Sep 2004 B1
6796981 Wham et al. Sep 2004 B2
D496997 Dycus et al. Oct 2004 S
6800085 Selmon et al. Oct 2004 B2
6802843 Truckai et al. Oct 2004 B2
6806317 Morishita et al. Oct 2004 B2
6808491 Kortenbach et al. Oct 2004 B2
6811842 Ehrnsperger et al. Nov 2004 B1
6814731 Swanson Nov 2004 B2
6817974 Cooper et al. Nov 2004 B2
6821273 Mollenauer Nov 2004 B2
6828712 Battaglin et al. Dec 2004 B2
6832998 Goble Dec 2004 B2
6835199 McGuckin, Jr. et al. Dec 2004 B2
6840938 Morley et al. Jan 2005 B1
6860880 Treat et al. Mar 2005 B2
6869439 White et al. Mar 2005 B2
6875220 Du et al. Apr 2005 B2
6877647 Green et al. Apr 2005 B2
6893435 Goble May 2005 B2
6905497 Truckai et al. Jun 2005 B2
6908463 Treat et al. Jun 2005 B2
6908472 Wiener et al. Jun 2005 B2
6913579 Truckai et al. Jul 2005 B2
6926716 Baker et al. Aug 2005 B2
6929622 Chian Aug 2005 B2
6929632 Nita et al. Aug 2005 B2
6929644 Truckai et al. Aug 2005 B2
6936003 Iddan Aug 2005 B2
D509589 Wells Sep 2005 S
6939347 Thompson Sep 2005 B2
6945981 Donofrio et al. Sep 2005 B2
6953461 McClurken et al. Oct 2005 B2
D511145 Donofrio et al. Nov 2005 S
6959852 Shelton, IV et al. Nov 2005 B2
6974462 Sater Dec 2005 B2
6976844 Hickok et al. Dec 2005 B2
6976969 Messerly Dec 2005 B2
6977495 Donofrio Dec 2005 B2
6984220 Wuchinich Jan 2006 B2
6986738 Glukhovsky et al. Jan 2006 B2
6986780 Rudnick et al. Jan 2006 B2
6994709 Iida Feb 2006 B2
7000818 Shelton, IV et al. Feb 2006 B2
7004951 Gibbens, III Feb 2006 B2
7011657 Truckai et al. Mar 2006 B2
7029435 Nakao Apr 2006 B2
7039453 Mullick et al. May 2006 B2
7041083 Chu et al. May 2006 B2
7041088 Nawrocki et al. May 2006 B2
7041102 Truckai et al. May 2006 B2
7044352 Shelton, IV et al. May 2006 B2
7044937 Kirwan et al. May 2006 B1
7052496 Yamauchi May 2006 B2
7055731 Shelton, IV et al. Jun 2006 B2
7056284 Martone et al. Jun 2006 B2
7063699 Hess et al. Jun 2006 B2
7066879 Fowler et al. Jun 2006 B2
7066936 Ryan Jun 2006 B2
7070597 Truckai et al. Jul 2006 B2
7074219 Levine et al. Jul 2006 B2
7077039 Gass et al. Jul 2006 B2
7077853 Kramer et al. Jul 2006 B2
7083579 Yokoi et al. Aug 2006 B2
7083617 Kortenbach et al. Aug 2006 B2
7083618 Couture et al. Aug 2006 B2
7083619 Truckai et al. Aug 2006 B2
7087054 Truckai et al. Aug 2006 B2
7090673 Dycus et al. Aug 2006 B2
7094235 Francischelli Aug 2006 B2
7096560 Oddsen, Jr. Aug 2006 B2
7101371 Dycus et al. Sep 2006 B2
7101372 Dycus et al. Sep 2006 B2
7101373 Dycus et al. Sep 2006 B2
7108695 Witt et al. Sep 2006 B2
7112201 Truckai et al. Sep 2006 B2
7118564 Ritchie et al. Oct 2006 B2
7118570 Tetzlaff et al. Oct 2006 B2
7120498 Imran et al. Oct 2006 B2
7124932 Isaacson et al. Oct 2006 B2
7125409 Truckai et al. Oct 2006 B2
7131970 Moses et al. Nov 2006 B2
7131971 Dycus et al. Nov 2006 B2
7135018 Ryan et al. Nov 2006 B2
7135030 Schwemberger et al. Nov 2006 B2
7137980 Buysse et al. Nov 2006 B2
7143925 Shelton, IV et al. Dec 2006 B2
7147138 Shelton, IV Dec 2006 B2
7147638 Chapman et al. Dec 2006 B2
7153315 Miller Dec 2006 B2
7156189 Bar-Cohen et al. Jan 2007 B1
7156846 Dycus et al. Jan 2007 B2
7156853 Muratsu Jan 2007 B2
7157058 Marhasin et al. Jan 2007 B2
7159750 Racenet et al. Jan 2007 B2
7160296 Pearson et al. Jan 2007 B2
7160298 Lawes et al. Jan 2007 B2
7163548 Stulen et al. Jan 2007 B2
7169104 Ueda et al. Jan 2007 B2
7169146 Truckai et al. Jan 2007 B2
7169156 Hart Jan 2007 B2
7170823 Fabricius et al. Jan 2007 B2
7179271 Friedman et al. Feb 2007 B2
7186253 Truckai et al. Mar 2007 B2
7189233 Truckai et al. Mar 2007 B2
7195631 Dumbauld Mar 2007 B2
D541418 Schechter et al. Apr 2007 S
7199545 Oleynikov et al. Apr 2007 B2
7204820 Akahoshi Apr 2007 B2
7207471 Heinrich et al. Apr 2007 B2
7208005 Frecker et al. Apr 2007 B2
7211094 Gannoe et al. May 2007 B2
7220951 Truckai et al. May 2007 B2
7223229 Inman et al. May 2007 B2
7225964 Mastri et al. Jun 2007 B2
7226448 Bertolero et al. Jun 2007 B2
7229455 Sakurai et al. Jun 2007 B2
7232440 Dumbauld et al. Jun 2007 B2
7235064 Hopper et al. Jun 2007 B2
7235073 Levine et al. Jun 2007 B2
7241290 Doyle et al. Jul 2007 B2
7241294 Reschke Jul 2007 B2
7241296 Buysse et al. Jul 2007 B2
7246734 Shelton, IV Jul 2007 B2
7251531 Mosher et al. Jul 2007 B2
7252667 Moses et al. Aug 2007 B2
7255697 Dycus et al. Aug 2007 B2
7267677 Johnson et al. Sep 2007 B2
7267685 Butaric et al. Sep 2007 B2
7270664 Johnson et al. Sep 2007 B2
7273483 Wiener et al. Sep 2007 B2
7276065 Morley et al. Oct 2007 B2
7282773 Li et al. Oct 2007 B2
7287682 Ezzat et al. Oct 2007 B1
7297145 Woloszko et al. Nov 2007 B2
7297149 Vitali et al. Nov 2007 B2
7300450 Vleugels et al. Nov 2007 B2
7303557 Wham et al. Dec 2007 B2
7307313 Ohyanagi et al. Dec 2007 B2
7309849 Truckai et al. Dec 2007 B2
7311709 Truckai et al. Dec 2007 B2
7317955 McGreevy Jan 2008 B2
7326236 Andreas et al. Feb 2008 B2
7329257 Kanehira et al. Feb 2008 B2
7331410 Yong et al. Feb 2008 B2
7353068 Tanaka et al. Apr 2008 B2
7354440 Truckal et al. Apr 2008 B2
7357287 Shelton, IV et al. Apr 2008 B2
7360542 Nelson et al. Apr 2008 B2
7364577 Wham et al. Apr 2008 B2
7367973 Manzo et al. May 2008 B2
7367976 Lawes et al. May 2008 B2
7371227 Zeiner May 2008 B2
RE40388 Gines Jun 2008 E
7380695 Doll et al. Jun 2008 B2
7381209 Truckai et al. Jun 2008 B2
7384420 Dycus et al. Jun 2008 B2
7390317 Taylor et al. Jun 2008 B2
7396356 Mollenauer Jul 2008 B2
7403224 Fuller et al. Jul 2008 B2
7404508 Smith et al. Jul 2008 B2
7407077 Ortiz et al. Aug 2008 B2
7408288 Hara Aug 2008 B2
7416101 Shelton, IV et al. Aug 2008 B2
D576725 Shumer et al. Sep 2008 S
7422139 Shelton, IV et al. Sep 2008 B2
7422586 Morris et al. Sep 2008 B2
7422592 Morley et al. Sep 2008 B2
7429259 Cadeddu et al. Sep 2008 B2
D578643 Shumer et al. Oct 2008 S
D578644 Shumer et al. Oct 2008 S
D578645 Shumer et al. Oct 2008 S
7431704 Babaev Oct 2008 B2
7435249 Buysse et al. Oct 2008 B2
7435582 Zimmermann et al. Oct 2008 B2
7439732 LaPlaca Oct 2008 B2
7441684 Shelton, IV et al. Oct 2008 B2
7442193 Shields et al. Oct 2008 B2
7442194 Dumbauld et al. Oct 2008 B2
7445621 Dumbauld et al. Nov 2008 B2
7448993 Yokoi et al. Nov 2008 B2
7449004 Yamada et al. Nov 2008 B2
7450998 Zilberman et al. Nov 2008 B2
7451904 Shelton, IV Nov 2008 B2
7464846 Shelton, IV et al. Dec 2008 B2
7472815 Shelton, IV et al. Jan 2009 B2
7473253 Dycus et al. Jan 2009 B2
7479148 Beaupre Jan 2009 B2
7479160 Branch et al. Jan 2009 B2
7487899 Shelton, IV et al. Feb 2009 B2
7488319 Yates Feb 2009 B2
7491201 Shields et al. Feb 2009 B2
7494468 Rabiner et al. Feb 2009 B2
7494501 Ahlberg et al. Feb 2009 B2
7498080 Tung et al. Mar 2009 B2
7503893 Kucklick Mar 2009 B2
7505812 Eggers et al. Mar 2009 B1
7506791 Omaits et al. Mar 2009 B2
7510107 Timm et al. Mar 2009 B2
7510556 Nguyen et al. Mar 2009 B2
7511733 Takizawa et al. Mar 2009 B2
7513025 Fischer Apr 2009 B2
7517349 Truckai et al. Apr 2009 B2
7520877 Lee, Jr. et al. Apr 2009 B2
7524320 Tierney et al. Apr 2009 B2
7534243 Chin et al. May 2009 B1
D594983 Price et al. Jun 2009 S
7540872 Schechter et al. Jun 2009 B2
7543730 Marczyk Jun 2009 B1
7544200 Houser Jun 2009 B2
7550216 Ofer et al. Jun 2009 B2
7553309 Buysse et al. Jun 2009 B2
7559452 Wales et al. Jul 2009 B2
7566318 Haefner Jul 2009 B2
7567012 Namikawa Jul 2009 B2
7582086 Privitera et al. Sep 2009 B2
7582087 Tetzlaff et al. Sep 2009 B2
7588176 Timm et al. Sep 2009 B2
7588177 Racenet Sep 2009 B2
7594925 Danek et al. Sep 2009 B2
7597693 Garrison Oct 2009 B2
7599743 Hassler, Jr. et al. Oct 2009 B2
7601119 Shahinian Oct 2009 B2
7604150 Boudreaux Oct 2009 B2
7611512 Ein-Gal Nov 2009 B2
7617961 Viola Nov 2009 B2
7621910 Sugi Nov 2009 B2
7621930 Houser Nov 2009 B2
7625370 Hart et al. Dec 2009 B2
7628791 Garrison et al. Dec 2009 B2
7628792 Guerra Dec 2009 B2
7632267 Dahla Dec 2009 B2
7632269 Truckai et al. Dec 2009 B2
7637410 Marczyk Dec 2009 B2
7640447 Qiu Dec 2009 B2
7641653 Dalla Betta et al. Jan 2010 B2
7641671 Crainich Jan 2010 B2
7644848 Swayze et al. Jan 2010 B2
7645277 McClurken et al. Jan 2010 B2
7648499 Orszulak et al. Jan 2010 B2
7658311 Boudreaux Feb 2010 B2
7662151 Crompton, Jr. et al. Feb 2010 B2
7665647 Shelton, IV et al. Feb 2010 B2
7666206 Taniguchi et al. Feb 2010 B2
7670334 Hueil et al. Mar 2010 B2
7678043 Gilad Mar 2010 B2
7678105 McGreevy et al. Mar 2010 B2
7686804 Johnson et al. Mar 2010 B2
7691095 Bednarek et al. Apr 2010 B2
7691098 Wallace et al. Apr 2010 B2
7691103 Fernandez et al. Apr 2010 B2
7703459 Saadat et al. Apr 2010 B2
7703653 Shah et al. Apr 2010 B2
7708735 Chapman et al. May 2010 B2
7708751 Hughes et al. May 2010 B2
7708758 Lee et al. May 2010 B2
7717312 Beetel May 2010 B2
7717914 Kimura May 2010 B2
7717915 Miyazawa May 2010 B2
7722527 Bouchier et al. May 2010 B2
7722607 Dumbauld et al. May 2010 B2
7725214 Diolaiti May 2010 B2
D618797 Price et al. Jun 2010 S
7726537 Olson et al. Jun 2010 B2
7744615 Couture Jun 2010 B2
7751115 Song Jul 2010 B2
7753904 Shelton, IV et al. Jul 2010 B2
7753908 Swanson Jul 2010 B2
7753909 Chapman et al. Jul 2010 B2
7762445 Heinrich et al. Jul 2010 B2
D621503 Otten et al. Aug 2010 S
7766210 Shelton, IV et al. Aug 2010 B2
7766910 Hixson et al. Aug 2010 B2
7770774 Mastri et al. Aug 2010 B2
7770775 Shelton, IV et al. Aug 2010 B2
7775972 Brock et al. Aug 2010 B2
7776036 Schechter et al. Aug 2010 B2
7776037 Odom Aug 2010 B2
7780651 Madhani et al. Aug 2010 B2
7780659 Okada et al. Aug 2010 B2
7780663 Yates et al. Aug 2010 B2
7784663 Shelton, IV Aug 2010 B2
7789283 Shah Sep 2010 B2
7789878 Dumbauld et al. Sep 2010 B2
7789883 Takashino et al. Sep 2010 B2
7793814 Racenet et al. Sep 2010 B2
7799027 Hafner Sep 2010 B2
7803156 Eder et al. Sep 2010 B2
7806891 Nowlin et al. Oct 2010 B2
7810692 Hall et al. Oct 2010 B2
7810693 Broehl et al. Oct 2010 B2
7815641 Dodde et al. Oct 2010 B2
7819298 Hall et al. Oct 2010 B2
7819299 Shelton, IV et al. Oct 2010 B2
7819872 Johnson et al. Oct 2010 B2
D627066 Romero Nov 2010 S
7824401 Manzo et al. Nov 2010 B2
7832408 Shelton, IV et al. Nov 2010 B2
7832612 Baxter, III et al. Nov 2010 B2
7837699 Yamada et al. Nov 2010 B2
7845537 Shelton, IV et al. Dec 2010 B2
7846159 Morrison et al. Dec 2010 B2
7846160 Payne et al. Dec 2010 B2
7850688 Hafner Dec 2010 B2
D631155 Peine et al. Jan 2011 S
7861906 Doll et al. Jan 2011 B2
7862560 Marion Jan 2011 B2
7867228 Nobis et al. Jan 2011 B2
7871392 Sartor Jan 2011 B2
7871423 Livneh Jan 2011 B2
D631965 Price et al. Feb 2011 S
7877852 Unger et al. Feb 2011 B2
7877853 Unger et al. Feb 2011 B2
7879035 Garrison et al. Feb 2011 B2
7879070 Ortiz et al. Feb 2011 B2
7892606 Thies et al. Feb 2011 B2
7896875 Heim et al. Mar 2011 B2
7896878 Johnson et al. Mar 2011 B2
7901400 Wham et al. Mar 2011 B2
7901423 Stulen et al. Mar 2011 B2
7905881 Masuda et al. Mar 2011 B2
7909220 Viola Mar 2011 B2
7919184 Mohapatra et al. Apr 2011 B2
7922061 Shelton, IV et al. Apr 2011 B2
7922651 Yamada et al. Apr 2011 B2
7922953 Guerra Apr 2011 B2
7931649 Couture et al. Apr 2011 B2
D637288 Houghton May 2011 S
D638540 Ijiri et al. May 2011 S
7935114 Takashino et al. May 2011 B2
7942303 Shah May 2011 B2
7942868 Cooper May 2011 B2
7951165 Golden et al. May 2011 B2
7955331 Truckai et al. Jun 2011 B2
7959050 Smith et al. Jun 2011 B2
7959626 Hong et al. Jun 2011 B2
7963963 Francischelli et al. Jun 2011 B2
7967602 Lindquist Jun 2011 B2
7976544 McClurken et al. Jul 2011 B2
7980443 Scheib et al. Jul 2011 B2
7981113 Truckai et al. Jul 2011 B2
7988567 Kim et al. Aug 2011 B2
7997278 Utley et al. Aug 2011 B2
8020743 Shelton, IV Sep 2011 B2
8033173 Ehlert et al. Oct 2011 B2
8038612 Paz Oct 2011 B2
8038693 Allen Oct 2011 B2
8048070 O'Brien et al. Nov 2011 B2
8052672 Laufer et al. Nov 2011 B2
8056720 Hawkes Nov 2011 B2
8056787 Boudreaux et al. Nov 2011 B2
8057498 Robertson Nov 2011 B2
8058771 Giordano et al. Nov 2011 B2
8061014 Smith et al. Nov 2011 B2
8062211 Duval et al. Nov 2011 B2
8066167 Measamer et al. Nov 2011 B2
8070036 Knodel Dec 2011 B1
8070748 Hixson et al. Dec 2011 B2
8075555 Truckai et al. Dec 2011 B2
8075558 Truckai et al. Dec 2011 B2
8092475 Cotter et al. Jan 2012 B2
8100894 Mucko et al. Jan 2012 B2
8105323 Buysse et al. Jan 2012 B2
8105324 Palanker et al. Jan 2012 B2
8114104 Young et al. Feb 2012 B2
8114119 Spivey et al. Feb 2012 B2
8128624 Couture et al. Mar 2012 B2
8128657 Shiono et al. Mar 2012 B2
8133218 Daw et al. Mar 2012 B2
8136712 Zingman Mar 2012 B2
8141762 Bedi et al. Mar 2012 B2
8142461 Houser et al. Mar 2012 B2
8147488 Masuda Apr 2012 B2
8147508 Madan et al. Apr 2012 B2
8152825 Madan et al. Apr 2012 B2
8157145 Shelton, IV et al. Apr 2012 B2
8161977 Shelton, IV et al. Apr 2012 B2
8162940 Johnson et al. Apr 2012 B2
8177794 Cabrera et al. May 2012 B2
8182502 Stulen et al. May 2012 B2
8186560 Hess et al. May 2012 B2
8187166 Kuth et al. May 2012 B2
8187267 Pappone et al. May 2012 B2
8192433 Johnson et al. Jun 2012 B2
8197472 Lau et al. Jun 2012 B2
8197479 Olson et al. Jun 2012 B2
8197494 Jaggi et al. Jun 2012 B2
8197502 Smith et al. Jun 2012 B2
8206212 Iddings et al. Jun 2012 B2
8221415 Francischelli Jul 2012 B2
8226675 Houser et al. Jul 2012 B2
8236019 Houser Aug 2012 B2
8236020 Smith et al. Aug 2012 B2
8241235 Kahler et al. Aug 2012 B2
8241283 Guerra et al. Aug 2012 B2
8241284 Dycus et al. Aug 2012 B2
8241312 Messerly Aug 2012 B2
8244368 Sherman Aug 2012 B2
8246615 Behnke Aug 2012 B2
8246618 Bucciaglia et al. Aug 2012 B2
8251994 McKenna et al. Aug 2012 B2
8252012 Stulen Aug 2012 B2
8257352 Lawes et al. Sep 2012 B2
8257377 Wiener et al. Sep 2012 B2
8262563 Bakos et al. Sep 2012 B2
8267300 Boudreaux Sep 2012 B2
8267854 Asada et al. Sep 2012 B2
8267935 Couture et al. Sep 2012 B2
8273085 Park et al. Sep 2012 B2
8277446 Heard Oct 2012 B2
8277447 Garrison et al. Oct 2012 B2
8277471 Wiener et al. Oct 2012 B2
8282581 Zhao et al. Oct 2012 B2
8282669 Gerber et al. Oct 2012 B2
8287528 Wham et al. Oct 2012 B2
8292886 Kerr et al. Oct 2012 B2
8292888 Whitman Oct 2012 B2
8298228 Buysse et al. Oct 2012 B2
8298232 Unger Oct 2012 B2
8303583 Hosier et al. Nov 2012 B2
8306629 Mioduski et al. Nov 2012 B2
8308040 Huang et al. Nov 2012 B2
8319400 Houser et al. Nov 2012 B2
8322455 Shelton, IV et al. Dec 2012 B2
8323302 Robertson et al. Dec 2012 B2
8323310 Kingsley Dec 2012 B2
8328061 Kasvikis Dec 2012 B2
8328761 Widenhouse et al. Dec 2012 B2
8328834 Isaacs et al. Dec 2012 B2
8333778 Smith et al. Dec 2012 B2
8333779 Smith et al. Dec 2012 B2
8334468 Palmer et al. Dec 2012 B2
8334635 Voegele et al. Dec 2012 B2
8338726 Palmer et al. Dec 2012 B2
8343146 Godara et al. Jan 2013 B2
8344596 Nield et al. Jan 2013 B2
8348880 Messerly et al. Jan 2013 B2
8348947 Takashino et al. Jan 2013 B2
8348967 Stulen Jan 2013 B2
8353297 Dacquay et al. Jan 2013 B2
8357158 McKenna et al. Jan 2013 B2
8361569 Saito et al. Jan 2013 B2
8372064 Douglass et al. Feb 2013 B2
8372099 Deville et al. Feb 2013 B2
8372101 Smith et al. Feb 2013 B2
8377053 Orszulak Feb 2013 B2
8377059 Deville et al. Feb 2013 B2
8377085 Smith et al. Feb 2013 B2
8382754 Odom et al. Feb 2013 B2
8382782 Robertson et al. Feb 2013 B2
8382792 Chojin Feb 2013 B2
8388646 Chojin Mar 2013 B2
8388647 Nau, Jr. et al. Mar 2013 B2
8394094 Edwards et al. Mar 2013 B2
8394115 Houser et al. Mar 2013 B2
8397971 Yates et al. Mar 2013 B2
8403926 Nobis et al. Mar 2013 B2
8403948 Deville et al. Mar 2013 B2
8403949 Palmer et al. Mar 2013 B2
8403950 Palmer et al. Mar 2013 B2
8409076 Pang et al. Apr 2013 B2
8414577 Boudreaux et al. Apr 2013 B2
8418349 Smith et al. Apr 2013 B2
8419757 Smith et al. Apr 2013 B2
8419758 Smith et al. Apr 2013 B2
8419759 Dietz Apr 2013 B2
8425410 Murray et al. Apr 2013 B2
8425545 Smith et al. Apr 2013 B2
8430811 Hess et al. Apr 2013 B2
8430876 Kappus et al. Apr 2013 B2
8430897 Novak et al. Apr 2013 B2
8430898 Wiener et al. Apr 2013 B2
8435257 Smith et al. May 2013 B2
8439939 Deville et al. May 2013 B2
8444662 Palmer et al. May 2013 B2
8444664 Balanev et al. May 2013 B2
8453906 Huang et al. Jun 2013 B2
8454599 Inagaki et al. Jun 2013 B2
8454639 Du et al. Jun 2013 B2
8460288 Tamai et al. Jun 2013 B2
8460292 Truckai et al. Jun 2013 B2
8461744 Wiener et al. Jun 2013 B2
8469956 McKenna et al. Jun 2013 B2
8469981 Robertson et al. Jun 2013 B2
8475361 Barlow et al. Jul 2013 B2
8475453 Marczyk et al. Jul 2013 B2
8480703 Nicholas et al. Jul 2013 B2
8484833 Cunningham et al. Jul 2013 B2
8485413 Scheib et al. Jul 2013 B2
8485970 Widenhouse et al. Jul 2013 B2
8486057 Behnke, II Jul 2013 B2
8486096 Robertson et al. Jul 2013 B2
8491625 Homer Jul 2013 B2
8496682 Guerra et al. Jul 2013 B2
8512336 Couture Aug 2013 B2
8512364 Kowalski et al. Aug 2013 B2
8512365 Wiener et al. Aug 2013 B2
8523889 Stulen et al. Sep 2013 B2
8529437 Taylor et al. Sep 2013 B2
8529565 Masuda et al. Sep 2013 B2
8531064 Robertson et al. Sep 2013 B2
8535311 Schall Sep 2013 B2
8535340 Allen Sep 2013 B2
8535341 Allen Sep 2013 B2
8540128 Shelton, IV et al. Sep 2013 B2
8542501 Kyono Sep 2013 B2
8553430 Melanson et al. Oct 2013 B2
8562516 Saadat et al. Oct 2013 B2
8562592 Conlon et al. Oct 2013 B2
8562598 Falkenstein et al. Oct 2013 B2
8562604 Nishimura Oct 2013 B2
8568390 Mueller Oct 2013 B2
8568412 Brandt et al. Oct 2013 B2
8569997 Lee Oct 2013 B2
8574187 Marion Nov 2013 B2
8574231 Boudreaux et al. Nov 2013 B2
8579176 Smith et al. Nov 2013 B2
8579928 Robertson et al. Nov 2013 B2
8579937 Gresham Nov 2013 B2
8591459 Clymer et al. Nov 2013 B2
8591506 Wham et al. Nov 2013 B2
D695407 Price et al. Dec 2013 S
8596513 Olson et al. Dec 2013 B2
8597182 Stein et al. Dec 2013 B2
8597297 Couture et al. Dec 2013 B2
8608044 Hueil et al. Dec 2013 B2
8613383 Beckman et al. Dec 2013 B2
8622274 Yates et al. Jan 2014 B2
8623011 Spivey Jan 2014 B2
8623016 Fischer Jan 2014 B2
8623027 Price et al. Jan 2014 B2
8623044 Timm et al. Jan 2014 B2
8628529 Aldridge et al. Jan 2014 B2
8632461 Glossop Jan 2014 B2
8632539 Twomey et al. Jan 2014 B2
8636648 Gazdzinski Jan 2014 B2
8636736 Yates et al. Jan 2014 B2
8636761 Cunningham et al. Jan 2014 B2
8638428 Brown Jan 2014 B2
8640788 Dachs, II et al. Feb 2014 B2
8641712 Couture Feb 2014 B2
8647350 Mohan et al. Feb 2014 B2
8650728 Wan et al. Feb 2014 B2
8652120 Giordano et al. Feb 2014 B2
8652155 Houser et al. Feb 2014 B2
8663220 Wiener et al. Mar 2014 B2
8663222 Anderson et al. Mar 2014 B2
8663223 Masuda et al. Mar 2014 B2
8668691 Heard Mar 2014 B2
RE44834 Dumbauld et al. Apr 2014 E
8684253 Giordano et al. Apr 2014 B2
8685020 Weizman et al. Apr 2014 B2
8685056 Evans et al. Apr 2014 B2
8696662 Eder et al. Apr 2014 B2
8696665 Hunt et al. Apr 2014 B2
8702609 Hadjicostis Apr 2014 B2
8702704 Shelton, IV et al. Apr 2014 B2
8708213 Shelton, IV et al. Apr 2014 B2
8709035 Johnson et al. Apr 2014 B2
8715270 Weitzner et al. May 2014 B2
8715277 Weizman May 2014 B2
8721640 Taylor et al. May 2014 B2
8734443 Hixson et al. May 2014 B2
8747238 Shelton, IV et al. Jun 2014 B2
8747351 Schultz Jun 2014 B2
8747404 Boudreaux et al. Jun 2014 B2
8752264 Ackley et al. Jun 2014 B2
8752749 Moore et al. Jun 2014 B2
8753338 Widenhouse et al. Jun 2014 B2
8758342 Bales et al. Jun 2014 B2
8764747 Cummings et al. Jul 2014 B2
8770459 Racenet et al. Jul 2014 B2
8784418 Romero Jul 2014 B2
8789740 Baxter, III et al. Jul 2014 B2
8790342 Stulen et al. Jul 2014 B2
8795274 Hanna Aug 2014 B2
8795276 Dietz et al. Aug 2014 B2
8795327 Dietz et al. Aug 2014 B2
8800838 Shelton, IV Aug 2014 B2
8801752 Fortier et al. Aug 2014 B2
8808319 Houser et al. Aug 2014 B2
8814856 Elmouelhi et al. Aug 2014 B2
8814865 Reschke Aug 2014 B2
8814870 Paraschiv et al. Aug 2014 B2
8827992 Koss et al. Sep 2014 B2
8827995 Schaller et al. Sep 2014 B2
8834466 Cummings et al. Sep 2014 B2
8834488 Farritor et al. Sep 2014 B2
8834518 Faller et al. Sep 2014 B2
8845630 Mehta et al. Sep 2014 B2
8851354 Swensgard et al. Oct 2014 B2
8852184 Kucklick Oct 2014 B2
8864757 Klimovitch et al. Oct 2014 B2
8864761 Johnson et al. Oct 2014 B2
8870867 Walberg et al. Oct 2014 B2
8876858 Braun Nov 2014 B2
8882766 Couture et al. Nov 2014 B2
8882791 Stulen Nov 2014 B2
8887373 Brandt et al. Nov 2014 B2
8888776 Dietz et al. Nov 2014 B2
8888783 Young Nov 2014 B2
8888809 Davison et al. Nov 2014 B2
8906016 Boudreaux et al. Dec 2014 B2
8906017 Rioux et al. Dec 2014 B2
8911438 Swoyer et al. Dec 2014 B2
8911460 Neurohr et al. Dec 2014 B2
8926607 Norvell et al. Jan 2015 B2
8926608 Bacher et al. Jan 2015 B2
8929888 Rao et al. Jan 2015 B2
8931682 Timm et al. Jan 2015 B2
8939287 Markovitch Jan 2015 B2
8939974 Boudreaux et al. Jan 2015 B2
8939975 Twomey et al. Jan 2015 B2
8944997 Fernandez et al. Feb 2015 B2
8945125 Schechter et al. Feb 2015 B2
8951248 Messerly et al. Feb 2015 B2
8951272 Robertson et al. Feb 2015 B2
8956349 Aldridge et al. Feb 2015 B2
8960520 McCuen Feb 2015 B2
8961515 Twomey et al. Feb 2015 B2
8961547 Dietz et al. Feb 2015 B2
8968276 Zemlok et al. Mar 2015 B2
8968308 Homer et al. Mar 2015 B2
8968312 Marczyk et al. Mar 2015 B2
8968332 Farritor et al. Mar 2015 B2
8978845 Kim Mar 2015 B2
8979838 Woloszko et al. Mar 2015 B2
8979843 Timm et al. Mar 2015 B2
8979844 White et al. Mar 2015 B2
8979890 Boudreaux Mar 2015 B2
8986302 Aldridge et al. Mar 2015 B2
8989855 Murphy et al. Mar 2015 B2
8992422 Spivey et al. Mar 2015 B2
8992526 Brodbeck et al. Mar 2015 B2
9005199 Beckman et al. Apr 2015 B2
9011437 Woodruff et al. Apr 2015 B2
9017326 DiNardo et al. Apr 2015 B2
9017372 Artale et al. Apr 2015 B2
9028494 Shelton, IV et al. May 2015 B2
9028519 Yates et al. May 2015 B2
9031667 Williams May 2015 B2
9033983 Takashino et al. May 2015 B2
9039695 Giordano et al. May 2015 B2
9039705 Takashino May 2015 B2
9039731 Joseph May 2015 B2
9044243 Johnson et al. Jun 2015 B2
9044245 Condie et al. Jun 2015 B2
9044256 Cadeddu et al. Jun 2015 B2
9044261 Houser Jun 2015 B2
9050093 Aldridge et al. Jun 2015 B2
9050098 Deville et al. Jun 2015 B2
9055961 Manzo et al. Jun 2015 B2
9060770 Shelton, IV et al. Jun 2015 B2
9060775 Wiener et al. Jun 2015 B2
9060776 Yates et al. Jun 2015 B2
9066723 Beller et al. Jun 2015 B2
9072535 Shelton, IV et al. Jul 2015 B2
9072536 Shelton, IV et al. Jul 2015 B2
9078664 Palmer et al. Jul 2015 B2
9089327 Worrell et al. Jul 2015 B2
9089360 Messerly et al. Jul 2015 B2
9094006 Gravati et al. Jul 2015 B2
9095362 Dachs, II et al. Aug 2015 B2
9095367 Olson et al. Aug 2015 B2
9101385 Shelton, IV et al. Aug 2015 B2
9107672 Tetzlaff et al. Aug 2015 B2
9113889 Reschke Aug 2015 B2
9113900 Buysse et al. Aug 2015 B2
9119630 Townsend et al. Sep 2015 B2
9119657 Shelton, IV et al. Sep 2015 B2
9119957 Gantz et al. Sep 2015 B2
9125662 Shelton, IV Sep 2015 B2
9125667 Stone et al. Sep 2015 B2
9138289 Conley et al. Sep 2015 B2
9149324 Huang et al. Oct 2015 B2
9149325 Worrell et al. Oct 2015 B2
9155585 Bales, Jr. et al. Oct 2015 B2
9161803 Yates et al. Oct 2015 B2
9168054 Turner et al. Oct 2015 B2
9168085 Juzkiw et al. Oct 2015 B2
9168089 Buysse et al. Oct 2015 B2
9179912 Yates et al. Nov 2015 B2
9186204 Nishimura et al. Nov 2015 B2
9187758 Cai et al. Nov 2015 B2
9192380 (Tarinelli) Racenet et al. Nov 2015 B2
9192421 Garrison Nov 2015 B2
9192431 Woodruff et al. Nov 2015 B2
9198714 Worrell et al. Dec 2015 B2
9198715 Livneh Dec 2015 B2
9198716 Masuda et al. Dec 2015 B2
9204879 Shelton, IV Dec 2015 B2
9204919 Brandt et al. Dec 2015 B2
9216050 Condie et al. Dec 2015 B2
9220559 Worrell et al. Dec 2015 B2
9226751 Shelton, IV et al. Jan 2016 B2
9226767 Stulen et al. Jan 2016 B2
9237891 Shelton, IV Jan 2016 B2
9254165 Aronow et al. Feb 2016 B2
9259234 Robertson et al. Feb 2016 B2
9259265 Harris et al. Feb 2016 B2
9265567 Orban, III et al. Feb 2016 B2
9265571 Twomey et al. Feb 2016 B2
9265926 Strobl et al. Feb 2016 B2
9271784 Evans et al. Mar 2016 B2
9274988 Hsu et al. Mar 2016 B2
9277962 Koss et al. Mar 2016 B2
9282974 Shelton, IV Mar 2016 B2
9283027 Monson et al. Mar 2016 B2
9283045 Rhee et al. Mar 2016 B2
9289256 Shelton, IV et al. Mar 2016 B2
9295514 Shelton, IV et al. Mar 2016 B2
9308014 Fischer Apr 2016 B2
9314292 Trees et al. Apr 2016 B2
9326788 Batross et al. May 2016 B2
9326812 Waaler et al. May 2016 B2
9333025 Monson et al. May 2016 B2
9339323 Eder et al. May 2016 B2
9339326 McCullagh et al. May 2016 B2
9344042 Mao May 2016 B2
9345481 Hall et al. May 2016 B2
9345900 Wu et al. May 2016 B2
9351754 Vakharia et al. May 2016 B2
9358065 Ladtkow et al. Jun 2016 B2
9364230 Shelton, IV et al. Jun 2016 B2
9375232 Hunt et al. Jun 2016 B2
9375256 Cunningham et al. Jun 2016 B2
9375267 Kerr et al. Jun 2016 B2
9381060 Artale et al. Jul 2016 B2
9386983 Swensgard et al. Jul 2016 B2
9393037 Olson et al. Jul 2016 B2
9402682 Worrell et al. Aug 2016 B2
9408606 Shelton, IV Aug 2016 B2
9408622 Stulen et al. Aug 2016 B2
9408660 Strobl et al. Aug 2016 B2
9414880 Monson et al. Aug 2016 B2
9421060 Monson et al. Aug 2016 B2
9456863 Moua Oct 2016 B2
9456864 Witt et al. Oct 2016 B2
9456876 Hagn Oct 2016 B2
9492224 Boudreaux et al. Nov 2016 B2
9504524 Behnke, II Nov 2016 B2
9510906 Boudreaux et al. Dec 2016 B2
9522029 Yates et al. Dec 2016 B2
9526564 Rusin Dec 2016 B2
9526565 Strobl Dec 2016 B2
9549663 Larkin Jan 2017 B2
9554845 Arts Jan 2017 B2
9554846 Boudreaux Jan 2017 B2
9554854 Yates et al. Jan 2017 B2
9561038 Shelton, IV et al. Feb 2017 B2
9585709 Krapohl Mar 2017 B2
9597143 Madan et al. Mar 2017 B2
9610091 Johnson et al. Apr 2017 B2
9610114 Baxter, III et al. Apr 2017 B2
9615877 Tyrrell et al. Apr 2017 B2
9622810 Hart et al. Apr 2017 B2
9627120 Scott et al. Apr 2017 B2
9629629 Leimbach et al. Apr 2017 B2
9642669 Takashino et al. May 2017 B2
9649111 Shelton, IV et al. May 2017 B2
9649144 Aluru et al. May 2017 B2
9649151 Goodman et al. May 2017 B2
9662131 Omori et al. May 2017 B2
9668806 Unger et al. Jun 2017 B2
9687295 Joseph Jun 2017 B2
9700339 Nield Jul 2017 B2
9707005 Strobl et al. Jul 2017 B2
9707027 Ruddenklau et al. Jul 2017 B2
9707030 Davison et al. Jul 2017 B2
9713491 Roy et al. Jul 2017 B2
9724118 Schulte et al. Aug 2017 B2
9724152 Horlle et al. Aug 2017 B2
9737355 Yates et al. Aug 2017 B2
9737358 Beckman et al. Aug 2017 B2
9743929 Leimbach et al. Aug 2017 B2
9757128 Baber et al. Sep 2017 B2
9757142 Shimizu Sep 2017 B2
9757186 Boudreaux et al. Sep 2017 B2
9782214 Houser et al. Oct 2017 B2
9782220 Mark et al. Oct 2017 B2
9795436 Yates et al. Oct 2017 B2
9802033 Hibner et al. Oct 2017 B2
9808244 Leimbach et al. Nov 2017 B2
9808308 Faller et al. Nov 2017 B2
9814460 Kimsey et al. Nov 2017 B2
9814514 Shelton, IV et al. Nov 2017 B2
9820768 Gee et al. Nov 2017 B2
9820771 Norton et al. Nov 2017 B2
9833239 Yates et al. Dec 2017 B2
9848937 Trees et al. Dec 2017 B2
9848939 Mayer et al. Dec 2017 B2
9861428 Trees et al. Jan 2018 B2
9872725 Worrell et al. Jan 2018 B2
9877720 Worrell et al. Jan 2018 B2
9877776 Boudreaux Jan 2018 B2
9877782 Voegele et al. Jan 2018 B2
9888958 Evans et al. Feb 2018 B2
9901390 Allen, IV et al. Feb 2018 B2
9901754 Yamada Feb 2018 B2
9907563 Germain et al. Mar 2018 B2
9913680 Voegele et al. Mar 2018 B2
9918730 Trees et al. Mar 2018 B2
9931157 Strobl et al. Apr 2018 B2
9937001 Nakamura Apr 2018 B2
9943357 Cunningham et al. Apr 2018 B2
9949620 Duval et al. Apr 2018 B2
9949785 Price et al. Apr 2018 B2
9949788 Boudreaux Apr 2018 B2
9974539 Yates et al. May 2018 B2
9993289 Sobajima et al. Jun 2018 B2
10010339 Witt et al. Jul 2018 B2
10016207 Suzuki et al. Jul 2018 B2
10022142 Aranyi et al. Jul 2018 B2
10041822 Zemlok Aug 2018 B2
10052044 Shelton, IV et al. Aug 2018 B2
10058376 Horner et al. Aug 2018 B2
10070916 Artale Sep 2018 B2
10080606 Kappus et al. Sep 2018 B2
10092310 Boudreaux et al. Oct 2018 B2
10092348 Boudreaux Oct 2018 B2
10092350 Rothweiler et al. Oct 2018 B2
10105174 Krapohl Oct 2018 B2
10111699 Boudreaux Oct 2018 B2
10117702 Danziger et al. Nov 2018 B2
10130410 Strobl et al. Nov 2018 B2
10130414 Weiler et al. Nov 2018 B2
10159524 Yates et al. Dec 2018 B2
10166060 Johnson et al. Jan 2019 B2
10172669 Felder et al. Jan 2019 B2
10194911 Miller et al. Feb 2019 B2
10194972 Yates et al. Feb 2019 B2
10194976 Boudreaux Feb 2019 B2
10194977 Yang Feb 2019 B2
10211586 Adams et al. Feb 2019 B2
10231776 Artale et al. Mar 2019 B2
10238387 Yates et al. Mar 2019 B2
10245095 Boudreaux Apr 2019 B2
10258404 Wang Apr 2019 B2
10265118 Gerhardt Apr 2019 B2
10278721 Dietz et al. May 2019 B2
10314638 Gee et al. Jun 2019 B2
20010025184 Messerly Sep 2001 A1
20010031950 Ryan Oct 2001 A1
20010039419 Francischelli et al. Nov 2001 A1
20020002377 Cimino Jan 2002 A1
20020019649 Sikora et al. Feb 2002 A1
20020022836 Goble et al. Feb 2002 A1
20020049551 Friedman et al. Apr 2002 A1
20020077550 Rabiner et al. Jun 2002 A1
20020095175 Brock et al. Jul 2002 A1
20020107517 Witt et al. Aug 2002 A1
20020156493 Houser et al. Oct 2002 A1
20030014053 Nguyen et al. Jan 2003 A1
20030055443 Spotnitz Mar 2003 A1
20030066938 Zimmerman Apr 2003 A1
20030109875 Tetzlaff et al. Jun 2003 A1
20030114731 Cadeddu et al. Jun 2003 A1
20030114851 Truckai et al. Jun 2003 A1
20030130693 Levin et al. Jul 2003 A1
20030139741 Goble et al. Jul 2003 A1
20030158548 Phan et al. Aug 2003 A1
20030171747 Kanehira et al. Sep 2003 A1
20030204199 Novak et al. Oct 2003 A1
20030212332 Fenton et al. Nov 2003 A1
20030229344 Dycus et al. Dec 2003 A1
20040030254 Babaev Feb 2004 A1
20040047485 Sherrit et al. Mar 2004 A1
20040054364 Aranyi et al. Mar 2004 A1
20040092921 Kadziauskas et al. May 2004 A1
20040092992 Adams et al. May 2004 A1
20040093039 Schumert May 2004 A1
20040097919 Wellman et al. May 2004 A1
20040097996 Rabiner et al. May 2004 A1
20040102804 Chin May 2004 A1
20040133089 Kilcoyne et al. Jul 2004 A1
20040138621 Jahns et al. Jul 2004 A1
20040167508 Wham et al. Aug 2004 A1
20040193150 Sharkey et al. Sep 2004 A1
20040199193 Hayashi et al. Oct 2004 A1
20040249367 Saadat et al. Dec 2004 A1
20040249374 Tetzlaff et al. Dec 2004 A1
20040260273 Wan Dec 2004 A1
20040260300 Gorensek et al. Dec 2004 A1
20050015125 Mioduski Jan 2005 A1
20050033278 McClurken et al. Feb 2005 A1
20050033337 Muir et al. Feb 2005 A1
20050090817 Phan Apr 2005 A1
20050096502 Khalili May 2005 A1
20050119640 Sverduk et al. Jun 2005 A1
20050131390 Heinrich et al. Jun 2005 A1
20050143769 White et al. Jun 2005 A1
20050149108 Cox Jul 2005 A1
20050165429 Douglas et al. Jul 2005 A1
20050171522 Christopherson Aug 2005 A1
20050177184 Easley Aug 2005 A1
20050192610 Houser et al. Sep 2005 A1
20050215858 Vail Sep 2005 A1
20050256405 Makin et al. Nov 2005 A1
20050261588 Makin et al. Nov 2005 A1
20050267464 Truckai et al. Dec 2005 A1
20050272972 Iddan Dec 2005 A1
20050273139 Krauss et al. Dec 2005 A1
20050288555 Binmoeller Dec 2005 A1
20050288659 Kimura et al. Dec 2005 A1
20060030797 Zhou et al. Feb 2006 A1
20060058825 Ogura et al. Mar 2006 A1
20060063130 Hayman et al. Mar 2006 A1
20060064086 Odom Mar 2006 A1
20060159731 Shoshan Jul 2006 A1
20060190034 Nishizawa et al. Aug 2006 A1
20060211943 Beaupre Sep 2006 A1
20060253050 Yoshimine et al. Nov 2006 A1
20060270916 Skwarek et al. Nov 2006 A1
20060293656 Shadduck et al. Dec 2006 A1
20070008744 Heo et al. Jan 2007 A1
20070010709 Reinschke Jan 2007 A1
20070016235 Tanaka et al. Jan 2007 A1
20070016236 Beaupre Jan 2007 A1
20070020065 Kirby Jan 2007 A1
20070032701 Fowler et al. Feb 2007 A1
20070032704 Gandini et al. Feb 2007 A1
20070051766 Spencer Mar 2007 A1
20070055228 Berg et al. Mar 2007 A1
20070063618 Bromfield Mar 2007 A1
20070073185 Nakao Mar 2007 A1
20070073341 Smith et al. Mar 2007 A1
20070106317 Shelton et al. May 2007 A1
20070118115 Artale et al. May 2007 A1
20070123748 Meglan May 2007 A1
20070130771 Ehlert et al. Jun 2007 A1
20070135686 Pruitt et al. Jun 2007 A1
20070149881 Rabin Jun 2007 A1
20070173803 Wham et al. Jul 2007 A1
20070173813 Odom Jul 2007 A1
20070173872 Neuenfeldt Jul 2007 A1
20070182842 Sonnenschein et al. Aug 2007 A1
20070185474 Nahen Aug 2007 A1
20070191713 Eichmann et al. Aug 2007 A1
20070203483 Kim et al. Aug 2007 A1
20070208340 Ganz et al. Sep 2007 A1
20070219481 Babaev Sep 2007 A1
20070232926 Stulen et al. Oct 2007 A1
20070232928 Wiener et al. Oct 2007 A1
20070236213 Paden et al. Oct 2007 A1
20070249941 Salehi et al. Oct 2007 A1
20070260242 Dycus et al. Nov 2007 A1
20070265560 Soltani et al. Nov 2007 A1
20070265613 Edelstein et al. Nov 2007 A1
20070265616 Couture et al. Nov 2007 A1
20070270651 Gilad et al. Nov 2007 A1
20070273333 Andruk Nov 2007 A1
20070275348 Lemon Nov 2007 A1
20070276424 Mikkaichi et al. Nov 2007 A1
20070287933 Phan et al. Dec 2007 A1
20080015413 Barlow et al. Jan 2008 A1
20080015575 Odom et al. Jan 2008 A1
20080058775 Darian et al. Mar 2008 A1
20080058845 Shimizu et al. Mar 2008 A1
20080071269 Hilario et al. Mar 2008 A1
20080082039 Babaev Apr 2008 A1
20080082098 Tanaka et al. Apr 2008 A1
20080114355 Whayne et al. May 2008 A1
20080147058 Horrell Jun 2008 A1
20080147062 Truckai et al. Jun 2008 A1
20080171938 Masuda Jul 2008 A1
20080177268 Daum et al. Jul 2008 A1
20080188755 Hart Aug 2008 A1
20080200940 Eichmann et al. Aug 2008 A1
20080208231 Ota et al. Aug 2008 A1
20080214967 Aranyi et al. Sep 2008 A1
20080234709 Houser Sep 2008 A1
20080281200 Voic et al. Nov 2008 A1
20080281315 Gines Nov 2008 A1
20080287948 Newton et al. Nov 2008 A1
20080300588 Groth et al. Dec 2008 A1
20080312502 Swain et al. Dec 2008 A1
20090012516 Curtis et al. Jan 2009 A1
20090048589 Takashino et al. Feb 2009 A1
20090076506 Baker Mar 2009 A1
20090082716 Akahoshi Mar 2009 A1
20090082766 Unger et al. Mar 2009 A1
20090143678 Keast et al. Jun 2009 A1
20090182322 D'Amelio et al. Jul 2009 A1
20090182331 D'Amelio et al. Jul 2009 A1
20090182332 Long et al. Jul 2009 A1
20090248021 McKenna Oct 2009 A1
20090254080 Honda Oct 2009 A1
20090270771 Takahashi Oct 2009 A1
20090270853 Yachi et al. Oct 2009 A1
20090287205 Ingle Nov 2009 A1
20100036370 Mirel et al. Feb 2010 A1
20100081863 Hess et al. Apr 2010 A1
20100081864 Hess et al. Apr 2010 A1
20100081883 Murray et al. Apr 2010 A1
20100094323 Isaacs et al. Apr 2010 A1
20100158307 Kubota et al. Jun 2010 A1
20100187283 Crainich et al. Jul 2010 A1
20100204802 Wilson et al. Aug 2010 A1
20100222752 Collins, Jr. et al. Sep 2010 A1
20100274278 Fleenor et al. Oct 2010 A1
20100280368 Can et al. Nov 2010 A1
20100298743 Nield et al. Nov 2010 A1
20110009857 Subramaniam et al. Jan 2011 A1
20110028964 Edwards Feb 2011 A1
20110087224 Cadeddu et al. Apr 2011 A1
20110257680 Reschke et al. Oct 2011 A1
20110270245 Horner et al. Nov 2011 A1
20110278343 Knodel et al. Nov 2011 A1
20110284014 Cadeddu et al. Nov 2011 A1
20110290856 Shelton, IV et al. Dec 2011 A1
20110295295 Shelton, IV et al. Dec 2011 A1
20110306967 Payne et al. Dec 2011 A1
20110313415 Fernandez et al. Dec 2011 A1
20120016413 Timm et al. Jan 2012 A1
20120022519 Huang et al. Jan 2012 A1
20120022526 Aldridge et al. Jan 2012 A1
20120041358 Mann et al. Feb 2012 A1
20120078139 Aldridge et al. Mar 2012 A1
20120078244 Worrell et al. Mar 2012 A1
20120085358 Cadeddu et al. Apr 2012 A1
20120109186 Parrott et al. May 2012 A1
20120116222 Sawada et al. May 2012 A1
20120116265 Houser et al. May 2012 A1
20120265241 Hart et al. Oct 2012 A1
20120296371 Kappus et al. Nov 2012 A1
20130023925 Mueller Jan 2013 A1
20130035685 Fischer et al. Feb 2013 A1
20130123776 Monson et al. May 2013 A1
20130158659 Bergs et al. Jun 2013 A1
20130158660 Bergs et al. Jun 2013 A1
20130253256 Griffith et al. Sep 2013 A1
20130296843 Boudreaux et al. Nov 2013 A1
20140001231 Shelton, IV et al. Jan 2014 A1
20140001234 Shelton, IV et al. Jan 2014 A1
20140005640 Shelton, IV et al. Jan 2014 A1
20140005678 Shelton, IV et al. Jan 2014 A1
20140005702 Timm et al. Jan 2014 A1
20140005705 Weir et al. Jan 2014 A1
20140005718 Shelton, IV et al. Jan 2014 A1
20140014544 Bugnard et al. Jan 2014 A1
20140194864 Martin et al. Jul 2014 A1
20140194874 Dietz et al. Jul 2014 A1
20140194875 Reschke et al. Jul 2014 A1
20140207135 Winter Jul 2014 A1
20140263541 Leimbach et al. Sep 2014 A1
20140263552 Hall et al. Sep 2014 A1
20150032150 Ishida et al. Jan 2015 A1
20150080876 Worrell et al. Mar 2015 A1
20150230861 Woloszko et al. Aug 2015 A1
20150250531 Dycus et al. Sep 2015 A1
20150272659 Boudreaux et al. Oct 2015 A1
20150272660 Boudreaux et al. Oct 2015 A1
20150327918 Sobajima et al. Nov 2015 A1
20160038225 Couture et al. Feb 2016 A1
20160045248 Unger et al. Feb 2016 A1
20160051316 Boudreaux Feb 2016 A1
20160066980 Schall et al. Mar 2016 A1
20160074108 Woodruff et al. Mar 2016 A1
20160128762 Harris et al. May 2016 A1
20160143687 Hart et al. May 2016 A1
20160157923 Ding Jun 2016 A1
20160157927 Corbett et al. Jun 2016 A1
20160175029 Witt et al. Jun 2016 A1
20160199123 Thomas et al. Jul 2016 A1
20160199124 Thomas et al. Jul 2016 A1
20160199125 Jones Jul 2016 A1
20160270840 Yates et al. Sep 2016 A1
20160270841 Strobl et al. Sep 2016 A1
20160270842 Strobl et al. Sep 2016 A1
20160270843 Boudreaux et al. Sep 2016 A1
20160278848 Boudreaux et al. Sep 2016 A1
20160296270 Strobl et al. Oct 2016 A1
20170105787 Witt et al. Apr 2017 A1
20170105789 Boudreaux et al. Apr 2017 A1
20170135751 Rothweiler et al. May 2017 A1
20170164972 Johnson et al. Jun 2017 A1
20170189102 Hibner et al. Jul 2017 A1
20170312014 Strobl et al. Nov 2017 A1
20170312015 Worrell et al. Nov 2017 A1
20170312016 Strobl et al. Nov 2017 A1
20170312017 Trees et al. Nov 2017 A1
20170312018 Trees et al. Nov 2017 A1
20170312019 Trees et al. Nov 2017 A1
20170325878 Messerly et al. Nov 2017 A1
20170367751 Ruddenklau et al. Dec 2017 A1
20180085156 Witt et al. Mar 2018 A1
20180125571 Witt et al. May 2018 A1
20180228530 Yates et al. Aug 2018 A1
20180263683 Renner et al. Sep 2018 A1
20180280075 Nott et al. Oct 2018 A1
20180368906 Yates et al. Dec 2018 A1
20190000468 Adams et al. Jan 2019 A1
20190000470 Yates et al. Jan 2019 A1
20190000528 Yates et al. Jan 2019 A1
20190000530 Yates et al. Jan 2019 A1
20190000555 Schings et al. Jan 2019 A1
20190099209 Witt et al. Apr 2019 A1
20190099212 Davison et al. Apr 2019 A1
20190099213 Witt et al. Apr 2019 A1
20190099217 Witt et al. Apr 2019 A1
Foreign Referenced Citations (39)
Number Date Country
1634601 Jul 2005 CN
1922563 Feb 2007 CN
2868227 Feb 2007 CN
4300307 Jul 1994 DE
29623113 Oct 1997 DE
20004812 Sep 2000 DE
10201569 Jul 2003 DE
102005032371 Jan 2007 DE
0171967 Feb 1986 EP
0705571 Apr 1996 EP
1862133 Dec 2007 EP
2060238 May 2009 EP
1747761 Oct 2009 EP
1767164 Jan 2013 EP
2578172 Apr 2013 EP
2419159 Aug 2013 ES
2032221 Apr 1980 GB
S537994 Jan 1978 JP
H08229050 Sep 1996 JP
2002186627 Jul 2002 JP
2009213878 Sep 2009 JP
2010057926 Mar 2010 JP
WO-8103272 Nov 1981 WO
WO-9314708 Aug 1993 WO
WO-9800069 Jan 1998 WO
WO-9923960 May 1999 WO
WO-0024330 May 2000 WO
WO-0128444 Apr 2001 WO
WO-02080794 Oct 2002 WO
WO-2004078051 Sep 2004 WO
WO-2008130793 Oct 2008 WO
WO-2009067649 May 2009 WO
WO-2010104755 Sep 2010 WO
WO-2011008672 Jan 2011 WO
WO-2011044343 Apr 2011 WO
WO-2011144911 Nov 2011 WO
WO-2012044606 Apr 2012 WO
WO-2012061638 May 2012 WO
WO-2013131823 Sep 2013 WO
Non-Patent Literature Citations (72)
Entry
Weir, C.E., “Rate of shrinkage of tendon collagen—heat, entropy and free energy of activation of the shrinkage of untreated tendon. Effect of acid salt, pickle, and tannage on the activation of tendon collagen.” Journal of the American Leather Chemists Association, 44, pp. 108-140 (1949).
Henriques. F.C., “Studies in thermal injury V. The predictability and the significance of thermally induced rate processes leading to irreversible epidermal injury.” Archives of Pathology, 434, pp. 489-502 (1947).
Arnoczky et al., “Thermal Modification of Conective Tissues: Basic Science Considerations and Clinical Implications,” J. Am Acad Orthop Surg, vol. 8, No. 5, pp. 305-313 (Sep./Oct. 2000).
Chen et al., “Heat-Induced Changes in the Mechanics of a Collagenous Tissue: Isothermal Free Shrinkage,” Transactions of the ASME, vol. 119, pp. 372-378 (Nov. 1997).
Chen et al., “Heat-Induced Changes in the Mechanics of a Collagenous Tissue: Isothermal, Isotonic Shrinkage,” Transactions of the ASME, vol. 120, pp. 382-388 (Jun. 1998).
Chen et al., “Phenomenological Evolution Equations for Heat-Induced Shrinkage of a Collagenous Tissue,” IEEE Transactions on Biomedical Engineering, vol. 45, No. 10, pp. 1234-1240 (Oct. 1998).
Harris et al., “Kinetics of Thermal Damage to a Collagenous Membrane Under Biaxial Isotonic Loading,” IEEE Transactions on Biomedical Engineering, vol. 51, No. 2, pp. 371-379 (Feb. 2004).
Harris et al., “Altered Mechanical Behavior of Epicardium Due to Isothermal Heating Under Biaxial Isotonic Loads,” Journal of Biomechanical Engineering, vol. 125, pp. 381-388 (Jun. 2003).
Lee et al., “A multi-sample denaturation temperature tester for collagenous biomaterials,” Med. Eng. Phy., vol. 17, No. 2, pp. 115-121 (Mar. 1995).
Moran et al., “Thermally Induced Shrinkage of Joint Capsule,” Clinical Orthopaedics and Related Research, No. 281, pp. 248-255 (Dec. 2000).
Wall et al., “Thermal modification of collagen,” J Shoulder Elbow Surg, No. 8, pp. 339-344 (Jul./Aug. 1999).
Wells et al., “Altered Mechanical Behavior of Epicardium Under Isothermal Biaxial Loading,” Transactions of the ASME, Journal of Biomedical Engineering, vol. 126, pp. 492-497 (Aug. 2004).
Gibson, “Magnetic Refrigerator Successfully Tested,” U.S. Department of Energy Research News, accessed online on Aug. 6, 2010 at http://www.eurekalert.org/features/doe/2001-11/dl-mrs062802.php (Nov. 1, 2001).
Humphrey, J.D., “Continuum Thermomechanics and the Clinical Treatment of Disease and Injury,” Appl. Mech. Rev., vol. 56, No. 2 pp. 231-260 (Mar. 2003).
National Semiconductors Temperature Sensor Handbook—http://www.national.com/appinfo/tempsensors/files/temphb.pdf; accessed online: Apr. 1, 2011.
Hayashi et al., “The Effect of Thermal Heating on the Length and Histologic Properties of the Glenohumeral Joint Capsule,” American Journal of Sports Medicine, vol. 25, Issue 1, 11 pages (Jan. 1997), URL: http://www.mdconsult.com/das/article/body/156183648-2/jorg=journal&source=Ml&sp=1 . . . , accessed Aug. 25, 2009.
Douglas, S.C. “Introduction to Adaptive Filter”. Digital Signal Processing Handbook. Ed. Vijay K. Madisetti and Douglas B. Williams. Boca Raton: CRC Press LLC, 1999.
Chen et al., “Heat-induced changes in the mechanics of a collagenous tissue: pseudoelastic behavior at 37° C.,” Journal of Biomechanics, 31, pp. 211-216 (1998).
Glaser and Subak-Sharpe,lntegrated Circuit Engineering, Addison-Wesley Publishing, Reading, MA (1979). (book—not attached).
Kurt Gieck & Reiner Gieck, Engineering Formulas § Z.7 (7th ed. 1997).
Wright, et al., “Time-Temperature Equivalence of Heat-Induced Changes in Cells and Proteins,” Feb. 1998. ASME Journal of Biomechanical Engineering, vol. 120, pp. 22-26.
Covidien Brochure, [Value Analysis Brief], LigaSure Advance™ Pistol Grip, dated Rev. Apr. 2010 (7 pages).
Covidien Brochure, LigaSure Impact™ Instrument LF4318, dated Feb. 2013 (3 pages).
Covidien Brochure, LigaSure Atlas™ Hand Switching Instruments, dated Dec. 2008 (2 pages).
Covidien Brochure, The LigaSure™ 5 mm Blunt Tip Sealer/Divider Family, dated Apr. 2013 (2 pages).
Jang, J. et al. “Neuro-fuzzy and Soft Computing.” Prentice Hall, 1997, pg. 13-89, 199-293, 335-393, 453-496, 535-549.
Sullivan, “Cost-Constrained Selection of Strand Diameter and Number in a Litz-Wire Transformer Winding,” IEEE Transactions on Power Electronics, vol. 16, No. 2, Mar. 2001, pp. 281-288.
Sullivan, “Optimal Choice for Number of Strands in a Litz-Wire Transformer Winding,” IEEE Transactions on Power Electronics, vol. 14, No. 2, Mar. 1999, pp. 283-291.
Covidien Brochure, The LigaSure Precise™ Instrument, dated Mar. 2011 (2 pages).
Abbott, et al. Proceedings of the 2007 IEEEIRDJ International Conference on Intelligent Robots and Systems. 410-416, 2007.
Cadeddu et al., “Magnetic positioning system for trocarless laparoscopic instruments,” American College of Surgeons Poster, 2004.
Cadeddu et al., “Novel magnetically guided intra-abdominal camera to facilitate laparoendoscopic single site surgery: initial human experience,” Surgical Endoscopy, SAGES Oral Manuscript, 2009.
Cadeddu et al., “Transabdominal magnetic anchoring system for trocar-less laparoscopic surgery,” American Urological Association Poster, 2002.
Cadeddu et al., “Transabdominal magnetic anchoring system for trocar-less laparoscopic surgery,” Journal of Urology Abstract, 2002.
Castellvi et al., “Completely transvaginal Notes cholecystectomy in a porcine model using novel endoscopic instrumentation,” Accepted for Poster Presentation, SAGES Annual Meeting, 2009.
Castellvi et al., “Hybrid transgastric NOTES cholecystectomy in a porcine model using a magnetically anchored cautery and novel instrumentation,” Submitted for Presentation, ASGE, 2009.
Castellvi et al., “Hybrid transvaginal NOTES sleeve gastrectomy in a porcine model using a magnetically anchored camera and novel instrumentation,” Accepted for Poster Presentation, SAGES Annual Meeting, 2009.
Duchene et al., “Magnetic positioning system for trocarless laparoscopic instruments,” Engineering and Urology Society Poster, 2004.
Fernandez et al., “Development of a transabdominal anchoring system for trocar-less laparoscopic surgery,” ASME Proceedings of/MECE, 2003.
Gedeon et al., “Maximizing coupling strength of magnetically anchored notes instruments: How thick can we go?” Submittedfor Presentation, Poster, SAGES Annual Meeting, 2008.
Gedeon et al., “Maximizing coupling strength of magnetically anchored notes instruments: How thick can we go?” SAGES Annual Meeting Poster, 2008.
Park et al., “Trocar-less Instrumentation for Laparoscopy: Magnetic Positioning of Intra-Abdominal Camera and Retractor”, Annals of Surgery, vol. 245, No. 3, pp. 379-384, Mar. 2007.
Peirs et al., “A miniature manipulator for integration in self-propelling endoscope,” Sensors and Actuators, 92:343-9, 2001.
Raman et al., “Complete transvaginal NOTES nephrectomy using magnetically anchored instrumentation,” Journal of Endourology, 23(3):, 2009.367-371,2009.
Rapaccini et al., “Gastric Wall Thickness in Normal and Neoplastic Subjects: A Prospective Study Performed by Abdominal Ultrasound”, Gastrointestinal Radiology, vol. 13, pp. 197-199. 1988.
Scott et al., “A randomized comparison of laparoscopic, flexible endoscopic, and wired and wireless magnetic NOTES cameras on ex-vivo and in-vivo surgical performance,” Digestive Disease Week (DDW), American Society for Gastrointestinal Endoscopy (ASGE) Annual Meeting Abstract, 2008.
Scott et al., “Completely transvaginal NOTES cholecystectomy using magnetically anchored instruments,” Surg. Endosc., 21:2308-2316, 2007.
Scott et al., “Evaluation of a novel air seal access port for transvaginal notes cholecystectomy,” Submitted for Presentation, SAGES Annual Meeting, 2008.
Scott et al., “Magnetically anchored instruments for transgastric endoscopic surgery,” Oral Presentation for SAGES Annual Meeting, Emerging Technology Oral Abstract ET005, 2006.
Scott et al., “Optimizing magnetically anchored camera, light source, graspers, and cautery dissector for transvaginal notes cholecystectomy,” Submitted for Presentation, SAGES Annual Meeting, 2008.
Scott et al., “Short-term survival outcomes following transvaginal NOTES cholecystectomy using magnetically anchored instruments,” Oral Presentation, ASGE Annual Meeting/DDW, 2007.
Scott et al., “Trans gastric, transcolonic, and transvaginal cholecystectomy using magnetically anchored instruments,” SAGES Annual Meeting Poster, 2007.
Scott et al., “Transvaginal NOTES cholecystectomy using magnetically anchored instruments,” Abstract for Video Submission, ASGE II1h Annual Video Forum, 2007.
Scott et al., “Transvaginal single access ‘pure’ NOTES sleeve gastrectomy using a deployable magnetically anchored video camera,” Digestive Disease Week (DDW), American Society for Gastrointestinal Endoscopy (ASGE) Annual Meeting Poster, 2008.
Swain et al., “Linear stapler formation of ileo-rectal, entero-enteral and gastrojejunal anastomoses during dual and single access ‘pure’ NOTES procedures: Methods, magnets and stapler modifications,” Digestive Disease Week (DDW), American Society for Gastrointestinal Endoscopy (ASGE) Annual Meeting Abstract, 2008.
Swain et al., “Wireless endosurgery for NOTES,” Digestive Disease Week (DDW), American Society for Gastrointestinal Endoscopy (ASGE) Annual Meeting Abstract, 2008.
Tang et al., “Live video manipulator for endoscopy and natural orifice transluminal endoscopic surgery (with videos),” Gastrointestinal Endoscopy, 68:559-564, 2008.
Zeltser et al., “Single trocar laparoscopic nephrectomy using magnetic anchoring and guidance system in the porcine model,” The Journal of Urology, 178:288-291, 2007.
https://www.kjmagnetics.com/fieldcalculator.asp, retrieved Jul. 11, 2016, backdated to Nov. 11, 2011 via https://web.archive.org/web/20111116164447/http://www.kjmagnetics.com/fieldcalculator.asp.
Erbe Electrosurgery VIO® 200 S, (2012), p. 7, 12 pages, accessed Mar. 31, 2014 at http://www.erbe-med. com/erbe/media/Marketing materialien/85140170 ERBE EN VIO 200 S D027541.
Leonard I. Malis, M.D., “The Value of Irrigation During Bipolar Coagulation,” 1989.
AST Products, Inc., “Principles of Video Contact Angle Analysis,” 20 pages, (2006).
Lim et al., “A Review of Mechanism Used in Laparoscopic Surgical Instruments,” Mechanism and Machine Theory, vol. 38, pp. 1133-1147, (2003).
F. A. Duck, “Optical Properties of Tissue Including Ultraviolet and Infrared Radiation,” pp. 43-71 in Physical Properties of Tissue (1990).
Orr et al., “Overview of Bioheat Transfer,” pp. 367-384 in Optical-Thermal Response of Laser-Irradiated Tissue, A. J. Welch and M. J. C. van Gernert, eds., Plenum, New York (1995).
Campbell et al, “Thermal Imaging in Surgery,” p. 19-3, in Medical Infrared Imaging, N. A. Diakides and J. D. Bronzino, Eds. (2008).
Huston et al., “Magnetic and Magnetostrictive Properties of Cube Textured Nickel for Magnetostrictive Transducer Applications,” IEEE Transactions on Magnetics, vol. 9(4), pp. 636-640 (Dec. 1973).
Technology Overview, printed from www.harmonicscalpel.com, Internet site, website accessed on Jun. 13, 2007, (3 pages).
Gooch et al., “Recommended Infection-Control Practices for Dentistry, 1993,” Published: May 28, 1993; [retrieved on Aug. 23, 2008]. Retrieved from the internet: URL: http//wonder.cdc.gov/wonder/prevguid/p0000191/p0000191.asp (15 pages).
Sherrit et al., “Novel Horn Designs for Ultrasonic/Sonic Cleaning Welding, Soldering, Cutting and Drilling,” Proc. SPIE Smart Structures Conference, vol. 4701, Paper No. 34, San Diego, CA, pp. 353-360, Mar. 2002.
Hörmann et al., “Reversible and irreversible denaturation of collagen fibers.” Biochemistry, 10, pp. 932-937 (1971).
Dean, D.A., “Electrical Impedance Spectroscopy Study of Biological Tissues,” J. Electrostat, 66(3-4), Mar. 2008, pp. 165-177. Accessed Apr. 10, 2018: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2597841/.
Related Publications (1)
Number Date Country
20170056097 A1 Mar 2017 US
Provisional Applications (1)
Number Date Country
61550768 Oct 2011 US
Continuations (1)
Number Date Country
Parent 13658786 Oct 2012 US
Child 15352408 US