The inventors herein have recognized a need for an improved battery system and a method for cooling the battery system.
A battery system in accordance with an exemplary embodiment is provided. The battery system includes an evaporative cooling member having a conduit therein. The battery system further includes a battery module having a housing, a battery cell, and a solid cooling fin. The housing is configured to hold the battery cell therein. The solid cooling fin has first and second panel portions. The first panel portion is disposed against the battery cell. The second panel portion extends through the housing and is disposed on the evaporative cooling member. The solid cooling fin is configured to conduct heat energy from the battery cell to the evaporative cooling member. The evaporative cooling member is configured to receive a gaseous-liquid refrigerant and to transition the gaseous-liquid refrigerant into a gaseous refrigerant utilizing the heat energy received from the solid cooling fin.
A method for cooling a battery system in accordance with another exemplary embodiment is provided. The battery system has a battery module, an evaporative cooling member. The battery module has a housing, a battery cell, and a solid cooling fin. The evaporative cooling member has a conduit therein. The solid cooling fin has first and second panel portions. The first panel portion is disposed against the battery cell. The second panel portion extends through the housing and is disposed on the evaporative cooling member. The method includes receiving a gaseous-liquid refrigerant in the conduit of the evaporative cooling member. The method further includes conducting heat energy from the battery cell to the evaporative cooling member utilizing the solid cooling fin to cool the battery module. The method further includes transitioning the gaseous-liquid refrigerant in the evaporative cooling member into a gaseous refrigerant utilizing the heat energy received by the evaporative cooling member from the solid cooling fin.
Referring to
For purposes of understanding, the term “refrigerant” corresponds to a substance that can reversibly transition between a liquid and a gas in a heat cycle. Exemplary refrigerants include R-11, R-12, R-22, R-134A, R-407C and R-410A. Also, the term “gaseous-liquid refrigerant” corresponds to a refrigerant having a mixture of gas and liquid.
The compressor 22 is configured to pump and compress a gaseous refrigerant 91 through the conduit 51 into the condenser 23 in response to a control signal from the microprocessor 80. As shown, the conduit 51 is fluidly coupled between the compressor 22 and the condenser 23.
The condenser 23 is provided to receive the gaseous refrigerant 91 from the compressor 22 via the conduit 51 and to transition the gaseous refrigerant 91 into a liquid refrigerant 92 by extracting heat energy from the gaseous refrigerant 91. As shown, the conduit 52 is fluidly coupled between the condenser 23 and the expansion valve 24. After exiting the condenser 24, the liquid refrigerant 92 is further pumped through the conduit 52 to the expansion valve 24.
The expansion valve 24 is fluidly coupled between the condenser 23 and the evaporative cooling member 26 via the conduits 52, 53. The expansion valve 24 is configured to receive the liquid refrigerant 92 from the condenser 23 and to decrease a pressure level of the liquid refrigerant 92 to transition the liquid refrigerant 92 into a gaseous-liquid refrigerant 93. The gaseous-liquid refrigerant 93 is routed from the expansion valve 24 to the conduit 110 of the evaporative cooling member 26 via the conduit 53.
Referring to
Referring to
Since each battery cells 180-208 of battery module 40 have an identical structure, only the structure of the battery cell 180 will be described in further detail. As shown, the battery cell 180 includes a body portion 271 and first and second electrodes (not shown). The body portion 271 is generally rectangular-shaped, and the first and second electrodes extend from a top portion of the body portion 271. In one exemplary embodiment, each battery cell is a lithium-ion battery cell. In alternative embodiments, the battery cells 180-208 could be nickel-cadmium battery cells or nickel metal hydride battery cells for example. Of course, other types of battery cells known to those skilled in the art could be utilized.
The solid cooling fins 230-244 in the battery module 40 are provided to conduct heat energy from the battery cells 180-208 to the evaporative cooling member 26. The structure of each of the solid cooling fins 230-240 is identical to one another. Accordingly, only the structure of the solid cooling fin 230 will be described in greater detail below. The solid cooling fan 230 includes a first panel portion 280 and a second panel portion 282. The first panel portion 280 a substantially rectangular-shaped and is configured to be disposed against adjacent rectangular-shaped surfaces of the battery cells 180, 182. The first panel portion 280 has a sufficient size to cover substantially all of the adjacent rectangular-shaped surface of the battery cell 180, and to cover substantially all of the adjacent rectangular-shaped surface of the battery cell 182. During operation, the first panel portion 280 conducts heat energy from the battery cells 180, 182 to the second panel portion 282. The second panel portion 282 extends from the first panel portion 280 substantially perpendicular to the first panel portion 280. The second panel portion 282 is disposed on the second side 122 of the plate portion 100 of the evaporative cooling member 26. During operation, the second panel portion 282 conducts heat energy from the first panel portion of 280 and the battery cells 180, 182 to the plate portion 100 of the evaporative cooling member 26. In one exemplary embodiment, the solid cooling fins 230-244 are constructed of graphite. Of course, in alternative embodiments, the solid cooling fins 230-244 can be constructed of other thermally conductive materials such as aluminum or copper or a combination thereof for example.
The housing 270 of the battery module 40 is provided to hold the battery cells 180-208 and the first panel portions 280 of the solid cooling fins 230-244 therein. The second panel portions 282 of the solid cooling fins 230-244 extend through the housing 270 and are disposed on the evaporative cooling member 26. The housing 270 is constructed of housing portions 300, 302, 304, 306, 308, 310, 312 that are fixedly coupled together. In one exemplary embodiment, the housing portions 300-312 are constructed of plastic. Of course, other materials known to those skilled in the art could be utilized to construct the housing portions 300-312.
Referring to
The condenser fans 70, 71 are provided to blow air past the condenser 23 to cool the condenser 23 in response to a control signal from the microprocessor 80. As shown, the condenser fans 70, 71 are disposed proximate to the condenser 23.
The microprocessor 80 is provided to control operation of the battery system 10. In particular, the microprocessor 40 is configured to generate control signals for controlling operation of the compressor 22 and the condenser fans 70, 71, in response to a signal from the temperature sensor 60, as will be explained in greater detail below. The microprocessor 80 utilizes a memory device 81 that stores software instructions and associated data for implementing the methods described below.
Referring to
The first top enclosure portion 360 is coupled to the first and second interior walls 354, 356 and to the bottom enclosure portion 350 to define a first airtight enclosed region 370. The battery modules 40, 42, 44, 46, 48, 49 and the temperature sensor 60 are disposed in the first airtight enclosed region 370.
The second top enclosure portion 362 is coupled to the first interior wall 354 and to the bottom enclosure portion 350 to define a second enclosed region 372. The compressor 22, the condenser 23, the expansion valve 24, and the condenser fans 70, 71 are disposed in the second enclosed region.
The third top enclosure portion 364 is coupled to the second interior wall 356 and to the bottom enclosure portion 350 to define a third enclosed region 374. The microprocessor 80 is disposed in the third enclosed region 374.
Referring to
At step 450, the battery system 10 has the battery module 40, the evaporative cooling member 26, the compressor 22, the condenser 23, the expansion valve 24, the temperature sensor 60, the condenser fan 70, and the microprocessor 80. The compressor 22 is fluidly coupled to the condenser 23, the expansion valve 24, and the evaporative cooling member 26. The battery module 40 has the housing 270, the battery cell 180, and the solid cooling fin 230. The evaporative cooling member 26 has the conduit 110 therein. The solid cooling fin 230 has first and second panel portions 280, 282. The first panel portion 280 is disposed against the battery cell 180. The second panel portion 282 extends through the housing 270 and is disposed on the evaporative cooling member 26. After step 450, the method advances to step 452.
At step 452, the temperature sensor 60 generates a first signal indicative of a first temperature of the battery module 40 at a first time. After step 452, the method advances to step 454.
At step 454, the microprocessor 80 generates a second signal to induce the compressor 22 to operate at a first operational speed in response to the first signal. The compressor 22 pumps the gaseous refrigerant 91 into the condenser 23. After step 454, the method advances to step 456.
At step 456, the microprocessor 80 generates a third signal to induce the condenser fan 70 to blow air toward the condenser 23. After step 456, the method advances to step 458.
At step 458, the condenser 23 transitions the gaseous refrigerant 91 to the liquid refrigerant 92 by extracting heat energy from the gaseous refrigerant 91, and routes the liquid refrigerant 92 to the expansion valve 24. After step 458, the method advances to step 460.
At step 460, the expansion valve 24 decreases a pressure level of the liquid refrigerant 92 to transition the liquid refrigerant 92 into a gaseous-liquid refrigerant 93, and routes the gaseous-liquid refrigerant 93 to the evaporative cooling member 26. After step 460, the method advances to step 462.
At step 462, the solid cooling fin 230 conducts heat energy from the battery cell 180 to the evaporative cooling member 26 to cool the battery cell 180. After step 462, the method advances to step 464.
At step 464, the evaporative cooling member 26 transitions the gaseous-liquid refrigerant 93 into the gaseous refrigerant 91 utilizing the heat energy received from the solid cooling fin 230, and routes the gaseous refrigerant 91 to the compressor 22. After step 464, the method advances to step 466.
At step 466, the temperature sensor 60 generates a fourth signal indicative of a second temperature of the battery module 40 at a second time. The second temperature is greater than the first temperature. After step 466, the method advances to step 468.
At step 468, the microprocessor 80 generates a fifth signal to induce the compressor 22 to operate at a second operational speed in response to the fourth signal. The second operational speed is greater than the first operational speed. After step 468, the method advances to step 470.
At step 470, the microprocessor 80 generates a sixth signal to induce the condenser fan 70 to blow air toward the condenser 23. After step 470, the method advances to step 472.
At step 472, the condenser 23 transitions the gaseous refrigerant 91 to the liquid refrigerant 92 by extracting heat energy from the gaseous refrigerant 91, and routes the liquid refrigerant 92 to the expansion valve 24. After step 472, the method advances to step 474.
At step 474, the expansion valve 24 decreases a pressure level of the liquid refrigerant 92 to transition the liquid refrigerant 92 into the gaseous-liquid refrigerant 93, and routes the gaseous liquid refrigerant 93 to the evaporative cooling member 26. After step 474, the method advances step 476.
At step 476, the solid cooling fin 230 conducts heat energy from the battery cell 180 to the evaporative cooling member 26 to cool the battery cell 180. After step 476, the method advances to step 478.
At step 478, the evaporative cooling member 26 transitions the gaseous-liquid refrigerant 93 into the gaseous refrigerant 91 utilizing the heat energy received from the solid cooling fin 230, and routes the gaseous refrigerant 91 to the compressor 22.
Referring to
The battery system 10 and the method for cooling the battery system 10 provide a substantial advantage over other battery systems and methods. In particular, the battery system 10 utilizes an evaporative cooling member 26 to effectively cool the battery modules 40-49 in the battery system 10.
While the claimed invention has been described in detail in connection with only a limited number of embodiments, it should be readily understood that the invention is not limited to such disclosed embodiments. Rather, the claimed invention can be modified to incorporate any number of variations, alterations, substitutions or equivalent arrangements not heretofore described, but which are commensurate with the spirit and scope of the invention. Additionally, while various embodiments of the claimed invention have been described, it is to be understood that aspects of the invention may include only some of the described embodiments. Accordingly, the claimed invention is not to be seen as limited by the foregoing description.
Number | Name | Date | Kind |
---|---|---|---|
1587425 | Schepp | Jun 1926 | A |
2273244 | Ambruster | Feb 1942 | A |
2391859 | Babcock | Jan 1946 | A |
3503558 | Galiulo et al. | Mar 1970 | A |
3522100 | Lindstrom | Jul 1970 | A |
3550681 | Stier et al. | Dec 1970 | A |
3964930 | Resier | Jun 1976 | A |
4009752 | Wilson | Mar 1977 | A |
4063590 | McConnell | Dec 1977 | A |
4298904 | Koenig | Nov 1981 | A |
4305456 | Mueller et al. | Dec 1981 | A |
4322776 | Job et al. | Mar 1982 | A |
4444994 | Baker et al. | Apr 1984 | A |
4518663 | Kodali et al. | May 1985 | A |
4646202 | Hook et al. | Feb 1987 | A |
4701829 | Bricaud et al. | Oct 1987 | A |
4777561 | Murphy et al. | Oct 1988 | A |
4849858 | Grapes et al. | Jul 1989 | A |
4982785 | Tomlinson | Jan 1991 | A |
4995240 | Barthel et al. | Feb 1991 | A |
5057968 | Morrison | Oct 1991 | A |
5071652 | Jones et al. | Dec 1991 | A |
5186250 | Ouchi et al. | Feb 1993 | A |
5214564 | Metzler et al. | May 1993 | A |
5270131 | Diethelm et al. | Dec 1993 | A |
5322745 | Yanagihara et al. | Jun 1994 | A |
5329988 | Juger | Jul 1994 | A |
5346786 | Hodgetts | Sep 1994 | A |
5356735 | Meadows et al. | Oct 1994 | A |
5392873 | Masuyama et al. | Feb 1995 | A |
5443926 | Holland et al. | Aug 1995 | A |
5510203 | Hamada et al. | Apr 1996 | A |
5520976 | Giannetti et al. | May 1996 | A |
5663007 | Ikoma et al. | Sep 1997 | A |
5736836 | Hasegawa et al. | Apr 1998 | A |
5756227 | Suzuki et al. | May 1998 | A |
5937664 | Matsuno et al. | Aug 1999 | A |
5985483 | Verhoog et al. | Nov 1999 | A |
6087036 | Rouillard et al. | Jul 2000 | A |
6111387 | Kouzu et al. | Aug 2000 | A |
6159630 | Wyser | Dec 2000 | A |
6176095 | Porter | Jan 2001 | B1 |
6344728 | Kouzu et al. | Feb 2002 | B1 |
6362598 | Laig-Hoerstebrock et al. | Mar 2002 | B2 |
6399238 | Oweis et al. | Jun 2002 | B1 |
6422027 | Coates, Jr. et al. | Jul 2002 | B1 |
6448741 | Inui et al. | Sep 2002 | B1 |
6462949 | Parish, IV et al. | Oct 2002 | B1 |
6512347 | Hellmann et al. | Jan 2003 | B1 |
6569556 | Zhou et al. | May 2003 | B2 |
6662891 | Misu et al. | Dec 2003 | B2 |
6689510 | Gow et al. | Feb 2004 | B1 |
6696197 | Inagaki et al. | Feb 2004 | B2 |
6724172 | Koo | Apr 2004 | B2 |
6750630 | Inoue et al. | Jun 2004 | B2 |
6775998 | Yuasa et al. | Aug 2004 | B2 |
6780538 | Hamada et al. | Aug 2004 | B2 |
6821671 | Hinton et al. | Nov 2004 | B2 |
6826948 | Bhatti et al. | Dec 2004 | B1 |
6878485 | Ovshinsky et al. | Apr 2005 | B2 |
6982131 | Hamada et al. | Jan 2006 | B1 |
7070874 | Blanchet et al. | Jul 2006 | B2 |
7143724 | Hashizumi et al. | Dec 2006 | B2 |
7150935 | Hamada et al. | Dec 2006 | B2 |
7250741 | Koo et al. | Jul 2007 | B2 |
7264902 | Horie et al. | Sep 2007 | B2 |
7278389 | Kirakosyan | Oct 2007 | B2 |
7467525 | Ohta et al. | Dec 2008 | B1 |
7531270 | Buck et al. | May 2009 | B2 |
7591303 | Zeigler et al. | Sep 2009 | B2 |
7795845 | Cho | Sep 2010 | B2 |
7797958 | Alston et al. | Sep 2010 | B2 |
7816029 | Takamatsu et al. | Oct 2010 | B2 |
7846573 | Kelly | Dec 2010 | B2 |
7879480 | Yoon et al. | Feb 2011 | B2 |
7883793 | Niedzwiecki et al. | Feb 2011 | B2 |
7976978 | Shin et al. | Jul 2011 | B2 |
7981538 | Kim et al. | Jul 2011 | B2 |
7997367 | Nakamura | Aug 2011 | B2 |
8007915 | Kurachi | Aug 2011 | B2 |
8011467 | Asao et al. | Sep 2011 | B2 |
8030886 | Mahalingam et al. | Oct 2011 | B2 |
8067111 | Koetting et al. | Nov 2011 | B2 |
8209991 | Kondou et al. | Jul 2012 | B2 |
8409743 | Okada et al. | Apr 2013 | B2 |
8663829 | Koetting et al. | Mar 2014 | B2 |
20020086201 | Payen et al. | Jul 2002 | A1 |
20020182493 | Ovshinsky et al. | Dec 2002 | A1 |
20030080714 | Inoue et al. | May 2003 | A1 |
20030189104 | Watanabe et al. | Oct 2003 | A1 |
20030211384 | Hamada et al. | Nov 2003 | A1 |
20040069474 | Wu et al. | Apr 2004 | A1 |
20050026014 | Fogaing et al. | Feb 2005 | A1 |
20050089750 | Ng et al. | Apr 2005 | A1 |
20050103486 | Demuth et al. | May 2005 | A1 |
20050110460 | Arai et al. | May 2005 | A1 |
20050134038 | Walsh | Jun 2005 | A1 |
20060234119 | Kruger et al. | Oct 2006 | A1 |
20060286450 | Yoon et al. | Dec 2006 | A1 |
20070062681 | Beech | Mar 2007 | A1 |
20070087266 | Bourke et al. | Apr 2007 | A1 |
20070227166 | Rafalovich et al. | Oct 2007 | A1 |
20080003491 | Yahnker et al. | Jan 2008 | A1 |
20080041079 | Nishijima et al. | Feb 2008 | A1 |
20080110189 | Alston et al. | May 2008 | A1 |
20080182151 | Mizusaki et al. | Jul 2008 | A1 |
20080248338 | Yano et al. | Oct 2008 | A1 |
20080299446 | Kelly | Dec 2008 | A1 |
20080314071 | Ohta et al. | Dec 2008 | A1 |
20090074478 | Kurachi | Mar 2009 | A1 |
20090087727 | Harada et al. | Apr 2009 | A1 |
20090104512 | Fassnacht et al. | Apr 2009 | A1 |
20090123819 | Kim | May 2009 | A1 |
20090155680 | Maguire et al. | Jun 2009 | A1 |
20090186265 | Koetting et al. | Jul 2009 | A1 |
20090258288 | Weber et al. | Oct 2009 | A1 |
20090258289 | Weber et al. | Oct 2009 | A1 |
20090280395 | Nemesh et al. | Nov 2009 | A1 |
20090325051 | Niedzwiecki et al. | Dec 2009 | A1 |
20090325052 | Koetting et al. | Dec 2009 | A1 |
20090325054 | Payne et al. | Dec 2009 | A1 |
20090325055 | Koetting et al. | Dec 2009 | A1 |
20100112419 | Jang et al. | May 2010 | A1 |
20100203376 | Choi et al. | Aug 2010 | A1 |
20100209760 | Yoshihara et al. | Aug 2010 | A1 |
20100262791 | Gilton | Oct 2010 | A1 |
20100275619 | Koetting et al. | Nov 2010 | A1 |
20100276132 | Payne | Nov 2010 | A1 |
20100279152 | Payne | Nov 2010 | A1 |
20100279154 | Koetting et al. | Nov 2010 | A1 |
20100304203 | Buck et al. | Dec 2010 | A1 |
20100307723 | Thomas et al. | Dec 2010 | A1 |
20110000241 | Favaretto | Jan 2011 | A1 |
20110020676 | Kurosawa | Jan 2011 | A1 |
20110027631 | Koenigsmann | Feb 2011 | A1 |
20110027640 | Gadawski et al. | Feb 2011 | A1 |
20110041525 | Kim et al. | Feb 2011 | A1 |
20110045326 | Leuthner et al. | Feb 2011 | A1 |
20110052959 | Koetting et al. | Mar 2011 | A1 |
20110052960 | Kwon et al. | Mar 2011 | A1 |
20110189523 | Eom | Aug 2011 | A1 |
20110293982 | Martz et al. | Dec 2011 | A1 |
20110293983 | Oury et al. | Dec 2011 | A1 |
20120082880 | Koetting et al. | Apr 2012 | A1 |
20120171543 | Hirsch et al. | Jul 2012 | A1 |
20120183830 | Schaefer et al. | Jul 2012 | A1 |
20130045410 | Yang et al. | Feb 2013 | A1 |
20130136136 | Ando et al. | May 2013 | A1 |
20130255293 | Gadawski et al. | Oct 2013 | A1 |
20130309542 | Merriman et al. | Nov 2013 | A1 |
20140050953 | Yoon et al. | Feb 2014 | A1 |
20140050966 | Merriman et al. | Feb 2014 | A1 |
20140120390 | Merriman et al. | May 2014 | A1 |
20140147709 | Ketkar et al. | May 2014 | A1 |
20140227575 | Ketkar | Aug 2014 | A1 |
20140308558 | Merriman et al. | Oct 2014 | A1 |
20150010801 | Arena et al. | Jan 2015 | A1 |
Number | Date | Country |
---|---|---|
19639115 | Mar 1998 | DE |
102008034860 | Jan 2010 | DE |
102009006426 | Jul 2010 | DE |
1577966 | Sep 2005 | EP |
1852925 | Nov 2007 | EP |
2065963 | Jun 2009 | EP |
2200109 | Jun 2010 | EP |
2262048 | Dec 2010 | EP |
481891 | Mar 1938 | GB |
08-111244 | Apr 1996 | JP |
09-129213 | May 1997 | JP |
09-219213 | Aug 1997 | JP |
2001-105843 | Apr 2001 | JP |
2002-038033 | Feb 2002 | JP |
2002-319383 | Oct 2002 | JP |
2002333255 | Nov 2002 | JP |
2003-188323 | Jul 2003 | JP |
2003282112 | Oct 2003 | JP |
2004333115 | Nov 2004 | JP |
2005-126315 | May 2005 | JP |
2005147443 | Jun 2005 | JP |
2005349955 | Dec 2005 | JP |
2006-139928 | Jun 2006 | JP |
2007305425 | Nov 2007 | JP |
2008-054379 | Mar 2008 | JP |
2008-062875 | Mar 2008 | JP |
2008062875 | Mar 2008 | JP |
2008-080995 | Apr 2008 | JP |
2008-159440 | Jul 2008 | JP |
2009-009889 | Jan 2009 | JP |
2009054297 | Mar 2009 | JP |
10-2005-0092605 | Sep 2005 | KR |
10-0530260 | Nov 2005 | KR |
10-0637472 | Oct 2006 | KR |
100637472 | Oct 2006 | KR |
10-2007-0018507 | Mar 2007 | KR |
10-0765659 | Oct 2007 | KR |
10-2008-0047641 | May 2008 | KR |
20090082212 | Jul 2009 | KR |
10-0921346 | Oct 2009 | KR |
20090107443 | Oct 2009 | KR |
20100119497 | Sep 2010 | KR |
20100119498 | Sep 2010 | KR |
20100119497 | Nov 2010 | KR |
20100119498 | Nov 2010 | KR |
20110013269 | Feb 2011 | KR |
20110013270 | Feb 2011 | KR |
20110013269 | Sep 2011 | KR |
20110126764 | Nov 2011 | KR |
2006101343 | Sep 2006 | WO |
2007007503 | Jan 2007 | WO |
2007115743 | Oct 2007 | WO |
2008111162 | Sep 2008 | WO |
2009073225 | Jun 2009 | WO |
2011145830 | Nov 2011 | WO |
Entry |
---|
Written Opinion for International application No. PCT/KR2013/002597 dated Jun. 25, 2013. |
William Koetting et al., pending U.S. Appl. No. 12/897,135 entitled “Battery Cell Assembly, Heat Exchanger, and Method for Manufacturing the Heat Exchanger,” filed Oct. 4, 2010. |
International Search Report; International Application No. PCT/KR2009/003428, International Filing Date: Jun. 25, 2009; Date of Mailing: Jan. 22, 2010; 2 pages. |
International Search Report; International Application No. PCT/KR2009/006121; International Filing Date: Oct. 22, 2009; Date of Mailing: May 3, 2010; 2 pages. |
International Search Report; International Application No. PCT/KR2010/005639; International Filing Date: Aug. 24, 2010; Date of Mailing: Jun. 3, 2011; 2 pages. |
International Search Report; International Application No. PCT/KR2009/003429; International Filing Date: Jun. 25, 2009; Date of Mailing: Jan. 12, 2010; 3 pages. |
International Search Report; International Application No. PCT/KR2009/003436; International Filing Date: Jun. 25, 2009; Date of Mailing: Jan. 22, 2010; 2 pages. |
International Search Report; International Application No. PCT/KR2010/002334; International Filing Date: Apr. 15, 2010; Date of Mailing: Nov. 29, 2010; 2 pages. |
International Search Report; International Application No. PCT/KR2010/004944; International Filing Date: Jul. 28, 2010; Date of Mailing: Apr. 29, 2011; 2 pages. |
International Search Report; International Application No. PCT/KR2009/000258; International Filing Date: Jan. 16, 2009; Date of Mailing: Aug. 28, 2009; 2 pages. |
International Search Report; International Application No. PCT/KR2009/003430; International Filing Date: Jun. 25, 2009; Date of Mailing: Feb. 3, 2010; 2 pages. |
International Search Report; International Application No. PCT/KR2009/003434; International Filing Date: Jun. 25, 2009; Date of Mailing: Jan. 18, 2010; 2 pages. |
International Search Report; International Application No. PCT/KR2010/002336; International Filing Date: Apr. 15, 2010; Date of Mailing: Jan. 31, 2011; 2 pages. |
International Search Report; International Application No. PCT/KR2010/002337; International Filing Date: Apr. 15, 2010; Date of Mailing: May 3, 2010; 2 pages. |
International Search Report; International Application No. PCT/KR2010/002340; International Filing Date: Apr. 15, 2010; Date of Mailing: Jan. 31, 2011; 2 pages. |
Machine Translation of Japanese Patent Application No. 2009-009889 A, published Jan. 15, 2009, 22 pages. |
“Gasket”. Merriam-Webster. Merriam-Webster. Web. May 30, 2012. <http://www.merriam-webster.com/dictionary/gasket>. |
International Search Report for International application No. PCT/KR2013/004015 dated Sep. 26, 2013. |
U.S. Appl. No. 14/161,806, filed Jan. 23, 2014 entitled Battery Cell Assembly and Method for Coupling a Cooling Fin to First and Second Cooling Manifolds. |
U.S. Appl. No. 14/273,572, filed May 9, 2014 entitled Battery Pack and Method of Assembling the Battery Pack. |
U.S. Appl. No. 14/273,586, filed May 9, 2014 entitled Battery Module and Method of Assembling the Battery Module. |
U.S. Appl. No. 14/328,000, filed Jul. 10, 2014 entitled Battery System and Method of Assembling the Battery System. |
U.S. Appl. No. 14/330,163, filed Jul. 14, 2014 entitled Battery System and Method for Cooling the Battery System. |
U.S. Appl. No. 14/511,389, filed Oct. 10, 2014 entitled Battery Cell Assembly. |
U.S. Appl. No. 14/516,667, filed Oct. 17, 2014 entitled Battery Cell Assembly. |
U.S. Appl. No. 14/531,696, filed Nov. 3, 2014 entitled Battery Pack. |
Written Opinion for International application No. PCT/KR2013002597 dated Feb. 2, 2015. |
Number | Date | Country | |
---|---|---|---|
20130255293 A1 | Oct 2013 | US |