1. Field of the Invention
The present invention relates to a traffic control system and more particularly, to a beacon-based traffic control system.
2. Description of Related Art
A conventional traffic control system uses a GPS (Global Positioning System) to provide positioning service, a GPS auto track (the so-called GPS black box) to store multiple global positioning data or to help satellite navigation. Other on-board electronic devices such as LCD, multimedia system, and etc. may be used to provide electronic map, electronic paths, stock information, . . . and other services.
However, a GPS may be blocked and unable to receive satellite signal when the car is moving under an overhead bridge, in a tunnel, or within a high-rise building intensive area. In this case, it will be difficult to accurately calculate the location of the car, and the other devices of the car based on the GPS, for example, the navigation system will be unable to function. Therefore, the devices of the car based on the GPS can keep functioning only after the car has moved away from the blocked area and received the satellite signal again.
The beacon-based traffic control system of the present invention is installed in a motor vehicle for receiving a wireless signal from one of a plurality of beacons. The beacons are respectively arranged at a plurality of geographic locations. Each beacon is defined to have a respective identification code correspondingly. Each beacon comprises a short-distance wireless transmitter for transmitting the wireless signal reaching to a predetermined distance. The wireless signal contains the corresponding identification code of the respective beacon.
The beacon-based traffic control system comprises an on-board short-distance wireless receiver, a memory device, and a microprocessor. The on-board short-distance wireless receiver adapted to receive the wireless signal from one of the beacons to obtain the corresponding identification code of the respective beacon. The memory device having stored therein a comparison table, the comparison table comprising the identification codes of the beacons and a plurality of action commands, each the identification code corresponding to at least one of the action commands. The microprocessor electrically connected to the on-board short-distance wireless receiver and the memory device. The microprocessor adapted to fetch the corresponding identification code of the wireless signal received by the on-board short-distance wireless receiver, to search the corresponding at least one action command from the memory device subject to the fetched identification code, and execute the searched corresponding at least one action command so as to control the operation of the electronic devices of the motor vehicle.
The beacons can be classified in a plurality of geographic groups. The comparison table contains at least one of the geographic groups which corresponding to at least one of the identification codes of the beacons. The geographic groups can be a street group, a parking lot group, a tunnel group, a landscape group, and a shop group.
The geographic locations of the beacons can be in a sheltered geographic zone, for example, in a tunnel, high-rise building intensive district, underground parking lot, or any geographic area where signal interference or attenuation problem is serous.
Further, each identification code in the comparison table corresponds to a control condition, and the microprocessor is adapted to search the control condition corresponding to the fetched identification code and to execute the corresponding at least one action command after the searched control condition has been matched. The control condition includes control parameters such as Time/Date parameter, Speed parameter, Enable flag, or the like, and other Boolean expression combinations.
The at least one action command comprises an instruction to modify the content of the comparison table of the memory device, for example, the content can be the identification code, the action command, the control condition, and the related relation between the identification code, the action command, and the control condition.
The aforesaid electronic devices of the motor vehicle include the headlight system, electric windows, fog lights, car stereo system, AV multimedia system, wireless communication device, security system, on-board mobile secretary system, air conditioning system, navigation system, . . . etc.
The beacon-based traffic control system further comprises an input device for inputting data into the comparison table of the memory device and editing the data in the comparison table of the memory device. The input device can be a wireless receiver, CD-ROM, attached keyboard, mobile computer, . . . , etc.
The beacon-based traffic control system further comprises a control center electrically connected to the beacons by wire or wirelessly to provide to the motor vehicle a variety of services including fried matching, inquiry of sales centers, shopping in vehicle, inquiry of traffic conditions, . . . and etc.
Referring to
The motor vehicle 1 comprises an on-board short-distance wireless receiver 10, a memory 11, a microprocessor 12, an input device 14, and a variety of vehicle electronic components 15. The short-distance wireless receiver 10 can be a RFID (Radio Frequency Identification) receiver, bluetooth receiver, IEE802.11 series receiver, etc. for short distance application, capable of receiving the wireless signal transmitted by the short-distance wireless transmitter 22 of each beacon B01, B02, . . . .
The memory 11 has stored therein a comparison table T as shown in
Further, the input device 14 can be a keyboard 140, a CD reader 141, a wireless transceiver 16 (for example, mobile phone, PDA, pager, . . . ), card reader, etc. for inputting or editing the aforesaid comparison table T. By means of the wireless transceiver 16, the motor vehicle 1 can receive a variety of value-added services from a remote control center 4 through a wireless transmission.
When the motor vehicle 1 keeps moving northwards through a beacon B07 toward the tunnel, the microprocessor 12 searches the comparison table T to find the action command Q2 and then executes the action command Q2. This action command Q2 is not to control the operation of the vehicle electronic components 15 but to modify the enable flag in the comparison table T corresponding to the identification code B08.
This enable flag works like a switch. When at disable, the action command Q3 corresponding to the identification code of the beacon B08 will not be executed. When the motor vehicle 1 passes through the beacon B07, the enable flag corresponding to the identification code of the beacon B08 will be changed to enable, and the microprocessor 12 will execute the action command Q3 to close the electric windows 152 and open the headlight system 150 when the motor vehicle 1 passes through the beacon B08 after the identification code of the beacon B08 has been changed to enable. After the motor vehicle 1 passed through the beacon B08, the enable flag of the identification code of the beacon B08 is returned to disable.
In the same way, when keeps moving northwards, the motor vehicle 1 will pass through a beacon B14 near the gateway before entering the highway, and will execute the corresponding action command Q7 searched from the comparison table T to change the enable flag of the identification code of the beacon A05 to enable. When passing through the beacon A05 at the entry of the highway, the microprocessor 12 of the motor vehicle 1 will then execute the corresponding action command Q8 to provide the identification code of the beacon A05 and the license number of the motor vehicle 1 to the control center 4, allowing the control center 4 to know the location of the motor vehicle 1 and to trace the traveling of the motor vehicle 1.
When leaving the highway through an exit, the microprocessor 12 of the motor vehicle 1 will execute the action command Q9 of the identification code of the beacon A13 and the action command Q10 of the identification code of the beacon E09, providing the identification code of the beacon E09 and the license number of the motor vehicle 1 to the control center 4, so that the control center 4 can control the traffic flow on the highway, adjust the traffic flow control at the entry, or even calculate the feed to be charged to every motor vehicle passing through the entry or exit (beacon A04 or A13) of the highway.
As stated above, the action commands Q1, Q2 stored in the memory 11 corresponding to the identification codes of beacons B01, B02, . . . F15 can be triggered individually like a regular switch to control the operation of the electronic components 15 of the motor vehicle 1, or to provide data to the control center 4, enabling the control center 4 to know the moving direction of the motor vehicle 1.
Further, the identification codes in the comparison table T can be arranged and classified by group and the classified groups of identification codes can be corresponded to different geographic groups N1, N2, . . . , to facilitate project planning. For example, A** indicates the area within A01˜A16 as shown in
Therefore, the aforesaid grouping prototype facilitates establishment of the comparison table T and its effective application. Establishing the comparison table T by the aforesaid grouping prototype greatly reduces the amount of data and the size of the electronic file of the comparison table T, allowing fast renewal of the comparison table T during a repair work of the motor vehicle 1 at the motor vehicle shop or factory or update of the comparison table T by the control center 4 through the wireless transceiver 16 or by the CD reader 141.
Referring to
Other control conditions such as to execute the action command Q4 under the condition that the identification code grouping*** to be any identification code and the Time/Date parameter to be 17:00PM˜08:00AM. In this case, the microprocessor 12 will detect the current time when passing through any beacon B01 and will open the headlight system 150 if the current time is detected to be 17:01PM. Further, there is another condition with date included, for example, when the motor vehicle 1 passing through the beacon E07 near Sogo Department Store 60, the microprocessor 12 will detect the current time and date and will execute the action command Q5 to drive the multimedia system 151 to play Sogo Department Store Promotional Film if the date is detected to be within November 1st˜15th and the time is detected to be within 10:00AM˜22:00PM.
Further, in the aforesaid comparison table T, the control conditions (for example, Time/Date parameter, Speed parameter, Enable flag parameter, . . . etc.) corresponding to the identification codes of the beacons B01, B02, . . . F15, the corresponding action commands, and their related relationship are editable and renewable so that a specific effective comparison table T can be established to fit the requirements of every individual motor vehicle 1.
The effectiveness of the present invention will become more prominent in a sheltered area. As shown in
Referring to
Further, the control center 4 can provide the beacons B01, B02, . . . F15 with a new identification code.
Further, because the beacon B01 is equipped with a short-distance wireless receiver 23 and the motor vehicle 1 has an on-board short-distance wireless transmitter 13, the beacon B01 can provide simple services to the motor vehicle 1 without the help of the control center 4. As illustrated in the friend matching system of
Although the present invention has been explained in relation to its preferred embodiment, it is to be understood that many other possible modifications and variations can be made without departing from the scope of the invention as hereinafter claimed.
Number | Date | Country | Kind |
---|---|---|---|
94103799 A | Feb 2005 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
5301357 | Thompson | Apr 1994 | A |
5577168 | Haas et al. | Nov 1996 | A |
5960350 | Schorman et al. | Sep 1999 | A |
6647328 | Walker | Nov 2003 | B2 |
6965816 | Walker | Nov 2005 | B2 |
7047009 | Laroia et al. | May 2006 | B2 |
7180898 | Yoshida et al. | Feb 2007 | B2 |
7388929 | Roy | Jun 2008 | B2 |
20040152464 | Sugaya | Aug 2004 | A1 |
20040254690 | Hasegawa et al. | Dec 2004 | A1 |
20040267419 | Jeng | Dec 2004 | A1 |
20060178794 | Chen et al. | Aug 2006 | A1 |
Number | Date | Country |
---|---|---|
2001283373 | Oct 2001 | JP |
2005130069 | May 2005 | JP |
2005309869 | Nov 2005 | JP |
2006314093 | Nov 2006 | JP |
2007028210 | Feb 2007 | JP |
2007148793 | Jun 2007 | JP |
2008070996 | Mar 2008 | JP |
Number | Date | Country | |
---|---|---|---|
20060178794 A1 | Aug 2006 | US |