1. Field of the Invention
The invention relates to a beam combiner for a multicolor laser display, and to a multicolor laser display having a beam combiner.
2. Description of the Related Art
In a multicolor laser display, laser beams emitted by a laser light source are, for example, projected onto a screen, in order to display a multicolor image. The lasers of the laser light source emit, for example, laser beams in the colors red, green and blue. In order to display the multicolor image with good quality, the projected laser beams should have good beam coincidence on the screen. The laser beams are, for example, combined by a beam combiner and are projected onto the screen, in order to display the multicolor image.
A prismatic beam combiner can be used as the beam combiner. A prismatic beam combiner is known, for example, from the document U.S. Pat. No. 6,154,259 A. The side surfaces of the prisms have different dielectric coatings, the reflection and transmission of which are set such that the different colors are input on different side surfaces of the prismatic beam combiner. For example, red, green and blue beams are input on three different side surfaces. The three beams emerge on a fourth side surface in a combined form from the prismatic beam combiner, in order for example to be projected onto a screen.
Beam combination can also be achieved by beam combiner platelets. In this case, dielectrically coated glass platelets are used for beam combination. At least two beams of different color which arrive at the beam combiner platelet from two directions at an angle of 90° to one another are combined. In this case, by way of example, a beam of one color is reflected, and a beam of the other color is transmitted.
Beam combiners with dichroic mirrors for the combination of beams are known, for example, from the document U.S. Pat. No. 6,426,781 B1.
One object of the invention is to provide a beam combiner for a multicolor laser display in which beam coincidence of the emitted beams is achieved in a comparatively simple manner, in particular with as few components as possible. A further object is to provide a multicolor laser display with an improved beam combiner.
These and other objects are attained in accordance with one aspect of the present invention directed to a beam combiner for a multicolor laser display that comprises an optical light source which has at least two semiconductor lasers. The emitted beams from the semiconductor lasers are at different wavelengths, that is to say they have different colors. In particular, the optical light source may have three semiconductor lasers which emit the beams in the colors red, green and blue.
The beam combiner contains a lens which is arranged in the beam path which is formed by the beams emitted from the at least two semiconductor lasers. The beams from the semiconductor lasers are preferably formed to be at least partially coincident by means of the lens.
The beam combiner has an advantageously simple design, with only a small number of components being used, preferably just one single lens. The beam combiner can, therefore, also be adjusted easily. Further advantages are the comparatively low costs for production of the beam combiner, as well as its small physical size.
The at least two semiconductor lasers each have emission points which, in one advantageous embodiment, are at a distance of less than 500 μm from one another and/or from an optical axis of the lens. The expression the “emission point” of the semiconductor laser means the point at which the center point of the emitted laser beam emerges from the semiconductor body of the semiconductor laser. The emission points of the semiconductor lasers are preferably at a distance of less than 100 μm from one another and/or from an optical axis of the lens. A short distance between the respective emission points and the optical axis makes it easier to ensure that the emitted beams can be made coincident by the lens. Beam coincidence is improved by reducing the distance between the emission points. It is possible for the beams to leave the lens with a beam divergence, with the expression a “beam divergence” meaning the angle between the beam and the optical axis of the lens. The beam divergence becomes less the shorter the distance between the emission points and the optical axis, or the longer the focal length of the lens is.
It is also advantageous for the lens to be arranged a short distance from the emission points of the semiconductor lasers. The distance between the emission points of the semiconductor lasers and the lens is preferably 5 mm or less, particularly preferably 3 mm or less.
In a further advantageous embodiment, a prism is arranged in the beam path downstream from the lens. After passing through the prism, the beams are preferably parallel. It is also possible to design or to arrange the prism such that the beams have a predetermined beam divergence after emerging from the prism.
In a further advantageous embodiment, a birefringent plate, in particular composed of birefringent glass, is arranged in the beam path downstream from the lens. The beams emitted from the semiconductor lasers, for example two semiconductor lasers, have polarization directions which differ by 90°. When the beams pass through the plate, the birefringence results in one of the beams being refracted to a greater extent than the other beam, so that the beams are preferably parallel to one another after passing through the plate. It is also possible for the beams to diverge from one another with a predetermined beam divergence after passing through the plate composed of birefringent glass.
In a further advantageous embodiment, a further lens is arranged in the beam path downstream from the lens and acts as a collimator. After passing through the further lens, the beams are preferably parallel or have a predetermined beam divergence.
In a further embodiment, a diffractive element is arranged in the beam path downstream from the lens. The beams are diffracted differently by the diffractive element, depending on the wavelength, so that they are preferably parallel to one another or have a predetermined beam divergence after leaving the diffractive element. The diffractive element may be an element which diffracts on the surface, for example a grating or a surface hologram, or an element which diffracts in the volume, for example a volume hologram.
In the case of beams at different wavelengths, the positions of the focal points of the lens may differ owing to the dispersion of the material of the lens, for example glass or plastic. In one advantageous embodiment, the lens is an achromatic lens, so that the effect of the dispersion is reduced, or even completely eliminated. An achromatic lens contains a combination of at least two glass types in order to reduce the chromatic aberration. The focal points of the lens for the various wavelengths of the plurality of semiconductor lasers in this case advantageously lie on a plane, or at least virtually on a plane.
By way of example, the lens may be a spherical lens or an aspheric lens. The lens preferably has at least one free-form area which advantageously makes it possible to match the optical characteristics of the lens specifically to the arrangement of the semiconductor lasers in the optical light source, in order to achieve good beam coincidence of the emitted laser beams. A lens free-form area which is suitable for the respective optical light source may be intended for a predetermined geometric arrangement of the semiconductor lasers and the lens, and for predetermined wavelengths of the emitted laser beams, by means of simulation calculations.
In a further embodiment, the lens is a diffractive optical element (DOE). The diffractive optical element which acts as a lens is preferably a glass or plastic plate which is provided with diffractive surface structures. The surface structures in this case have dimensions which are generally smaller than the wavelength of the laser radiation which is intended to be focused. Alternatively, the diffractive optical element may also be a volume hologram. A suitable surface structure or a suitable volume hologram of the diffractive optical element may be calculated for the desired imaging characteristics, by means of simulations.
In one preferred refinement, the diffractive optical element has a plurality of optical axes for the various wavelengths of the semiconductor lasers. This refinement makes use of the fact that the diffraction characteristics of the diffractive optical element depend on the wavelength of the semiconductor-laser light to be focused. A suitable surface structure or a suitable volume hologram can be used to ensure that the diffractive optical element has a plurality of optical axes for the various emission wavelengths of the semiconductor lasers. The plurality of optical axes are advantageously arranged offset with respect to one another, to be precise preferably such that the optical axis for one specific wavelength in each case runs collinearly with the emission direction of the semiconductor laser which emits this wavelength.
In one alternative refinement, the optical axes of the diffractive optical element which acts as a lens run at an angle to one another. This results in “squinting” of the laser beams, thus making it possible to further improve the beam coincidence.
In a further advantageous embodiment, the at least two semiconductor lasers are arranged parallel one above the other with mutually facing emission layers. In this embodiment, for example, each of the semiconductor lasers may have a substrate, with the semiconductor lasers being arranged such that the substrates face away from one another. The distance between the emission points of the at least two semiconductor lasers is advantageously short in this embodiment, preferably 20 μm or less, thus in particular making it possible to arrange the emission points of the semiconductor lasers very close to the optical axis of the lens.
In a further advantageous embodiment, the optical light source has three semiconductor lasers which are arranged, to ensure that the emitted beams are in each case coincident, with mutually facing emission layers in a triangle. Each of the semiconductor lasers has, for example, a substrate, with the substrates facing away from one another. The substrates therefore form a triangle, with the emission layers arranged on the substrates pointing toward the inside of the triangle. This makes it possible to ensure that the distances between the emission points of the three semiconductor lasers are advantageously short, and are preferably 100 μm or less. In particular, this makes it possible to arrange the emission points of the semiconductor lasers very close to the optical axis of the lens. The emission points are advantageously at the same distance from one another, and are preferably also at the same distance from the optical axis of the lens.
In one preferred embodiment, the at least two semiconductor lasers are arranged alongside one another on a common substrate. In a further preferred embodiment, the at least two semiconductor lasers are monolithically integrated on a substrate, that is to say they are arranged in a common layer stack.
In a further advantageous embodiment, at least one of the at least two semiconductor lasers is arranged offset with respect to at least one of the semiconductor lasers in a direction which runs parallel to the optical axis of the lens. In this case, for example, the distance between the semiconductor laser that is arranged offset and the lens is shorter than the distance between the other semiconductor laser and the lens. This advantageously makes it possible to reduce or entirely compensate for the effect of dispersion of the lens, as a result of which the lens has different focal lengths for the different-colored laser beams. The offset arrangement of the different-colored lasers allows the focal points of the emitted beams to lie on a plane, in particular on a screen of a laser display.
At least one of the at least two semiconductor lasers in the optical light source may be an edge-emitting semiconductor laser. Furthermore, at least one of the at least two semiconductor lasers may also be a surface-emitting semiconductor laser with a vertical resonator (VCSEL) or a surface-emitting semiconductor laser with an external vertical resonator (VECSEL).
The optical light source may, in particular, at the same time contain at least one edge-emitting and at least one surface-emitting semiconductor laser.
For example, the optical light source may in each case have a red and a blue edge-emitting semiconductor laser, and a green surface-emitting semiconductor laser. A surface-emitting semiconductor laser is preferably used in particular for the color green since green edge-emitting semiconductor lasers are more difficult to produce than blue or red edge-emitting semiconductor lasers.
The beam emitted from a surface-emitting semiconductor laser, in particular VCSEL or VECSEL, generally has a different beam profile than the beam of an edge-emitting semiconductor laser. If the optical light source has at least one edge-emitting semiconductor laser and at the same time at least one surface-emitting semiconductor laser, a spherical lens is advantageously arranged in the beam path of the frequency-doubled semiconductor laser in order to achieve emitted beams with identical beam profiles.
In a further advantageous embodiment, at least one of the at least two semiconductor lasers is a frequency-doubled semiconductor laser. In particular, the frequency-doubled semiconductor laser may be a surface-emitting semiconductor laser, for example a VCSEL or a VECSEL, or a DFB (distributed feedback) laser.
In a further advantageous embodiment, the beam combiner has drive electronics for the semiconductor lasers, which drive electronics are suitable to drive the semiconductor lasers with a time offset to achieve at least partial beam coincidence.
In a multicolor laser display which contains a beam combiner according to the invention, the beams emitted by the semiconductor lasers are, for example, projected via a scanner mirror onto a screen in order to display an image there. The beams are advantageously made coincident by the beam combiner such that the beams entirely or at least partially overlap on arriving at the screen. In this case, the distance between the screen and the scanner mirror may be variable.
Other objects and features of the present invention will become apparent from the following detailed description considered in conjunction with the accompanying drawings. It is to be understood, however, that the drawings are designed solely for purposes of illustration and not as a definition of the limits of the invention, for which reference should be made to the appended claims. It should be further understood that the drawings are not necessarily drawn to scale and that, unless otherwise indicated, they are merely intended to conceptually illustrate the structures and procedures described herein.
Identical elements or elements having the same effect are provided with the same reference symbols in the figures. The figures should not be regarded as being to scale, and in fact individual elements may have their size exaggerated for illustrative purposes.
In this embodiment, the optical light source 1 has two semiconductor lasers 11, 13. For example, one semiconductor laser 11 emits red light at a wavelength of, for example, 660 nm. The other semiconductor laser 13, for example, emits blue light at a wavelength of, for example, 440 nm.
The red laser beam 5 and the blue laser beam 6 are emitted by the semiconductor lasers 11, 13 in the optical light source 1 of the beam combiner, and arrive at the scanner mirror 2. The scanner mirror 2 projects the red beam 5 and the blue beam 6 onto the screen 3, 4. On arriving at the screen 3, 4, the beams 5, 6 have a beam offset Δx on the screen 3, 4. The red beam 5 and the blue beam 6 have a beam divergence Δα with respect to one another on arriving at the screen 3, 4.
The beams 5, 6 are projected onto the screen 3, 4 by the scanner mirror 2 with a scan angle γ, such that a multicolor image is written on the screen 3, 4 by means of a so-called flying-spot method. The beams 5, 6 are deflected on the screen 3, 4 both in the horizontal direction (x-direction) and in a vertical direction (y-direction, not illustrated) running at right angle to the plane of the drawing.
The beams 5, 6 are advantageously at least partially coincident, so that they at least partially overlap on the screen 3, 4. The beam offset Δx should preferably be +/−0.1 mm or less. The beam divergence Δα with which the beams arrive at the screen should preferably be less than +/−0.02°. The smaller the beam divergence Δα and the shorter the distance between the emission points of the semiconductor lasers, the further the screen 3, 4 may be arranged away from the scanner mirror 2 without the beam offset Δx becoming sufficiently large that the beams are no longer coincident. The lens 14 contained in the beam combiner advantageously reduces the beam divergence Δα of the light beams 5, 6 even before they arrive at the scanner mirror 2.
The beam combiner advantageously contains drive electronics 28 for the semiconductor lasers 11, 13, which drive electronics 28 are, for example, integrated in the optical light source 1. The operation of the drive electronics 28 will be explained in more detail in the following text with reference to
If the emitted beams have a beam divergence Δα with respect to one another on arrival at the screen of the laser display, this makes it more difficult to achieve ideal beam coincidence.
A beam offset such as this can be compensated for by means of drive electronics for the semiconductor lasers, without any further optical elements. For this purpose, the drive electronics drive the semiconductor lasers with a time offset such that, for example, at one specific position of the scanner mirror, the red laser is operated with the color information of one specific image point, the green laser is operated with the color information of the image point offset by one pixel, and the blue laser is operated with the color information of the image point offset by two pixels. In this way, the drive electronics ensure that the color information for the red, green and blue of one image point are imaged in the same pixel on the screen. This, therefore, results in the drive electronics producing the state shown in
In the situation in which the laser beams arrive at the screen with a beam offset which is so great that they cannot be used to produce adjacent pixels 10, it is possible for the distance between the beams to also be a plurality of pixels 10 of the image.
In this embodiment, as already described above in conjunction with
It is also advantageous for a beam offset, as in the case of the examples in
The semiconductor lasers 11, 12, 13 each have a wire contact 16 and can be electrically driven individually. Each of the three semiconductor lasers 11, 12, 13 has an emission point 27. The green semiconductor laser 12 is arranged on an optical axis of the lens 14. The distance d1 between the emission point 27 of the red semiconductor laser 11 and the optical axis of the lens 14, as well as the distance d2 between the emission point 27 of the blue semiconductor laser 13 and the optical axis 29 of the lens 14, should be as short as possible in order to ensure good coincidence of the beams which are emitted by the semiconductor lasers 11, 12, 13.
The distances between the emission points 27 of the semiconductor lasers 11, 12, 13 and the optical axis 29 of the lens 14 are preferably less than 500 μm, particularly preferably less than 100 μm. This means that the semiconductor lasers 11, 12, 13 are at very short distances from one another on the heat sink 15.
The beam divergence Δβ1 can lead to the beam from the blue semiconductor laser 13 arriving at the screen offset by n pixels with respect to the beam from the green semiconductor laser 12, the emission point of which is arranged on the optical axis 29 of the lens. If the display scan angle is γ and the number of pixels per line is N, then the pixel separation n for the offset at which the beams arrive at the screen is:
n=N((Δβ1/γ)≦N[arctan(d1/f)/γ].
In a mathematical example, the distance d1 between the emission point 27 of the red semiconductor laser and the optical axis of the lens is, for example, 100 μm. The focal length f of the lens is 2 mm. The scan angle γ is 44°, and the total number N of pixels in one line on the screen is 640. The pixel separation n in one line, that is to say in the x-direction on the screen, is then 42 pixels.
Since the beams emitted by the semiconductor lasers 11, 12, 13 are at different wavelengths, it is possible for the focus points of the beams not to lie on one plane, because of dispersion. The influence of dispersion can be reduced or cancelled out entirely by using an achromatic lens 14 or a lens composed of a special glass with little dispersion.
The distance d1 between the emission point 27 of the red semiconductor laser 11 and the optical axis 29 of the lens 14, and the distance d2 between the emission point 27 of the blue semiconductor laser 13 and the optical axis 29 of the lens 14 should in each case be as short as possible, so that the beams arrive at the lens 14 with a small beam divergence with respect to the optical axis 29.
As illustrated in
The respective emission layers of the semiconductor layers 11, 12, 13 face one another. The semiconductor lasers 11, 12, 13 are advantageously arranged such that the p-contact faces on the side of the semiconductor lasers 11, 12, 13 which faces away from the substrate 26 are opposite one another. This makes it possible to achieve shorter distances between the emission points 27 and the optical axis of the lens 14 than in the case of an arrangement in which the substrates of the semiconductor lasers are opposite.
The emission points 27 of the semiconductor lasers 11, 12, 13 are shown as circles and, in this embodiment, are arranged very close to the optical axis of the lens 14. The optical axis of the lens 14 passes through the center point of the lens, which is located at the intersection of the dashed lines. The distance between the emission points is preferably 100 μm or less, particularly preferably 50 μm or less, thus making it possible to achieve good beam coincidence and therefore a small beam offset Δx on a screen. The respective emission points 27 are preferably at equal distances from the optical axis of the lens 14.
In this embodiment, the semiconductor lasers 11, 13 are preferably arranged on the respective substrate 26 such that the p-side contacts of the semiconductor lasers 11, 13 are each arranged on the surface opposite the substrate 26.
The mutually opposite semiconductor lasers are in this case either arranged separated from one another by a thin air gap, as illustrated in
The emission points of the plurality of emission layers in the monolithically integrated semiconductor laser 21 are advantageously separated from one another by only a few μm. It is, therefore, possible for all the emission points to be arranged virtually on the optical axis of the lens 14. Also after passing through the lens 14, the emitted beams therefore have a very small beam divergence. Furthermore, the monolithically integrated semiconductor laser 21 has the advantage that, in contrast to separately manufactured semiconductor lasers, this avoids position errors during assembly.
The monolithically integrated semiconductor laser 21 is preferably arranged on a heat sink 15, in order to dissipate the heat produced during operation.
By way of example, the optical light source has a red semiconductor laser 11 and a blue semiconductor laser 13. In this embodiment, the semiconductor lasers 11, 13 are edge-emitting laser diodes. The emission point 27 of the blue semiconductor laser 13 is offset by a distance Δz along the optical axis of the lens 14 with respect to the emission point 27 of the red semiconductor laser 11.
The offset arrangement of the semiconductor lasers 11, 13 with the separation Δz compensates for the color error of the lens (chromatic aberration) caused by the dispersion of the lens material, as a result of which the focal points for light at different wavelengths, for example for red light and blue light, do not coincide. For example, if the focal length of the lens is shorter for blue light than for red light because of the dispersion, the blue laser 13 is arranged closer to the lens 14 than the red laser 11.
The use of the offset arrangement of the semiconductor lasers 11, 13 to compensate for the color error of the lens 14 has the advantage that the emitted beams have a smaller beam divergence Δβ1 with respect to the optical axis after passing through the lens 14 than in an arrangement in which the semiconductor lasers are not offset.
Furthermore, the optical light source contains a frequency-doubled semiconductor laser 18 which emits green light. The frequency-doubled semiconductor laser 18 may, in particular, be a vertical external cavity surface emitting laser (VECSEL), which can be electrically or optically pumped, or a distributed feedback laser. The frequency doubling of the semiconductor laser 18 is achieved for example by means of a non-linear optical crystal. For example, the semiconductor laser 18 may have a fundamental wavelength of 1064 μm, with green light being produced at a wavelength of 532 nm by means of frequency doubling.
The beam profile of the green frequency-doubled semiconductor laser 18 differs from the beam profile of the edge-emitting semiconductor laser 17. This is because frequency-doubled surface-emitting lasers typically have less beam divergence and a wider beam diameter than edge-emitting semiconductor lasers.
The different beam profiles of the semiconductor lasers 17, 18 make it harder to achieve beam coincidence by means of a beam combiner. It is, therefore, advantageous to match the beam profiles of the semiconductor lasers 17, 18 to one another before they pass through the lens 14 of the beam combiner. A spherical lens 19 is preferably arranged in the beam path of the green semiconductor laser 18 in order to match the beam profile of the green semiconductor laser 18 to the beam profile of the edge-emitting semiconductor laser 17. In this embodiment, the spherical lens 19 has a small diameter, in particular of 300 μm or less. The use of this spherical lens 19 with an extremely short focal length makes it possible to match the beam profile of the green beam to that of the red and blue beams from the edge-emitting semiconductor laser 17. The focus 27A of the spherical lens 19 represents a quasi-emission point, from which a beam originates which has a similar beam profile to the beam, originating from an emission point 27, of the edge-emitting semiconductor laser 17.
The red, green and blue beams, therefore, arrive at the lenses 14 of the beam combiner with at least approximately the same beam profile. Instead of the two lenses 14 illustrated for the beams in
The optical light source contains a red semiconductor laser 11 and a blue semiconductor laser 13, which are both edge-emitting semiconductor lasers. Furthermore, the optical light source contains the frequency-doubled semiconductor laser 18 in order to emit the green beam. As in the case of the embodiment described in conjunction with
A spherical lens 19 is provided in order to match the beam profile of the green semiconductor laser 18 to the beam profiles of the red semiconductor laser 11 and of the blue semiconductor laser 13, as in the case of the already described exemplary embodiment. The spherical lens 19 is arranged above the red semiconductor laser 11 and the blue semiconductor laser 13. The emission points 27 of the red semiconductor laser 11 and of the blue semiconductor laser 13 are at distances d1, d2 from the optical axis of the lens 14. The arrangement of the spherical lens 19 above the red and blue semiconductor lasers 11, 13 allows them to be arranged at an advantageously short distance d3 from the optical axis so that the distances d1, d2, d3 from the optical axis are as short as possible.
Alternatively, the spherical lens 19 can also be fitted alongside the red and blue semiconductor lasers 11, 13. This has the advantage that it results in the beams being arranged linearly, as shown in
A corrector plate 20, which is designed to be planar or wedge-shaped and can be tilted, is arranged in front of the frequency-doubled semiconductor laser 18. The corrector plate allows the beam from the green semiconductor laser 18 to be deflected such that the focus of the spherical lens 19 for the green beam is at the same height as the emission points 27 of the red and blue semiconductor lasers 11, 13.
It may also be advantageous for the emission points 27 of the red and blue semiconductor lasers 11, 13 and the focus 27A of the spherical lens 19 not to be arranged on one plane. If the emission points 27 of the semiconductor lasers 11, 13 or the focus 27A of the spherical lens 19 is or are arranged offset from one another in the direction of the optical axis of the lens 14, it is possible, for example, to compensate for the dispersion of the lens 14, as in the case of the embodiment shown in
Since the beams diverge from one another downstream from the lens 14 with a beam divergence Δβ1, it is advantageous to reduce the beam divergence as close as possible to the lens 14 in order to achieve as little beam offset as possible. The closer the prism 22 is arranged to the lens 14, the less is the beam offset of the beams on the screen.
The method of operation of the prism 22 is based on the fact that each of the emitted laser beams is at a different wavelength. For example, the blue semiconductor laser 13 is at a wavelength of 440 nm, the green semiconductor laser 18 is at a wavelength of 530 nm, and the red semiconductor laser 11 is at a wavelength of 640 nm. A prism 22 which is placed in the beam path downstream from the lens 14 refracts the beams of the three colors differently because of the dispersion. Suitable choice of the optical glass and of the alignment of the prism 22 with respect to the lens 14 results in the emitted beams being parallel downstream from the prism 22.
In particular, the pixel separation n between the beams on the screen can be reduced by means of the prism 22. For example, the pixel separation can be reduced from fourty-four pixels without using the prism 22 to three pixels when using the prism 22.
If the beam offset on the screen is greater than the beam radius of each beam, it is advantageous for the beams not to be aligned parallel but to diverge from one another with a beam divergence of Δβ=γ/N, where y is the scan angle and N is the number of pixels per line in the laser display. Δβ=γ/N is the angle range which a single pixel occupies. This means that the beams are at the same distance from one another even if the distances between the screen and the source differ. For example, for a scan angle of 44° and a total number N of 640 pixels per line, Δβ=44°/640=0.07°.
In order to reduce the beam divergence, the lens 14 is followed by the collimator lens 23 in the beam path. The distance d between the lens 14 and the collimator lens 23 in this embodiment is preferably equal to the focal length f2 of the collimator lens 23. An arrangement such as this results in the beams preferably being refracted such that they are parallel to one another after passing through the collimator lens 23 or, alternatively as described in conjunction with
The diffractive optical element 24 diffracts the beams from the red, green and blue semiconductor lasers 11, 18, 13 as a function of their wavelength so that, after passing through the diffractive optical element 24, they are parallel to one another or, for example, diverge from one another with a predetermined beam divergence Δβ=γ/N.
The diffractive optical element 24 may be an element which diffracts on the surface, for example a grating or surface hologram, or an element which diffracts in the volume, for example a volume hologram. Instead of a diffractive optical element 24 it is also alternatively possible to use a plate composed of birefringent material, in particular a birefringent glass, in the beam path downstream from the lens 14, in order to align the beams such that they are parallel or to set a predetermined beam divergence.
The diffractive optical element 14 preferably has a plurality of optical axes 29, 30, 31 for the various wavelengths of the semiconductor lasers 11, 12, 13. This refinement makes use of the fact that the diffractive characteristics of the diffractive optical element 14 are dependent on the wavelength of the semiconductor-laser light to be focused. It is possible to use a suitable surface structure or a suitable volume hologram to ensure that the diffractive optical element 14 has a plurality of optical axes 29, 30, 31 for the various emission wavelengths of the semiconductor lasers 11, 12, 13.
The plurality of optical axes 29, 30, 31 are advantageously arranged offset with respect to one another, to be precise preferably such that the optical axis for the wavelength of one respective semiconductor laser of the optical light source runs collinearly with respect to the emission direction of the respective semiconductor laser. For example, the diffractive optical element 14 has an optical axis 29 for the radiation from the red semiconductor laser 11, with the optical axis 29 running collinearly with respect to the emission direction of the red semiconductor laser 11. Furthermore, the diffractive optical element 14 has an optical axis 30 for the wavelength of the green semiconductor laser 12, which runs collinearly with respect to the emission direction of the green semiconductor laser 12, and is offset by a distance d1 from the optical axis 29 for the wavelength of the red semiconductor laser 11. Furthermore, the diffractive optical element 14 has an optical axis 31 for the wavelength of the blue semiconductor laser 13, which runs collinearly with respect to the emission direction of the blue semiconductor laser 13 and is offset by a distance d2 from the optical axis 30 for the wavelength of the green semiconductor laser 12. The effect of the diffractive optical element 14 therefore corresponds to the effect of three different virtual lenses, which are indicated by the dashed lines in
The embodiment of the beam combiner illustrated in
In one alternative preferred refinement, the diffractive optical element 14 has the optical axes 29A, 31A indicated by dashed lines instead of the optical axes 29, 31 which are arranged collinearly with respect to the respective emission directions of the semiconductor lasers 11, 13, which optical axes 29A, 31A run at an angle to one another and to the respective emission directions of the semiconductor lasers 11, 13. This means that the laser beams from the semiconductor lasers 11, 13 run at an angle to one another after passing through the diffractive optical element 14, thus effectively producing a squinting optical light source. This makes it possible to further improve the beam coincidence.
The embodiment illustrated in
The explanation of the invention on the basis of the embodiments should, of course, not be regarded as implying any restriction to these embodiments. In fact, the invention covers the disclosed features both individually and in every possible combination with one another, even if these combinations have not been stated explicitly in the claims.
Thus, while there have shown and described and pointed out fundamental novel features of the invention as applied to a preferred embodiment thereof, it will be understood that various omissions and substitutions and changes in the form and details of the devices illustrated, and in their operation, may be made by those skilled in the art without departing from the spirit of the invention. For example, it is expressly intended that all combinations of those elements and/or method steps which perform substantially the same function in substantially the same way to achieve the same results are within the scope of the invention. Moreover, it should be recognized that structures and/or elements and/or method steps shown and/or described in connection with any disclosed form or embodiment of the invention may be incorporated in any other disclosed or described or suggested form or embodiment as a general matter of design choice. It is the intention, therefore, to be limited only as indicated by the scope of the claims appended hereto.
Number | Date | Country | Kind |
---|---|---|---|
10 2007 020 289.1 | Apr 2007 | DE | national |
10 2007 034 958.2 | Jul 2007 | DE | national |
This patent application is a Divisional of U.S. patent application Ser. No. 12/150,743, filed on Apr. 30, 2008, which claims the priority of German patent applications 102006045691.2, filed on 27 Sep. 2006 and 102007021009.6, filed on 4 May 2007, the disclosure content of which are hereby incorporated by reference in their entirety.
Number | Date | Country | |
---|---|---|---|
Parent | 12150743 | Apr 2008 | US |
Child | 13453627 | US |