The application relates to using a pulsed laser to modify the refractive index of an optical medium, and particularly to writing refractive index changes into ocular tissues or replacement or augmentative structures to modify or enhance the visual performance of patients.
Pulsed lasers operating within specified regimes specially adapted to target optical materials have been demonstrated to produce localized refractive index changes in the optical materials without otherwise damaging the materials in ways that would impair vision. The energy regimes, while above the nonlinear absorption threshold, are typically just below the breakdown thresholds of the optical materials at which significant light scattering or absorption degrades their intended performance. The considerations of these adapted energy regimes include pulse wavelength, pulse energy, pulse duration, the size and shape into which the pulses are focused into the optical material, and the temporal and physical spacing of the pulses.
Examples include US Patent Application Publication No. 2013/0226162 entitled Method for Modifying the Refractive Index of Ocular Tissues, which discloses a laser system for changing the index of refraction of cornea tissue in a living eye for forming of modifying optical elements including Bragg gratings, microlens arrays, zone plates, Fresnel lenses, and combinations thereof. Here wavelengths are preferably between 400 nm and 900 nm, pulse energies are preferably between 0.01 nJ and 10 nJ, pulse duration is preferably between 10 fs and 100 fs, the repetition rate is preferably between 10 MHz and 500 MHz, the numerical aperture is preferably about 0.70 producing about a line width between approximately 0.6 μm to 1.5 μm and a line depth between 0.4 μm to 8 μm, and the scan rate is between approximately 0.1 μm/s to 10 mm/s. US Patent Application Publication No. 2013/0268072 entitled Optical Hydrogel Material with Photosensitizer and Method for Modifying the Refractive Index discloses a method for modifying the refractive index of an optical, hydrogel polymeric material prepared with a photosensitizer particularly for the purposes of enhancing the efficiency of nonlinear absorption and increasing the scan rate at which refractive structure can be formed. Wavelengths are preferably between 650 nm to 950 nm, pulse energies are preferably between 0.05 nJ to 10 nJ, pulse duration is preferably between 4 fs and 100 fs, the repetition rate includes by way of example both 80 MHz and 93 MHz, the numerical aperture is preferably about 0.70 producing about a line width between approximately 0.6 μm to 10.5 μm and a line depth between 1 μm to 4 μm, and the scan rate is between approximately 0.1 μm/s to 4 mm/s. US Patent Application Publication No. 2015/0126979 entitled Method for Modifying the Refractive Index of an Optical Material discloses the writing of selected regions of optical hydrogel materials prepared with a hydrophilic monomer following implantation of the prepared material into the eye of the patient. Wavelengths are preferably between 600 nm to 900 nm, pulse energies are preferably between 0.01 nJ to 50 nJ, pulse duration is preferably between 4 fs and 100 fs, the repetition rate includes by way of example 93 MHz, the numerical aperture is preferably about 0.70 producing about a line width between approximately 0.2 μm to 3 μm and a line depth between 0.4 μm to 8 μm, and a demonstrated scan rate is approximately 0.4 μm/s. US Patent Application Publication No. 2015/0378065 entitled Method for Modifying the Refractive Index of an Optical Material and resulting Optical Vision Component, which discloses the writing of GRIN layers in optical polymeric materials. Wavelengths are preferably between 750 nm to 1100 nm, pulse energies are preferably between 0.01 nJ to 20 nJ, pulse duration is preferably between 10 fs and 500 fs, the repetition rate is preferably between 10 MHz and 300 MHz, the numerical aperture is preferably about 0.70 producing about a line width between approximately 0.6 μm to 3 μm and a line depth between 0.4 μm to 8 μm, and the scan rate is between approximately 0.1 mm/s to 10 mm/s. These referenced patent applications are hereby incorporated by reference, particularly as examples for writing refractive structures in optical materials. The US patent application publications referenced above are hereby incorporated by reference as representative background technologies subject to the improvements set forth herein.
While more opportunities exist for synergies between the adapted energy regimes and man-made optical materials, the speed and efficiency with which refractive index changes can be written into the optical materials remains of importance whether the optical materials are of living origin or man-made, and whether the optical materials are positioned in vivo or in vitro. Constraints relating to the need to deliver concentrated pulse energies of a laser beam in a form that achieves the desired refractive index changes in the optical materials without exceeding the damage threshold at which the desired optical performance is degraded have limited the speed and efficiency with which refractive index structures can be written into the optical materials.
An embodiment as envisioned by the inventor incorporates a beam multiplexer for dividing a pulsed laser beam into two or more laser beams whose pulses can be temporally and spatially related to expand opportunities for improving the speed and efficiency with which refractive index structures can be written into a variety of optical materials. The opportunities include increasing the speed at which regions are scanned in the optical materials, achieving greater refractive index changes along the scanned regions, improving continuity or control over the refractive index changes along or between regions, expanding the width or thickness over with the refractive index changes are made along the scanned regions, and scanning over multiple regions within or between designated layers of the optical materials. The pulses of the multiplexed beams can be temporally offset to increase the effective repetition rate at which pulses are delivered to the optical materials and spatially offset to spread the pulses throughout a greater volume for increasing the size of a common volume subject to refractive index change along the same scanned region or subjecting different volumes to the same or different refractive index changes along multiple scanned regions. The temporal and spatial relationships among the different beam pulses delivered to the optical material can also be adapted to affect the sizes and shapes of temperature profiles generated along the same or adjacent scan regions to achieve desired refractive index changes over larger volumes while avoiding the damage thresholds at which the materials undergo undesired changes that would degrade their optical performance. The refractive index changes written into the optical material include relatively increasing or decreasing the refractive index of the scanned regions of the optical material according to the local reaction of the optical material to the pulses delivered.
In addition to controlling the temporal and spatial relationships between the pulses of the different beams delivered to the optical materials, the characteristics of the pulses within the different beams or the different beams themselves within which the pulses are delivered can be altered or otherwise controlled. For example, the pulse energy or the pulse width of the pulses in the different beams can be relatively altered as well as the volumes through which the different beams are focused. In fact, the pulse characteristics can be relatively altered to accommodate the different size and shape volumes that can be associated with writing at extended depths in the optical material. For example, the pulses can be elongated in the direction of propagation, which allows more power to be delivered for effecting refractive index changes over an extended depth while remaining below the threshold of optical damage.
The change in refractive index that can be effected by any one dose of actinic radiation in optical materials, such as corneal tissue or hydrogels, is limited by the damage thresholds of the materials. As such, the change in refractive index is generally too small to support 2π phase changes, which are often needed to minimize phase discontinuities in Fresnel or other types of segmented optical structures written into the optical materials. However, by writing over extended depths, only one or at least fewer layers are required to be written to effect 2π phase changes. Writing the refractive index changes over extended depths makes possible faster and more accurate writing of such optical structures, as well as higher and more efficient optical performance.
A beam multiplexer 10 as envisioned for one or more embodiments is diagramed in
Generally, for the purpose of writing refractive index structures in such optical materials, with pulsed laser sources, the succession of pulses preferably have a pulse width between 8 fs and 500 fs, a pulse energy between 0.01 nJ and 10 nJ, a repetition rate between 10 MHz and 500 MHz, and a nominal wavelength between 400 nm and 1100 nm. These parameters are also tied to the focal spot size and the scanning rate at which the focal spot is moved relative to the optical material. For writing refractive index changes over larger volumes, both the focal spot size and the scanning rate are increased as much as practically possible in coordination with the other parameters that are set to operate in an energy regime just below the damage threshold of the material. Scanning speeds up to 10 m/s are contemplated.
The first polarization beamsplitter 18 divides the collimated output beam 14 into two orthogonally polarized working beams 20 and 22. For example, the working beam 20, which transmits through the first polarization beamsplitter, has a polarization axis oriented in a horizontal plane extending out of the drawing sheet, and the working beam 22, which is reflected by the first polarization beamsplitter, has a polarization axis oriented in a vertical plane within the drawing sheet. The horizontally polarized working beam 20 propagates directly to a second beamsplitter 28. Reflectors 24 and 26 direct the vertically polarized working beam 22 to the second beamsplitter 28 in a physical orientation that remains orthogonal to the physical orientation of the working beam 20. The second polarization beam splitter 28 transmits the horizontally polarized working beam 20 and reflects the vertically polarized working beam 22 into realignment with the working beam 20.
While physically aligned as output from the second polarization beamsplitter 28, the working beams 20 and 22 remain distinguished by their relative orthogonally related polarizations as shown in
Although the two working beams 20 and 22 are realigned at the output of the second polarization beamsplitter 28, the pulses 30 and 32 of the respective working beams 20 and 22 are temporally offset by Δt as a result of an optical path length difference, which can include a delay element 34 along one of the separate paths taken by the working beams 20 and 22 between the first and second polarization beamsplitters 18 and 28. Alternatively, the reflectors 24 and 26 could be collectively displaced toward or away from the first and second beamsplitters 18 and 28 with which they are aligned to change the optical path length of the working beam 22 with respect to the optical path length of the working beam 20. The temporal offset Δt can be set to vary by any amount less than the temporal spacing between the pulses as the inverse of the repetition rate. For example, at a repetition rate of 100 MHz, the pulses are temporally spaced by about 10 ns and physically spaced by 3 m. In the combined beams 20 and 22, temporal offset Δt by one half of the spacing between pulses (e.g., 5 ns at 100 MHz), the repetition rate in the combined beam is effectively doubled (e.g., 200 MHz). Other temporal offsets Δt can be used for other purposes including regulating temperature profiles in the irradiated optical materials associated with the delivery of closely adjacent pulses.
The arrows of
Thus, in addition to controlling the temporal offset Δt of the pulses 30 and 32 in the respective orthogonally polarized working beams 20 and 22, the relative pulse energies of the pulses 30 and 32 can also be controlled to regulate the delivery of energy to the optical materials intended for irradiation. Moreover, the overall pulse energies of the two beams can be controlled by a modulator 33, such as an electro-optic modulator or an acousto-optic modulator, for variably attenuating the output beam 14. The overall pulse energies and the relative pulse energies of the two working beams 20 and 22, as well as the temporal offset Δt between the pulses of the two working beams 20 and 22 can be manually controlled by settings or can be automatically controlled through a controller 35 that takes input from an operator.
The different polarization orientations of the two aligned working beams 20 and 22 also allow for subsequent angular or spatial separation of the two beams. In addition, small angular separations can be made in advance of the second polarization beamsplitter 28. For example, the reflector 26 can be tipped slightly out of a 45 degree orientation to its incident beam to relatively incline the working beam 22 with respect to the working beam 20 as output from the second beamsplitter 28.
The objective lens 38 can take the form of a microscope objective having a numerical aperture of preferably at least 0.28 but higher numerical apertures of 0.7 through 1.0 are often preferred if sufficient working distance is present. As respective treatment zones, the focal spots 40 and 42 occupy respective volumes of space within which the power densities of the respective beams 20 and 22 are sufficient to change the refractive index of the optical material 44 without inducing damage. Positive or negative changes in refractive index can be imparted by the respective beams 20 and 22 depending upon the reaction of the optical material to the pulses delivered by the beams.
While the focal spots 40 and 42 remain separated through the spatial offset Δs, the objective lens 38 can be moved relative to the optical material 44 in different directions to write pairs of linear traces having a line spacing ranging from zero to the spatial offset Δs.
The spatial offset Δs can be reduced to zero as shown in
An alternative beam multiplexer 60 is shown in
The working beam 62, which has a first orthogonal polarization propagates directly to a second beamsplitter 28. Reflectors 24 and 26 direct the working beam 64, which has a second orthogonal polarization to the second beamsplitter 28. However, along the optical region between the reflectors 24 and 26, a beam shaping optic 66, which can take the form of a telescope, reshapes the working beam 64 from a substantially collimated form to a converging or diverting form. The amount of the divergence or convergence can be set manually or placed under the control of the controller 35.
A focusing system 66 similar to the focusing system of
The collimated working beam 62 is brought to focus at a focal spot 72 at the focal length of the objective lens 38. The diverging working beam 64 is brought to focus at a focal spot 74 that is located farther from the objective lens 38, which applies the same power of convergence too both working beams 62 and 64. The two focal spots 72 and 74 are located in transverse planes 73 and 75 that are spaced apart along the optical axis 68 of the objective lens 38 through a spatial offset Δv. While for purposes of illustration, the transverse dimension of the collimated working beam 62 is shown smaller than the traverse dimension of the diverging working beam 64, both working beams 62 and 64 are preferably sized to substantially fill the aperture of the objective lens 38. For example, the beam shaper 66 can be used to produce a beam that converges through a focus in advance of the objective lens 38 so that the diverging beam approaches the objective lens 38 at a desired size.
The spacing Δz corresponding to the spatial offset Δv between the focal spots 72 and 74 can be set for writing contiguous layers of refractive index change or for writing different layers whose refractive index change is partially or completely independent of one another. The spatial offset Δv in depth can be combined with other temporal and spatial offsets. For example, the focal spots 72 and 74 can be formed by pulses in their respective working beams 62 and 64 that are temporally offset by the time Δt so that the pulses (e.g., 30 and 32) of both working beams do not traverses the upper layer (e.g., trace 76) at exactly the same time as described in connection with
An alternative two-beam multiplexer system 80 is depicted in
The collimated working beam 90 is reflected by a reflector 88 through a substantially transmissive plate 94 to an objective lens 96, which focuses the working beam 90 along the optical axis 95 of the objective lens 96 to a focal spot 100 in a transverse plane 101 at approximately one focal length from the objective lens 96. The collimated working beam 92 is reflected by a reflector 104 through a converging lens 106 that focuses the working beam 92 onto a central reflector 108 mounted on the substantially transmissive plate 94 at approximately one focal length from the lens 106. After reflecting from the central reflector 108, the working beam 92 further propagates as a diverging beam to the objective lens 96. Together, the substantially transmissive plate 94 and the central reflector 108 function as another beamsplitter for overlapping the two working beams 90 and 92 en route to the objective lens 96. However, the objective lens 96 focuses the diverging working beam 92 along the optical axis 95 to a focal spot 102 that is located in a transverse plane 103 at a farther distance from the objective lens 96 than the focal spot 100 by a spatial offset Δv.
The amount of spatial offset Δv can be adjusted in a number of ways, including by changing the focal length of the converging lens 106 and correspondingly adjusting the positions of the converting lens 106 and the substantially transparent plate 94 together with the central reflector 108. The central reflector 198, which is preferably elliptically shaped because of the angular orientation of the substantially transmissive plate 944 to the converging working beam 92, blocks a small percentage of the light of the working beam 90 within its paraxial zone. The beamsplitter 86 can be arranged to compensate for this relative loss or other relative losses elsewhere in the system and to set the relative pulse energies of the two working beams 90 and 92 as desired to achieve the desired energy profiles in the optical material. To compensate for any unwanted aberrations affecting the size or shape of the focal spot 102, the converging lens 106 can be formed as an aspheric optic or one or more other compensators can be located along the optical region to the objective lens 96.
Another two-beam multiplexer system 110 is shown in
The collimated working beam 120 is reflected by a reflector 118 to a substantially reflective plate 124 that reflects the working beam 120 to an objective lens 126, which focuses the working beam 120 along an optical axis 128 to a focal spot 130 in a transverse plane 131 at approximately one focal length from the objective lens 126. The collimated working beam 122 is focused by a converging lens 134 into a converging beam that is reflected from a reflector 136 to a focus within a central aperture 138 of the substantially reflective plate 124 at a distance of one focal length from the converging lens 134. The focused converging beam further propagates from the focus as a diverging beam to the objective lens 126. Thus, the substantially reflective plate 124 together within is central aperture functions as another beamsplitter for recombining the two working beams 120 and 122 en route to the objective lens 126. The working beam 122 is focused by the objective lens 126 along the optical axis 128 to a focal spot 132, which is located at a farther distance from the objective lens 126 than the focal spot 130 by a spatial offset Δv. As explained above, the amount of spatial offset Δv can be adjusted in a number of ways, including by changing the focal length of the converging lens 134 and correspondingly adjusting the positions of the converting lens 134 and the substantially reflective plate 124 together with its central aperture 138. The central aperture 138, which is preferably elliptically shaped because of the angular orientation of the substantially reflective plate 124 to the converging working beam 122, excludes a small percentage of the light of the working beam 120 from reflecting toward the objective lens 126. The beamsplitter 116 can be arranged to compensate for this relative loss or for other purposes to set the relative pulse energies of the two working beams 120 and 122 as desired to achieve the desired energy profiles in the optical material. To compensate for any unwanted aberrations affecting the size or shape of the focal spot 132, the converging lens 134 can be formed as an aspheric optic or one or more other compensators can be located along the optical region to the objective lens 126.
A four-beam multiplexer system 140 is shown in
The pulsed laser source 12 outputs a collimated substantially linearly polarized beam 14, whose polarization axis is rotated by a half-wave plate 16 to a desired orientation with respect to the orthogonal polarization axes of a first polarization beamsplitter 18. The first polarization beamsplitter 18 divides the collimated output beam 14 into two orthogonally polarized working beams 20 and 22. Departures from a 45 degree orientation of the half-wave plate 16 can be used to adjust the relative pulse energies of the two working beams 20 and 22. The working beam 20, which has a first orthogonal polarization propagates directly to a second beamsplitter 28. Reflectors 24 and 26 direct the working beam 22, which has a second orthogonal polarization to the second beamsplitter 28. However, One of the encounters with the reflectors 24 or 26, the beamsplitter 28, or a subsequent polarization sensitive optic relatively angularly inclines the working beam 22 with respect to the working beam 20. Of course, either or both working beams can be inclined to achieve the desired angular relationship.
The relatively inclined working beams 20 and 22 are directed by a reflector 142 to a third beamsplitter 116, which divides the working beams 20 and 22 into first and second collimated working beams 120a and 120b that reflect from the beamsplitter 116 and third and fourth collimated working beams 122a and 122b that transmit through the beamsplitter 116. The respective pulse energies in each of the four working beams can be controlled in a number of ways including adjusting the angular orientation of the half-wave plate 16 and the relative reflectivity of the beamsplitter 116. The modulator 33 can also be added as well as the controller 35 for controlling various parameters of the working beams 120a, 120b, 122a, and 122b based on operator input.
The collimated working beams 120a and 120b are reflected by the reflector 118 to the substantially reflective plate 124 that reflects the working beams 120a and 120b to the objective lens 126. For clarity of illustration, only the working beam 120b is depicted en route to the objective lens 126. The working beam 120b is shown inclined through the angular offset Δα, which is referenced against an optical axis 144 of the objective lens 126. The objective lens 126 focuses the working beam 120b in the transverse plane 131 to a focal spot 130b that is located at approximately one focal length from the lens 126 but is spatially offset from the optical axis 144 by the amount Δs. The collimated working beams 122a and 122b are focused by a converging lens 134 into converging beams that are reflected from the reflector 136 to respective focuses within the central aperture 138 of the substantially reflective plate 124 at a distance of approximately one focal length from the converging lens 134. The focused converging beams 122a and 122b further propagate from their focus positions as diverging beams to the objective lens 126. Again, for clarity of illustration, only the diverging working beam 122a is depicted en route to the objective lens 126. The working beam 122a, which is oriented along the optical axes 144 is brought to a focus by the objective lens 126 within the transverse plane 133 at a focal spot 132a, which is located along the optical axis 144 at a distance beyond the focal spot 130b by the spatial offset Δv. Although not shown in
In the same plane as
Working beams can also be spatially offset by multifocal lens designs. Multiple focal lengths can be achieved by compound refractive or diffractive optics as well as by combinations of refraction and diffraction within the same optics. The amount of energy delivered to focal spots at different focal lengths can be controlled as well as the number of different focal spots at different focal lengths.
In addition to regulating the temporal and spatial offsets between different trains of pulses, the shape of pulses can also be controlled to improve writing performance in optical materials. For example, pulses can be elongated in their direction of propagation by various focusing techniques including the introduction of spherical aberration. Significantly, such pulse elongation can extend the volume of material within which individual focal spots can impart refractive index changes. More optical power can be delivered within the extended volumes enabling a change in refractive index through a greater depth without exceeding the damage threshold of optical materials.
The graphs of
While the change in refractive index that can be effected by any one dose of actinic radiation in optical materials is limited by the damage thresholds of the materials, elongated focal spots can increase the change in phase supported by the change in refractive index by extending the change in refractive index through a greater depth. With conventionally formed focal spots, the change in refractive index is often too small to support 2π phase changes, which are often needed to minimize phase discontinuities in Fresnel or other types of segmented optical structures written into the optical materials. However, by elongating the focal spots over extended depths, only one or at least fewer layers need to be written to effect 2π phase changes. Thus, writing the refractive index changes over extended depths enables the faster and more accurate writing of such optical structures and can result in higher and more efficient optical performance.
A beam multiplexer arrangement 200 shown in
In the greatly enlarged axial view
Also similar to other embodiments, the spacing Δz corresponding to the spatial offset Δv between the focal spots 206 and 208 can be set for writing contiguous layers of refractive index change or for writing different layers whose refractive index change is partially or completely independent of one another. The spatial offset Δv in depth can be combined with other temporal and spatial offsets. For example, the focal spots 206 and 208 can be formed by pulses in their respective working beams 62 and 64 that are temporally offset by the time Δt so that their respective pulses do not traverse the upper layer (e.g., trace 210) at exactly the same time. In addition, the focal spots 206 and 208 can be spatially offset in the X-Y plane for further spatially separating the focal spots 206 and 208 in accordance with the spatial offset (e.g., Δs) and the relative direction at which the scan is taken relative to the X and Y coordinate axes as described in connection with
However, in contrast to the preceding embodiments, the focal spots 206 and 208 are elongated along the Z axis as a result of the spherical aberration added to the working beams 62 and 64. The output power of the laser 12 transmitted by the working beams 62 and 64 is increased as a function of the added spherical aberration so that the power received by the focal spots 206 and 208 remains above the nonlinear absorption threshold required to induce a desired change in the refractive index in the optical material 44 throughout at least a portion of the extended depths of focus while remaining below the breakdown threshold of the optical material 44. Preferably, the traces 210 and 212 are each written at a thickness T (corresponding to the elongated depth dimension of the focal spots 206 and 208) that is sufficient within the traces 210 and 212 individually or collectively to support a 2π phase change for a nominal wavelength intended for propagation through the optical material 44. For example, at least one of the traces has a thickness T capable of supporting the 2π phase change. Alternatively, the traces 210 and 212 as written in pairs of traces can have a combined thickness (e.g. 2T) capable of supporting the 2π phase change. Either way, the collective focusing the working beams 62 and 64 result in the 2π phase change as the objective lens 38 is relatively moved with respect to the optical material 44. For many vision systems, the nominal wavelength is expected to be around 550 nm, and a 0.02 index change would require a trace having a thickness of approximately 27.5 microns.
The shapes of focal spots, such as the focal spots 206 and 208, can be elongated in a plane of propagation, i.e., in an axial plane by the introduction of positive or negative aberration. Positive spherical aberration tends to elongate the focal spots in a direction opposing the direction of propagation and negative spherical aberration tends to elongate the focal spots in the direction of propagation. That is, the added spherical aberration has the overall effect of shifting and reducing optical intensity at a peak focus while relatively increasing optical intensity in positions axially offset from the peak focus. Positive and negative spherical aberrations tend to shift the peak focus in opposite directions, which can be used to further control the depths and axial spacing at which the respective traces 210 and 201 are written.
In
An increase in optical power delivered to the extended depth focal spots not only restores the desired optical intensity near a peak focus for writing refractive index changes in the optical material 44 without inducing optical damage, the increase in optical power also elevates the intensities to either side of the peak focus above the nonlinear threshold for writing the desired refractive index changes throughout a greater depth of the optical material. By increasing the overall amount of optical power delivered to the elongated focal spots, the axial intensity distribution associated with a spherically aberrated focal spot can be elevated above the nonlinear absorption threshold TA over an extended depth while remaining below the damage threshold TD.
While the spherical aberration compensation plates 202 and 204 provide a ready way of introducing spherical aberration in collimated beams, a variety of other ways are known to introduce spherical aberration, including within converging or diverging beams. For example, simple plane parallel plates of varying optical thickness can be used in non-collimated beams to introduce varying amounts of spherical aberration by refracting marginal rays more than paraxial rays. Certain lenses are also available with corrector rings that can be can be used to adjust spherical aberration within the lenses.
In addition, while spherical aberration is an optical parameter that is relatively easy to control by beam shaping optics, a variety of other ways can be used to produce extended depth focal spots. For example, non-diffraction-limited beams, which generally focus to a larger spot size can also be arranged to expand along the depth of focus, i.e., in a paraxial approximation, as an expansion of the Rayleigh range from the beam waist to the point where the area of the beam cross section is doubled. For example, beam shapers of various types can be used including apodizers and diffractive optics.
The extended depth focal spots that are elongated in the direction of propagation are particularly useful for writing in ophthalmic materials with femtosecond lasers, particularly at high numerical apertures (e.g., above 0.28) and at high repetition rates (e.g., above 10 MHz). The extended depth focal spots allow for the more efficient use of optical power in ophthalmic materials where doses of laser radiation are limited for safety purposes. By writing over larger volumes within high numerical apertures at high speeds, the doses of laser power delivered to patients can be reduced.
The optomechanical scanner 150 also includes a motion stage 160 for translating both the optics assembly 156 and the fast axis scanner 154 along a second scanning motion axis 162, which is oriented orthogonal to the first scanning motion axis 158. The motion stage 160 can be arranged to provide continuous or stepped motions in synchronism with the motion imparted by the fast axis scanner 154. A precision height stage 164 is interposed between the motion stage 160 and the a fast axis scanner 154 to raise and lower the fast axis scanner along a third scanning motion axis 166 for such purposes as controlling the depth at which the focal spots 151 are written into the optical material.
The optomechanical scanner 150 is particularly arranged for moving the optics assembly 156 with respect to the optical material, which can be particularly useful for in-vivo applications where the optical material cannot be as easily moved. However, for other applications or considerations, the motion axes can be distributed between the optics assembly 156 and the optical material in any combination, and one or more additional motion axes, including rotational axes, can be added as required.
The fast axis scanner 154 can be a commercial vibration exciter to provide high speed reciprocal motion. One example of such a commercial vibration exciter is a Brüel and Kjær Measurement Exciter Type 4810 sold by Brüel & Kjær Sound & Vibration Measurement A/S of Nærum, Denmark. The motion stages 160 and 164 can be a high-precision linear stages, such as model GTS70 for lateral motion and model GTS20V for vertical motion from the Newport GTS Series, sold by Newport Corporation of Irvine, Calif. and adapted via appropriate interface plates 170 and 172 for stacking the motion axes.
Motions along the various axes 158, 162 and 164 can be controlled by an arrangement of controllers and amplifiers 174 that translate inputs 176 in the form of desired writing patterns into motions along the various axes 158, 162, and 164. For example, the fast axis scanner 154 can be controlled by an arbitrary waveform generator. Such waveform generators are sold by Agilent Technologies, Inc. of Santa Clara, Calif. The waveform for the motions along the first scanning motion axis 158 are arranged, for example, to result in the desired refractive index pattern along the first scanning motion axis 158. Instead of sending an arbitrary waveform to the fast axis scanner 154, a specially tuned sine wave can be sent to maximize performance. For example, the drive frequency can be tuned to a resonance frequency of the fast axis scanner 154 to enable high speed motion while inducing minimal disturbances into the supporting structures including the underlying motion stages 160 and 166.
The working beams 180 are aligned and steered along each axis of motion to ensure proper alignment of the working beams 180 with the optics assembly 156. For example a reflector 182 mounted on the interface plate 172 receives the working beams 180 in an orientation aligned with the motion axis 162 and redirects the working beams 180 in the direction of the motion axis 166 through an aperture 184 in the interface plate 170 to a reflector 186 that mounted together with the fast axis scanner 154 on the interface plate 170. The reflector 186 redirects the working beams 180 in the direction of the motion axis 158 above the fast axis scanner 154. Reflectors 188 and 190, which are also preferably mounted from the interface plate 170 redirect the working beams 180 within the same plane to a reflector 192, such as a fold prism, which aligns the working beams 180 with an optical axis 194 of the optics assembly 156.
Other types of single or multi-axis scanners can be incorporated, such as scanners using angularly scanning rotating polygon mirrors or angularly scanned galvanometer-controlled mirrors with image relaying systems to direct the working beams 180 over appropriate pathways for writing refractive structures 152 within an optical material.
The controllers and amplifiers 174 can also include a second synchronized arbitrary waveform generator for controlling a modulator 196, such as an electro-optic modulator or an acousto-optic modulator, for regulating the intensity of the working beams 180 in relation to motions along one or more of the motion axes 158, 162, and 166. For example, the beam intensity at the focal points 151 can be changed during a scan along the motion axis 15, or the beam intensity at the focal points can be reset to a new fixed value before each new trace is written. More integrated intensity control can be provided among the individual working beams including the distribution of pulse energy, as the working beams are moved along any combination of the motion axes 158, 162, and 166 to more fully regulate energy profiles within the optical material. The modulator 196, which can used to regulate the overall intensity or intensity distributions among the working beams is disposed in an optical path between a laser used for generating the working beams and a surface of the optical material. However, the modulator 196 is preferably located in advance of the beamsplitters for variably attenuating multiple working beams. The controller 35 of
Scanners such as the optomechanical scanner 150 can be arranged together with desired parameters for laser power, wavelength, and scan speed, to write millimeter-scale devices (up to about 8 mm wide) in the optical material at speeds exceeding 100 mm/sec. A lateral gradient index microlens can be written by changing the scanning speed after each trace is written, and/or by changing the laser intensity before the next trace is written. In addition, the index of refraction is changed by varying beam intensity or the scan speed along the length of a trace or by some combination of the two. Both positive lenses and negative lenses (as opposed to cylindrical lenses) can be written using a combination of overlapping lenses and synchronous intensity control. The overall refractive power can be tailored to the desired shape using these parameters, as well as global positioning and the laser modulator.
Further details of a useful scanning system are described in US Patent Application Publication No. 20160144580 A1 entitled HIGH NUMERICAL APERTURE OPTOMECHANICAL SCANNER FOR LAYERED GRADIENT INDEX MICROLENSES, METHODS, AND APPLICATIONS, which is hereby incorporated by reference. Exemplary suitable methods and techniques have been described, for example, in U.S. Pat. No. 7,789,910 B2, OPTICAL MATERIAL AND METHOD FOR MODIFYING THE REFRACTIVE INDEX, to Knox, et. al.; U.S. Pat. No. 8,337,553 B2, OPTICAL MATERIAL AND METHOD FOR MODIFYING THE REFRACTIVE INDEX, to Knox, et. al.; U.S. Pat. No. 8,486,055 B2, METHOD FOR MODIFYING THE REFRACTIVE INDEX OF OCULAR TISSUES, to Knox, et. al.; U.S. Pat. No. 8,512,320 B1, METHOD FOR MODIFYING THE REFRACTIVE INDEX OF OCULAR TISSUES, to Knox, et. al.; and U.S. Pat. No. 8,617,147 B2, METHOD FOR MODIFYING THE REFRACTIVE INDEX OF OCULAR TISSUES. All of the above named patents, including the '910, '553, '055, '320, and '147 patents are incorporated herein by reference in their entirety for all purposes.
It will be appreciated that variants of the above-disclosed and other features and functions, or alternatives thereof, may be combined into many other different systems or applications. Various presently unforeseen or unanticipated alternatives, modifications, variations, or improvements therein may be subsequently made by those skilled in the art which are also intended to be encompassed by the following claims.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2018/021601 | 3/8/2018 | WO | 00 |
Number | Date | Country | |
---|---|---|---|
62479826 | Mar 2017 | US |