Information
-
Patent Grant
-
6566773
-
Patent Number
6,566,773
-
Date Filed
Friday, August 17, 200123 years ago
-
Date Issued
Tuesday, May 20, 200321 years ago
-
Inventors
-
Original Assignees
-
Examiners
Agents
- Kennedy Covington Lobdell & Hickman, LLP
-
CPC
-
US Classifications
Field of Search
US
- 310 64
- 310 89
- 310 90
- 310 91
- 310 52
- 242 3664
- 242 390
- 242 3902
- 242 3907
- 242 3908
- 242 3909
- 242 4866
- 242 564
- 057 100
-
International Classifications
-
Abstract
A bearing housing (23) for a drive device (27) integrated in a creel (18) of a cheese-producing textile machine, which brakes the cheese (11) via a braking current directed opposite the nominal rated current of the drive device. The bearing housing (23) has a plurality of cooling ribs (33), whose exterior is covered with a material having a low heat conductivity (8).
Description
CROSS-REFERENCES TO RELATED APPLICATIONS
This application claims the benefit of German patent application DE P 10040109.0 filed Aug. 17, 2000, herein incorporated by reference.
FIELD OF THE INVENTION
The present invention relates to a bearing housing for a drive device for a creel of a cheese-producing textile machine and, more particularly, to such a bearing housing for an electromotor drive device which is integrated into the creel and can be loaded or charged with a braking current counter to the nominal rated current of the drive device for braking the cheese.
BACKGROUND OF THE INVENTION
Drive devices which are arranged on the creel are known in particular in connection with bobbin winding devices which were developed for producing cheeses of the “precision winding”, or “stepped precision winding” types.
Subsequently published German Patent Publication DE 199 08 093.3, for example, describes a bobbin winding device in which a cheese held in a creel is directly driven by a drive motor integrated into the creel. The cheese rests on a pressure roller that is not driven itself. Traversing of the yarn to be wound takes place by means of a finger-like yarn guide operated by a separate drive. The two drives can be controlled via an appropriate control device such that a defined, pre-selectable winding ratio is always obtained.
Since it is necessary to stop a cheese frequently in the course of the overall process of winding yarn onto the cheese, for example, when a yarn supply cop is exhausted, upon a yarn break, or following a controlled cutting of the yarn via a yarn cleaner, the known winding device also comprises a pneumatically loadable braking device integrated into the creel. This known braking device is comprised of a brake lining fixed on the stator housing of the electromotor to rotate in unison with the housing, against which a contact surface of a tube receiving plate, embodied as a brake disk, can be pneumatically pressed. The braking force thereby produced rapidly brings the cheese to a stop.
However, this known cheese winding device has a number of disadvantages which have prevented the device from becoming accepted in actual use. Both the rotating brake disk and the stationary brake lining are subjected to significant wear and therefore the braking device requires intensive maintenance. In addition, the brake dust created can readily enter into the axial sliding guide of the cheese drive as well as into the bearing of the electromotor and considerably hampers the functioning or may even cause breakdown of these components.
Other cheese winding devices are known, for example from German Patent Publication DE 198 36 701 A1, in which a grooved drum that drives the cheese and at the same time traverses the yarn is electrically braked to a standstill after the cheese has been lifted off. To this end, the drive motor of the grooved drum is loaded or charged with a braking current that is usually a multiple of the nominal rated current of the drive motor. In the process, the drive motors of such cheese winding devices are subjected to considerable loads, especially when large cheeses must be repeatedly braked and accelerated at short time intervals. For this reason, the dimensions of the drive motors are made quite large, in particular for preventing overheating, and as a rule are correspondingly heavy.
It is known from German Patent Publications DE 21 06 898 A1 or German Patent DD 214,114 that textile machine drive devices which are subjected to large thermal loads can be provided with cooling ribs so that the motor heat can be removed via convection and radiation into the ambient environment. Alternatively, as described in German Patent DE 27 14 299 C2, such drive devices can be cooled by a permanent application of compressed air.
As already mentioned above, these known drive devices are comparatively large, bulky and heavy, especially when correspondingly large output data are demanded. However, drive devices which are intended to be integrated directly into the creel of a cheese-producing textile machine must be as small and lightweight as possible, since during the winding process their weight results in an additional unwanted load on the rotation of the cheese on the associated pressure roller.
Such relatively small drive devices are correspondingly greatly stressed during operation. Thus, the motors often become very hot, including the area of their motor housing. Accordingly, in the interest of promoting sufficient cooling, the motor housing is arranged to be exposed to the ambient environment, but as a result the unintentional touching of this component by the machine operators cannot always be avoided. Therefore there is the constant danger of the operators being injured by burns from these components.
SUMMARY OF THE INVENTION
In view of the above described state of the art, the present invention seeks to address the problem of providing a bearing housing for a drive device integrated in a creel which, on the one hand, permits sufficient cooling of the drive device and, on the other hand, minimizes the danger of injuries to the operators.
The present invention is addressed by providing a bearing housing for a drive device integrated in a creel of a cheese-producing textile machine, wherein the drive device is loadable with a braking current counter to the nominal rated current of the drive device for braking the cheese. In accordance with the present invention, the bearing housing comprises a plurality of cooling ribs each having an exterior covered with a material having a low heat conductivity.
This design of the bearing housing in accordance with the present invention assures that, by insulating the areas of accessible cooling ribs with a material of poor heat conductivity, these danger areas for the operators are defused. Accordingly, it is assured that the outer areas of the cooling ribs can no longer become so hot, even at extremely high motor temperatures, that there would be a danger of being burned by these components.
Because of the defusing of the critical bearing housing area, the drive devices can be operated at higher motor temperatures. The surface temperature in the lower, uncovered cooling rib areas of the bearing housing rises because of the increased motor heat of the drive devices, which results in a clearly increased heat transfer to the surroundings in these areas.
Thus, the present invention has the advantage that, in spite of a reduction of the cooling surface of the bearing housing, its cooling output is increased, and in the process the danger of injuries to the operators is simultaneously minimized.
In a preferred design, the caps of the cooling ribs of the bearing housing are made of a thermoplastic material, preferably polyamide. Since the heat conductivity of such a material is considerably less than the heat conductivity of, for example steel or aluminum, the cooling ribs in the areas in which they are accessible to the operators remain below a level critical for the operators, even at high motor temperatures. Thus, in their accessible areas the cooling ribs never become so hot that the danger of burning arises for the operators.
It is further preferred that the mutual spacing between the cooling ribs is selected to be such that an unintentional access to the unprotected intermediate hot portions of the cooling ribs is dependably prevented.
In a further alternative design, a sensor device is arranged in the area of the bearing housing. Such a sensor device allows the permanent monitoring of the existing bearing housing temperature and, when utilized in connection with an auxiliary cooling device, a directed intervention may be actuated if a critical motor temperature of the drive device should be reached.
In a preferred embodiment, the auxiliary cooling device, for example may be a compressed air device installed in the area of the bearing housing. This compressed air device, which can be activated as a result of an appropriate signal from the sensor device, can be temporarily connected with a compressed air source via a valve when the drive device has reached a critical temperature level. Thus, the auxiliary cooling device is actuated only under exceptional circumstances; under normal operations, the motor heat can be carried off via the cooling ribs by means of convection and radiation.
Further details, features and advantages of the present invention will be described and understood from an exemplary embodiment which is described hereinbelow with reference to the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1
is a partially schematic side elevational view of a work station of a cheese-producing textile machine, incorporating the bearing housing of the present invention;
FIG. 2
is a front elevational view, partially in section, of the bobbin winding device of the work station represented in
FIG. 1
, with a drive device integrated in accordance with the invention into the bearing housing of the creel; and
FIG. 3
is an enlarged detailed sectional view of the cooling ribs of the bearing housing of the present invention, as viewed from III in FIG.
2
.
DESCRIPTION OF THE PREFERRED EMBODIMENTS
Referring now to the accompanying drawings and initially to
FIG. 1
, a textile cheese-producing machine, preferably an automatic cheese winder in this exemplary embodiment, is schematically shown in a side elevational view and is designated in its entirety by reference numeral
1
.
Such automatic cheese winders customarily comprise a plurality of similar work stations, in the present instance cheese winding stations
2
, commonly referred to as winding heads, aligned with one another between the end frames (not shown) of the machine.
Textile yarn from spinning cops
9
manufactured on a ring spinning machine are rewound by these winding heads
2
onto large-volume cheeses
11
in a manner that is already known and therefore need not be explained in more detail. After the production of each cheese
11
has been completed, the cheese
11
is transferred onto cheese transport device
21
running the length of the machine, e.g., by pivoting creel
18
about pivot axis
19
, and the cheese
11
is thereby transported to a bobbin loading station or the like (not shown) arranged at an end of the winding machine.
Additionally, such automatic cheese winders
1
customarily comprise a logistic device in the form of a bobbin and tube transport system
3
. Spinning cops
9
and empty cop tubes
34
are supported on transport plates
8
in upstanding disposition and these transport plates
8
are circulated within the machine via various conveyor runs of this logistic device.
FIG. 1
shows only the following parts of a known bobbin and tube transport system
3
: Cop feed conveyor
4
, storage conveyor
5
, which can be driven in a reversing manner, one of transversal transport conveyor
6
running to winding heads
2
as well as tube return conveyor
7
. The spinning cops
9
thusly transported are rewound to large-volume cheeses
11
at the unwinding position
10
located along each transversal transport conveyor
6
at the associated winding head
2
.
As is known and therefore only schematically indicated, each individual winding head
2
comprises various devices that make possible an orderly operation of these work stations. As depicted in
FIG. 1
, a yarn
30
being rewound at the winding head
2
travels from spinning cop
9
to cheese
11
along a path adjacent which various operational devices are provided to perform various operations as a part of the winding process, e.g., a yarn suction nozzle
12
, a yarn grasping tube
42
, a splicing device
13
, a yarn tensioning device
14
, a yarn cleaner
15
, a paraffin application system
16
, a yarn cutting device
17
, a yarn tension sensor
20
and an underyarn sensor
22
.
Each winding head
2
includes a cheese winding device, designated in its entirety by reference numeral
24
, which comprises creel
18
supported in such a manner that it can move about pivot axis
19
. Creel
18
can also be pivoted about axis
25
, e.g., to manufacture conical cheeses.
During the winding process, the driven cheese
11
rests with its surface on pressure roller
26
and frictionally entrains this pressure roller
26
, that has no drive. The cheese
11
is driven via drive device
27
with speed control. This drive device
27
, preferably embodied as an electronically commutated direct-current (d.c.) motor
45
, is integrated in a bearing housing
23
of the creel
18
, as represented in
FIG. 2
, and is connected via current conductors
51
,
52
to a d.c. source (not represented).
Yarn traversing device
28
is provided to traverse yarn
30
during the winding process. Such a traversing device is only indicated schematically in FIG.
2
and is described in detail in German Patent Publication DE 198 58 548 A1. Yarn traversing device
28
is basically comprised of yarn guide
29
in the form of a finger which is loaded by electromechanical drive
31
to traverse yarn
30
between the two front sides of cheese
11
, as indicated in FIG.
2
. Yarn
30
glides during its displacement by yarn guide
29
on guide edge
32
.
In addition, such bobbin winding heads have a bobbin winding head-specific control device, preferably embodied as a bobbin winding head computer
39
, which coordinates the operating sequences of the above described devices, and which is connected via a machine bus
40
with a central control unit
37
of the automatic cheese winder
1
.
The electronically commutated d.c. motor
45
of the drive device
27
is known and therefore is not shown in detail. As indicated in
FIG. 2
, the motor
45
is arranged in a sliding bushing
35
, which is seated to be axially displaceable in a bearing housing
23
. As represented in detail in
FIG. 3
, the bearing housing
23
has a plurality of cooling ribs
33
, the exterior circumferences of which are covered with caps
36
. The caps
36
are preferably formed by coating the ribs with a suitable material, preferably a material of low heat conductivity, such as polyamide.
The mutual spacing a between the cooling ribs
33
, which themselves are made of a material of good heat conductivity, for example steel or aluminum, is selected such that an unintentional touching of the surfaces of the cooling ribs
33
not covered by the caps
36
and the cooling rib bottoms
38
therebetween is impossible.
As furthermore represented in
FIG. 2
, a sensor device
41
can additionally be installed in the area of the bearing housing
23
, which continuously detects the temperature of the bearing housing
23
. The signals from the sensor device
41
are transmitted to the bobbin winding head computer
39
via a signal line
50
, where the signals are appropriately processed.
An auxiliary cooling device
43
, preferably operating pneumatically, can also be arranged in the area of the bearing housing
23
, and is connected via a directional control valve
44
and a pneumatic line
47
to a source of pressurized air
48
. The directional control valve
44
is electronically switchable when required under the control of the bobbin winding head computer
39
via a signal line
46
.
Thus, during normal ongoing winding operations, the motor heat from the drive device
27
, which is mainly generated during braking and acceleration, is dissipated via the uncapped areas of the cooling ribs
33
to the surroundings. Because of their low heat conductivity, the caps
36
arranged on the cooling ribs
33
prevent the operators from possibly being burned by the cooling ribs
33
, which become relatively hot particularly in the uncapped areas.
In special cases, when the motor temperature exceeds a threshold value, which is detected via the sensor device
41
, it is additionally possible to activate the auxiliary cooling device
43
via the directional control valve
44
. In these cases, an effective cooling air flow is blown over the bearing housing
23
by means of the auxiliary cooling device
43
, which is thereby considerably cooled.
It will therefore be readily understood by those persons skilled in the art that the present invention is susceptible of broad utility and application. Many embodiments and adaptations of the present invention other than those herein described, as well as many variations, modifications and equivalent arrangements, will be apparent from or reasonably suggested by the present invention and the foregoing description thereof, without departing from the substance or scope of the present invention. Accordingly, while the present invention has been described herein in detail in relation to its preferred embodiment, it is to be understood that this disclosure is only illustrative and exemplary of the present invention and is made merely for purposes of providing a full and enabling disclosure of the invention. The foregoing disclosure is not intended or to be construed to limit the present invention or otherwise to exclude any such other embodiments, adaptations, variations, modifications and equivalent arrangements, the present invention being limited only by the claims appended hereto and the equivalents thereof.
Claims
- 1. A cheese-winding textile machine comprising a creel for supporting a year cheese during a winding operation, a drive device selectively operable at a nominal rated current for driving the cheese and at a braking current opposite to the nominal rated current for braking the cheese, a housing integral with the creel for supporting the drive device, the housing comprising a plurality of cooling ribs each having an exterior covered with a material having a low heat conductivity.
- 2. A cheese-winding textile machine in accordance with claim 1, characterized in that the cooling ribs of the housing are covered by caps made of a thermoplastic material.
- 3. A cheese-winding textile machine in accordance with claim 2, characterized in that the thermoplastic material is polyamide.
- 4. A cheese-winding textile machine in accordance with claim 1, characterized in that a mutual spacing is provided between the cooling ribs to deter touching of the uncovered portions of the cooling ribs and the housing.
- 5. A cheese-winding textile machine in accordance with claim 1, characterized in that a sensor device is arranged in the area of the housing to monitor the temperature thereof.
- 6. A cheese-winding textile machine in accordance with claim 1, characterized in that an auxiliary cooling device is provided for supplementary cooling of the housing.
- 7. A cheese-winding textile machine in accordance with claim 6, characterized in that the auxiliary cooling device operates pneumatically.
- 8. A cheese-winding textile machine in accordance with claim 5, characterized in that the sensor device is connected to a bobbin winding head computer which controls a valve for activating a supplementary cooling device.
Priority Claims (1)
Number |
Date |
Country |
Kind |
100 40 109 |
Aug 2000 |
DE |
|
US Referenced Citations (8)
Number |
Name |
Date |
Kind |
3792329 |
Kuhnlein |
Feb 1974 |
A |
3972171 |
Handschuch et al. |
Aug 1976 |
A |
4112663 |
Chrtek et al. |
Sep 1978 |
A |
4420926 |
Remontet |
Dec 1983 |
A |
4633664 |
Mueller-Storz et al. |
Jan 1987 |
A |
5927636 |
Rafflenbeul |
Jul 1999 |
A |
6148596 |
Kimura et al. |
Nov 2000 |
A |
6232732 |
Haasen et al. |
May 2001 |
B1 |
Foreign Referenced Citations (11)
Number |
Date |
Country |
2106 898 |
Aug 1972 |
DE |
27 14299 |
Jan 1978 |
DE |
214 114 |
Oct 1984 |
DE |
198 36 701 |
Feb 2000 |
DE |
198 58 548 |
Jun 2000 |
DE |
199 08 093 |
Aug 2000 |
DE |
0 845 432 |
Jun 1998 |
EP |
05111211 |
Apr 1993 |
JP |
10194591 |
Jul 1998 |
JP |
10194591 |
Jul 1998 |
JP |
11089165 |
Mar 1999 |
JP |
Non-Patent Literature Citations (1)
Entry |
German Search Report. |