This disclosure relates to the field of ethanol production and, more specifically, removal of carbon dioxide prior to ethanol distillation.
Ethanol can be produced when a mash is fermented, resulting in an ethanol-rich “beer” that is saturated with carbon dioxide (CO2). In a typical ethanol distillation, ethanol is stripped from a beer feed in a beer column, and the ethanol/water mixture is concentrated to a ratio near the azeotropic point in a rectifying column. The remaining water can then be removed using molecular sieve or other drying technology.
A shortcoming of some prior art distillation systems is the tendency of these systems to have an unnecessary load on the beer column due to the presence of carbon dioxide in the beer feed. This carbon dioxide-rich beer requires more energy to process in the beer column than beer that does not contain high concentrations of carbon dioxide.
Another shortcoming of the prior art is a lower heat transfer coefficient in the rectifying column overhead condenser when carbon dioxide is present in the mixture.
Another shortcoming of the prior art is the requirement of a vacuum pump sized to handle the additional carbon dioxide in the carbon dioxide-rich beer, as well as, the associated power requirements of running an oversized vacuum pump.
Another shortcoming of the prior art is high acidity ethanol being produced by the presence of carbon dioxide, which may require the later implementation of a flashing process to remove the dissolved carbon dioxide to meet ethanol acidity specifications.
What is needed is an apparatus and method for removing carbon dioxide dissolved in the beer prior to the beer column to reduce the energy requirements, improve heat transfer in the rectifying column overhead condenser, reduce the size of the vacuum pump, and reduce the production of high acidity in the product ethanol.
In aspects, the present disclosure is related to a method for providing degassed beer, specifically for removal of carbon dioxide prior to feeding ethanol distillation systems.
One embodiment according to the present disclosure includes a degassing apparatus comprising: a preheater; a degas column configured to contain beer and having a top and a bottom, wherein the preheater is in fluid communication with the top of the degas column; a degas condenser in fluid communication with top of the degas column; a condensate receiver in fluid communication with the degas condenser; a degas condensate pump in fluid communication with the condensate receiver and the top of the degas column; and a first pump in fluid communication with the bottom of the degas column and configured to pump fluid from the bottom of the degas column to the preheater. The apparatus may include a second pump in fluid communication with the bottom of the degas column; and a reboiler in fluid communication with the second pump and the bottom of the degas column; wherein the second pump is configured to circulate fluid between the bottom of the degas column and the reboiler.
Another embodiment according to the present disclosure includes a degassing system for ethanol distillation, comprising: a beer column with an inlet and an outlet; a degassing module comprising: a preheater with a first line with an inlet and an outlet and a second line with an inlet and an outlet, wherein the first line inlet is in fluid communication with the beer column outlet and a second line outlet is in fluid communication with the beer column inlet; a degas column configured to contain beer and having a top and a bottom, wherein the first line outlet is in fluid communication with the top of the degas column; a degas condenser in fluid communication with top of the degas column; a condensate receiver in fluid communication with the degas condenser; a degas condensate pump in fluid communication with the condensate receiver and the top of the degas column; and a first pump in fluid communication with the bottom of the degas column and configured to pump fluid from the bottom of the degas column to the second line inlet of the preheater; a carbon dioxide scrubber in fluid communication with the degas condenser; and a heat source in thermal communication with the bottom of the degas column. The heat source in thermal communication with the bottom of the degas column may include a steam source in fluid communication with the bottom of the degas column. The heat source in thermal communication with the bottom of the degas column may include a second pump in fluid communication with the bottom of the degas column; and a reboiler in fluid communication with the second pump and the bottom of the degas column; and a steam source in fluid communication with the reboiler; wherein the second pump is configured to circulate fluid between the bottom of the degas column and the reboiler.
Another embodiment according to the present disclosure may include a degassing apparatus comprising: a preheater; a degas column configured to contain beer and having a top and a bottom, wherein the preheater is in fluid communication with the top of the degas column; a degas condenser in fluid communication with the top of the degas column and disposed above the top of the degas column; and a first pump in fluid communication with the bottom of the degas column and configured to pump fluid from the bottom of the degas column to the preheater. The apparatus may also include a second pump in fluid communication with the bottom of the degas column; and a reboiler in fluid communication with the second pump and the bottom of the degas column; wherein the second pump is configured to circulate fluid between the bottom of the degas column and the reboiler.
Another embodiment according to the present disclosure may include a degassing system for ethanol distillation, comprising: a beer column with an inlet and an outlet; a degassing module comprising: a preheater with a first line with an inlet and an outlet and a second line with an inlet and an outlet, wherein the first line inlet is in fluid communication with the beer column outlet and a second line outlet is in fluid communication with the beer column inlet; a degas column configured to contain beer and having a top and a bottom, wherein the first line outlet is in fluid communication with the top of the degas column; a degas condenser in fluid communication with the top of the degas column and disposed above the top of the degas column; and a first pump in fluid communication with the bottom of the degas column and configured to pump fluid from the bottom of the degas column to the second line inlet of the preheater; a carbon dioxide scrubber in fluid communication with the degas condenser; and a heat source in thermal communication with the bottom of the degas column. The heat source in thermal communication with the bottom of the degas column may include a steam source in fluid communication with the bottom of the degas column. The heat source in thermal communication with the bottom of the degas column may include a second pump in fluid communication with the bottom of the degas column; and a reboiler in fluid communication with the second pump and the bottom of the degas column; and a steam source in fluid communication with the reboiler; wherein the second pump is configured to circulate fluid between the bottom of the degas column and the reboiler.
Another embodiment according to the present disclosure includes a method for degassing beer, comprising the steps of: heating beer a preheater; separating the beer into vapor and liquid phases in a degas column, the degas column having a top and a bottom; removing the vapor phase from the top of the degas column to a degas condenser; condensing a part of the vapor phase in the degas condenser; returning the condensed part of the vapor phase to the top of the degas column; removing the uncondensed part of the vapor phase to a carbon dioxide scrubber; pumping the liquid phase from the bottom of the degas column to the preheater; extracting heat from the liquid phase the preheater; and adding heat to the bottom of the degas column of the degas column. The step of returning the condensed part of the vapor phase to the top of the degas column may include collecting the condensed part of the vapor phase from the degas condenser in a condensate receiver; and pumping the condensed part of the vapor phase from the condensate receiver to the top of the degas column. The step of adding heat to the bottom of the degas column may include adding steam to the bottom of the degas column. The step of adding heat to the bottom of the degas column may include adding steam to a reboiler; circulating liquid between the bottom of the degas column and the reboiler; and removing condensed water from the reboiler.
Examples of the more important features of the disclosure have been summarized rather broadly in order that the detailed description thereof that follows may be better understood and in order that the contributions they represent to the art may be appreciated. There are, of course, additional features of the disclosure that will be described hereinafter and which will form the subject of the claims appended hereto.
A better understanding of the present disclosure can be obtained with the following detailed descriptions of the various disclosed embodiments in the drawings, which are given by way of illustration only, and thus are not limiting the present disclosure, and wherein:
While the inventions disclosed herein are susceptible to various modifications and alternative forms, only a few specific embodiments are shown by way of example in the drawings and are described in detail below. The figures and detailed descriptions of these specific embodiments are not intended to limit the breadth or scope of the inventive concepts or the appended claims in any manner. Rather, the figures and detailed written descriptions are provided to illustrate the inventive concepts to a person of ordinary skill in the art, and to enable such persons to make and use one or more of the inventive concepts.
In aspects, the present disclosure is related to as system for degassing beer prior to an ethanol distillation process. Specifically, the present disclosure is related to removal of carbon dioxide using an apparatus in communication with a beer processing system. The present invention is susceptible to embodiments of different forms. There are shown in the drawings, and herein will be described in detail, specific embodiments with the understanding that the present invention is to be considered an exemplification of the principles and is not intended to limit the present invention to that illustrated and described herein.
One or more illustrative embodiments incorporating the invention disclosed herein are presented below. Not all features of an actual implementation are described or shown in this application for the sake of clarity. It is understood that in the development of an actual embodiment incorporating the present invention, numerous implementation-specific decisions must be made to achieve the developer's goals, such as compliance with system-related, business-related, government-related and other constraints, which vary by implementation from time to time. While a developer's efforts might be complex and time consuming, such efforts would be, nevertheless, a routine undertaking for those of ordinary skill in the art having the benefit of this disclosure.
Accordingly, it is an object of the present disclosure to reduce the amount of carbon dioxide in beer (i.e. degas the beer) prior to an ethanol distillation process, specifically, before processing of beer in a beer column. Degassing the beer reduces the load on the existing beer column. This load can translate into a reduction in the amount of energy consumed at a given feed rate or allow the existing beer column to handle an increased feed rate (capacity) for a given beer column diameter.
Removing carbon dioxide from the beer increases the capacity of existing distillation equipment by reducing the load and energy that would be otherwise used to handle the carbon dioxide dissolved in the beer. Exemplary improvements include, but are not limited to, increasing the capacity of an existing rectifying column overhead condenser by improving the heat transfer coefficient, improving the log mean temperature difference of the condenser, and decreasing the vapor flow to the condenser. The removal of carbon dioxide also reduces the load on vacuum pumps in distillation systems configured to operate under vacuum because carbon dioxide dissolved in beer is released and then removed with a vacuum pump. The absence of carbon dioxide in a vacuum system means that the same amount of degassed beer can be processed with a smaller, lower energy vacuum pump and reduced seal water requirements to maintain the vacuum.
While apparatuses and methods are described in terms of “comprising” various components or steps (interpreted as meaning “including, but not limited to”), the compositions and methods can also “consist essentially of” or “consist of” the various components and steps, such terminology should be interpreted as defining essentially closed-member groups.
The degassing module 110 includes a feed preheater 120, a degas column 130 with trays, a degas condenser 140, a degas condensate receiver 150, a degas condensate pump 160, a bottoms pump 170, a reboiler pump 180, and a reboiler 190. The feed preheater 120 is in fluid communication with the beer feed 115 and the degas column 130. The feed preheater 120 is configured to heat the beer supplied by the beer source 115 with heat from the bottom 134 of the degas column 130 and output the heated beer to the degas column 130. In some embodiments, the beer is preheated. In some embodiments, the beer is heated and pressurized to remain liquid in the degas column 130. In some embodiments, the beer is heated to a temperature above the flash temperature of the beer, which may vary based on the composition of the beer. In some embodiments, the feed preheater 120 includes one or more wide gap plate heat exchangers suitable for liquids with entrained solids, as would be understood by a person of ordinary skill in the art. When multiple heat exchanges are present, the heat exchangers may be arranged in parallel so that at least one heat exchange may remain operations while another is shut down for cleaning or maintenance. Each of the heat exchangers may be sized to receive full capacity from the feed of the beer source 115. The degas column 130 is in fluid communication with the degas condenser 140. The degas column 130 may include a standard distillation column. In some embodiments, the degas column 130 may include stripping trays and be configured for typical beer feeds. In some embodiments, the degas column 130 may include fixed valve stripping trays. The heated beer from the preheater 120 is introduced to the top 132 of the degas column 130 of the degas column 130, but much of the heated beer descends into a bottom 134 of the degas column 130 of the degas column 130 due to gravity. The carbon dioxide with some ethanol and water from the heated beer escapes the liquid phase of the heated beer as a vapor and exits the top 132 of the degas column 130 at a controlled rate. The degas condenser 140 is in fluid communication with the existing carbon dioxide scrubber 125 and the degas condensate receiver 150. The degas condenser 140 is configured to remove heat from the vapor exiting the top 132 of the degas column 130 so at least part of the vapor condenses into a liquid phase. The remaining vapor, largely carbon dioxide and ethanol, is routed to the carbon dioxide scrubber 125 for ethanol recovery. The degas condensate receiver 150 is in fluid communication with the degas condensate pump 160. The degas condensate receiver 150 receives the condensed liquid from the degas condenser 140 so that it may be pumped back into the degas column 130. The degas condensate pump 160 is in fluid communication with the degas column 130 and pumps the liquid phase into the degas column 130. In some embodiments, the degas condensate pump 160 may include a centrifugal pump; however, this is exemplary and illustrative only, as other suitable pumps may be used. The degas column 130, degas condenser 140, degas condensate receiver 150, and degas condensate pump 160 form a loop.
The degas column 130 is also in fluid communication with the reboiler 190 and the reboiler pump 180, and these three components form a reboiler loop. The reboiler 190 and reboiler pump 180 are located at the bottom 134 of the degas column 130 so that the circulated feed is liquid from the degas column 134 rather than vapor, which accumulates near the top 132 of the degas column 130. The degas column 130 is in fluid communication with the bottoms pump 170, which is in fluid communication with the feed preheater 120. The feed preheater 120 is in fluid communication with the degassed beer line 135.
All of the apparatuses disclosed and claimed herein can be made and executed without undue experimentation in light of the present disclosure. While the methods and apparatus of this invention have been described in terms of preferred embodiments, it will be apparent to those of skill in the art that variations may be applied to the methods, processes and/or apparatus and in the steps or in the sequence of steps of the methods described herein without departing from the concept and scope of the invention. More specifically, it will be apparent that certain features which are both mechanically and functionally related can be substituted for the features described herein while the same or similar results would be achieved. All such similar substitutes and modifications apparent to those skilled in the art are deemed to be within the scope and concept of the invention.
While embodiments in the present disclosure have been described in some detail, according to the preferred embodiments illustrated above, it is not meant to be limiting to modifications such as would be obvious to those skilled in the art.
The foregoing disclosure and description of the disclosure are illustrative and explanatory thereof, and various changes in the details of the illustrated apparatus and system, and the construction and the method of operation may be made without departing from the spirit of the disclosure.
Number | Date | Country | |
---|---|---|---|
Parent | 15719143 | Sep 2017 | US |
Child | 16666337 | US |