The present invention relates to a belt attachment tool used in the case of winding a belt on a plurality of (three or more) pulleys.
Generally, a belt power transmission mechanism configured to wind a belt on a plurality of pulleys has specifications where high tension is applied to the belt by making a circumferential length of the belt shorter than a circumferential length of a layout between the pulleys that are mounting targets for surely transmitting power between the pulleys.
In the case where such a belt power transmission mechanism described above has no tension pulley or the like capable of adjusting a shaft center position of the pulley, when a belt with the circumferential length shorter than the circumferential length of the layout between the plurality of pulleys is attached to the plurality of pulleys with all distances between mutual shafts fixed, one pulley is left lastly and the belt is previously wound on the other pulleys and tension is applied to the belt wound on the other pulleys, and a belt attachment tool for attaching the belt to outer peripheral surfaces of the pulleys while rotating the lastly left pulley is used.
For example, Patent Document 1 discloses a belt attachment tool used in the case of winding a belt on three pulleys. In a layout (see
However, for reasons that “it may be preferable in some cases to first wind a belt on the pulley with the largest diameter and a long wound belt portion since a misalignment is increased when the belt is lastly wound on the pulley with the largest diameter and a long wound belt portion”, or “a component causing a barrier is present in the vicinity of the pulley with the largest diameter and a long wound belt portion and it may be physically difficult to do attaching work”, there are cases where the pulley with the largest diameter and a long wound belt portion cannot be selected as the pulley to which the belt attachment tool is mounted.
In such cases, a pulley (a pulley with a diameter smaller than that of the large-diameter pulley: hereinafter called a small-diameter pulley) other than the pulley with the largest diameter (hereinafter called a large-diameter pulley) has to be selected as the pulley to which a belt attachment tool is mounted.
Patent Document 1: JP-A-2014-29191
When a belt attachment tool is mounted to such a small-diameter pulley and the belt is lastly wound thereon, a belt portion wound on the small-diameter pulley becomes shorter than that of the large-diameter pulley. Therefore, belt tension at the time of lastly winding the belt on the small-diameter pulley becomes high and, for example, the belt attachment tool and the small-diameter pulley run idle or are inversely rotated and thus, it may become difficult to do winding work of the belt as compared to the case of mounting the belt attachment tool to the large-diameter pulley and lastly winding the belt thereon.
Hence, the present invention has been made to solve the problem as described above, and provides a belt attachment tool capable of smoothly doing winding work of a belt by preventing the belt attachment tool and a pulley from running idle or being inversely rotated due to tension of the belt at the time of winding the belt on a plurality of (three or more) pulleys.
A belt attachment tool of the present invention for solving the problem described above is a belt attachment tool used for further winding a belt, which is wound on a first pulley and a second pulley and is stretchable in a direction of a circumferential length, on a third pulley by using rotation of the third pulley,
the belt attachment tool containing:
a side surface part installed on a side of one side surface of the third pulley,
an attaching part installed along an outer peripheral part of the third pulley,
a first belt holding part formed along an outer periphery of the side surface part, and
a second belt holding part formed on the side surface part,
in which the second belt holding part is formed on the side surface part so as to satisfy, when the belt is wound on the first pulley, the second pulley, the first belt holding part, and the second belt holding part, a first arrangement condition where the second belt holding part is arranged so that a point of intersection between a first extension line extending the belt wound on the first belt holding part from an outer periphery of the second pulley and a second extension line extending the belt wound on the second belt holding part from an outer periphery of the first pulley is located to a front side in a rotation direction of the third pulley with respect to a center line connecting a center of the first pulley with a center of the third pulley.
According to the configuration described above, the side surface part of the belt attachment tool is installed on the one side surface of the third pulley and the attaching part is arranged along the outer peripheral part of the third pulley and thus, the belt attachment tool can stably be installed on the third pulley.
Also, in the present belt attachment tool, the first belt holding part and the second belt holding part are formed on the side surface part, and the first belt holding part is arranged along the outer periphery of the side surface part, and the second belt holding part is arranged so that, in a state where the belt is wound on the first pulley, the second pulley, the first belt holding part and the second belt holding part, the point of intersection between the first extension line extending the belt wound on the first belt holding part from the outer periphery of the second pulley and the second extension line extending the belt wound on the second belt holding part from the outer periphery of the first pulley is located to the front side in the rotation direction of the third pulley with respect to the center line connecting the center of the first pulley with the center of the third pulley (first arrangement condition).
If the second belt holding part is arranged so that the point of intersection between the first extension line and the second extension line is located to a back side in the rotation direction of the third pulley with respect to the center line connecting the center of the first pulley with the center of the third pulley, there are cases where the third pulley is inversely rotated (tension in a direction toward the second pulley is applied to the belt) or the belt attachment tool itself is slid on the third pulley to run idle and thus the belt cannot be wound on the outer periphery of the third pulley. However, the second belt holding part is arranged so that the point of intersection between the first extension line and the second extension line is located to the front side in the rotation direction of the third pulley with respect to the center line connecting the center of the first pulley with the center of the third pulley and thus, the third pulley can be prevented from being inversely rotated since tension is applied to the belt in a forward rotation direction of the third pulley (tension is applied to the belt in a direction toward the first pulley).
Also, in the belt attachment tool as one aspect of the present invention, it is preferable that the second belt holding part is formed on the side surface part so as to further satisfy, when the belt is wound on the first pulley, the second pulley, the first belt holding part, and the second belt holding part, a second arrangement condition where the second belt holding part is arranged to a front side in the rotation direction of the third pulley with respect to a center line connecting a center of the second pulley with the center of the third pulley.
According to the configuration described above, the second belt holding part is arranged to the front side in the rotation direction of the third pulley with respect to the center line connecting the center of the second pulley with the center of the third pulley (the second arrangement condition) and thus, tension applied to the whole belt at the time of winding the belt on the first pulley, the second pulley, the first belt holding part and the second belt holding part can be decreased as compared with the case where the second belt holding part is located in the back side in the rotation direction of the third pulley with respect to the center line connecting the center of the second pulley with the center of the third pulley. Accordingly, rotation of the third pulley in the rotation direction (the direction toward the first pulley) at the time of winding the belt on the outer periphery of the third pulley can be facilitated.
Also, in the belt attachment tool as one aspect of the present invention, it is preferable that the side surface part includes an installation part brought into contact with at least a part of the one side surface of the third pulley, and a protection part which does not come into contact with the one side surface of the third pulley and covers at least a part of the one side surface, and
the protection part covers at least a part of a portion with the longest distance in a vertical direction from a plane defined by a portion with which the installation part comes into contact in the one side surface, in a region inward the portion with which the installation part comes into contact in the one side surface of the third pulley.
According to the configuration described above, the protection part covers at least a part of the portion with the longest distance in the one side surface of the third pulley (including the case where the distance from the plane defined by the portion with which the installation part comes into contact in the one side surface of the third pulley is zero) in the vertical direction from the plane defined by the portion with which the installation part comes into contact, in the region inward the portion with which the installation part comes into contact in the one side surface of the third pulley. Therefore, interference between the belt and the portion with the longest distance in the one side surface of the third pulley in the vertical direction from the plane defined by the portion with which the installation part comes into contact can be prevented from occurring at the time of winding the belt on the third pulley, to thereby protect the belt and the portion with the longest distance in the one side surface of the third pulley in the vertical direction from the plane defined by the portion with which the installation part comes into contact.
Also, in the belt attachment tool as one aspect of the present invention, it is preferable that the installation part is coupled to the protection part in a stepped manner.
According to the configuration described above, the protection part is coupled to the installation part in a stepped manner, and thus a gap is formed by the step between the protection part and the portion with the longest distance in the one side surface of the third pulley in the vertical direction from the plane defined by the portion with which the installation part comes into contact. Therefore, the protection part can surely cover the portion without making contact with the portion with the longest distance in the one side surface of the third pulley in the vertical direction from the plane defined by the portion with which the installation part comes into contact.
Also, in the belt attachment tool as one aspect of the present invention, a part of the first belt holding part may be projected outwardly from the outer periphery of the side surface part.
According to the configuration described above, a part of the first belt holding part is projected outwardly from the outer periphery of the side surface part. Therefore, the belt can be spaced from the outer periphery of the side surface part (the outer periphery of the third pulley) at the time of winding it on the first belt holding part. As a result, it becomes easy to wind the belt on the outer periphery of the third pulley from the first belt holding part, and the belt can smoothly be shifted to the outer periphery of the third pulley.
Also, in the belt attachment tool as one aspect of the present invention, a portion of the first belt holding part on which the belt is wound may have a substantially circular arc shape.
According to the configuration described above, the portion of the first belt holding part on which a belt is wound is formed in a substantially circular arc shape. Therefore, a load on the belt at the time of winding the belt on the first belt holding part can be reduced.
Also, in the belt attachment tool as one aspect of the present invention, a portion of the first belt holding part on which the belt is wound may have a substantially involute curve shape, and the first belt holding part and the second belt holding part may be arranged in a straight line.
According to the configuration described above, the portion of the first belt holding part on which a belt is wound is formed in a substantially involute curve shape and thus, the belt can efficiently be wound without applying excessive tension at the time of winding the belt on the first belt holding part. Also, since the first belt holding part and the second belt holding part are arranged in a straight line, the length of the belt at the time of winding the belt on the first belt holding part and the second belt holding part can be set in the shortest length to thereby minimize a force by which the belt is stretched. As a result, a workload of winding the belt on the third pulley by using the belt attachment tool can be reduced.
In the belt attachment tool as one aspect of the present invention, it is preferable that the first belt holding part is formed integrally with the second belt holding part.
According to the configuration described above, the first belt holding part is formed integrally with the second belt holding part. Therefore, strength can be increased as compared with the case where the first belt holding part is formed separately from the second belt holding part.
In the belt attachment tool as one aspect of the present invention, it is preferable that in the first belt holding part and the second belt holding part that are integrally formed, a portion on which the belt is wound has a substantially circular arc shape.
According to the configuration described above, the portion of the integrally formed first belt holding part and second belt holding part on which the belt is wound is formed in a substantially circular arc shape. Therefore, a load on the belt at the time of winding the belt can be reduced.
A belt attachment tool capable of smoothly doing winding work of a belt while preventing, at the time of winding the belt on the plurality of pulleys, the belt attachment tool and a pulley from running idle or being inversely rotated due to the tension of the belt can be provided.
An embodiment of the present invention will hereinafter be described with reference to the drawings. A belt attachment tool 9 (see
In a layout of an automobile engine, as illustrated in
The first pulley 1 has a pulley groove (a groove formed in an outer peripheral part of the first pulley 1) capable of being fitted into a rib 4a formed in an inner peripheral surface of the V-ribbed belt 4. Also, a crankshaft of an engine or the like is inserted into a boss part 1c formed in a central part of the first pulley 1.
Like the first pulley 1, the second pulley 2 has a pulley groove (a groove formed in an outer peripheral part of the second pulley 2) capable of being fitted into the rib 4a formed in the inner peripheral surface of the V-ribbed belt 4. Also, a shaft interlocked with a water pump is inserted into a boss part 2c formed in a central part of the second pulley 2.
On the other hand, as illustrated in
The third pulley 3 has a mechanism in which when the compressor is not driven, only the compressor pulley 3a is rotated; whereas for example, when a switch of the air conditioner is turned on, a current flows in a coil embedded in the stator 3c and it becomes a powerful magnet to strongly attract the clutch hub 3b, the clutch hub 3b is pressed to the compressor pulley 3a and as a result, the clutch hub 3b, the compressor pulley 3a and the stator 3c are integrated and the rotation of the compressor pulley 3a is transmitted from the integrated clutch hub 3b to the shaft of the compressor to rotate the compressor.
Also, as illustrated in
In the present embodiment, as illustrated in
The V-ribbed belt 4 is a so-called low modulus belt that is slightly stretchable in a circumferential length direction. The low modulus belt has a relatively low modulus of elasticity by employing a polyamide fiber as a tension member, and prevents a sudden decrease in tension as compared with one having a high modulus of elasticity (so-called high modulus belt).
An arrow V of a thick line in
Next, a configuration of the belt attachment tool 9 according to the present embodiment will be described with reference to
As illustrated in
The attaching part 11 is formed in a circular arc shape (a curved shape) along the outer peripheral part 3j of the compressor pulley 3a of the third pulley 3. Also, an inner peripheral surface side of the attaching part 11 is provided with a rib 11a fitted into the pulley groove 3d formed in the outer peripheral part 3j of the compressor pulley 3a of the third pulley 3.
The rib 11a is constructed of one protruding rib along a longitudinal direction of the inner peripheral surface of the attaching part 11. The belt attachment tool 9 can accurately be fixed to the outer peripheral part 3j of the compressor pulley 3a by fitting the rib 11a into the pulley groove 3d of the compressor pulley 3a when the belt attachment tool 9 is attached to the third pulley 3. The present embodiment is configured to provide only one rib 11a, but may be configured to provide a plurality of ribs 11a since at least one protruding rib has only to be present in the case of forming the rib 11a.
The installation part 12 constructing the side surface part 10 extends from one end of the attaching part 11 toward the boss part 5 of the third pulley 3. The installation part 12 performs the function of stabilizing the belt attachment tool 9 to the third pulley 3 by abutting on or coming into close contact with the pulley flange 3e formed on the compressor pulley 3a of the third pulley 3 when the belt attachment tool 9 is attached to the third pulley 3.
The protection part 13 is, as illustrated in
Here, the protection part 13 is formed so as to cover, in a region inward the portion with which the installation part 12 comes into contact in the one side surface 3g (side surface of the side covered with the protection part 13) of the third pulley 3, at least a part of a portion with the longest distance (clutch hub 3b) in a vertical direction from a plane defined by a portion 3k (see
Also, since the size of the gap 13c is properly set according to characteristics (misalignment limit etc.) of the applied pulley or the like, it is not particularly limited, but is preferably, for example, more than 0 and about 3.5 mm or less.
Also, portions of the attaching part 11, the installation part 12 and the protection part 13 in contact with the V-ribbed belt 4 are chamfered to have curved surface shapes. They are formed in order to prevent the V-ribbed belt 4 from being damaged at the time of winding the V-ribbed belt 4 on the third pulley 3 by using the belt attachment tool 9.
The first belt holding part 14 is projected along the outer periphery of the installation part 12 astride the installation part 12 and the protection part 13 as illustrated in
Also, the first belt holding part 14 and the second belt holding part 15 are arranged in a straight line, and a holding surface 14a (see
The first belt holding part 14 performs the function of bending and arranging the V-ribbed belt 4 along the outer peripheral part 3j of the compressor pulley 3a at the time of winding the V-ribbed belt 4 on the third pulley 3.
The second belt holding part 15 has a substantially columnar shape, and is projected on the protection part 13 as illustrated in
In the present invention, “at the time of winding the V-ribbed belt 4 on the first pulley 1, the second pulley 2, the first belt holding part 14, and the second belt holding part 15” refers to a state in which the V-ribbed belt 4 is wound on the first pulley 1, the second pulley 2, the first belt holding part 14, and the second belt holding part 15 along a running direction thereof and a stretch of the belt is minimized.
Furthermore, in the present embodiment, as illustrated in
In the present embodiment, the shape of the second belt holding part 15 is formed in a substantially columnar shape, and this is because the V-ribbed belt 4 is prevented from being damaged at the time of winding the V-ribbed belt 4 on the second belt holding part 15. Also, the shape of the second belt holding part 15 may have a substantially semicircular shape, a substantially crescent shape or a substantially polygonal shape.
As illustrated in
In order to solve the problem described above, that is, in order that the force by which the belt is stretched exceeds the tension in the direction toward the second pulley 2, it is necessary to locate the intersection point F2 (the vertex position of the resultant force of the belt tension) to the front side in the rotation direction A of the third pulley 3 with respect to the center line L3 connecting the center 15 of the first pulley 1 with the center 3S of the third pulley 3.
Hence, like the belt attachment tool 9 of the present embodiment, the second belt holding part 15 is further formed in addition to the first belt holding part 14, and the second belt holding part 15 is arranged in the position in which the first arrangement condition described above is satisfied. As a result, the force by which the belt is stretched can exceed the tension in the direction toward the second pulley 2 by being constructed so as to locate the intersection point F (the vertex position of the resultant force of the belt tension) to the front side in the rotation direction A of the third pulley 3 with respect to the center line L3 connecting the center 1S of the first pulley 1 with the center 3S of the third pulley 3 as illustrated in
Next, a method for using the belt attachment tool 9 will be described with reference to
<Procedure (a)>
First, as illustrated in
<Procedure (b)>
In this state, the V-ribbed belt 4 is first wound on the first pulley 1 and the second pulley 2. Then, as illustrated in
<Procedure (c)>
Then, as illustrated in
Specifically, the first pulley 1, the second pulley 2 and the third pulley 3 are first rotated in the rotation direction A so as to shift from the state of
The V-ribbed belt 4 is stretched to thereby generate high tension. Since the V-ribbed belt 4 crosses on the attaching part 11, this tension serves as a pressing action pressing the attaching part 11 against the outer peripheral part 3j of the third pulley 3, and thus, the belt attachment tool 9 is more strongly fixed to the third pulley 3.
When the first pulley 1, the second pulley 2 and the third pulley 3 are then rotated in the rotation direction A so as to shift from the state of
Furthermore, the first pulley 1, the second pulley 2 and the third pulley 3 are rotated in the rotation direction A so as to shift from the state of
Through the procedures described above, the V-ribbed belt 4 can be wound on the first pulley 1, the second pulley 2 and the third pulley 3 as illustrated in
According to the configuration described above, the side surface part 10 of the belt attachment tool 9 is installed on one side surface 3g of the third pulley 3 and the attaching part 11 is arranged along the outer peripheral part 3j of the third pulley 3. Therefore, the belt attachment tool 9 can stably be installed on the third pulley 3.
Also, the first belt holding part 14 and the second belt holding part 15 are formed on the side surface part 10, and the first belt holding part 14 is arranged along the outer periphery of the side surface part 10. In addition, the second belt holding part 15 is arranged so that, at the time of winding the V-ribbed belt 4 on the first pulley 1, the second pulley 2, the first belt holding part 14 and the second belt holding part 15, the point F of intersection between the first extension line L1 extending the V-ribbed belt 4 wound on the first belt holding part 14 from the outer periphery of the second pulley 2 and the second extension line L2 extending the V-ribbed belt 4 wound on the second belt holding part 15 from the outer periphery of the first pulley 1 is located to the front side in the rotation direction A of the third pulley 3 with respect to the center line L3 connecting the center 1S of the first pulley 1 with the center 3S of the third pulley 3 (the first arrangement condition).
If the second belt holding part 15 is arranged so that the point F of intersection between the first extension line L1 and the second extension line L2 is located to the back side in the rotation direction A of the third pulley 3 with respect to the center line L3 connecting the center 1S of the first pulley 1 with the center 3S of the third pulley 3, there are cases where the third pulley 3 is inversely rotated (tension in the direction toward the second pulley 2 is applied to the V-ribbed belt 4) or the belt attachment tool 9 itself slides on the third pulley 3 to run idle and thus the V-ribbed belt 4 cannot be wound on the outer periphery of the third pulley 3. However, since the second belt holding part is arranged so as to satisfy the first arrangement condition described above, the tension in the rotation direction A is applied to the V-ribbed belt 4 (the tension in the direction toward the first pulley 1 is applied to the V-ribbed belt 4) and the third pulley 3 can be prevented from being inversely rotated (rotated in the inverse rotation direction B).
Also, the second belt holding part 15 is arranged to the front side in the rotation direction A of the third pulley 3 with respect to the center line L4 connecting the center 2S of the second pulley 2 with the center 3S of the third pulley 3 (the second arrangement condition). Therefore, tension applied to the whole V-ribbed belt 4 at the time of winding the V-ribbed belt 4 on the first pulley 1, the second pulley 2, the first belt holding part 14, and the second belt holding part 15 can be reduced as compared with the case where the second belt holding part 15 is located in the back side in the rotation direction A of the third pulley 3 with respect to the center line L4. Accordingly, rotation of the third pulley 3 in the rotation direction A (the direction toward the first pulley 1) at the time of winding the V-ribbed belt 4 on the outer peripheral part 3j of the third pulley 3 can be facilitated.
In addition, the protection part 13 covers at least a part (at least a part of the clutch hub 3b) of the portion with the longest distance in one side surface 3g of the third pulley 3 (including the case where the distance from the plane defined by the portion with which the installation part 12 comes into contact in one side surface 3g of the third pulley 3 is zero) in the vertical direction from the plane defined by the portion with which the installation part 12 comes into contact, in the region inward the portion with which the installation part 12 comes into contact in the one side surface 3g of the third pulley 3.
Therefore, interference between the clutch hub 3b of the third pulley 3 and the V-ribbed belt 4 can be prevented from occurring at the time of winding the V-ribbed belt 4 on the third pulley 3, to thereby protect the clutch hub 3b and the V-ribbed belt 4.
Also, since the protection part 13 is coupled to the installation part 12 in a stepped manner and the gap 13c by the step 13a is formed between the clutch hub 3b and the protection part 13, the protection part 13 can surely cover the clutch hub 3b without making contact therewith.
In addition, since the portion (the holding surface 14a) of the first belt holding part 14, on which the V-ribbed belt 4 is wound is formed in a substantially circular arc shape, a load on the V-ribbed belt 4 at the time of winding the V-ribbed belt 4 on the first belt holding part 14 can be reduced.
Also, the portion (the holding surface 14a) of the first belt holding part 14, on which the V-ribbed belt 4 is wound is formed in a substantially involute curve shape. Therefore, the V-ribbed belt 4 can efficiently be wound without applying excessive tension thereto at the time of winding the V-ribbed belt 4 on the first belt holding part 14. Also, since the first belt holding part 14 and the second belt holding part 15 are arranged in a straight line, the length of the V-ribbed belt 4 at the time of winding the V-ribbed belt 4 on the first belt holding part 14 and the second belt holding part 15 can be set in the shortest length, to thereby minimize the force by which the V-ribbed belt 4 is stretched. As a result, a work load of winding the V-ribbed belt 4 on the third pulley 3 by using the belt attachment tool 9 can be reduced.
The belt attachment tool 9 in the embodiment described above is configured to provide the rib 11a on the inner peripheral surface side of the attaching part 11, but may be configured so as not to provide the rib 11 a on the inner peripheral surface side of an attaching part 111 as illustrated in
Also, as illustrated in
Also, it may be configured to provide one or more ribs to an inner peripheral surface side of the attaching part 211 illustrated in
Also, in the belt attachment tool 9 in the embodiment described above, the first belt holding part 14 is arranged along the outer periphery of the installation part 12, but is not limited to this, and a first belt holding part 114 may have a shape in which a part of the first belt holding part 114 is projected outwardly from an outer periphery of an installation part 12 as illustrated in
In this case, a part of the first belt holding part 114 is projected outwardly from the outer periphery of the installation part 12. Therefore, a V-ribbed belt 4 can be spaced from the outer periphery of the installation part 12 or a pulley flange 3e of a third pulley 3 at the time of winding on the first belt holding part 114. As a result, it becomes easy to wind the V-ribbed belt 4 on an outer peripheral part 3j of the third pulley 3 from the first belt holding part 114, and the V-ribbed belt 4 can smoothly be shifted to the outer peripheral part 3j of the third pulley 3 (see
Furthermore, like a belt attachment tool 9 illustrated in
Also, like the belt attachment tool 9 illustrated in
The holding surface 314a of the first belt holding part 314 of the belt attachment tool 9 illustrated in
Also, like the belt attachment tool 9 illustrated in
Also, in the belt attachment tool 9 in the embodiments described above, the first belt holding part 14 (114, 314) is formed separately from the second belt holding part 15 (315), but the first belt holding part 14 (114, 314) may be formed integrally to the second belt holding part 15 (315). In this case, strength can be increased as compared with the case where the first belt holding part 14 (114, 314) is formed separately from the second belt holding part 15 (315).
Furthermore, in the case where the first belt holding part 14 (114, 314) is formed integrally to the second belt holding part 15 (315), the portion of the integrally formed first belt holding part 14 (114, 314) and second belt holding part 15 (315), on which the V-ribbed belt 4 is wound may be formed in a circular arc shape. In this case, a load on the V-ribbed belt 4 at the time of winding the V-ribbed belt 4 can be reduced.
Also, the embodiments described above describe the case of using the belt attachment tool 9 by attaching to the third pulley 3 having the clutch hub 3b, but the belt attachment tool 9 can also be installed and used to a pulley in which the distance from the plane defined by the portion with which the installation part 12 comes into contact in the side surface 3g of the third pulley 3 is “zero”, that is, the first pulley 1 or the second pulley 2 without a portion projected to the side surface of the pulley.
In addition, the embodiments described above describe the case where the number of pulleys is three, but can be applied to the case where the number of pulleys is four or more. In that case, the first pulley, the second pulley and the third pulley are any consecutive pulleys, and the third pulley is the pulley sandwiched between the first pulley and the second pulley.
While the embodiments of the present invention have been described above, the present invention is not limited to the embodiments described above, and can be carried out with various changes within the scope described in the claims.
The present application is based on Japanese patent application No. 2014-201007 filed on Sep. 30, 2014 and Japanese patent application No. 2015-178450 filed on Sep. 10, 2015, and the contents thereof are incorporated herein by reference.
1 First Pulley
2 Second Pulley
3 Third Pulley
3
a Compressor Pulley
3
b Clutch Hub
3
c Stator
4 V-ribbed Belt
9 Belt Attachment Tool
10 Side Surface Part
11 Attaching Part
12 Installation Part
13 Protection Part
14 First Belt Holding Part
15 Second Belt Holding Part
A Rotation Direction
Number | Date | Country | Kind |
---|---|---|---|
2014-201007 | Sep 2014 | JP | national |
2015-178450 | Sep 2015 | JP | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/JP2015/077617 | 9/29/2015 | WO | 00 |