Bending press system

Abstract
A bending press system provided with a bending press (1) with at least one bending station to mount a plurality of divided tools and, tool housing devices (65, 123) to house divided metals to be used on the bending press and, tool exchange devices (61, 143) which mount the divided tools on the bending station, in which are provided a first memory (403) which stores housed positions of each divided tool housed in the housing devices and a second memory (405) which stores the bending line length of the bent part, the flange length and the bending angle of the bent product and, a first computation device (407) which, based on the bending line length, flange length, bending angle, computes the tool (cross section shape) type and the length of the bending station, and a second computation device (409) which, based on the tool type and length of the bending station computes the arrangement of each divided tool on the bending station, and an NC control (411) which controls the tool exchange device so that each divided tool is moved from the housed position in the housing device to the determined arrangement position.
Description




FIELD OF TECHNOLOGY




The present invention relates to a bending press for bending a sheet material, partitioned tools for use in the bending press and methods and apparatus for exchanging the tools used in bending press.




BACKGROUND TECHNOLOGY




Press brakes for bending sheet materials are provided with upper and lower tables opposed to each other that are supported by side frames, where the upper table or the lower table is made free to move upwards or downwards. The lower part of the upper table is provided with an upper tool holder for removably holding the upper tool, and the upper part of the lower table is provided with a lower tool holder for removably holding the lower tool, which cooperates with the upper tool. A bending process is then performed by inserting a sheet work material in between the upper tool mounted on the upper tool holder of the upper table and the lower tool mounted on the lower tool holder of the lower table.




Conventionally, the exchange of the upper and lower tools by dismounting and mounting the upper and lower tools of the upper and lower tables were carried out manually. The upper and lower tools includes divided tools divided into a plurality of elements and long tools, but the upper and lower tools are in general are heavy, and the dismounting and mounting in exchanging the upper and lower tools onto the table was a burdensome work.




Thus techniques to exchange the upper and lower tools by dismounting and mounting the tools relative to the upper and lower tables automatically have been developed. Related prior art references are JP55-45288, JP57-37408 and JPU63-21932. Also prior art references related to the tool of the present invention includes for example JP2771064 and the like.




Now in performing a bending process on a work by a press brake, there are cases where, for example, tools of different lengths are mounted separately at a plurality of locations on the tool holders of the upper and lower tables, and the bending process is performed on a workpiece successively by the each processing station. The prior art references, however, all apply only to the case where there is only a single tool mounting location for the upper and lower tables and not for the case with a plurality of processing stations, and therefore the exchange of tools for the upper and lower tables with plural number of processing stations are still made manually.




DISCLOSURE OF THE INVENTION




The present invention was made in view of the heretofore-aforementioned problems. That is, the first press brake is a press brake where the upper table provided with the upper tool holder and the lower table provided with the lower tool holder face each other in the vertical direction, and one of them is freely movable upwards and downwards. In the rear of the upper table, there are provided an exchange upper tool support for removably supporting a plurality of divided upper tools and an upper tool exchange device to exchange the divided upper tool between the exchange upper tool support and the upper table. In the rear of the lower table there are provided an exchange lower tool support for removably supporting a plurality of divided lower tools and a lower tool exchange device to exchange the divided lower tool between the lower table and the exchange lower tool support.




The second press brake is structured so that each upper and lower exchange tool supports are made to move upwards and downwards freely so that by providing a tool support which may move upwards and downwards freely to the upper and lower tool exchange device, the upper and lower divided tools may be supported freely.




The 3


rd


press brake is a press brake where the upper table provided with an upper tool holder and the lower table provided with a lower tool face each other downwards and upwards and where either the upper table or the lower table to made free to move upwards and downwards and where the left-right direction upper guide provided in the rear part of the upper table is made to protrude largely from the sides of the upper table in the left and right directions, and in order to exchange a plural number of divided upper tools on the upper table, an exchange upper tool support part which supports and allows attachment and detachment of a plural number of divided upper tools is provided on the protruded side part at a position which may be changed freely, and in order to exchange the divided upper tools between the exchange upper tool support part and the upper table, an upper tool exchange device free to move in the left-right directions is provided on the upper guide part, and the lower guide part which is provided in the rear of the lower table and is made to protrude largely from the lower table sides in the left-right directions and in order to exchange a plural number of divided lower tools on the lower table, an exchange lower tool support part is provided on the protruded side part at a position which may be changed freely, and in order to exchange the divided lower tools between the exchange lower tool support and the lower table, a lower tool exchange device free to move in the left-right directions is provided on the lower guide part.




In the 4


th


press brake, in the rear of the part of the upper guide protruding from the sides of the press brake described above, an upper tool housing section is furnished which houses a plurality of exchange upper tool support parts which support a plurality of divided upper tools which may be freely attached or detached and a tool support exchange device made free to move forward and backward to exchange the exchange upper tool support between the housing and the protruded part of the upper guide.




The 5


th


press brake is provided with a rotating part to turn round the front and rear sides of the exchange upper tool support part of the tool support exchange device in the press brake described above.




In the 6


th


press brake, below the protruded side part of the of the lower guide part in the press brake described above, a lower tool housing is provided which houses a plurality of exchange lower tool supports which support plurality of divided lower tools which may be attached or detached freely, the lower tool housing being made free to move back and forth and to thrust the exchange lower support positioned below the lower guide part on the protruded side part upwards, an exchange lower tool support lift is provided.




The 7


th


press brake is equipped with a temporary work holding device that may hold the work and a bending robot that supplies the work in between the upper and lower tools.




The divided tool of the present invention is arranged so that, in the divided tool freely exchangeable by mounting and dismounting from the tool holder of the press brake, the divided tool is provided with a shank part which may be engaged and disengaged from the mounting groove of the tool holder and, together with a work processing part to process the work and a concave engage part to which a lock piece, provided on the wall of the mounting groove and made free to appear or disappear, may be engaged freely is provided on the shank part and an engagement piece which may be made to turn up or hidden freely is provided on the shank part on the engage groove of the wall of the mounting groove and also an insertion hole for the tool hold to hold the divided tool and also to turn up and hide the engagement piece are provided near the shank part.




The first tool exchange device of the present invention is structured so that, in the tool exchange device for exchanging the divided tools between the tool holder device provided on the bending press and the exchange tool support which supports a plurality of divided tools free to attach and detach, on one side of the ends of the divided tool, a hook support with an abutted protuberance which may be abutted freely and a hook part with a curved point which may be abutted free to move in the long direction of the hook support and also to the other sides in front or rear of the divided tool, and are provided so that the divided tool may be held between the front and rear part by the abutted protuberance and the front edge part of the hook material.




In the second exchange device, in the tool exchange device described above, together with providing an insertion hole in the front to rear direction formed on the divided tool in which the hook support material and the hook material may be inserted freely, the hook material is made free to move in the direction crossing the long direction of the hook material and part of the hook support material is made in a wedge form so that the hook support material and the hook material may be engaged with little play in the insertion hole.




In the third tool exchange device, in the aforementioned tool exchange device, to at least one of the curved points provided on the abut protuberance or the hook material, an operation part is provided to turn up and down the engagement piece provided on the divided tool.




Also other characteristic features of the present invention are a bending press with at least one bending station to mount a plurality of divided tools (


1


) and,




a bending press system provided with a tool housing device (


65


,


123


) to house the divided tools of the bending press,




a tool exchange device (


61


,


143


) to move the divided tools between the tool housing device and the bending station and to mount the divided tools onto the bending station,




and a system provided with a first memory means (


403


) which stores the housing position of each divided tools housed in the housing device,




a second memory means (


405


) to store the bending line length, flange length and the bending angle,




and a first calculation means (


407


) to calculate, based on the bending line length, flange length and the bending angle, the types of tools (cross section shape) of the divided tools to be positioned on the bending station and the bending station length,




and a second calculation means (


409


) to calculate, based on the bending station tool types and length, the arrangement of each divided tool on the bending station,




and a NC control device (


411


) to control the tool exchange device so that each divided tool is moved from the housing device to the determined arrangement position.




By this system, the divided bending tool may be installed automatically on the bending press based on CAD data that specifies the bending product.




In the second calculation means, in calculating the arrangement of each divided tool on the bending station, it is preferable to make reference to the tool data which describes the divided tools housed in the bending station, tool housing, tool magazine.




By this means, the tool arrangement may be determined quickly by use of divided tools that are usable in practice.




Further features of the invention are, in a bending press system where a bending press (


1


) with at least one bending station for attaching a plural number of divided tools, and




a tool housing (


123


,


129


) which houses the divided tools for the bending press,




a tool exchange device (


61


,


143


) to move the divided tools between the tool housing and the bending station and to attach the divided tools to the bending station,




are provided as a method to attach the divided tools to the bending station,




a stage to memorize the housing position of each divided tools housed in the housing device and,




a stage to determine, based on the bent length of the bending part of the bent product, flange length and the bending angle, the types of the tools (cross section shape) of the divided tools arranged on the bending station and the length of the bending station and,




a stage to determine the arrangement of each divided tool on the bending station based on the tool types of the divided tools to be arranged on the bending station and the length of the station and,




a stage to move each divided tool from the housing position of the housing device to the determined arrangement position by the tool exchange device.




By this method, on basis of the CAD information and the like which specify the shape of the bent product, the divided tools may be installed on the bending station automatically.




In the method, in determining the arrangement of each divided tool on the bending station, it is desirable to use long tools.




This will expedite installment of the divided tools on the bending section.




In using long tools preferentially, it is desirable to use the quotient of the total length of the tool station divided by the length of the tool (for instance 100 mm) as the number of long tools to be used and fill the remaining length with short tools (for instance 10, 15, 20, 25, 30 mm long).




Also in determining the arrangement of each divided tool on the each bending station, it is desirable to arrange the long divided tools on both edges of the station and arrange the short divided tools in between the long divided tools arranged on the both edges.




By the arrangement, a bending section with a clean bending line form may be made.




Also when there is only one long tool on one station, the short tool is positioned on the side of the long tool.




In the stage in arranging the divided tools on the bending station, it is desirable to take into consideration the tool database that shows the divided tools mounted on the bending station and the divided tools housed in the tool housing device or the tool magazine.




This allows the arranging of the tool station using only usable divided tools that are arranged on the bending station or housed in the tool housing device or the tool magazine.




In more detail, in determining the arrangement of each divided tool on the each bending station, after determining the arrangement of the divided tools tentatively, it is desirable to make reference to the memory device which stores the types and number of divided tools mounted on the bending station and the type and number of divided tools stored in the tool housing device and the number and type of divided tools stored in the tool magazine outside the bending press in order to confirm whether all divided tools to be arranged on the tool station exist or not. And, for instance if, there is shortage in the number of long tools necessary, it is desirable to cover the shortage with short tools. That is, for instance, if the divided tool to be placed on the tool stage includes a tool that is not housed in the housing device or the magazine, the arrangement of the divided tools on the each station may be changed. For instance, if there is shortage of long tools of certain types but a large number of short tools of the same type exist in the housing device or the magazine, a plural number of short tools of the same type may be used at the station position where long tools should have been used.




Or if it is found that the designated divided tool does not exist in the tool housing device or the tool magazine after the arrangement of the divided metal has been determined, the lacking tool may be moved from a neighboring tool station.




There is also a case where the order of bending on bending sections to determined according to the bending line length, flange length, bending angle, and the determination of the tool types, bending station length of each station may be made based on these data. In this case, when the problem (including the case where the divided tool to be arranged on the tool station is not housed in the housing device or the magazine) arises, the bending order may also be changed.




The tool housing device is desirably provided with a first housing section (


65


) positioned on the bending axis of the bending station and a second housing section (


123


) which is provided with a tool support member (


129


) for supporting a plural number of divided tools with the same cross section shape. In moving the each divided tool from the housing device to the tool arrangement position on the bending station, it is desirable to house tools of each type (for instance each length or shape) in the second housing section and move a plural number of tools of the same type altogether from the second housing section to the first housing section and, in the first housing section provided at the tool insertion position of the bending station, divide the plural number of divided tools and insert the designated number of divided tools onto the bending station.




By the organization, the mounting time of the divided tools to the bending station may be shortened.




Also in inserting the divided tool from the first housing section to the bending station, after sliding a plurality of long tools collectively from the first housing section (standby station) to the bending station and positioning them at the designated position, make space for short tools at a designated position in between the long tools where the short tools may be inserted and arranged.




Another feature of this invention is a method to determine the order of processing when manufacturing a plurality of bent products. This method may be applied to a bending press system with a bending press provided with at least one bending station for attaching a plurality of divided tools and,




a tool housing device (


123


,


129


) for housing divided tools for the bending press and,




a tool exchange device (


61


,


143


) by which the divided tools may be moved between the tool housing device and the bending station.




Also the method is provided with.




a stage to store in the first memory means each divided tool housed in the bending station and the housing device and the divided tools housed in the tool magazine outside the bending press and,




a stage to determine the tool type (cross section shape) to be arranged on the bending station and the length of the bending station and,




a stage to produce the order of manufacturing data in order to produce the bent product that uses the tool holder mounted on the bending station or the tool housed in the tool housing device before producing the bent product that uses tools housed in the tool magazine outside the bonding station.




By this method, a plurality of products may be produced by the bending system quickly.




Another tool exchange mounting method of the present invention where in a press brake where the upper table provided with an upper tool holder and the lower table provided with a lower tool holder are made to oppose each other upwards and downwards and where one of the tables is made to move up and down freely, the case where the exchange of divided tools between the upper and lower tables and the exchange upper tool support which support a plurality of divided upper tools free to attach or detach and the exchange lower tool support which support a plurality of divided lower tools free to attach or detach are made automatically by use of the tool exchange device and a tool exchange and mounting method where divided tools with the smallest tool width are arranged in between a plurality of divided tools.




In the method, it is desirable to move sideward the plural number of divided tools adjacent to each other from the exchange tool support positioned at the side of the tool holder and separate the divided tools from each other on the tool holder and arrange the divided tools with small tool widths in between the separated divided tools.




Another tool exchange method of the present invention is, in the divided tool exchange on the press brake where, by use of the divided tools mounted on the tool holder of the press brake and a plural number of divided tools housed in the tool housing section, divided tools with desired lengths are mounted on the tool holders of the upper and lower table, where the divided tools which compose the entire length of the tool station are selected according to the bending length information, the selected tool station is displayed on the screen together with the work, a divided tool exchange method where the selected divided tools are mounted after moving the divided tools which interfere with the work to a position where it does not interfere.




This tool exchange device of the present invention is a divided tool exchange device in the press brake where, by use of the divided tools and a plural number of divided tools housed in the tool housing which are mounted on the tool holder of the press brake, divided tools with desired lengths are mounted on the tool holders of the upper and lower tables, and is a divided tool exchange device provided with a tool selection means to select from the divided tools mounted on the tool holder and divided tools housed in the housing section, divided tools which constitute the entire length of the tool station in correspondence with the bending line length of the product shape information, and an interference detection means to detect interference between the tools and the work by displaying the tool station selected by the tool selection means together with the work on a screen, and a tool transfer means to transfer the tool detected by the interference detection to be interfering to a non-interfering position.




In the apparatus, it is desirable to take the quotient of the total length of the tool station divided by the length of the longest divided tool as the number of the longest divided tool and to compose the difference in length between the total length and the total length of the longest divided tools by other divided tools.




In the apparatus, when the quotient of the total length of the tool station divided by the length of the longest divided tool is taken as the number of the longest divided tools but when the difference in length between the total length and the total length of the longest divided tools cannot be composed by a combination of other tools, it is desirable to use as the number of longest tools a value equal to 1 subtracted from the number and compose the difference in length between the total length and the total length of the longest divided tools by a combination of other divided tools.




Definitions




The meanings of terminologies used in this description are as follows.




“Flange length”: The size of the flange in the direction perpendicular to the bending line.




“(Divided) tool type”: The type of the (divided) tool specified by the cross-sectional shape of the bending tool.




“Size of the divided tool”: The width of the divided tool when mounted on the bending station.




“Usable (divided) tool”: (Divided) tools that are held by the factory where the bending press is installed and which are usable by the factory installations and the like.











BRIEF DESCRIPTION OF THE DRAWINGS





FIG. 1

illustrates the front view of the press brake of the first embodiment.





FIG. 2

illustrates the plan view of the press brake of the first embodiment viewed downward from the upper side.





FIG. 3

illustrates the left side view of the upper and lower tables near the tool holder.





FIG. 4

illustrates the rear view of the exchange upper tool support.





FIG. 5

illustrates the right side view of the exchange upper tool support.





FIG. 6

is a detailed illustration of the upper and lower tool holders.





FIG. 7

illustrates the cross sectional view which shows the structure of the divided tool.





FIG. 8

illustrates the left side detail view of the upper tool exchange device.





FIG. 9

illustrates the front detail view of the upper tool exchange device in detail.





FIG. 10

illustrates the right side detail view of the upper tool exchange device.





FIG. 11

illustrates the attachment and detachment exchange action by the upper tool exchange device on the upper tool holder.





FIG. 12

illustrates the attachment and detachment exchange action by the upper tool exchange device on the upper tool holder.





FIG. 13

illustrates the attachment and detachment exchange action by the upper tool exchange device on the upper tool holder.





FIG. 14

illustrates the attachment and detachment exchange action by the upper tool exchange device on the upper tool holder.





FIG. 15

illustrates the attachment and detachment exchange action by the upper tool exchange device on the upper tool holder.





FIG. 16

illustrates the attachment and detachment exchange action by the upper tool exchange device on the upper tool holder.





FIG. 17

illustrates the attachment and detachment exchange action by the upper tool exchange device on the upper tool holder.





FIG. 18

illustrates the attachment and detachment exchange action by the upper tool exchange device on the upper tool holder.





FIG. 19

illustrates the attachment and detachment exchange action by the upper tool exchange device on the upper tool holder.





FIG. 20

illustrates the attachment and detachment exchange action by the upper tool exchange device on the upper tool holder.





FIG. 21

illustrates the attachment and detachment exchange action by the upper tool exchange device on the upper tool holder.





FIG. 22

illustrates the exchange action for the divided tool with its front and rear being reversed.





FIG. 23

illustrates the front view of the press brake of the second embodiment where the right side part is omitted.





FIG. 24

illustrates the left side view of an important part of the press brake of the second embodiment.





FIG. 25

illustrates the front cross sectional view of the main part of FIG.


24


.





FIG. 26

illustrates the front view of the exchange upper tool support.





FIG. 27

illustrate a part of the guide base protruding from the press brake.





FIG. 28

illustrates the action of installing the exchange upper tool support onto the protruded part.





FIG. 29

illustrates the action of installing the exchange upper tool support on to the protruded part.





FIG. 30

illustrates the action of moving the exchange upper tool support.





FIG. 31

illustrates the action of moving the exchange upper tool support.





FIG. 32

illustrates the action of moving the exchange upper tool support.





FIG. 33

illustrates the front view of the housing section of the exchange lower tool support.





FIG. 34

illustrates the plan view of the housing section of the exchange lower tool support.





FIG. 35

illustrates the plan view of a part of the lower guide base protruding sideways from the press brake.





FIG. 36

illustrates the action of moving the exchange lower tool support.





FIG. 37

illustrates the action of moving the exchange lower tool support.





FIG. 38

is a block diagram of the support management device of the bending press system shown in FIG.


1


-FIG.


37


.





FIG. 39

shows the contents of the tool data stored in the first memory means of the management device.





FIG. 40

illustrates the meaning of the tool data shown in FIG.


39


.





FIG. 41

shows the CAD data of the bent product.





FIG. 42

shows the bending stations of the bending press.





FIG. 43

shows the cross section shapes of the divided tools mounted on the bending station.





FIG. 44

shows the arrangement of the bending station on the bending press





FIG. 45

shows the face side attached tool and the reverse side attached tool mounted on the bending station.





FIG. 46

shows the arrangement of each divided tool on each bending station.





FIG. 47

is a flow chart that shows the method to move and mount the divided tools from the tool housing device to the bending station by the support management device.





FIG. 48

shows the method to move the divided tools from the first housing section of the tool housing device and mount on the bending station.





FIG. 49

shows the method to generate order of manufacture data that determines the order of manufacture when a plurality of products is to be manufactured.





FIG. 50

is a block diagram that illustrates the fourth embodiment of this invention.





FIG. 51

illustrates the display screen.





FIG. 52

illustrates an example of arrangement of the divided upper tools.





FIG. 53

is a flow chart.





FIG. 54

illustrates an example of arrangement of the divided upper tools.











THE BEST MODE FOR CARRYING OUT THE INVENTION




With reference to

FIG. 1

, in common with ordinary press brakes, press brake


1


of the first embodiment of the present invention is provided with an upper table


5


and a lower table


7


opposed to each other downwards and upwards and supported by left and right side frames


3


L,


3


R where, in the present example, the lower table is made free to move upwards and downwards.




On the lower part of the upper table


5


, an upper tool holding section (tool holders)


9


for removably holding divided upper tools (divided tools) P is provided, and on the upper part of the lower table


7


, a lower tool holding section (tool holders) for removably holding divided lower tools (divided tools) D is provided.




A buck gauge BG (refer

FIG. 2

) for determining the front and rear direction position of the work in processing the plate form work by the upper and lower tools P, D mounted on the upper and lower tool holders


9


,


11


, is provided free to move and position in the front and rear direction (up and down direction in FIG.


2


). As in common press brakes, this buck gauge is supported free to position in the left-right direction on a stretch


8


. The right and left ends of the stretch


8


are supported free to move forward and backward by guides


6


L,


6


R provided on the back face of the table


7


horizontally in the forward and backward directions. As the support structure of the buck gauge is well known, details will be omitted.




Also in the front face of the lower table


7


, a bending robot BR free to move in the left-right direction in order to supply and position the work automatically in between the upper and lower tools P, D mounted on a plurality of positions when the work is being bent. As the structure of the bending robot BR is already well known, details will be omitted.




Also on the front face of the upper table


5


, a temporary work hold


10


is provided to hold the bent work temporarily. This temporary work hold


10


is provided with an upper and lower clamp jaw


10


J to clamp and hold the work and an actuator


10


A, such as a fluid pressure cylinder, for the upper and lower clamp jaws


10


J and an elevation actuator


10


B, such as a fluid cylinder, to move the work temporary hold


10


up and down.




This temporary work hold


10


may hold the work temporarily when the work held on the bending robot BR is changed, and by hold of the work temporarily by this temporary work hold


10


, the bending robot BR may change hold of the work after reversing the front and back and/the upward and downward sides of the work. Thereby unmanned bending process of works in which the work is reversed may be realized easily.




As shown in

FIG. 6

, on the tool holders


9


,


11


, long mounting grooves


13


U,


13


L are formed in the left-right directions (in

FIG. 6

the directions perpendicular to the page face) to mount and dismount the upper and lower divided tools P, D (not shown in

FIG. 6

) freely. On one side of the walls in front or rear of the mounting grooves


13


U,


13


L, long lock pieces


15


U,


15


L are provided in the left-right directions so as to protrude and retract freely. Actuators


17


U,


17


L such as fluid pressure cylinders are provided as lock piece actuators to let the look piece


15


protrude and retract. Also on the walls front and rear of the mounting grooves


13


U,


13


L, long engage grooves


19


U,


19


L are formed in the left-right direction.




The upper and lower divided tools P, D which may be exchanged freely by mounting-dismounting to the upper and lower tool holders


9


,


11


are arranged as follows. Here as the upper and lower divided tools differ only in the shape of the work processing part for processing the work, and as the arrangement of the shank part which acts as the mounting section to mount and dismount to the tool section


9


,


11


is similar, the arrangement of the upper divided tools P will be described and the description of the divided lower tool D will be omitted.




Now, as shown in

FIG. 7

, the divided upper tool P is provided with a work processing section


21


to process the work and a shank part


23


which may be freely engaged or disengaged, that is mounted or dismounted, from the mounting groove


13


U of the tool holder


9


. On the front and back faces of this shank part


23


, a groove shaped concave engage part


25


free to engage the lock piece


15


U is formed in the left-right direction (direction perpendicular to the page face in FIG.


7


).




Also in the shank part


23


of the divided tool P, an engage piece (engage section)


27


which may be freely engaged onto and disengaged from the engage groove


19


U formed on the wall of the mount groove


13


U of the tool holder


9


so as to protrude and retract is provided. In more detail, a concave housing section


29


is formed on the front face or the back face of the shank part


23


and in this concave housing section


29


, an engagement operating member


31


provided with the engage section (engage piece)


27


is inlayed free to move in the direction of the protrusion and retraction of the engage piece. And in between the engagement-operating member


31


and the bottom part of the concave housing section


29


, an elastic member


33


like a spring is provided. With this material


33


, the engagement operating part


31


is biased to the protruded direction. It is prevented from falling out of the concave housing section


29


by a stopper


35


provided on the engagement-operating member


31


. Also, a passage hole


37


for letting the tool exchange device (not shown in the figure) pass through is bored through the shank part


23


of the divided tool P in the front to back direction.




With the arrangement, the shank part


23


of the upper and lower divided tools P, D are inserted in the mounting grooves


13


U,


13


L of the upper and lower tool holders, and the engage piece


27


provided on the shank part


23


is engaged with the engage grooves


19


U,


19


L of the mounting grooves


13


U,


13


L, and the lock pieces


15


U,


15


L are engaged with the concave engagement section


25


formed on the shank part, and the lock pieces


15


U,


15


L is pressed firmly by actuators


17


U,


17


L, so that the upper and lower divided tools P, D may be fixed on the mounting grooves


13


U,


13


L of the upper and lower tool holders


9


,


11


.




By pushing in the lock pieces


15


U,


15


L from the walls of the mounting grooves


13


U,


13


L by action of the actuators


17


U,


17


L, the locked upper and lower divided tools P, D (lock state) will be released. Thus, in this state the divided tools P, D may be moved in the left-right directions along the mounting grooves


13


U,


13


L. Next, by moving against the elastic force of the elastic member


33


the operational member


31


and releasing the engaged state of the engagement piece


27


and the engage grooves


19


U,


19


L of the mount grooves


13


U,


13


L, the upper and lower divided tools P, D can be mounted and dismounted from the mount grooves


13


U,


13


L in the upper and lower directions and interchanged with other divided tools P, D.




As understood already, the upper and lower divided tools P, D may be moved in the left-right directions in the engaged state of the shank part (mount part)


23


on the mounting groove


13


U,


13


L, and may be fixed and released from the mount groove


13


U,


13


L in the up and down directions.




In order to attach and detach a plurality of upper and lower divided tools P, D relative to the upper and lower tool holder


9


,


11


, an exchange tool support which detachably supports a plurality of upper and lower divided tools P, D is provided.




In more detail, a base plate


41


with a guide rail


39


extending in the upward and downward direction is integrally attached to the back face of the upper table (in

FIG. 3

the left side face, in

FIG. 5

the right side face). And on the guide rail


39


, an exchange upper tool support (exchange tool support)


43


that detachably supports a plurality of divided upper tools P, is supported free to move upwards and downwards.




In more detail, on the exchange upper tool support


43


, as in the mounting groove


13


U of the upper tool holder


9


, a tool holder


47


provided with a tool holder groove


45


that supports a plurality of divided tools is integrally provided. Here an engagement groove


49


similar to the engagement groove


19


U is formed. However, a structure that corresponds to the lock piece


15


U is omitted so that the divided tool P may be attached or detached easily from the tool holder groove


45


. In order to move the exchange upper tool support


43


upwards and downwards along the guide rail


39


, an up-down actuator


51


in provided and an up-down movement member


51


P such as a piston rod is connected to the exchange upper tool support


43


.




With the arrangement, by operating the up-down actuator


51


, the exchange upper tool support


43


may be moved up and down and, as shown in

FIG. 3

, when moving upwards, it will be positioned higher than the upper tool holder


9


of the upper table


5


, and as shown in FIG.


5


. when moving downwards, the position of the upper tool holder


9


of the upper table


5


and the tool holder


47


of the exchange upper tool support


43


will be at about the same height, and thereby facilitate the mount and dismount exchange operation between the upper tool holder


9


and the tool holder


47


.




In order to exchange a plurality of divided lower tools D mounted on the lower tool holder


11


, an exchange lower tool support (exchange tool support)


53


(see

FIG. 3

) which detachably supports a plurality of divided lower tools D is provided free to move upwards and downwards on the rear side of the table


7


. In more detail, a guide rail


55


extending in the up-down direction is attached on the rear side of the lower table


7


by a bracket


57


and the exchange lower tool support


53


is supported free to move upwards and downwards on this guide rail


55


. And on the upper part of this exchange lower tool support


53


, there is provided a tool holder


59


that is symmetric to the tool holder


47


in the up and down direction. On the tool holder


59


, a plural number of divided lower tools D are arranged neighboring each other in the left-right directions and supported detachably.




Now the upward and downward motion of the exchange lower tool support


53


is made by an ascend-descend actuator (not shown in the figure) such as a fluid pressure cylinder acting as an upward and downward operation device. And when descended, it will be positioned below the lower tool holder on the lower table


7


and when ascended, the height of the tool holder


59


will be approximately at the height of the lower tool holder


11


so that the attachment-detachment exchange operation between the tool holder


59


and the lower tool holder


11


may be made readily.




In order to perform the attach-detach exchange operation of the divided upper tool P between the upper tool holder


9


on the upper table


5


and the tool holder


47


of the exchange upper tool support


43


automatically, an upper tool exchange device


61


is provided on the rear side of the upper table


5


. Also in order to perform attach-detach exchange operation of the divided lower tool D between the lower tool holder


11


on the lower table


7


and the tool holder


59


of the exchange lower tool support


53


automatically, a lower tool exchange device


63


is provided on the rear side of the lower table


7


.




In more detail, as shown in

FIG. 8

,

FIG. 10

, the upper tool exchange device (tool exchange device)


61


is supported on the upper table so that it may move freely in the left-right directions (direction perpendicular to the drawings in

FIGS. 8

,


10


). That is, on the upper table


5


, a guide base


64


elongated in the left-right directions is attached and a guide


65


and a rack


67


elongated in the left-right directions are attached to this guide base


64


. And on the guide


65


, a left-right slider


71


is supported free to move in the left-right directions by a plurality of slide member


69


.




On the left-right slider


71


, a servomotor


73


provided with a position detection sensor and a pulse encoder as a moving speed detection sensor is provided, and a pinion


75


engaged to the rack


67


is supported free to rotate. Also the servomotor


73


and the pinion


75


are geared together by a timing belt


77


.




Thus by adequate controlled rotation of the servomotor


73


, the left-right slider


71


may be moved along the guide


67


and positioned.




Also on the left-right slider


71


, an attachment-detachment device


79


is provided to attach and detach and exchange the divided upper tool P from the mount groove


13


U of the upper tool holder


9


.




In more detail, as shown in

FIGS. 9

,


10


, guide members


81


extending upwards and downwards are provided on the side of the left-right slider


71


and on the guide members


81


an upward-downward slider


83


is supported free to ascend and descend. This upward-downward slider


83


may be made to ascend or descend by an up-down movement actuator


85


(see

FIG. 9

) such as, for example, a fluid pressure cylinder as the ascent-descent movement device mounted on the left-right slider


71


. The slider


83


is arranged so that the ascended position may be determined accurately by engaging it with a stopper


81


such as an adjustment bolt, which is provided on the upper and lower sides of the left-right slider


71


so as to be adjustable in the vertical direction.




On the upward-downward slider


83


, a guide member


89


extending in the front-rear direction (direction perpendicular to the drawing in FIG.


9


and the left-right direction in

FIG. 10

) is provided and a front-rear slider


91


to supported on this guide member


89


free to move in the front-rear direction. This front-rear slider


91


is arranged so that it may be moved in the front-rear directions by a front-rear movement actuator


93


such as the fluid pressure cylinder supported by the upward-downward slider


83


.




On the front-rear slider


91


, a guide member


95


is provided in the front-rear direction, and on the guide member


95


a hook support


97


that may move freely in the front-rear direction is supported. The tip


97


T of this hook support


97


may be freely inserted into the insertion hole


37


formed on the divided upper tool P and is formed in a wedge shaped form. Also on the hook support


97


, an abut protuberance


97


P is provided which abuts one of the front or rear sides of the divided upper tool P when the tip


97


T is inserted in the insertion hole


37


.




Moreover the forward-rear motion of the hook support


97


is made by a front-rear motion actuator


99


such as a fluid pressure cylinder mounted on the front-rear slider


91


.




Furthermore, on the front-rear slider


91


, a guide member


101


(see

FIG. 9

) extending in the front-rear direction is provided near the guide member


95


. On this guide member


101


, a hook attachment member


103


free to move in the front-rear directions while contacting the upper surface of the hook support


97


to supported free to move in the front-rear directions.




And on the tip of the hook attachment


103


, a hook


107


is supported by an axis


105


so as to swing freely upwards and downwards. In between this hook


107


and a spring seat


109


, an elastic member


111


is elastically mounted so that the hook


107


is urged to the anticlockwise direction (downwards) in FIG.


10


. Thus in the normal state the hook


107


is inclined downwards and abuts to the tip


97


T of the hook support


97


. The look


107


may be freely inserted in the insertion hole


37


formed on the divided upper tool P. Its tip


107


T is curved so that by passing through the insertion hole


37


and pulling, it may freely abuts to other sides in front or rear of the divided upper tool P. Also the hook attachment


103


is arranged so that it may be moved back and forth by an actuator


113


such as the fluid pressure cylinder for hook motion mounted on the back and forth slider


91


.




The tip


97


T of the hook support


97


and the hook


107


may constitute a tool retention section that retains the divided tool P by engaging the insertion hole


37


of the divided tool P. The abut tip


97


P and the tip


107


T of the hook


107


may constitute a manipulation section to operate the engagement operation member


31


provided on the divided tool P.




The structure of the main parts of the lower tool exchange device


63


is practically symmetric to the upper tool exchange device


61


. Thus as the explanation will be duplicated, detailed description of the structure of the lower tool exchange device


63


will be omitted.




The operation of attach-detach exchange of the divided upper tool P between the upper tool holder


9


of the upper table


5


and the tool holder


47


of the exchange upper tool support


41


by the upper tool exchange device


61


in the structure described above will be explained. As the attach-detach exchange of the divided lower tool D between the lower tool holder


11


on the lower table


7


and the tool holder


59


of the exchange lower tool support


53


by the lower tool exchange device


63


is similar to the attach-detach exchange of the divided upper tool P by the upper tool exchange device


61


, explanation of the attach-detach of the divided lower tool D will be omitted.




As shown roughly in

FIG. 11

, in order to automatically demount the divided upper tool P mounted and fixed on the upper tool holder


9


on the upper table


5


, and to move and mount it on the tool holder


47


of the exchange upper tool support


43


, firstly, by controlled drive of the servo motor


73


, the left-right slider


71


positioned at the origin near the end part of the guide member


65


is moved in the left-right direction along the guide


61


and positioned at the position of the divided upper tool P to be removed.




Next the back and forth actuator


93


is operated and the back and forth slider


91


is moved in the direction (forward direction) to close to the divided upper tool P and the hook


107


is inserted into the insertion hole


37


so that the tip part


107


T protrudes from the opposite side (front side) (see FIG.


12


).




The actuator


99


is then operated to insert the tip part


97


T of the hook support part


97


into the insertion hole


37


and abut the abut tip


97


P to one of the front or rear sides of the divided upper tool P (see FIG.


13


).




In this way, upon insertion of the tip part


97


T of hook support part


97


into the insertion hole


37


, both the hook


107


and the tip part


97


T will bet positioned at the insertion hole


37


, and by engaging them with little play between the insertion hole


37


, the divided upper tool P may be held in a retainable state. Thus, when the divided upper tool P is removed from the upper tool holder


9


, the divided upper tool P may be retained securely with no sway.




Next the actuator


113


for the hook movement is operated so that the hook attachment


103


is pulled to the right (to the rear) in FIG.


13


. Then, as the tip


107


T of the hook


107


will push the engage action part


31


against the elastic member


33


, the engagement of the engagement part


27


provided on the engage action part


31


with the engagement groove


19


U on the mount groove


13


U will be released. And the front and rear sides of the divided tool P is held in between the abut protrusion


97


P of the hook part


97


and the tip


107


T of the hook (see FIG.


14


).




Thereafter, by retracting the lock piece


15


U by operating the actuator


17


U, the engagement of the concave engagement part of the divided upper tool P and the lock piece


15


U will be released. Then the fixed mount state (locked state) of the divided upper tool P on the mount groove


13


U of the upper tool


9


will be released. Then by lowering the up-down slider


83


by operating the up-down actuator


85


of the upper tool exchange device


61


, the divided upper tool P may be removed downwards from the mount groove


13


U (see FIG.


15


).




After removing the divided upper tool P downwards, by moving the front-back slider


91


backwards by operating the front-back movement actuator


93


, the divided upper tool P may be moved to the rear side direction of the upper table


5


(see FIG.


16


).




If together with moving the divided upper tool P backwards on the upper table


5


as described above and also positioning it at the necessary position by moving it in the left-right directions, the exchange upper tool holder


43


is lowered, the tool holder


47


of the exchange upper tool support


43


may be positioned at the same height as the upper tool holder


49


of the upper table


5


and will be brought in a state where the divided upper tool P and the upper tool holder


47


oppose each other upwards and downwards (see FIG.


17


).




Thereafter, if the up-down slider


83


is elevated by operating the up-down actuator


85


on the upper tool exchange device


61


, the shank part of the divided upper tool P will be engaged to the tool holder groove


45


of the tool holder


47


(see FIG.


18


).




After engaging the divided upper tool P on the tool mounting groove


45


as described above, when the pressure on the engage action part


31


by the tip


107


T of the hook


107


is removed, the engage action part


31


will protrude by the action of the elastic member


33


and the engagement piece


27


provided on the engage action part


31


will engage the engagement groove


49


of the tool holder groove


45


(see FIG.


19


).




Next, when the tip


97


T of the hook support part


97


is drawn out of the insertion hole


37


of the divided upper tool P, the tip


107


T of the hook


107


will be inclined downwards by the action of the elastic member


111


making it possible to draw out the hook


7


from the insertion hole


37


of the divided upper tool (see FIG.


20


).




Thereafter, by extracting the hook


107


from the insertion hole


37


of the divided upper tool P, the exchange upper tool support part


43


may be moved upwards to its original position (refer FIG.


21


).




When mounting the divided upper tool P supported by the exchange upper tool holder


43


onto the upper tool holder


9


of the upper table


5


, the divided upper tool P may be mounted and demounted and exchanged between the exchange upper tool support


43


and the upper table


5


by reversing the action described above. Also, as shown in

FIG. 22

, as the engage action part


31


may be operated by the pressure of the abut protrusion part


97


P of the hook support part


97


, there is no problem in reversing the front and rear of the divided upper tool P. Also this may also be used for the divided lower tool D.




It in understood already that by the upper tool exchange device


61


, the divided upper tool P may be mounted, demounted and exchanged automatically between the upper tool holder


9


of the upper table


5


and the tool holder


47


of the exchange upper tool support


43


, and that the divided upper tool P may be mounted on the upper tool holder


9


of the upper table


5


at an arbitrary position in the left and right directions. Similarly by the lower tool exchange device


63


, the divided lower tool D may be mounted, demounted and exchanged automatically between the lower tool holder


11


of the lower table


7


and the tool holder


59


of the exchange lower tool support


53


and that the divided lower tool D may be mounted on the lower tool holder


11


of the lower table


7


at an arbitrary position in the left and right directions.




Thus, as shown in

FIG. 1

, a plurality of upper and lower divided tools P, D may be arranged over a desired length on a plurality of positions in left and right directions of the upper tool holder


9


of the upper table


5


and the lower tool holder


11


of the upper table


7


. That is, a plurality of processing stations


115


A,


115


B,


115


C may be provided on a plurality of positions in left and right directions of the upper and lower tables


5


,


7


, and by an appropriate combination of a plurality of upper and lower divided tools P, D, the length of each processing station


115


A,


115


B,


115


C in the left and right direction may be made to a length which corresponds to the bending line length of the work.




When using a combination of divided tools P, D as described above, as illustrated at the processing stations


115


A,


115


B, divided tools P, D with small widths in the left-right direction are arranged in between divided tools P, D with large widths in the left-right direction. By arranging the divided tools P, D with small widths in between the divided tools P, D with large widths, trace of the connecting part of the divided tools P, D will not appear on the work and the external appearance of the product will be improved.





FIG. 23

shows the press brake of the second embodiment with the right side omitted where same symbols will be used for structural components having the same function as in the first embodiment and explanations will not be duplicated.




In the second embodiment, the upper and lower guide bases


64


, guide members


65


and racks


67


for guiding and supporting the upper and lower tool exchange devices


61


,


63


are constructed so that they protrude largely from the sides in the left and right directions. Onto this protruded part, holders for a exchange tool support are provided, and on these holders, exchange tool supports that may support a plurality of freely attachable and detachable tools P, D are mounted free to attach-detach and exchange. With this, more divided tools P, D can be attached and detached and exchanged.




In more detail, as shown in

FIGS. 24

,


25


, on the outer side face of the side frame


3


L of the press brake


1


, a housing frame


123


is provided by the bracket


121


. The housing frame


123


acting as an upper tool housing section is formed in a square shaped framework by the left and right side frames


123


A,


123


B and the connection frame


123


C connected to the left and right side frames


123


A,


123


B. On the upper surface of the long left and right support beams


125


A,


125


B integrally secured on the lower part of the inner sides of the left-right side frames


123


A,


123


B, a plurality of positioning pins


127


are provided adequately spaced in the forward and backward direction.




On the positioning pins


127


, engagement holes


131


directed in the up and down direction and provided on the left and right edge of the exchange upper tool support


129


which detachably supports a plurality of divided upper tools P, are engaged free to attach or detach. That is, on the housing frame


123


, a plurality of exchange upper tool supports


129


arranged in a row in the front to rear direction, are supported free to attach or detach.




As shown in

FIG. 26

, the exchange upper tool support


129


is provided with a lower support part


135


which is provided with a tool groove


133


which has the same structure as the tool holder groove


45


and which engages and supports a plurality of divided upper tools free to attach and detach. On upper surface of the left and right edges of this lower support part


135


, a bracket


137


formed with the engagement hole


131


is attached. And, on the central part of the lower support part


135


, a suspension


141


provided with engagement holes


139


on both ends.




There is provided a tool support exchange device


143


to transfer and exchange a plurality of exchange upper tools supports


129


housed and supported by the housing frame


123


to the holder on the protruded part of the guides


65


.




In more detail, as shown in

FIG. 24

, on the upper part of the housing frame


123


, left side and right side guide beams


145


which protrude in the forward direction (right direction in

FIG. 24

) over the protruded part of the guide part


65


are provided, extending in the forward and backward directions. On guide rails


147


provided on these left and right guide beams


145


and extending in the forward and backward direction, a slide beam


149


is supported movable in the front and rear directions. In order to move the slide beam


149


back and forth, a screw


151


elongated in the front to rear directions is rotatably supported on the guide beam


145


, and a servomotor


153


is attached on the guide beam


145


to rotate the screw


151


. And a nut


155


(see

FIG. 25

) attached to the slide beam


149


meshes with the screw


151


free to move in the front and rear directions (direction perpendicular to the sheet in FIG.


25


).




On the central part of the left-right direction of the slide beam


149


, a guide plate


157


is erected, and on the vertical guide


159


attached to the guide plate


157


, an up-down slider


161


is supported and guided free to move upwards and downwards. In order to ascend and descend the up-down slider


161


, an up-down movement parts


163


P such as a piston rod of an up-down movement actuator


163


such a fluid pressure cylinder acting as an up-down movement device, attached to the guide plate


157


is connected to the up-down slider


161


.




On the up-down slider


161


, a rotation hook


167


which may rotate horizontally by a rotating device


165


is supported. The rotation hook


167


is provided with engagement pins


169


which may be inserted from the lower side of the engagement hole


139


formed on the exchange upper tool support


129


.




The rotating device


165


is provided with a worm wheel (omitted in the figures) that may rotate horizontally by engaging with the worm rotated by a motor (omitted in the figure). The device


165


is provided with a sensor such as a limit switch that detect a half turn of the worm wheel and is organized so that the rotation will be stopped when the rotating hook


167


half turns horizontally.




With this arrangement, the guide plate


157


may be moved in the front-rear directions along the guide rail


147


by rotating the screw


151


by driving the servo motor


153


, and may be positioned at a position corresponding to the desired position of the exchange upper tool support


129


supported in the housing frame


123


. And by operating the up-down movement actuator


163


, the up-down slider


161


may be moved up and down, and brings the rotating hook


167


supported by the up-down slider


161


down to the position of the hang part


141


and inserts the engagement pin


169


provided on the rotating hook


167


into the engaging hole


139


formed on the hang part


141


from below.




That is, together with suitable controlled operation of the servomotor


153


, by suitable controlled operation of the up-down movement actuator


163


the exchange upper tool support


129


supported in the housing frame


123


at an arbitrary position may be hanged up by the rotating hook


167


. And the exchange upper tool support


129


may be moved to the mounting position of the protruded part of the guides


65


and the like. Also by rotating the rotating lifter


167


by the rotating device


165


, front and rear sides of the divided upper tool P may be reversed while transporting the exchange upper tool support


129


.




As shown in

FIG. 27

, on the part where the guide base


64


is protruded largely sidewards from the upper table


5


, a hollow part


171


is formed to mount the exchange upper tool support


129


free to attach and detach. In the present embodiment, this hollow part


171


is formed in the form of a concave notch. And on both left and right side parts, a positioning pin


173


that is free to engage the engagement hole


131


provided on the exchange upper tool support


129


is provided protruding upwards.




By positioning the exchange upper tool


129


in the hollow part


171


and engaging the engagement hole


131


with the positioning pin


173


, the bracket


1269




137


provided with the engagement hole


131


will be supported by the guide base


64


, and the lower support part


135


of the exchange upper tool support


129


will be placed at the same height as the upper tool holder


9


on the upper table


5


(see FIG.


29


). Thus, the divided upper tool P may be moved directly onto the mount groove


13


U of the upper mount


9


by moving the tool P in the left-right direction on the tool holder groove


133


formed on the lower support


135


.




With this arrangement, after positioning the rotating hook


167


above a desired exchange upper tool support


129


as shown in

FIG. 24

, by raising the rotating hook as shown in

FIG. 30

, the desired exchange upper tool support


129


may be lifted up from the housings frame


123


. Thereafter, by moving the slide beam


149


forwards as shown in

FIG. 31

, the exchange upper tool support


129


may be positioned at the position that corresponds to the hollow part


171


acting as the mount part of the guide base


64


.




Also, when reversal of the front and rear of the divided upper tool P is necessary, after lowering the rotation hook


167


in between the housing frame


123


and the protruded part of the guide base


64


and bringing it to a state where it does not interfere with other structure parts, the front and rear of the divided upper tool P may be reversed by rotating and reversing the rotation hook


167


horizontally by operating the rotation device


165


.




As mentioned above, after positioning the exchange upper tool support


129


at the hollow space


171


acting as the mount section of the guide base


64


, when the rotating hook


167


is lowered, the positioning pin


173


and the engagement hole


131


of the exchange upper tool support


129


will engage with each other, as shown in

FIG. 29

, so that the exchange upper tool support


129


will be positioned.




Thereafter, by inserting the tip


97


T of the hook support


97


of the upper exchange device


61


into the insertion hole


37


of the divided upper tool P on the leftmost side in

FIG. 29

, and by moving the upper tool exchange device


61


along the guide part


65


to the right direction, a plurality of divided upper tools P supported on the exchange upper tool support


129


are moved sidewards to the mount groove


13


U of the upper tool holder


9


on the upper table all at once, thereby the efficiency of moving the upper tool P may be expedited. Also, as described before, the divided upper tools P may be moved one at a time by the upper tool exchange device


61


. With the arrangement, a plurality of exchange upper tool support parts


129


, which are housed and supported in housing frame


123


acting as the upper tool housing section, may be transported and mounted by the tool support exchange device


143


to the hollow part


171


acting as the mount section, so that the attachment detachment exchange of the divided upper tools P onto the upper tool holder


9


of the upper table


5


may be performed. Thus divided upper tools P with various forms and sizes may be attached and detached automatically in accordance with the bending process of the work.




As shown in

FIG. 33

, at the lower position of the lower guide base


64


which protrudes largely in the left direction from the left edge of the lower tool holder


11


on the lower table


7


, a framework structured base frame


181


is provided. On the upper part of this base frame


181


, a guide rail


183


extending in the forward and backward directions (direction perpendicular to the sheet of

FIG. 33

) is provided. And on this guide rail


183


, a square framework shaped slide frame


185


is supported free to move forward and backwards. To move this slide frame


185


back and forth, on the base frame


181


, a screw


187


(see

FIG. 34

) extending in the forward and backward direction (up and down direction in

FIG. 34

) is supported free to rotate, and a servomotor


189


is mounted to rotate this screw


187


. And a nut


191


(see

FIG. 33

) furnished on the slide frame


185


is screwed onto the screw


187


free to move in the forward backward directions.




Thus, by adequate controlled rotation of the servomotor


189


, the slide frame


185


may be moved back and forth along the guide rail


183


.




On the slide frame


185


acting as the lower tool housing section, a plurality of exchange lower tool supports


193


that support a plural number of divided lower tools D free to attach and detach is supported free to attach and detach. The exchange lower tool support


193


is provided with a tool holder groove


195


which is formed in up and down symmetry with the tool groove


133


of the exchange upper tool support


129


. A plurality of divided lower tools D is mounted on this tool holder groove


195


free to attach and detach and also free to move in the left and right directions.




On the lower part of one side of the exchange lower tool support


193


, a positioning pin


197


is provided which may be freely engaged or disengaged from the positioning hole (not shown in the figure) provided on the slide frame


185


, and at adequate positions, a plurality of control pins


199


protruding downwards are provided. Also on the lower part of the other side edge of the exchange lower tool support


193


, an engagement pin


201


is provided.




A plurality of exchange lower tool supports


193


are mounted in parallel adequately spaced in the front and rear directions on the slide frame


185


as shown in

FIG. 34

, and by moving the slide frame


185


forward and backwards as described before, each exchange lower tool support


193


may be indexed and positioned at the lower position of the mount section on the protruded part of the lower guide base


64


.




An exchange lower tool support elevator


203


is provided to push up freely the exchange lower tool support


193


, indexed and positioned as described above, up to the position of mount section on the protruded part of the lower guide base


64


.




In more detail, as shown in

FIG. 34

, a guide plate


207


provided with a guide rail


205


in the left-right directions is provided on the support plate


182


provided on the base frame


181


. A slide plate


209


free to move in the left-right directions is supported on this guide rail


205


. In order to move the slide plate


209


in the left-right directions, a left-right movement actuator


211


such as a fluid pressure cylinder is mounted on the guide plate


207


, and a left-right drive member


213


such as a piston rod of the left-right movement actuator


211


is connected to the slide plate


209


via a bracket.




Thus the slide plate


209


may be moved in the left-right directions along the guide rail


205


by the left-right movement actuator


211


.




On the slide plate


209


, a booster member


217


, provided with engagement holes


215


on both edges which engage with the control pins


199


arranged on the exchange lower tool support


193


, is provided free to move up and down. That is, on the lower part of the slide plate


209


, up-down actuator


219


such as a fluid pressure cylinder (see

FIG. 33

) is provided, and an up-down drive member


221


such as a piston rod is connected to the booster member


217


. Also on both edges of the booster member


217


, a guide rod


225


is provided which is guided upwards and downwards by the up-down guide


223


provided on the slide plate


209


. As shown in

FIG. 35

, on the protruded part of the lower guide base


64


, together with a lower guide member elongated in the left-right direction provided to guide the lower tool exchange device


63


in the left-right directions, a rack


67


is provided. Also a hollow space


227


is formed as a mount section free to position the exchange lower tool holder


193


when it is pushed up. And in front and rear of this hollow space


227


, a front-rear guide roller


229


which clamps the exchange lower tool holder


193


from the front and rear and guides it in the left-right directions is provided free to rotate. Further on the edge of the lower tool holder


11


side, an engage positioning member


231


, which determines the position by engagement with the engagement pin


201


, is provided free to be moved up and down by the up-down cylinder


233


.




In the arrangement described, as shown in

FIG. 36

, after moving the slider frame


185


forward and backward (left-right movement in

FIG. 36

) and indexing and positioning a desired exchange lower tool support


193


at a position above the booster


217


and below the hollow space


227


which acts as the mount section of the protruded part of the lower guide base


64


, by pushing up the desired exchange lower tool support


193


by the booster


217


as shown in

FIG. 37

, the exchange lower tool support


193


may be positioned as the mount section inside the hollow space


227


.




Subsequently, by operating the left-right movement actuator


211


and moving the slide plate


209


to the lower table


7


side, the engagement pin


201


provided on the exchange lower tool support


193


will be engaged with the engagement positioning section


231


so that the same


193


will be positioned in a state where it will be at the same height as the lower tool holder


11


of the lower table


7


and lined up in the left-right directions.




Thus, with the lower tool exchange device


63


, a plurality of divided lower tools D may be, similar to the divided upper tools P, moved onto the lower tool holder


11


simultaneously and, as already understood, the divided lower tools D may be attached and detached one by one and moved and mounted on to the lower tool holder


11


.




As already understood, in the second embodiment, more divided tools P, D may be housed in each tool housing section and also by moving a plurality of divided tools P, D simultaneously to the upper and lower tool holders


9


,


11


on the tables


5


,


7


, the efficiency of tool mounting may be improved and, if necessary, the divided tools P, D may be moved and mounted on the upper and lower mounts


9


,


11


one by one.




The third embodiment of this invention is a bending press system that comprises a bending press system that is provided with a bending press


1


having at least one bending station to mount a plurality of divided tools, and tool housing devices


65


,


123


to house the divided tools for the bending press, and tool exchange devices


61


,


123


which move the divided metals between the tool housing devices and the bending station; and a bending press system support management device


401


(

FIG. 38

) which supports and manages the bending press system so as to support set up or exchange of the divided tools relative to the bending stations.




Here the tool housing devices


65


,


123


are provided with a first housing section (or the standby station)


65


acting as an upper guide part


65


, which protrudes largely in the left-right directions from the sides of the upper table, positioned on the extension of the line of the bending axis of the bending station, and a second housing section


123


provided with a tool support part


129


which supports a plurality of divided tools with the same cross-sectional shapes.




Also the tool exchange device is provided with a first tool exchange means


61


which moves each divided tool freely between the first housing section and the bending station, and a second tool exchange means


143


which moves freely a plurality of divided tools with the same cross section shape altogether between the first housing section and the second housing section.





FIG. 38

shows the composition of the bending press system support management device


401


.




As shown in

FIG. 38

, the bending press system support management device


401


consists of a first memory means


403


which store the housing positions of the divided tools housed in the housing device


65


,


123


, and a second memory means which store the bending line length, the flange length and the bending angle of the bending part of the bent product, and a first calculation means


407


to calculate the tool type of the divided tool to be set on the bending station and the length of the bending station based on the bending line length, flange length and the bending angle, and a second calculation means


409


to determine the arrangement of each divided tool on the bending station based on the tool type and the length of the bending station, and an NC control means


411


which controls the tool exchange device


61


,


143


so that each divided tool is moved from the housed positions of the housing section


65


,


123


to the determined arrangement positions.




A more detailed description is given below.




In the first memory means


403


, as shown in

FIG. 38

, besides divided tools stored in the first housing section


65


and the second housing section


123


acting as housing devices, the mount positions of the divided tools mounted on the banding station and the housed positions of divided tools housed in the tool magazine (not shown in the figure) provided outside the bending press (and hence not accessible by the tool exchange device) are also stored.





FIG. 39

shows the data of the divided tools (standard size or long size tools) stored in the first memory means


403


in a tabular form.




As shown in

FIG. 39

, on the column


403




a


which shows the tool types, identifiers D


1


to D


15


of the divided tools are inputted, and on the column


403




b


which shows the state of the divided tools, the mount position or the housing position of each divided tool it inputted for each identifier of the divided tool. In column


403




b


, for example A


1


indicates that the tool D


1


is present on the first bending station and A


2


indicates that the tool D


2


is present on the second bending station. Also B indicates that tools D


1


to D


15


are present in the standby station acting as the first housing section (the upper guide member provided protruding largely from the upper table side parts in the left-right directions)


65


.




The data in column


403




c


shows a more detailed position of each divided tool D


1


to D


15


. Thus, for example, tool D


1


is positioned −50 mm from the press center


0


(see FIG.


40


(


a


)), and the divided tool D


2


is positioned +50 mm from the left-right direction center of the bending press.




Also when the divided tool is in the first housing section (or the standby station)


65


, the numbers


1


-


5


in column


403




c


indicate which number place from the left side position each divided tool is placed in the housing section


65


. For example, as shown in FIG.


40


(


b


), when divided tools D


11


-D


15


are arranged in order from the left side, as shown in

FIG. 39

, numbers


1


-


5


are inputted in the row which correspond to the tools D


11


-D


15


.




For divided tools housed in the second housing section


123


and for divided tools housed in the tool magazine outside of the bending press, signs C, D which indicate the second housing section or the tool magazine is inputted in column


403




b


of the state column. And on the column


403




c


, the numbers


1


-


5


and the like are inputted which indicate the order of arrangement in each housing section or magazine similar to the case of the divided tools housed in the first housing section


65


.




In the second memory means


405


, the CAD data for the bent product shown in FIG.


41


and the bending line length L


1


-L


4


. flange length d


1


-d


2


and the bending angle and the bending direction of the bent part b


1


-b


5


included in the CAD data, are stored.




Here bending direction data is a data that indicates whether the bent part is bent downwards or upwards.




Referring again to

FIG. 38

, the bending press system support management device


401


includes the bending order calculation means


413


to determine the order of the bending process of the bending section b


1


-b


2


based on the bending line length, flange length, bending angle stored in the second memory means


405


.




The bending order calculated by the bending order calculation means


413


will be stored in the bending order memory means


415


.




In this embodiment, the bending order may also be determined manually.




The first computation means


407


computes the tool type, the length of the bending station, the number of bending stations and coordinates and the like to be set on the bending station on the basis of the bending line length, flange length, bending angle and bending direction inputted from the second memory means


405


.




FIG.


42


and

FIG. 43

show the lengths W


1


, W


2


, W


3


and the divided tool types of the bending stations S


1


, S


2


, S


3


calculated by the first computation means.





FIG. 44

shows the station coordinates a


1


, O, a


3


of the bending stations S


1


-S


3


determined by the first computation means


407


. By this first computation means


407


, the coordinates of each station S


1


, S


2


, S


3


are computed an the distance a


1


, O, a


3


from the machine center (that is the center of the bending press in the left-right direction) O to the left edge of each tool station. Now, in

FIG. 44

, it is assumed that the center of station s


2


coincides with the machine center O.




Now when the center of station s


2


coincides with as the machine center O, the coordinates of the stations s


1


, s


3


may be given by the distance b


1


, b


3


between the station s


2


and the stations (FIG.


44


).




As shown in

FIG. 45

, the first computation means


407


also computes whether each divided tool is arranged on each station to face forward (see FIG.


45


(


a


) or rearward (FIG.


45


(


b


)).




The number of the bending stations, the coordinates of the bending stations, and the type of the divided tools to be arranged on each bending station and the data of the number, length, coordinate and the forward or rear face mount of the tool of each bending station computed by the computation means


407


will be stored in the 3rd memory means


417


.




The table


417




a


in

FIG. 38

shows stored contents of the bending station data stored in the 3rd memory means


417


. That is, in the memory means


417


, as the banding station data, the tool type P


1


, P


2


, P


3


, the station length W


1


, W


2


, W


3


and the station coordinates a


1


, a


2


, a


3


are stored for each station number


1


,


2


,


3


.




The second computation means


409


computes, based on the data from the 3rd memory means


417


, the arrangement of each divided tool on each bending station.





FIG. 46

shows the arrangement of divided tools on the bending stations s


1


, s


2


, s


3


computed by the second computation means


419


. Here the sizes of each divided tool are for long size (standard size) 100 mm, for short tools 15 mm or 20 mm or 25 mm or 30 mm.




In determining the arrangement of divided tools on each station s


1


, s


2


, and s


3


, long divided tools are selected preferentially as shown in FIG.


46


. That is, the station lengths W


1


-W


3


are divided by the length of the long tools and a number of long divided tools equal to the quotient are selected first and the remaining length is filled up with short tools. Also, when a combination of tool lengths that matches the station length W


1


-W


3


does not exist according to this method, the number of the long tools may be reduced by one and the remaining length is filled up by a combination of short tools.




The divided tools may be mounted on the bending station quickly this way.




Also, in determining the arrangement of divided tools on the each station, as shown in

FIG. 46

, the second computation means


409


determines if possible, the arrangement where long tools P


1


, P


2


, P


3


are arranged on both edges of each station s


1


, s


2


, s


3


and the short tools p


1


, p


2


, p


3


arranged in between the long tools P


1


, P


2


, P


3


.




By this way, creation of scratches on the bent part may be prevented.




When only one long tool is used on one station, short tools are arranged on the sides of the long tools.




Also, the second computation means


409


, with reference to the data of the first memory means


403


. checks whether the divided tool arrangement (for instance as shown in

FIG. 46

) determined on basis of the data of the 3rd memory means


417


may be realized by usable or available tools (existing in the factory and the like). The usable tools include divided tools already present on the bending station, and divided tools housed in the first housing section


65


, and divided tools housed in the second housing section


123


, and tools housed in the tool magazine outside the bending press


1


.




The second computation means


409


will rearrange the tool arrangement if, after the arrangement of divided tools has been determined, divided tools determined do not exist in the usable tools or when there is shortage of the divided tools. For instance, if there is shortage of long tools, the shortage will be complemented by short tools.




The second computation means


409


also investigates whether by changing the bending order computed by the bending order computation means


413


, the number of the bending stations or the length of the bending station may be changed so as to create an arrangement of the bending station for manufacturing the bent products using the usable divided tools.




The second computation means


409


will send out an alarm signal if a divided tool arrangement using usable tools cannot be determined.




The arrangement of each divided tool on each bending station computed by the second computation means


409


will be stored in the 4th memory means


419


(refer FIG.


38


).




Table


409




a


of

FIG. 38

shows the arrangement data of each divided tool on each bending station stored in the 4th memory means


419


. That is, in the memory means


419


, for each tool identification number


1


-


5


. respectively, tool type P


1


or p


1


and lengths


100


,


30


and positions x


1


-x


5


and the like are stored. Here the positions x


1


-x


5


of the each tool indicate the distance between the machine center O and the left sides of each tools. The table


409




a


shows the arrangement data of tools arranged on station s


1


of

FIG. 46

but arrangement data of tools arranged on other stations are similar.




The NC control means


411


controls, on basis of the data stored in the first memory means


403


of divided tools stored in the tool housing device


65


,


123


and on basis of data stored in the 4th memory means


419


which shows arrangement of the divided tools, the tool exchange device


61


,


143


to transfer each divided tool from the housed position of the housing device


65


,


123


to the determined arrangement positions on the bending station.





FIG. 47

is a flow chart which shows the method of mounting the divided tool onto the bending station of the bending press, based on the CAD data shown in

FIG. 41

, in the bending press system provided with the support management device


401


.




As shown in

FIG. 47

, instep S


401


, the housed position of each divided tool housed in the tool housing device


65


,


123


including the first housing section


65


and the second housing section


123


and the divided tools presently mounted on the bending station and divided tools housed in the tool magazine outside the bending press


1


will be stored in the first memory means


403


.




In step S


403


, data on the bending line length of the bent section and the flange length and the bending angle or the bending direction and the like of the bent product are retrieved from the CAD data on bent products stored in the second memory means


405


. Here the bending direction data is a data that shows whether the bending part is bent upwards conically or downwards like a trough.




In step S


405


, the bending order of the bent part b


1


-b


5


is determined based on data of the bending line length and flange length, bending angle and the bending direction and the like (see FIG.


41


). In the product shown in

FIG. 41

, the bending part will be, for example, bent in the order b


1


, b


2


, b


3


, b


4


, and b


5


.




In step S


406


, based on the bending line length and flange length, bending angle, bending direction and bending order and the like, the number and coordinates of the bending stations to be provided on the bending press and the tool type (that is the cross section shape) of the divided tools to be provided on the bending station, and the length of each bending station and the forward or rearward facing of the tools to be mounted on each bending station, is determined.




As already mentioned,

FIG. 42

shows the number and length of the bending station determined in step S


406


, FIGS.


43


(


a


), (


b


) show an example of the tool types of the divided tools arranged on the bending station,

FIG. 44

shows the coordinates a


1


, O, a


3


of the bending stations and FIGS.


45


(


a


), (


b


) show the divided tools arranged on each station facing forward and rearward. In

FIG. 45

, the left side is the front side (that is forward) of the machine where the work W is inserted.




Also in the step


406


, the coordinates a


1


, O, a


3


(

FIG. 44

) of the stations s


1


, s


2


, and s


3


are determined so that the tools and works on each station do not interfere with each other during processing. This will prevent interference between the works and the tools on each station.




In step


407


, based on the determined results of the step S


406


(that is data on the tool type of the divided tools to be arranged on the bending station and the length of the bending station) provisional determination of a detailed arrangement of the divided tools on each bending stations s


1


-s


3


will be made.





FIG. 46

shows the arrangement of the divided tools P


1


, p


1


, P


2


, p


2


, P


3


, p


3


on each station s


1


, s


2


, s


3


determined in step S


407


. As shown in

FIG. 46

, the determination of the detailed arrangement of the divided tools is made so that as many as possible long divided tools P


1


, P


2


, P


3


are used. Thus, for example on station s


2


, three long divided tools P


2


are used and on station s


3


, four long divided tools P


3


are used. This will allow speedy set up or exchange of divided tools on each station.




Also as shown in

FIG. 46

, on each station s


1


, s


2


, s


3


, long divided tools P


1


, P


2


, P


3


are arranged on both sides of each station and short divided tools p


1


, p


2


, p


3


are arranged in between the long divided tools P


1


, P


2


, P


3


. This will prevent creation of small scratches on the bent part.




Next in stop


409


, it is confirmed whether the divided tools allocated to each bending station are included in the usable tools (that it tools already mounted on the bending stations or tools housed in the first housing section or the second housing section or tools housed in the tool magazine).




Then if all the allocated divided tools are included in the usable tools, procedure to step S


411


is made to execute the transfer and the mounting of the divided tools to each bending station as will be described below.




In step S


409


, if there are unusable tools present among the divided tools determined to be arranged, the procedure proceed to step S


413


, where examination will be made whether the problem may be dealt with by changing the combination of long divided tools and short divided tools on each station. For instance, although in the step S


407


, it was determined to use long tools as much as possible on each station, if the number of long tools determined to be arranged is smaller than the number of usable long tools, for instance one of the long tools may be replaced by a plural number of short tools.




In stop S


413


, for example when it is judged that the divided tools determined to be arranged by replacing one of the long divided tools with a designated number of short divided tools are all included in the usable divided tools, the final tool arrangement will be determined by the replacement in step S


414


, and the procedure will proceed to step S


411


.




In case it is judged in step S


413


that arrangement of divided tools on each station by use of usable tools cannot be made, the procedure will proceed to step S


415


where it is Judged whether all the order of bending has been examined. If it is Judged that all the order of bending has been examined in this step, it will be judged that the bending process of the bending product (

FIG. 41

) may not be made by use of usable tools, and the tool arrangement determination process will be suspended.




In step S


415


, in case it is judged that all the order of bending has not been examined, process will proceed to step S


417


and the bending order will be changed. And the process will be returned to step S


406


and the processes of steps


407


, S


409


, S


413


and the like will be repeated.




The operation of the steps S


407


, S


409


, S


413


, S


415


, S


417


will all be made by the second computation means


409


.




In stop S


411


, on basis of the arrangement data of the divided tools determined in the step


407


or step S


414


, each divided tool will be moved from each housing device or magazine or existing bending station to the designated arrangement position by the tool exchange device


61


,


143


.




In doing so, the tools housed in the tool magazine (not shown in the figure) outside of the bending press


1


will be inserted in the second housing section


123


beforehand.




Also a plurality of divided tools housed in the second housing section


123


will be moved from the second housing section to the first housing section


65


simultaneously by being supported by the tool support


129


.





FIG. 48

shows the method of moving the divided tools that are housed in or mounted on the first housing section (or the standby station)


65


to the bending stations s


1


, s


2


.




FIG.


48


(


a


) shows the state where divided tools do not exist on the bending station and in the first housing section


65


.




In FIG.


48


(


b


), a group of long divided tools P


1


is mounted in the first housing section


65


by the tool support


129


.




In FIG.


48


(


c


), two divided tools P


1


on the right-hand side of the long divided tools P


1


are moved by the tool exchange device to the position of station s


1


.




In FIG.


48


(


d


), in course of the return of the tool exchange device


61


, which moved the divided tool P


1


to the station s


1


, from the station position s


1


to the first housing section


65


, the tool P


1


on the left side of the station s


1


is moved slightly to the left and forms a space sp between two divided tools P


1


on the station s


1


.




In FIG.


48


(


e


), a group of short divided tools p


1


that are the game type as the long tool P


1


but shorter are mounted in the first housing section


65


.




In FIG.


48


(


f


), of a plurality of short tools p


1


mounted in the first housing section


65


, for example two of the tools on the right end are inserted into the gap sp on the station s


1


by the exchange device


61


.




In FIG.


48


(


g


), among a group of long divided tools P


2


that compose station s


2


mounted in the first housing section


65


, three long divided tools P


2


are moved to the position of station s


2


by the exchange device


61


.




In FIG.


48


(


h


), when the exchange device


61


returns from the station s


2


to the first housing section


65


, it moves two of the station s


2


tools P


2


on the left side slightly to the left and makes a gap sp


2


.




In FIG.


48


(


i


), short tools p


2


with the same cross sectional shape but shorter than the tool P


2


are mounted in the first housing section


65


and one of them is inserted into the gap sp on the first station S


2


by the exchange device


61


from the first housing section


65


.




The moving and mounting of each divided tool from each housing section or magazine or existing bending stations to the prescribed arrangement positions are completed as described above.





FIG. 49

shows a method for preparing a production schedule when a plurality of bent products is produced by the bending press system.




In general, this schedule method for manufacturing a plurality of bent products in a bending press system provided with,




a bending press having at least one bending station for mounting a plurality of divided tools and,




a tool housing device (


123


,


129


) to house divided tools for the bending press and,




a tool exchange device (


61


,


143


) to move the divided tool between the tool housing device and the bending station and to mount the divided tools on the bending station, includes,




a step to store in the first memory means each tool on the bending station and housed in the housing device and housed in the tool magazine outside the bending press,




a step to determine the tool types (cross section shape) of the divided tool to be mounted on the bending station and the length of the bending station on basis of the bending line length, flange length, bending angle of the bent section on the bent product, and




a step to prepare the production order data in order to produce products which use tools mounted on the bending station or tools housed in the tool housing device before producing products which use tools housed in the tool magazine provided outside of the bending press, and in preparing the production order, to group products which use the same tool combinations and prepare the production order so that bent products of the same product group may be processed continuously.




In more detail, as shown in FIG.


49


(


a


), first of all, for each product number


425


, the type of the divided tool to be mounted on each station and the number of stations thereof and the like are determined. The determination of the tool type and the number of stations and the like will be executed for instance by steps S


401


-S


417


shown in FIG.


47


.




In example of FIG.


49


(


a


), the number of bending stations to bend, for example, bent product


2


is three, and bending tool type-E tool will be arranged on the first station, type-D tool will be arranged on the second station and type-C tool will be arranged on the third station.




On the other hand, the present positions of the tools to be used in producing the bent products


1


-


20


are stored in the first memory means as registered data. The tools to be used in producing the bent products


1


-


20


are therefore classified as shown in FIG.


49


(


b


) according to each arranged position or housed position. Thus, as shown in FIG.


49


(


b


), for instance type-A divided tools are grouped as the station mounted tools


431


, the types-A, -B, -C divided tools are grouped as the station or housing device tool group


433


, and together with the types-A, -B, -C, types-D, -E, -F divided tools are grouped as the usable registered tool group


435


. Here the types-D, -E, -P divided tools are divided tools housed in the tool magazine (not shown in the figure) outside the press


1


.




Next, an shown in FIG.


49


(


c


), the bent products


1


-


20


to be worked on are classified in a plural number of product groups according to the tool to be used. In more detail, bent products that are processed by use of only tool group


431


that are mounted on the bending station are classified as the bent product group


451


. Also bent products that are processed by use of only tool group


433


housed in the bending station or the housing device are classified as the bent product group


452


. The bent products belonging to the bent product group


452


will be subdivided into groups


453


,


455


according to the bending tool used. Here bent products belonging to group


453


are bent products that at least use types-B and -C tools and bent products belonging to group


455


are bent products that at least use type-C bending tools.




Bent products leftover after the classification are products that use types-D, -E, -F tools that belong to the tool magazine outside the bending press. These products are classified as group


457


and


459


according to each bending tool used.




And as shown in FIG.


49


(


c


), the order of production of the bent products


1


-


20


will be determined as follows. Firstly the bent product group


451


which use only the tools already mounted on the bending station will be produced, next bent product groups


453


,


455


which use bending tools housed in the housing device


65


,


123


besides the bending tools existing in the bending station will be produced, after which bent products


457


,


459


which include bent products which use divided tools housed in the tool magazine outside the bending press


1


will be produced.




In short, the order of production is determined so that in bending a plurality of products continuously, the exchange man-hour of the divided tools will be minimized.




With the arrangement, a number of bent products may be produced swiftly.





FIG. 50

is an explanatory figure explaining the 4th embodiment of the invention.




As shown in

FIG. 50

, this embodiment includes a support, management device


323


that support, manages the bending press system including the bending press


1


. This support, management device


323


is provided with CPU


325


as the central processor. In order to input a variety of data into this CPU


325


, an input device such as a keyboard, and in order to display a variety of data, an output device


329


such as a CRT are connected. Also CAD information


331


prepared for CAD may be inputted by use of media such as floppy disc and the like or on line.




Also, onto CPU


325


, a memory


333


to store data and the like inputted and a tool selection means


335


which selects, by a method which will be explained in detail later, divided tools P, D to be used, and an interference detection means


37


which detects interference between the selected tools P, D and the work W, are connected. Also a tool movement means


339


that moves divided tools P, D on the tool holders


9


,


11


and a tool exchange instruction


341


that operates the tool exchange device


317


, are connected.




Also from the tool housing section


311


where the divided tools P, D to be exchanged by the tool exchange device


317


are housed, information as to what kind of divided tools P, D are housed may be inputted.




Next, the tool mounting method on press brake


1


, which forms the working station according to the length of the work W to be worked, will be explained. With reference to

FIG. 51

, on basis of the bending line of the unfolded figure in CAD information


331


, the tool selection means


335


will select tools A, B that have lengths necessary for bending. And as the work W to be processed will be arranged and displayed simultaneously with the arrangement of the selected tools on the output means


329


(hereafter “CRT screen”), judgment may be made by the interference detector


337


or by eyesight of the operator whether the work and the neighboring tool B interfere or not.




In there is interference, the neighboring tool B may be moved by observing the movement on the CRT screen


329


, and the moved position of the tools A, B may be registered as, for instance, how many mm from the machine center in the memory


333


. Or a neighboring tool may be picked up on the CRT screen


329


and dragged to the position to be moved and registered automatically. Next, having determined the tool type (here “A”, “B”) and the mounting position of the tools as described, which divided tool housed in the press brake


1


should be used to construct a tool length (one station) will be determined.




For example, referring to

FIG. 52

, on the lower edge of the upper table


5


, long divided tools BPL (for example about 20 pieces of 100 mm long tools) are mounted and onto the upper table


5


, short divided tools BPS (for example, 15 mm, 20 mm, 25 mm, 30 mm, 50 mm long tools) are mounted. To expedite description, explanation will be made only for punch P but the same conception may be applied to die D.




Short divided tools BPS are housed in the tool housing section


311


and are mounted and demounted to be exchanged on the tool attachment face of the upper table


5


, and the long divided tools BPL are mounted free to move in the long direction of the tool holder


9


on the upper table


5


.




Thus when, for example, tools are to be arranged 415 mm long for one station, the combination of tools to arrange the designated length (here 415 mm) is determined on basis of the following flow in the tool selection means


335


of the NC device


323


that determines the tool and prepares the layout.




Referring to FIG.


53


and

FIG. 54

, firstly the total length (here for example 415 mm) is divided by the length of the long divided tool BPL (here 100 mm) and the quotient is taken as the number of long divided tools BPL (step S


1


). As 415/100=4, four long divided tools will be used.




Next the total length of the long divided tools BPL will be subtracted from the total tool length to obtain the total length of the short divided tools BPS. That is, when four long divided tools arc used, the remaining length will be 415−(4*100)=15 mm (step S


2


).




It is then judged whether short divided tools BPS which will compose the total length of the short divided tools exist or not (step S


3


), and as in this case a short divided tool 15 mm long is in hand, one 15 mm long short divided tool will be used (step S


4


) and the tool to be used will be selected and the tool layout will be prepared.




Thus, as shown in

FIG. 54

, to set up the total length 415 mm station on the left side of the upper table


5


, 4 long divided tools BPL are left on the left side of the upper table


5


and other long divided tools BPL are moved to a non-interfering position by the tool movement means


339


, and the 15 mm long short divided tool BPS housed in the rear side of the upper table is, for example, attached to the long divided tool BPL attached to the tool holder


9


of the upper table


5


.




Now, it is needless to say that the attachment position of the short divided tool BPS is not limited to the right side of the long divided tool BPL as shown in the figure and that it will be attached according to the tool layout (for example so and so mm to the left side of the machine center CL). On the other hand, when the total length of the tools is 405 mm, four long divided tools BPL may be used as in the previous case but as the remaining length will be 5 mm, there are no corresponding short divided tools BLS, so that in step S


3


it will be judged that there are no combinations of short divided tools BPS.




The number of long divided tools BPL will thus be decreased by one (step S


5


) and changed to three and as the total length of the short divided tools BPS obtained (step S


6


) will become 405 mm−(3*100)=105 mm, a combination of short divided tools BPS arranged over this length 105 mm will be determined (step S


7


). In the present case, as 50 mm+30 mm+25 mm=105 mm, one 50 mm long, one 30 mm long and one 25 mm long short divided tools BPS may be used.




By this result, a plurality of types of divided tools P, D maybe combined automatically and tool station with desired tool lengths may be exchanged and mounted automatically. Also, as the installation position may be set arbitrary, operation efficiency may be improved.




As explained, by the divided tool exchange method on the press brake, the total length of the tool station may be determined by the bending length in the product figure information, and the divided tools may be selected by combining the divided tools mounted on the tool holder and the divided tools housed in the tool housing section so that the combined length is equal to the total length, and by displaying the selected tool station on a screen display, divided tools which interfere with the work may be moved to a non-interfering position by the screen display, and as the selected divided tools will be mounted by the tool exchange device, a tool station with a desired length may be composed automatically by use of a plurality of types of divided tools.




Also, in the divided tool exchange device on the press brake, the total length of the tool station will be determined from the bending length in the product figure information, and the tool selection means will select divided tools so that the combination of the divided tools mounted on the tool holder and the divided tools housed in the tool housing section, will be equal to the total length, and by displaying the selected tool station on a screen, the interference detection means will detect from the displayed screen, divided tools which interfere with the work, and as the selected divided tools will be mounted on the tool holder by the tool exchange device after the detected interfering divided tools are moved to a non-interfering position by the tool transfer means, a tool station with the desired length using a plurality of tool types may be organized and mounted automatically.




Also, in the divided metal exchange device of the press brake, the tool selection means will first divide the total length of the tool station, determined on the basis of the figure information, by the length of the longest divided tool and the quotient will be taken as the number of the longest divided tools. Next as the divided tools will be determined so that divided tools housed in the tool housing section will be arranged on the remaining length comprising the total length of the tool station, a tool station with the desired length may be arranged automatically by use of a plurality of divided tool types.




Also, in the divided tool exchange device, the tool selection means will first obtain the number of the longest divided tool by dividing the total length of the tool station determined on basis of the figure information, but if divided tools housed in the tool housing station may not be composed on the remaining length which comprises the total length of the tool station, the number of longest divided tools will be decreased by 1 and divided tools will be selected so that the remaining length comprising the total length of the tool station may be arranged by divided tools housed in the tool housing section, thereby a tool station with the desired length using a plurality of divided tools types may be composed automatically.



Claims
  • 1. A method for mounting divided tools with desired lengths onto a tool holder on an upper table and a lower table of a press brake using a tool exchange device, comprising the steps of:(a) mounting first divided tools on the tool holder; (b) housing second divided tools in a tool housing section; (c) automatically, via a tool selection means, selecting divided tools from the first and second divided tools which constitute a tool station which has a total length corresponding to a bending length of the product; (d) displaying each selected divided tool on a screen together with a workpiece; (e) moving the divided tools which interfere with the workpiece to a non-interfering position; and (f) mounting the selected divided tools on the tool holder with the tool exchange device, wherein the step of selecting divided tools comprises: (g) the step of automatically calculating a quotient of a total length of the tool station divided by a length of a longest of the first and second divided tools divided tool as a number of the longest divided tools; and (h) arranging a combination of other shorter divided tools on a difference of the total length of the tool station and the total length of the longest divided tools.
  • 2. The method of claim 1, wherein the step of selecting divided tools further comprises:when a combination of the other divided tools cannot be arranged on the difference of the total length of the tool station and the total length of the longest divided tools in the step (h), taking one subtracted from the number of the longest divided tools calculated in step (g) as the number of the longest divided tools; arranging a combination of other tools on the difference of the total length of the tool station and the total length of the longest divided tools.
  • 3. The method of claim 1 wherein lengths of the second divided tools housed in the tool housing are shorter than lengths of the first divided tools mounted on the tool holder.
Priority Claims (1)
Number Date Country Kind
11-6914 Jan 1999 JP
Parent Case Info

This application is a Division of application Ser. No. 09/889,318 filed on Jul. 13, 2001, now U.S. Pat. No. 6,656,099, which is 371 of PCT/JP00/00134 filed Jan. 13, 2000.

US Referenced Citations (5)
Number Name Date Kind
4930332 Hongo Jun 1990 A
5168745 Miyagawa et al. Dec 1992 A
5828575 Sakai Oct 1998 A
5983688 Anzai et al. Nov 1999 A
6151947 Arduino et al. Nov 2000 A
Foreign Referenced Citations (14)
Number Date Country
0 392 795 Oct 1990 EP
55-045288 Mar 1980 JP
57-037408 Aug 1982 JP
59-88273 May 1984 JP
5-7936 Jan 1993 JP
05-187815 Jul 1993 JP
6-304660 Nov 1994 JP
63-21932 Nov 1994 JP
07-275941 Oct 1995 JP
8-318317 Dec 1996 JP
09-108738 Apr 1997 JP
10-225724 Aug 1998 JP
11-000718 Jan 1999 JP
WO9801243 Jan 1998 WO
Non-Patent Literature Citations (1)
Entry
PCT/JP00/00134, International Search Report.