The present invention relates to a beverage dispenser and a refrigeration appliance, in particular a household refrigeration appliance, in which such a beverage dispenser is installed.
An essential part of most beverage dispensers is a dispenser recess, which is a component in the form of a box which is open on a front face and which is mounted in a recessed manner in a thermally insulating outer wall of the refrigeration appliance, so that its open front face forms an indentation in the outer wall, into which a receptacle may be introduced in order to fill said receptacle via an outlet arranged at the top of the dispenser recess.
Since during use of the beverage dispenser the dispenser recess is obscured by a user standing in front thereof, the dispenser recess is generally provided with an illuminating means. Thus a beverage dispenser is disclosed, for example, in EP 3 045 848 A1 in which a printed circuit board populated with LEDs is arranged to the rear of a front wall above the dispenser recess and the dispenser recess is illuminated by an optical waveguide which captures light from the LEDs and terminates at the top of the dispenser recess on either side of the outlet.
In this conventional beverage dispenser, sufficient space for the outlet aperture of the optical waveguide is present at the top of the dispenser recess since the dispenser recess is designed to be sufficiently wide in order to receive receptacles to be filled in all common household widths, but the outlet is considerably narrower than the recess. If, however, the space on either side of the central outlet at the top of the dispenser recess is required for other purposes, then a different means has to be found in order to illuminate the interior of the dispenser recess. This problem arises, in particular, when the space at the top of the dispenser recess is occupied by a plurality of outlets, and control elements assigned to the outlets are arranged adjacent to one another on a rear wall of the dispenser recess, since in this case the respective receptacle has to be suitably positioned in order to actuate one of the control elements in an accurate manner.
It is the object of the invention, therefore, to provide a beverage dispenser which permits simple illumination of the dispenser recess without occupying space therefor at the top of the dispenser recess.
In a beverage dispenser comprising an actuation lever which is mounted in a dispenser recess in such a way as to be able to pivot about an axis, at least one lighting means and at least one optical waveguide which extends from the lighting means for illuminating the dispenser recess, the object is achieved by a light exit being provided on the actuation lever and the optical waveguide connecting the lighting means to the light exit of the actuation lever.
So that the light of the lighting means is able to reach the light exit on a short path without losses, the lighting means is preferably arranged on a rear wall of the dispenser recess covered by the actuation lever.
If the actuation lever is articulated in a manner known per se on a base mounted on the wall, the assembly of the beverage dispenser may be simplified by the optical waveguide also being fastened to the base. In particular, the optical waveguide or a holder of the optical waveguide may be integrally molded with the base.
Since such an integral implementation facilitates the discharge of light from the optical waveguide into the base and makes it difficult to guide the light accurately to the positions of the dispenser recess where it is required, according to a preferred embodiment the base and the optical waveguide are configured in two parts. In order to simplify the assembly of the base and the optical waveguide, the base may be a hollow body which is open toward a rear wall of the dispenser recess, one wall thereof having an edge facing the rear wall and at least one recessed portion toward the edge, said recessed portion being open on the edge thereof. The optical waveguide may be mounted in this recessed portion by being inserted from the edge.
The base may thus be produced from an opaque plastics material which generally is more cost-effective than a colorless plastics material which is used for the optical waveguide; moreover, the need to provide the base with a coating in order to prevent the escape of light at undesired points is dispensed with.
In order to increase the output of light at the light exit of the actuation lever, the light exit and a rough surface, which scatters the light dissipated in the actuation lever, oppose one another on two sides of the actuation lever. The rough surface may, in particular, be fluted and namely preferably transversely to the direction of diffusion of the light in the actuation lever.
The actuation lever may have a first lever arm which extends downwardly from the axis and a second lever arm which protrudes from the axis into the recess, in particular in order to actuate a beverage outlet by its movement. Information such as above and below always refer in this case and hereinafter to the usual installed position of the beverage dispenser in a refrigeration appliance.
A lower light exit may be provided on a lower face of the second lever arm.
Preferably this lower light exit is positioned such that the first lever arm is illuminated via the light exit and/or a receptacle which is held against the first lever arm to be filled is directly illuminated therein from above.
Alternatively, the second lever arm may be configured to be self-illuminating by at least one lower light exit being provided on the first lever arm. This is expedient, in particular, if the beverage dispenser comprises a plurality of outlets with assigned actuation levers and it is important when a receptacle is inserted into the dispenser recess to strike the respectively desired actuation lever and only this actuation lever.
If the first lever arm is plate-shaped in order to simplify the positioning of the receptacle on the lever arm, the lower light exit may extend along an edge of the plate or may be arranged at a central point of the first lever arm.
Moreover, an upper light exit may be provided on an upper face of the second arm or the base. Such a light exit, in particular by reflection at the top of the dispenser recess, may also illuminate this dispenser recess around a receptacle held therein.
This permits a comprehensive illumination of the dispenser recess, in particular even if the top of the dispenser recess, against which the light emerging from the upper light exit radiates, is a lower face of a disposable beverage container.
If this lower face is transparent, the reflected light may be colored by the beverage which is located in the beverage container, so that the color with which the dispenser recess is illuminated permits information to be provided about the beverage and helps to prevent a different beverage being dispensed from that which is desired.
If the upper light exit is aligned with a wall of the beverage container the light in the wall may be dissipated across a long distance in the wall without losses, and by being distributed over the wall surface the light may be transmitted into a beverage stored in the container, and if it has the relevant cloudiness permit said beverage to be illuminated. In order to capture the light without losses, a rib may be formed in the wall. In order to control the transfer of light into the beverage, the cross section of the rib may decrease as the distance from the light exit increases.
If the actuation lever is produced from a translucent material provided with an opaque coating, a light exit may be formed by a hole in the opaque coating, for example by an initially opaque coating applied over the entire surface being locally removed again, for example by laser ablation.
The opaque coating may comprise an internal and an external layer, wherein the internal layer should be brighter than the external layer in order to conduct the light in the actuation lever to the outlet opening with the fewest losses.
If the second arm is hollow, the optical waveguide may terminate in a hollow space of the second arm spaced apart from the light exit. Thus the optical waveguide does not need to follow movements of the actuation lever, which simplifies the assembly of the dispenser.
If, as described above, a lower light outlet opening is provided on the first lever arm, in order to supply the lower light outlet opening with light the translucent material may be exposed on an edge of the first lever arm facing the axis of the actuation lever, and the optical waveguide terminates opposite the edge in order to supply its light via this edge into the lever arm.
In order to guide the light supplied via the edge to the lower light exit with low losses, the first lever arm may comprise a rib which protrudes from a base plate of the lever arm and extends from the end of the optical waveguide to the lower light exit. By guiding the substantial part of the light emitted by the optical waveguide, the rib prevents the light from being distributed in the width direction of the base plate and as a result prevents it from falling short of the lower light exit. The above-mentioned rough surface may be an edge of the rib remote from the base plate.
If the dispenser recess is defined by a housing which is fitted into a thermally insulating wall of the refrigeration appliance and which is open toward an outer face of the wall, a beverage container may be inserted into an upper face of the housing which is open toward the inner face of the wall.
In particular, if as described above the light of the lighting means is also supplied into the walls of the beverage container, the thermally insulating wall of the refrigeration appliance is designed to have an aperture through which an illuminated part of the container is visible from the outside.
Further features and advantages of the invention are disclosed from the following description of exemplary embodiments with reference to the accompanying figures, in which:
In
The door subassembly 1 comprises a door 4, in the narrower sense closing the storage compartment, and a cover 5 which is pivotable relative to the door 4 about the same axis 3. In the view of
The cover 5 comprises a window pane 6 made of clear or tinted glass or plastics material, in this case enclosed by a non-transparent frame 7. An upper strip of the frame 7 is L-shaped in section with a limb 8 extending vertically upwardly from the window pane 6, and a limb 9 angled back from an upper edge of the limb 8 toward the body 2, and extending across an upper flank of the door 4. Correspondingly, a right-hand strip of the frame comprises a limb 10 extending from the right-hand edge of the window pane 6 in the width direction of the door subassembly 1, and a limb 11 which is angled back toward the body and which, however, is divided into two by a handle recessed portion 12 into an upper and a lower half. A central piece 13 of the handle recessed portion 12 extends from the edge into the limb 10.
By pivoting solely the cover 5 about the axis 3, a dispenser recess 20 is accessible, said dispenser recess having been cut out of a lower part of the door 4 and being shown in
Level with the central piece 13, however, the edge of the limb 10 is flush with the projection 19 so that a user grips the handle groove 18, acting at the level of the central piece, and thus pivots the entire door subassembly 1 about the axis 3 and a storage compartment 21 for refrigerated goods in the interior of the body 2 is accessible.
As may be identified in
One respective actuation lever 24 is mounted below each beverage container 22 in the dispenser recess 20, said actuation lever, in a manner to be described in more detail below, serving to open a valve 25 on the lower face 22′ of the beverage container 22 arranged there above, if a receptacle is pressed against the actuation lever 24 in the dispenser recess 20, and serving to fill the receptacle with a beverage from the container 22.
The beverage containers 22 are substantially cuboidal. The beverage containers comprise in each case a container lower part 30 which is preferably formed from glass-clear plastics material, the upper face thereof being closed by a lid 31 and the valve 25 being releasably mounted on the lower face thereof.
The valves 25 and the actuation levers 24 are visible through the opening 28 in
The actuation lever 24 in
As is clear in
A plurality of ribs 45 protrude from an upper narrow side 44 of the base 36, in each case optical waveguides 47, 48 are attached to the ends thereof. Each optical waveguide 47, 48 has an inlet aperture 49 which opposes one of the LEDs 35 on the printed circuit board 34. Adjoining the inlet aperture 49, the optical waveguides 47, 48 in each case are oriented perpendicular to the rear wall 32 and/or to the printed circuit board 34 and the LEDs 35, in order to capture as fully as possible the light radiated by the LEDs substantially perpendicular to the printed circuit board 34. The ends of the optical waveguides remote from the rear wall 32 are curved downwardly in the case of the optical waveguide 47 and curved upwardly in the case of the optical waveguide 48.
In the case of
In the simplest case, the optical waveguides 47, 48 are bars made of a uniform transparent plastics material and injection-molded integrally with the ribs 46 and the base 36. The fact that in this case the base 36 also consists of transparent plastics material is barely noticeable to an observer since the base 36 in the interior of the dispenser recess 20 is fully concealed behind the actuation lever 24. Light losses via the ribs 46 are thus not able to be entirely avoided but may be kept small by a narrow width of the ribs 46.
Optical waveguides 47, 48 with lower losses could be formed by bundles of optical fibers onto which the ribs 46 and the base 36 are injection-molded.
The optical waveguide 47 extends in the hollow space 51 without being in contact with the upper and lower wall 52 and/or 53 thereof. As a light exit 46 via which the light of the LEDs 35 passes into the dispenser recess 20, a hole 54 is formed on the lower wall 53 in the opaque coating 50 which opposes an outlet aperture 55 of the optical waveguide 47 so that the light which emerges from the optical waveguide 47 substantially fully strikes the outlet aperture 55 and illuminates the outer face of the lever arm 38 located therebelow and/or, if present, a receptacle pressed against the lever arm 38.
Light which passes through the hole 54 of the upper wall 52, strikes the lower face of the container 22 located thereabove and is reflected back thereby into the dispenser recess 20.
The transparent layer of the walls 52, 53 in
A housing 58 is provided in order to receive the printed circuit board 34. Each of the numerous openings 59 of the housing 58 opposes one of the LEDs 35 in order to permit the light thereof to pass through to an optical waveguide 47 or 48.
Here the sets comprise in each case five LEDs 35.
The housing 58 and the printed circuit board 34 are provided in order to be mounted on the rear face, i.e. the side facing the storage compartment 21, of the rear wall 32 of the dispenser recess, not shown in
Optical waveguides 47, 48 made of glass-clear plastics opposing the LEDs 35 are connected by projections 61 to form an integral molded part 60. The optical waveguides 47, 48 comprise in each case inlet apertures 49 facing one of the LEDs 35 and/or one of the openings 59, and alternately upwardly and downwardly oriented outlet apertures 55. In order to deflect light passed via the inlet apertures 49 into the optical waveguides 47, 48 to the outlet aperture 55 the optical waveguides 47, 48 may have fully reflective planar surfaces 62 between the inlet and outlet.
The indentations 64 in each case are located at the end of a groove 65 which extends from a front face 66 of the base 36 horizontally via the flanks 63, so that the actuation lever 24 may be easily latched from the front onto the base 36 by its axle pins initially being inserted into the grooves 65 and pushed therein to the rear until latched in the indentations 64.
In the vicinity of its upper end, the base 36 has a through-passage 67 through which in the assembled state the central optical waveguide 47 of the molded part 60 extends. The lateral flanks 63 of the base 36 in each case extend between the central optical waveguide 47 and the two outer optical waveguides 47 and in each case are provided with a horizontal notch 68. The notches 68 in the assembled state receive horizontal portions of the projections 61 and thus fix the molded part 60 in the vertical direction.
A groove 69 extends vertically downwardly in the base 36 starting from the through-passage 67.
Two recessed portions 72 are formed in an upper wall 70 of the base 36, starting from an edge 71 facing the rear wall 32 of the dispenser recess, said recessed portions receiving the outlet apertures 55 of the optical waveguides 48 in a flush-mounted manner.
The actuation lever 24 comprises a second lever arm 39 protruding above the axis 37 into the dispenser recess and a first lever arm 38 extending obliquely downwardly. The first lever arm 38 comprises a base plate 73 and ribs 74 protruding from a side of the base plate 73 facing the rear wall 32. If the actuation lever 24 is mounted on the base, two of the ribs 74 encompass the flanks 63 of the base 36 and bear the axle pins engaging in the recessed portions 64 thereof. A further rib 74 is received in the groove 69. In each case opposite the ribs 74 slotted light exits 46′ are formed on a front face of the base plate 73.
An upper edge of the base plate 73 and an upper end 75 of the central rib 74 oppose the outlet aperture 55 of the central optical waveguide 47 so that light escaping at this point is largely absorbed by the rib 74 molded from glass-clear plastics material and is conducted downwardly along the rib 74 in the lever arm 39. An edge of the rib 74 remote from the base plate 73 is roughened by a fluted contour. Edges 82 of this fluted contour extend parallel to the axis 37 and transversely to the direction of the dissipation of the light in the ribs 74 so that light which strikes the facets 76 defined by these edges 82 is reflected in the direction of the base plate 73 and thus the output of light via the light exit 46′ (below the cutout shown in
In
In
Number | Date | Country | Kind |
---|---|---|---|
102016222486.7 | Nov 2016 | DE | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/EP2017/077233 | 10/25/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/091240 | 5/24/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
5808286 | Nukui | Sep 1998 | A |
9625205 | Becke et al. | Apr 2017 | B2 |
20030097314 | Crisp, III | May 2003 | A1 |
20050044871 | Nowak | Mar 2005 | A1 |
20110174008 | Kim | Jul 2011 | A1 |
20120031124 | McDaniel | Feb 2012 | A1 |
20120180517 | Filho | Jul 2012 | A1 |
20160209105 | Grzyb | Jul 2016 | A1 |
Number | Date | Country |
---|---|---|
102012216372 | Mar 2014 | DE |
2383531 | Nov 2011 | EP |
3045848 | Jul 2016 | EP |
20090106933 | Oct 2009 | KR |
2016052857 | Apr 2016 | WO |
Number | Date | Country | |
---|---|---|---|
20190346198 A1 | Nov 2019 | US |