Beverage dispensers require ingredients to be added in order to form the beverage. Ingredients such as carbonated water can be delivered directly from a plumbing system. Ingredients that give a beverage its taste, color, etc., may be mixed via a nozzle to create a post-mix drink.
The accompanying drawings, which are incorporated in and constitute a part of this disclosure, illustrate various embodiments of the present invention. In the drawings:
The following detailed description refers to the accompanying drawings. Wherever possible, the same reference numbers are used in the drawings and the following description to refer to the same or similar elements. While embodiments of the invention may be described, modifications, adaptations, and other implementations are possible. For example, substitutions, additions, or modifications may be made to the elements illustrated in the drawings, and the methods described herein may be modified by substituting, reordering, or adding stages to the disclosed methods. Accordingly, the following detailed description does not limit the invention.
Embodiments may include an apparatus for controlling a fluid flow. The apparatus may include a flow channel, a housing, a flow restrictor, and a housing adjustment member. The flow channel defines a fluid pathway for the fluid flow. The fluid pathway includes an inlet and an exit. The housing surrounds the flow channel. The housing comprises an exterior surface defining a first threaded portion. The flow restrictor is located within the housing and proximate the exit. The housing adjustment member includes a second threaded portion in contact with the first threaded portion.
Embodiments may include a method for controlling a fluid flow. The method comprises: causing the fluid flow to pass through a flow channel having an inlet and an exit; restricting, via a flow restrictor, the fluid flow, the flow restrictor located proximate the exit; and adjusting a position of the flow restrictor to further restrict or unrestrict the fluid flow.
Now turning to the figures,
It should be understood that the plurality of syrup cartridges and plurality of flavor cartridges may include any number of ingredients including, but not limited to, sweetened beverage bases or beverage syrups, sweetened flavors or flavor syrups, unsweetened beverage bases, unsweetened beverage base components (such as the acid, acid-degradable, and non-acid portions of a beverage base), unsweetened flavors, natural and artificial flavors, flavor additives, natural and artificial colors, nutritive or non-nutritive natural or artificial sweeteners, additives for controlling tartness (e.g., citric acid, potassium citrate, etc.), functional additives such as vitamins, minerals, or herbal extracts, nutraceuticals, medicaments, or alternative diluents such as juice, milk, or yoghurt. The ingredients may be concentrated with traditional beverage ingredients having reconstitution ratios of about 3:1 to about 6:1 or higher. The beverage micro-ingredients may have reconstitution ratios from about 10:1, 20:1, 30:1, or higher with many having reconstitution ratios of about 50:1 to 300:1. The viscosities of the ingredients may range from about 1 to about 100 centipoise.
During operation, a user may select a beverage using the user interface 102. When the user presses the push to pour button 104, carbonated water flows from the carbonator 106 to the nozzle 108 and the appropriate syrups and flavors flow from the plurality of syrup cartridges and the plurality of flavor cartridges. In a post mix beverage dispenser, the syrups, flavors, and carbonated water mix after exiting the nozzle 108. For example, if a user selects a cherry flavored cola, carbonated water will flow from the carbonator 106 to the nozzle 108. The cola syrup and cherry flavoring will flow from the appropriate cartridges to the nozzle 108. The ingredients will then flow through the nozzle 108 and mix within the exiting fluid stream and a cup 126.
The carbonated water is formed within the carbonator 106. To form the carbonated water CO2 flows from a carbon dioxide source (e.g., a carbon dioxide bottle 128) to the carbonator 106. Still water may flow into the carbonator 106 from an external source 130. In some embodiments, the still water source may be included within the beverage dispenser 100. The cooperation of the beverage dispenser 100 may be controlled by a control module 132. The control module 132 may also monitor a backpressure, via a pressure sensor 134, within the plumbing between the carbonator 106 and the nozzle 108.
The fill fitting 202 connects the nozzle 108 to the plumbing connecting the nozzle 108 to the carbonator 106. The fill fitting 202 passes through the clamp 204 and connects to the water channel 206. The water channel 206 connects the fill fitting 202 to the flow channel 208. The flow channel 208 passes though the housing adjustment member 210 and the housing 212. The flow restrictor 214 is located proximate an exit of the flow channel 208 and between the flow channel 208 and the housing 212. Clamp 204 is used to secure the various components of the nozzle 108 to the distributor top 216.
Each of the flavor ports 1104 and the syrup ports 1102 connect to the channels 1004 located in the distributor 218. During operation, the flavors and syrups flow through their respective ports and into their respective channels 1004 via outlets 1106. When the distributor top 216 is connected to the distributor 218 the channels seal so that the various flavors and ingredients do not mix within the distributor 218 distributor top 216 assembly. The distributor top 216 is secured to the beverage dispenser 100 via screws passing through mounting holes 1108.
The position of the flow restrictor 214 allows for a backpressure between the nozzle 108 and the carbonator 106 to be maintained. As the flow restrictor 214 moves towards the downward position or away from the exits 604, the protuberances 702 block less and less of exits 604. This causes less restriction in the flow of still or carbonated water and therefore reduces the backpressure. Similarly, as the flow restrictor 214 moves towards the upward position or towards the exits 604, the protuberances 702 block more and more of the exits 604. This causes more restriction in the flow of still or carbonated water and therefore increases the backpressure.
As the carbonated water flows through the flow channel 208, it exits the nozzle 108 at flow straightener 606. After the carbonated water has exited the flow channel 208, the ingredients (e.g., syrups and flavors) exit the delivery ports 1006 to form a post-mix beverage. In other words, the ingredients mix with the carbonated water in an exit stream and in the cup 126.
As shown in
Control module 132 (“the processor”) may be implemented using a personal computer, a network computer, a mainframe, a smartphone, or other similar computer-based system. The processor may comprise any computer operating environment, such as hand-held devices, multiprocessor systems, microprocessor-based or programmable sender electronic devices, minicomputers, mainframe computers, and the like. The processor may also be practiced in distributed computing environments where tasks are performed by remote processing devices. Furthermore, the processor may comprise a mobile terminal, such as a smart phone, a cellular telephone, a cellular telephone utilizing wireless application protocol (WAP), personal digital assistant (PDA), intelligent pager, portable computer, a hand held computer, or a wireless fidelity (Wi-Fi) access point. The aforementioned systems and devices are examples and the processor may comprise other systems or devices.
Embodiments, for example, may be implemented as a computer process (method), a computing system, or as an article of manufacture, such as a computer program product or computer readable media. The computer program product may be a computer storage media readable by a computer system and encoding a computer program of instructions for executing a computer process. The computer program product may also be a propagated signal on a carrier readable by a computing system and encoding a computer program of instructions for executing a computer process. Accordingly, the present invention may be embodied in hardware and/or in software (including firmware, resident software, micro-code, etc.). In other words, embodiments of the present invention may take the form of a computer program product on a computer-usable or computer-readable storage medium having computer-usable or computer-readable program code embodied in the medium for use by or in connection with an instruction execution system. A computer-usable or computer-readable medium may be any medium that can contain, store, communicate, propagate, or transport the program for use by or in connection with the instruction execution system, apparatus, or device.
The computer-usable or computer-readable medium may be, for example but not limited to, an electronic, magnetic, optical, electromagnetic, infrared, or semiconductor system, apparatus, device, or propagation medium. More specific computer-readable medium examples (a non-exhaustive list), the computer-readable medium may include the following: an electrical connection having one or more wires, a portable computer diskette, a random access memory (RAM), a read-only memory (ROM), an erasable programmable read-only memory (EPROM or Flash memory), an optical fiber, and a portable compact disc read-only memory (CD-ROM). Note that the computer-usable or computer-readable medium could even be paper or another suitable medium upon which the program is printed, as the program can be electronically captured, via, for instance, optical scanning of the paper or other medium, then compiled, interpreted, or otherwise processed in a suitable manner, if necessary, and then stored in a computer memory.
While certain embodiments have been described, other embodiments may exist. Furthermore, although embodiments have been described as being associated with data stored in memory and other storage mediums, data can also be stored on or read from other types of computer-readable media, such as secondary storage devices, like hard disks, floppy disks, or a CD-ROM, a carrier wave from the Internet, or other forms of RAM or ROM. Further, the disclosed methods' stages may be modified in any manner, including by reordering stages and/or inserting or deleting stages, without departing from the invention.
Embodiments, for example, are described above with reference to block diagrams and/or operational illustrations of methods, systems, and computer program products according to embodiments of the invention. The functions/acts noted in the blocks may occur out of the order as shown in any flowchart. For example, two blocks shown in succession may in fact be executed substantially concurrently or the blocks may sometimes be executed in the reverse order, depending upon the functionality/acts involved.
From stage 1410 where the fluid flow is cause, the method 1400 may proceed to stage 1415 where the fluid flow may be restricted. For example, as the flow of carbonated water exits the exits 604 the flow may be restricted by protuberances 702. From stage 1415 where the flow is restricted, the method 1400 may proceed to stage 1420 where the flow may be further restricted or unrestricted. For example, the position of the flow restrictor 214 may be changed as described above to further restrict or unrestrict the fluid flow. In other words, a portion of the protuberances 702 may be caused to penetrate the exits 604.
From stage 1420 where the fluid flow is further restricted or unrestricted, the method 1400 may proceed to stage 1425 where the back pressure upstream of the flow channel 208 is monitored. For instance, pressure sensor 134 may monitor the backpressure and send a signal to control module 132 indicating the backpressure.
From stage 1425 the method 1400 may proceed to stage 1430 where the position of the flow restrictor 214 may be adjusted. For example, the control module 132 may interpret the signal from the pressure sensor 134 as indicating the backpressure is too high. As a result, the control module 132 may actuate the motor 1314. The motor 1314 may then cause the housing adjustment member 210 to rotate thereby repositioning the flow restrictor 214 to lower the backpressure. Depending on the speed of the motor 1314 and the response time of the pressure sensor 134, the adjustment of the flow restrictor 214 may occur in near real time. In other words, based on input from the pressure sensor 134, the control module 132 may actuate the motor 1314 to continuously reposition the flow restrictor 214 to maintain a near constant backpressure. From stage 1430, the method 1400 may terminate at termination block 1435.
The various embodiments described above are provided by way of illustration only and should not be construed to limit the claims attached hereto. Various modifications and changes may be made without following the example embodiments and applications illustrated and described herein, and without departing from the scope of the invention defined by the following claims.
This patent application claims priority to U.S. patent application Ser. No. 61/793,229, filed Mar. 15, 2013, entitled “Beverage Dispenser Nozzle,” of which the disclosure is incorporated herein, in its entirety, by reference.
Number | Name | Date | Kind |
---|---|---|---|
2910247 | Allshouse | Oct 1959 | A |
4520950 | Jeans | Jun 1985 | A |
5379790 | Bruce | Jan 1995 | A |
7578415 | Ziesel | Aug 2009 | B2 |
20100108787 | Walker | May 2010 | A1 |
Number | Date | Country |
---|---|---|
1 401 185 | Jul 1975 | GB |
Entry |
---|
International Search Report dated Aug. 13, 2014 cited in Application No. PCT/US2014/026739, 13 pgs. |
Number | Date | Country | |
---|---|---|---|
20150129614 A1 | May 2015 | US |
Number | Date | Country | |
---|---|---|---|
61793229 | Mar 2013 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14211106 | Mar 2014 | US |
Child | 14480153 | US |