Battery life and battery size are two important features of battery powered devices. The goal of each battery charge is to perform “work”: powering functions and features that add value, with minimal loss to house-keeping and safety circuits.
When potentially harmful or hazardous conditions arise, the battery may need to be disconnected. To disconnect the battery without reducing battery energy, battery disconnect switches are typically located in series with the battery.
The N-channel Mosfets also include respective drains 103 and 104, which are connected by jumper 107. The two Mosfets of the switch of
However, this configuration renders the internal drain connection resistance high relative to the resistance of the vertical conduction Mosfets. In order to make the series drain resistance tolerable, the backside of the die is die-attached to a copper die pad. This configuration allows for lower resistance by placing a copper plate (the die pad) in parallel with two bulk drain resistances. The die pad also serves as a common drain connection to external connectors.
While the above configurations are effective, there is a need in the art for a switch having improved characteristics.
Embodiments of the present invention relate to an improved die layout for a bi-directional and reverse blocking battery switch. According to one embodiment, two switches are oriented side-by-side (as opposed to end-to-end) in a die package. This configuration reduces the total switch resistance for a give die area, often reducing the resistance enough to avoid the use of backmetal in order to meet resistance specifications. Elimination of backmetal reduces the overall cost of the die package, and removes the potential failure modes associated with manufacture of backmetal. Embodiments of the present invention also allow for more pin connections and for an increased pin pitch. This allows formation of redundant connections for higher current connections, thereby reducing electrical and thermal resistance, and minimizing the manufacture/implementation costs of the die package.
An embodiment of a semiconductor device in accordance with the present invention, comprises, two vertical Mosfet transistors in electrical communication through a common drain. A plurality of contacts, which are formed on the top surface of each of the Mosfet transistors, are in electrical communication with a plurality of pins. A package body is utilized to encapsulate the two Mosfet transistors and a portion of the plurality of pins. The package body has a first axis and a second axis longer than the first axis, with the contacts of the two Mosfet transistors oriented along opposite sides of the second axis.
An embodiment of a method for fabricating a reverse blocking battery switch in accordance with the present invention, comprises, providing a two vertical Mosfet transistors having a common drain connection and a plurality of contacts on the top surface of each transistor, providing a plurality of pins in electrical communication with the contacts of the two Mosfet transistors, and encapsulating the two Mosfet transistors and a portion of the pins in package body having a first axis and a second axis longer than the first axis. The contacts of the two Mosfet transistors are oriented on opposite sides along the second axis of the package body.
An embodiment of a method for packaging a battery switch in accordance with the present invention, comprises, disposing a plurality of pin connection along opposite sides of a first long axis, such that the resistance arising from the distance between two vertical Mosfet transistors is reduced.
A further understanding of embodiments in accordance with the present invention can be made by way of reference to the ensuing detailed description taken in conjunction with the accompanying drawings.
Embodiments of the present invention relate to an improved die layout for a bi-directional and reverse blocking battery switch. According to one embodiment, two switches are integrated in a common bulk Drain, side-by-side (as opposed to end-to-end) in a die package. This configuration reduces the total switch resistance, and often avoids the use of backmetal in order to meet resistance specifications. Elimination of backmetal reduces the overall cost of the die package, and removes the potential failure modes associated with the manufacture of backmetal.
Embodiments of the present invention may also allow for more pin connections and for an increased pin pitch. This results in redundant connections for higher current connections, thereby reducing the electrical and thermal resistance, and minimizing the manufacture/implementation costs of the die package. Embodiments in accordance with the present invention can also exhibit a size and form factor that fits battery cells, a low resistance that will fit in an allowable die footprint, a configuration that provides reliability with the battery assembly and use, and low thermal impedance to sink internally generated heat.
One change that can be made to a conventional die layout, is the use of a “sinker” structure to move the contact with the common drain to the opposite side of the die. Such sinker structures are commonly used to contact the bulk or substrate region in ICs, but they have also found use in power products. Since power products generally need low resistance connections to all nodes, a sinker would consume a large area in order to have comparable resistance to an active device.
The common drain connection is achieved by integrating two devices in a conductive common “bulk” drain area on the wafer. Though the common “bulk” drain area is conductive, the series resistance is not as low as the series resistance of a package using backmetal.
Moreover, resistor 508 represents the series resistance of the “sinker”, which is in series with an outside node 509 and directly in series with the two Mosfet switches 511 and 512. In most cases, this node is used to monitor the voltage of the common drain connection, which is not a high current path that can cause significant inaccuracies even if a sinker of minimal area is employed.
The conventional arrangement utilizing a sinker structure shown in
Other conventional methods exist to position the drain connection to the same side as the gate and source, such as drilling, etching, and/or plating or filling the hole with copper, solder, or a tri-metal similar to that used on the backside of a Mosfet wafer. However, these methods may not be cost effective, especially for an application that does not require extremely low resistance for the common drain connection to external connectors.
Specifically, the die layout of the embodiment of
Accordingly,
The reduction in series drain and source resistance achieved by embodiments in accordance with the present invention, may in turn sufficiently reduce the drain bulk resistance, to avoid having to use backmetal in order to meet the resistance specification limits. Such elimination of backmetal reduces the costs and potential failure modes associated with backmetal manufacturing.
Ultimately, embodiments of the present invention may allow for more and/or wider pins, and increased pin pitch. This allows redundant connections to be provided for the higher current connections. The wider and increased number of pins, may also help to reduce electrical and thermal resistance, and help to prevent marginal connections from being catastrophic. Additionally, die packages that do not push the limits on pin pitch, tend to be less expensive to implement and manufacture.
By locating the gate connections 802 and 805 and the common drain connections 809 at the center of the package, and then reversing them side-to-side, the package becomes reversible. Thus, if the package is turned 180 degrees, the gate, source, and drain connections would remain in the same place along each side of the package.
Moreover, the number of source connections 801 and 806 on either end is a function of the die size, and therefore a ratio of the switch resistance. Accordingly, the embodiment of
While the above is a full description of the specific embodiments in accordance with the present invention, various modifications, and alternative constructions and equivalents may be used. For example, while the embodiments shown in
In view of the above, the description and illustrations should not be taken as limiting the scope of the present invention which is defined by the appended claims.