Copending application Ser. No. 14/059,775 is herein incorporated by reference in its entirety for essential subject matter.
In a transformer, the instantaneous voltage induced across the secondary coil is given from Faraday's Law by:
V
s=
N
s
dΦ/dt
where Ns is the number of turns in the coil and Φ is the magnetic flux. (integral of magnetic field over the cross-sectional area of the coil) If the coil axis is perpendicular to the magnetic field lines, (normally the case by choice in transformers) total flux reduces to a product of the flux density B and the (constant) area A through which it cuts. B varies with time according to the excitation of the primary. By Gauss's law for magnetism the same magnetic flux passes through both the primary and secondary coils so in an ideal transformer the instantaneous voltage across the primary winding is:
V
p=
N
p
dΦ/dt
Therefore the voltages, turns ratios and currents in the two coils can be related by:
V
s
/V
p
=N
s
/N
p
=I
p
/I
s
Many applications of prior art transformers follow these equations, as illustrated in
The transformer of the present invention, sometimes referred to herein as ‘Bi-Toroid Transformer’ or “BiTT” does not behave according to the transformer equation as given above and thus overcomes the problems with the prior art. The BiTT's circuit topology has been changed so that it is no longer true that the same magnetic flux passes through both the primary and secondary coils. The turns ratio displays an “effective magnification” like an impedance transformed by a feedback loop. The result is a transformer which displays virtually no primary input current increase from no-load to on-load and an on-load power factor of zero with as long as it has a purely resistive load.
As will be described in greater detail below, under such conditions, as compared with the prior art, the BiTT consumes mostly reactive power in the primary while delivering real power to the loads. Such a transformer could be used in a wide variety of applications and especially, owing to its increased efficiency and therefore reduced production of heat, could be installed for the distribution of AC electrical power throughout the residential and industrial grid having reduced cooling systems including fluids containing harmful chemicals.
Physically the BiTT as shown in
As illustrated in
As shown in
With reference to
As shown in
Referring to
No-load power factor in an ideal coil is 0 as displayed in
Comparison Between Conventional Transformer Performance Vs BiTT Performance
As shown in
P
in
=V
in
×I
in×Power Factor
Because the PF is zero the primary consumes only Reactive Power (ie zero Real Power).
In a conventional transformer, as shown in
Without the primary current and flux increase the secondary voltage would collapse on-load and no sustained power would be delivered by the transformer when placed on load. The primary coil's input current increase is a function of Lenz's Law and a performance requirement but it comes at a penalty with increased primary heat and a corresponding loss in energy conversion efficiency.
The BiTT design eliminates the need for a primary coil current increase when the BiTT is placed on load because the secondary coil's each provide the required on load flux magnitude increase needed to deliver sustained power to the load. This allows the BiTT primary coil to operate with the same low no load input current level same no load power factor and minimal heat, power loss and power consumption while delivering real power and operating on load.
With reference to
Flux flow can be compared with current in a parallel resistor circuit as shown in
−V corresponds to the secondary flux source.
R1=10Ω and corresponds to the secondary cores as seen by the primary, causes large flux flow.
R2=10 kΩ and corresponds to the primary core as seen by the secondary, causes small flux flow.
In the dynamic situation, the initial primary flux φP-S2 and φP-S1 create near saturation, making the primary core a high reluctance core part, as shown by the nonlinear ‘hysteresis’ behavior in B-H curves, (
Some remaining secondary flux will travel through the high reluctance path, through the primary core, which is the main thermodynamic limitation of the BiTT and which the inventor has succeeded in minimizing, through further steps to be described in detail below.
Bi-Toroid Transformer (BiTT) Construction
The invention was constructed by modifying a prior art three phase transformer as shown in
Coil Flux Couple Coefficients
The BiTT employs Mutual and Non-Mutual Coupling Coefficients in symmetric and non-symmetric ways:
Primary to Secondary 1*(˜0.5), Primary to Secondary 2*(˜0.5), Secondary 1 to secondary 2 (˜1), Secondary 2 to secondary 1 (˜1) *Note: The Coupling Coefficient to the entire split-secondary assembly is actually 1 but each side of the secondary only gets ½ the Primary Flux.
Secondary 1 to Primary (≈0)
Secondary 2 to Primary (≈0)
In accordance with the foregoing, the diversion of secondary induced flux away from the primary changes the primary coil power factor is avoided. Lowering of the primary coil's impedance as flux couples back to the primary coil is also avoided. However, as current increases in use, the power factor follows the load and is drawn back to its conventional level, wherein the power factor suffers as the load is increased. However, as shown in
A small amount of the flux goes back to primary, however in accordance with the invention it starts a short instant of time delta t later such that, rather than decreasing, it is increasing primary impedance which reverses the advance of the power factor. The present inventor proposes that, in accomplishment of this second major aspect of the invention, is that one or more of the BITT coils acts as a transmission line, similar to a parallel-wire transmission line (such as common household antenna wire) in which the adjacent (primarily, though second-order coupling is possible) turns of the coil provide a spatially-distributed capacitance, acting along the length of the turns. Transmissions lines are distinguished from wires in that the latter conducts charge only along a single dimension s, measured along the wire. (though the wire itself may be laid out in 2- or 3-dimensional space) By comparison, a transmission line stores electrostatic energy between the wires and magnetic energy along the wires, hence it conducts a propagating wave.
The “transmission line” process as described above applies to the present invention when the fine (gauge) wire is selected, which may be bifilar windings, providing a resistance along the wire. Otherwise, the entire transmission of current through the coil would be predominated, as is normally to be expected, by the current flowing along the wire. However, when these electrodynamic coupling effects come into play, it is possible by properly selecting the frequency of operation, such that electrostatic energy storage (occurring along the coupled turns) supplements the simple conduction process. As such, a wave develops, having time-domain characteristics which superimpose, on the wave of current traveling inside the coil wire. Consequently the combination of wire-current wave and time-delayed electrodynamic reflection conspire to create the effect of a phase-shifted current, for all intents and purposes acting as though it were started after the expected time. In a sense the advancing wave collides ‘superelastically’. with a reflection, the net result being that its phase advances and the power factor appears to go negative. Of course the initial current wave crest is excepted from this process, not having had a predecessor to create the reflection. Subsequently however, every wave is ‘boosted’ by a reflection having altered phase, created or modified by a previous wave. This plausible explanation could be supplemented by considering reflections generated by waves other than the immediately previous wave, and/or having a related but not identical frequency. This process is also described in copending application directed to electrodynamic generator improvements, (ReGenX coil) based on prior document U.S. application Ser. No. 14/059,775. The process utilizes specially wound wire coil configurations to store potential energy internally and electrostatically inside the coil as voltage rather than externally in the electromagnetic field.
The effect of adding resistance to a transmission line is described by Heaviside's Transmission Line & Telegrapher Equations. In accordance with some aspects of the present invention it is proposed that the velocity of the wave process of energy storage traveling along the coil is modified through an increased resistance R along the coil wires. The lossless transmission line velocity for a system otherwise like the present invention is given, as is known, by v=1/V(LC) and the characteristic impedance is Z0=V(L/C) where L is some coil inductance and C is some characteristic capacitance arising between turns, not necessarily only adjacent ones.
The following schematic shows a very common equivalent circuit for a lossy transmission line, as is found for example in wikipedia:
The actual lossy line velocity v is proposed to be related to (R+jωL) and (G+jωC) since it is known from Heaviside's equations that the characteristic impedance of a lossless transmission line generalizes to the loss less case in this way. I.e the characteristic impedance of a lossy transmission line is given by √[(R+jωL)/(G+jωC)] where L & C are as before and G is some measured conductance between turns. The conductance G is not modified in accordance with the present invention. Hence, in the lossy velocity, likely reduced because of R, is likely that the wave will be slowed down overall by the resistance in the coil wires.
An equation of this nature is given in Eric Bogatin's Prentice-Hall publication “Signal Integrity: Simplified.”
The subscript “L” simply refers to the fact that these quantities apply to the lossy case. Otherwise they follow equivalent circuit given above. It seems fairly likely, from an analysis of the present invention in the light of this equation, (discarding terms with GL dependence on the basis that this quantity will always be near zero) that the effect of increasing R will be to reduce the signal velocity. Especially in the case where RL is made significantly larger than ωLL, the first remaining term in the inner square root will predominate. It is also clear that increasing R too much, namely in such a way as to invalidate the assumption GL˜0 will begin to contribute a reverse effect, on account of the negative sign in the last term in the outer root in the denominator.
A further possibility is that the reverse effect actually predominates, as the RLGL product is made large. Since this will lead to a reduction in the denominator, the velocity will increase because of, the fine winding and consequent proximity of coil turns of the transformer suggest that the quantity CL may be large in the context of the present invention, thus accentuating the RL contribution (with respect to GL) of the inner denominator root and lending further support to the utility of the structure of the present invention.
The gist of this aspect of the present invention involves affecting the timing of propagation in a beneficial way with respect to the wave phase timing as explained elsewhere in this document. The inventor proposes that altering the speed of the propagating electrodynamic wave allows it to be synchronized with energy storage processes otherwise taking place in the transformer. Whether this beneficial effect arises through reduction, or on the other hand increase, of the propagation velocity is secondary
It must be stressed that the usual discussions of lossy transmission line equations concerns transmission of information. In such a context it is generally known that serial resistive losses do not affect the speed of propagation particularly and it is also known that losses may render the characteristics somewhat dispersive, i.e. frequency-dependent. However, in the context of the present invention dispersion is not of particular significance and, on the other hand, the resistance proposed is of a nature and value that does not normally occur in information systems but is suggested to be important here.
It is the conventional coil's induced resistive electromagnetic field that manifests itself between the primary and the secondaries. In order to properly work in accordance with the present invention, the secondaries have to have the same delay properties as the ReGen-X coil to work properly and the operational frequency must be higher than usual in accordance with the observations described in the present document and said prior application. Thus the on-load power factor is zero (or very near zero) in both cases and the BiTT acts as a transformer that delivers actual real power to a load while consuming borrowed reactive power and extremely little real power.
As shown in
As shown in
As explained below, in accordance with the present invention the BITT, when properly tuned, behaves as illustrated in
Attached artifact A, a computer simulation also showed a negative power factor of less than 0—which the actual BiTT also showed in real bench tests as well.
The Bi-Toroid Transformer (BiTT) operates as a Magnetic Diode, consumes almost pure reactive power but delivers real power to the loads and only allows the transfer of energy in one direction. Because the BiTT primary is isolated from the secondary on-load induced flux, the BiTT primary power factor and current do not change from no-load to on-load. With a purely resistive load on the BiTT the primary power factor is virtually zero and the efficiency of the energy transfer is increased accordingly. If for example, the transformer primary power factor is reduced by 30% the transformer efficiency is also increased by 30%. As well as the applications mentioned above, this transformer can also be applied in chargers and in electric vehicles between the generator and the batteries and between the batteries and the motor.
Since there is no such thing as an ideal coil of wire, all transformer primary coils will have some DC resistance and heat and power losses when operated on no-load even if the Power Factor is zero. When a transformer is placed on-load and load current flows from the secondary coil to the load, a magnetic field is induced around the secondary coil according to Lenz's Law. This on-load secondary coil's induced BEMF magnetic field couples back through the transformer's ferromagnetic core and enters the primary coil's core where it reduces the NET flux in the as registered by the primary coil. This NET flux reduction should not be confused with “flux cancellation” since one magnetic flux cannot cancel another magnetic flux. The NET flux reduction effect is due to a reduction in the NET flux integral of magnetic field flux over the cross-sectional area of the primary coil's core.
When the secondary coil's on-load BEMF induced flux enters the primary core the absolute value of the NET flux increases but the NET flux differential as seen by the primary coil is reduced according to Faraday's Law of Induction. This NET flux differential reduction causes the primary coil's impedance to drop which in turn causes the primary coil to allow an increase of current to flow in the coil. This increase in current flow increases the induced magnetic field produced by the primary coil which in turn, increases the flux delivered to the secondary coil which is a critical component in transformer operation. If the secondary coil's core flux magnitude didn't increase on-load the as described in the chain of events above the secondary coil's voltage would collapse on-load and no power would be delivered to the load.
Lenz's Law and the production of a Back EMF induced magnetic field is a critically important factor in the operation of a transformer but it comes at a cost of increased heat and significant energy efficiency losses in the transformer primary and even transformer failure and fires if they are not controlled properly. The Bi-Toroid Transformer (BiTT) being presented here relieves the burden off of the transformer primary as the sole on-load magnetic flux input source and allows two secondary coils and an alternate flux path route to do the work required of increasing the secondary core flux on load flux magnitude instead.
If one can redirect all or even a percentage of secondary on-load BEMF induced flux away from the primary coil and use said redirected flux to do the same required work in an adjacent secondary coil and vice versa then one can create an more efficient transformer design according to the magnitude of flux diversion. The Bi-Toroid Transformer does just that and when combined with a 45-90 degree load current delay the normal transformer on-load operational paradigm can even be reversed slightly where the secondary BEMF induced flux actually causes the primary impedance to increase on-load and for the BiTT to deliver on-load power with a decrease in current magnitude from the no-load starting point.
Those experienced in the field of this invention should, based on the detailed descriptions of the objectives and new methods, be able to understand the logical possible vatiations. They will be able to adopt appropriate strategies, dimensions and geometries depending on the various applications and needs of different engines, not specifically shown in this application, but within the general goals and objectives of this invention.
Number | Date | Country | |
---|---|---|---|
61773877 | Mar 2013 | US |