Throughout this application, various publications are referenced, including referenced in parenthesis. The disclosures of all publications mentioned in this application in their entireties are hereby incorporated by reference into this application in order to provide additional description of the art to which this invention pertains and of the features in the art which can be employed with this invention.
This application incorporates-by-reference nucleotide sequences which are present in the file named “211214 91654-A-PCT Sequence Listing AWG.txt”, which is 453 kilobytes in size, and which was created on Dec. 14, 2021 in the IBM-PC machine format, having an operating system compatibility with MS-Windows, which is contained in the text file filed Dec. 14, 2021 as part of this application.
Chimeric antigen receptors (CAR) provide a promising approach for immunotherapy. However, to make such therapies (e.g. CAR-T cell therapies) more accessible, it is highly desirable to develop an allogeneic adoptive transfer strategy in which universal CAR cells derived from cells from healthy donors can be applied to treat multiple patients. In order to implement this strategy, the αβ T-cell receptor (TCR) on allogenic CAR-T cells needs to be eliminated by knocking out T Cell Receptor Alpha Constant (TRAC) in order to avoid graft-versus-host-disease (GVHD). Additionally, to minimize the immunogenicity of CAR-T cells human leukocyte antigens class I (HLA-Is) need to be removed by knocking out beta-2 microglobulin (B2M).
Disclosed are approaches for knocking out the B2M gene in cells to be utilized for immunotherapy approaches, such as CAR-T therapy. The B2M knockout lowers the immunogenicity of the modified cell to avoid rejection by the host's immune system during allogeneic adoptive transfer. Accordingly, biallelic knockout of the B2M gene in cells as described herein may be utilized to minimize the immunogenicity of the cells. The disclosed approaches for knocking out the B2M gene in cells, for example, allogeneic immune cells, are utilized to increase the persistence and/or the engraftment of the cells in the presence of a host's immune cells.
The present disclosure also provides a method for inactivating alleles of the Beta-2 microglobulin (B2M) gene in a cell, the method comprising
According to embodiments of the present invention, there is provided an RNA molecule comprising a guide sequence portion having 17-50 contiguous nucleotides containing nucleotides in the sequence set forth in any one of SEQ ID Nos: 1-1538.
According to some embodiments of the present invention, there is provided a composition comprising an RNA molecule comprising a guide sequence portion having 17-50 contiguous nucleotides containing nucleotides in the sequence set forth in any one of SEQ ID NOs: 1-1538 and a CRISPR nuclease.
According to some embodiments of the present invention, there is provided a method for inactivating a B2M allele in a cell, the method comprising delivering to the cell a composition comprising an RNA molecule comprising a guide sequence portion having 17-50 contiguous nucleotides containing nucleotides in the sequence set forth in any one of SEQ ID NOs: 1-1538 and a CRISPR nuclease. In some embodiments, the cell is a lymphocyte. In some embodiments, the cell is a T cell. In some embodiments, the cell is a T regulatory cell. In some embodiments, the cell is a B cell. In some embodiments, the cell is a natural killer (NK) cell. In some embodiments, the cell is a macrophage. In some embodiments, the cell is a stem cell. In some embodiments, the cell is an iPSC. In some embodiments, the cell is a fibroblast, blood cell, hepatocyte, keratinocyte, or any other cell type capable of being reprogrammed to an induced pluripotent stem cell (iPSC). In some embodiments, the delivering to the cell is performed in vivo, ex vivo, or in vitro. In some embodiments, the method is performed ex vivo and the cell is provided/explanted from an individual patient. In some embodiments, the method further comprises the step of introducing the resulting cell, with the modified/knocked out B2M allele, into an individual patient. In some embodiments, the cell is originated from the individual patient to be treated. In some embodiments, the cell originated from a donor. In some embodiments, the cell is allogeneic to the individual patient to which it is introduced.
According to some embodiments of the present invention, there is provided a method for treating, reducing, and/or preventing host-versus-graft rejection (HvG), the method comprising delivering to a cell of a subject having or at risk of experiencing host-versus-graft rejection (HvG) a composition comprising an RNA molecule comprising a guide sequence portion having 17-50 contiguous nucleotides containing nucleotides in the sequence set forth in any one of SEQ ID NOs: 1-1538 and a CRISPR nuclease. In some embodiments, the method is for increasing persistence and/or engraftment of a cell in a host subject, the method comprising delivering to the cell a composition comprising an RNA molecule comprising a guide sequence portion having 17-50 contiguous nucleotides containing nucleotides in the sequence set forth in any one of SEQ ID NOs: 1-1538 and a CRISPR nuclease; and introducing the cell to the host subject. In some embodiments, the cell is further differentiated prior to introducing the cell to the host subject. In some embodiments, the cell is further engineered to express a chimeric antigen receptor. In some embodiments, the cell is a stem cell, an iPSC, or a progenitor cell and is differentiated to a T cell prior to introducing the cell to the host subject. In some embodiments, the cell is a T cell. In some embodiments, the cell is further engineered to knockout the TRAC gene to avoid graft-versus-host disease (GVHD) following introduction into a host subject.
According to some embodiments of the present invention, there is provided use of a composition comprising an RNA molecule comprising a guide sequence portion having 17-50 contiguous nucleotides containing nucleotides in the sequence set forth in any one of SEQ ID NOs: 1-1538 and a CRISPR nuclease for inactivating a B2M allele in a cell, comprising delivering to the cell the composition comprising an RNA molecule comprising a guide sequence portion having 17-50 contiguous nucleotides containing nucleotides in the sequence set forth in any one of SEQ ID NOs: 1-1538 and a CRISPR nuclease.
According to embodiments of the present invention, there is provided a medicament comprising an RNA molecule comprising a guide sequence portion having 17-50 contiguous nucleotides containing nucleotides in the sequence set forth in any one of SEQ ID NOs: 1-1538 and a CRISPR nuclease for use in inactivating a B2M allele in a cell, wherein the medicament is administered by delivering to the cell the composition comprising an RNA molecule comprising a guide sequence portion having 17-50 contiguous nucleotides containing nucleotides in the sequence set forth in any one of SEQ ID NOs: 1-1538 and a CRISPR nuclease.
According to some embodiments of the present invention, there is provided use of a composition comprising an RNA molecule comprising a guide sequence portion having 17-50 contiguous nucleotides containing nucleotides in the sequence set forth in any one of SEQ ID NOs: 1-1538 and a CRISPR nuclease for treating, ameliorating, or preventing host-versus-graft rejection (HvG) or increasing persistence of the cell upon engraftment, comprising delivering to a cell of a subject having or at risk of experiencing host-versus-graft rejection the composition of comprising an RNA molecule comprising a guide sequence portion having 17-50 contiguous nucleotides containing nucleotides in the sequence set forth in any one of SEQ ID NOs: 1-1538 and a CRISPR nuclease.
According to some embodiments of the present invention, there is provided a medicament comprising the composition comprising an RNA molecule comprising a guide sequence portion having 17-50 contiguous nucleotides containing nucleotides in the sequence set forth in any one of SEQ ID NOs: 1-1538 and a CRISPR nuclease for use in treating, ameliorating, or preventing host-versus-graft rejection (HvG), wherein the medicament is administered by delivering to a cell of a subject having or at risk of experiencing host-versus-graft rejection (HvG) the composition comprising an RNA molecule comprising a guide sequence portion having 17-50 contiguous nucleotides containing nucleotides in the sequence set forth in any one of SEQ ID NOs: 1-1538 and a CRISPR nuclease.
According to some embodiments of the present invention, there is provided a kit for inactivating a B2M allele in a cell, comprising an RNA molecule comprising a guide sequence portion having 17-50 contiguous nucleotides containing nucleotides in the sequence set forth in any one of SEQ ID NOs: 1-1538, a CRISPR nuclease, and/or a tracrRNA molecule; and instructions for delivering the RNA molecule; CRISPR nuclease, and/or the tracrRNA to the cell.
According to some embodiments of the present invention, there is provided a kit for treating or preventing host-versus-graft rejection (HvG) in a subject, comprising an RNA molecule comprising a guide sequence portion having 17-50 contiguous nucleotides containing nucleotides in the sequence set forth in any one of SEQ ID NOs: 1-1538, a CRISPR nuclease, and/or a tracrRNA molecule; and instructions for delivering the RNA molecule; CRISPR nuclease, and/or the tracrRNA to a cell of a subject having or at risk of host-versus-graft rejection (HvG).
Unless otherwise defined, all technical and/or scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which the invention pertains. Although methods and materials similar or equivalent to those described herein can be used in the practice or testing of embodiments of the invention, exemplary methods and/or materials are described below. In case of conflict, the patent specification, including definitions, will control. In addition, the materials, methods, and examples are illustrative only and are not intended to be necessarily limiting.
It should be understood that the terms “a” and “an” as used above and elsewhere herein refer to “one or more” of the enumerated components. It will be clear to one of ordinary skill in the art that the use of the singular includes the plural unless specifically stated otherwise. Therefore, the terms “a,” “an” and “at least one” are used interchangeably in this application.
For purposes of better understanding the present teachings and in no way limiting the scope of the teachings, unless otherwise indicated, all numbers expressing quantities, percentages or proportions, and other numerical values used in the specification and claims, are to be understood as being modified in all instances by the term “about.” Accordingly, unless indicated to the contrary, the numerical parameters set forth in the following specification and attached claims are approximations that may vary depending upon the desired properties sought to be obtained. At the very least, each numerical parameter should at least be construed in light of the number of reported significant digits and by applying ordinary rounding techniques.
Unless otherwise stated, adjectives such as “substantially” and “about” modifying a condition or relationship characteristic of a feature or features of an embodiment of the invention, are understood to mean that the condition or characteristic is defined to within tolerances that are acceptable for operation of the embodiment for an application for which it is intended. Unless otherwise indicated, the word “or” in the specification and claims is considered to be the inclusive “or” rather than the exclusive or, and indicates at least one of, or any combination of items it conjoins.
In the description and claims of the present application, each of the verbs, “comprise,” “include” and “have” and conjugates thereof, are used to indicate that the object or objects of the verb are not necessarily a complete listing of components, elements or parts of the subject or subjects of the verb. Other terms as used herein are meant to be defined by their well-known meanings in the art.
In some embodiments of the present invention, a DNA nuclease is utilized to affect a DNA break at a target site to induce cellular repair mechanisms, for example, but not limited to, non-homologous end-joining (NHEJ). During classical NHEJ, two ends of a double-strand break (DSB) site are ligated together in a fast but also inaccurate manner (i.e. frequently resulting in mutation of the DNA at the cleavage site in the form of small insertion or deletions).
As used herein, the term “modified cells” refers to cells in which a double strand break is affected by a complex of an RNA molecule and the CRISPR nuclease as a result of hybridization with the target sequence, i.e. on-target hybridization.
This invention provides a modified cell or cells obtained by use of any of the methods described herein. In an embodiment these modified cell or cells are capable of giving rise to progeny cells. In an embodiment these modified cell or cells are capable of giving rise to progeny cells after engraftment. As a non-limiting example, the modified cells may be hematopoietic stem cells (HSCs), or any cell suitable for an allogenic cell transplant or autologous cell transplant.
As used herein, the term “targeting sequence” or “targeting molecule” refers a nucleotide sequence or molecule comprising a nucleotide sequence that is capable of hybridizing to a specific target sequence, e.g., the targeting sequence has a nucleotide sequence which is at least partially complementary to the sequence being targeted along the length of the targeting sequence. The targeting sequence or targeting molecule may be part of an RNA molecule that can form a complex with a CRISPR nuclease, either alone or in combination with other RNA molecules, with the targeting sequence serving as the targeting portion of the CRISPR complex. When the molecule having the targeting sequence is present contemporaneously with the CRISPR nuclease, the RNA molecule, alone or in combination with an additional one or more RNA molecules (e.g. a tracrRNA molecule), is capable of targeting the CRISPR nuclease to the specific target sequence.
As non-limiting example, a guide sequence portion of a CRISPR RNA molecule or single-guide RNA molecule may serve as a targeting molecule. Each possibility represents a separate embodiment. A targeting sequence can be custom designed to target any desired sequence.
The term “targets” as used herein, refers to preferentially hybridizing a targeting sequence of a targeting molecule to a nucleic acid having a targeted nucleotide sequence. It is understood that the term “targets” encompasses variable hybridization efficiencies, such that there is preferential targeting of the nucleic acid having the targeted nucleotide sequence, but unintentional off-target hybridization in addition to on-target hybridization might also occur. It is understood that where an RNA molecule targets a sequence, a complex of the RNA molecule and a CRISPR nuclease molecule targets the sequence for nuclease activity.
The “guide sequence portion” of an RNA molecule refers to a nucleotide sequence that is capable of hybridizing to a specific target DNA sequence, e.g., the guide sequence portion has a nucleotide sequence which is partially or fully complementary to the DNA sequence being targeted along the length of the guide sequence portion. In some embodiments, the guide sequence portion is 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49 or 50 nucleotides in length, or approximately 17-50, 17-49, 17-48, 17-47, 17-46, 17-45, 17-44, 17-43, 17-42, 17-41, 17-40, 17-39, 17-38, 17-37, 17-36, 17-35, 17-34, 17-33, 17-31, 17-50, 17-29, 17-28, 17-27, 17-26, 17-25, 17-24, 17-22, 17-21, 18-25, 18-24, 18-23, 18-22, 18-21, 19-25, 19-24, 19-23, 19-22, 19-21, 19-20, 20-22, 18-20, 20-21, 21-22, or 17-20 nucleotides in length. Preferably, the entire length of the guide sequence portion is fully complementary to the DNA sequence being targeted along the length of the guide sequence portion. The guide sequence portion may be part of an RNA molecule that can form a complex with a CRISPR nuclease with the guide sequence portion serving as the DNA targeting portion of the CRISPR complex. When the RNA molecule having the guide sequence portion is present contemporaneously with the CRISPR molecule, alone or in combination with an additional one or more RNA molecules (e.g. a tracrRNA molecule), the RNA molecule is capable of targeting the CRISPR nuclease to the specific target DNA sequence. Accordingly, a CRISPR complex can be formed by direct binding of the RNA molecule having the guide sequence portion to a CRISPR nuclease or by binding of the RNA molecule having the guide sequence portion and an additional one or more RNA molecules to the CRISPR nuclease. Each possibility represents a separate embodiment. A guide sequence portion can be custom designed to target any desired sequence. Accordingly, a molecule comprising a “guide sequence portion” is a type of targeting molecule. In some embodiments, the guide sequence portion comprises a sequence that is the same as, or differs by no more than 1, 2, 3, 4, or 5 nucleotides from, a guide sequence portion described herein, e.g., a guide sequence set forth in any of SEQ ID NOs: 1-1538. Each possibility represents a separate embodiment. In some of these embodiments, the guide sequence portion comprises a sequence that is the same as a sequence set forth in any of SEQ ID NOs: 1-1538. Throughout this application, the terms “guide molecule,” “RNA guide molecule,” “guide RNA molecule,” and “gRNA molecule” are synonymous with a molecule comprising a guide sequence portion.
The term “non-discriminatory” as used herein refers to a guide sequence portion of an RNA molecule that targets a specific DNA sequence that is common to all alleles of a gene.
In embodiments of the present invention, an RNA molecule comprises a guide sequence portion having 17-50 contiguous nucleotides containing nucleotides in the sequence set forth in any one of SEQ ID NOs: 1-1538.
The RNA molecule and or the guide sequence portion of the RNA molecule may contain modified nucleotides. Exemplary modifications to nucleotides/polynucleotides may be synthetic and encompass polynucleotides which contain nucleotides comprising bases other than the naturally occurring adenine, cytosine, thymine, uracil, or guanine bases. Modifications to polynucleotides include polynucleotides which contain synthetic, non-naturally occurring nucleosides e.g., locked nucleic acids. Modifications to polynucleotides may be utilized to increase or decrease stability of an RNA. An example of a modified polynucleotide is an mRNA containing 1-methyl pseudo-uridine. For examples of modified polynucleotides and their uses, see U.S. Pat. No. 8,278,036, PCT International Publication No. WO/2015/006747, and Weissman and Kariko (2015), each of which is hereby incorporated by reference.
As used herein, “contiguous nucleotides” set forth in a SEQ ID NO refers to nucleotides in a sequence of nucleotides in the order set forth in the SEQ ID NO without any intervening nucleotides.
In embodiments of the present invention, the guide sequence portion may be 17-50 nucleotides in length and contain 20-22 contiguous nucleotides in the sequence set forth in any one of SEQ ID NOs: 1-1538. In embodiments of the present invention, the guide sequence portion may be less than 22 nucleotides in length. For example, in embodiments of the present invention the guide sequence portion may be 17, 18, 19, 20, or 21 nucleotides in length. In such embodiments the guide sequence portion may consist of 17, 18, 19, 20, or 21 nucleotides, respectively, in the sequence of 17-22 contiguous nucleotides set forth in any one of SEQ ID NOs: 1-1538. For example, a guide sequence portion having 17 nucleotides in the sequence of 17 contiguous nucleotides set forth in SEQ ID NO: 1539 may consist of any one of the following nucleotide sequences (nucleotides excluded from the contiguous sequence are marked in strike-through):
In embodiments of the present invention, the guide sequence portion may be greater than 20 nucleotides in length. For example, in embodiments of the present invention the guide sequence portion may be 21, 22, 23, 24, 25, 26, 27, 28, 29, or 30 nucleotides in length. In such embodiments the guide sequence portion comprises 17-50 nucleotides containing the sequence of 20, 21 or 22 contiguous nucleotides set forth in any one of SEQ ID NOs: 1-1538 and additional nucleotides fully complimentary to a nucleotide or sequence of nucleotides adjacent to the 3′ end of the target sequence, 5′ end of the target sequence, or both.
In embodiments of the present invention a CRISPR nuclease and an RNA molecule comprising a guide sequence portion form a CRISPR complex that binds to a target DNA sequence to effect cleavage of the target DNA sequence. CRISPR nucleases, e.g. Cpf1, may form a CRISPR complex comprising a CRISPR nuclease and RNA molecule without a further tracrRNA molecule. Alternatively, CRISPR nucleases, e.g. Cas9, may form a CRISPR complex between the CRISPR nuclease, an RNA molecule, and a tracrRNA molecule. A guide sequence portion, which comprises a nucleotide sequence that is capable of hybridizing to a specific target DNA sequence, and a sequence portion that participates in CRIPSR nuclease binding, e.g. a tracrRNA sequence portion, can be located on the same RNA molecule. Alternatively, a guide sequence portion may be located on one RNA molecule and a sequence portion that participates in CRIPSR nuclease binding, e.g. a tracrRNA portion, may located on a separate RNA molecule. A single RNA molecule comprising a guide sequence portion (e.g. a DNA-targeting RNA sequence) and at least one CRISPR protein-binding RNA sequence portion (e.g. a tracrRNA sequence portion), can form a complex with a CRISPR nuclease and serve as the DNA-targeting molecule. In some embodiments, a first RNA molecule comprising a DNA-targeting RNA portion, which includes a guide sequence portion, and a second RNA molecule comprising a CRISPR protein-binding RNA sequence interact by base pairing to form an RNA complex that targets the CRISPR nuclease to a DNA target site or, alternatively, are fused together to form an RNA molecule that complexes with the CRISPR nuclease and targets the CRISPR nuclease to a DNA target site.
In embodiments of the present invention, an RNA molecule comprising a guide sequence portion may further comprise the sequence of a tracrRNA molecule. Such embodiments may be designed as a synthetic fusion of the guide portion of the RNA molecule and the trans-activating crRNA (tracrRNA). (See Jinek et al., 2012). In such an embodiment, the RNA molecule is a single guide RNA (sgRNA) molecule. Embodiments of the present invention may also form CRISPR complexes utilizing a separate tracrRNA molecule and a separate RNA molecule comprising a guide sequence portion. In such embodiments the tracrRNA molecule may hybridize with the RNA molecule via basepairing and may be advantageous in certain applications of the invention described herein.
The term “tracr mate sequence” refers to a sequence sufficiently complementary to a tracrRNA molecule so as to hybridize to the tracrRNA via basepairing and promote the formation of a CRISPR complex. (See U.S. Pat. No. 8,906,616). In embodiments of the present invention, the RNA molecule may further comprise a portion having a tracr mate sequence.
A “gene,” for the purposes of the present disclosure, includes a DNA region encoding a gene product, as well as all DNA regions which regulate the production of the gene product, whether or not such regulatory sequences are adjacent to coding and/or transcribed sequences. Accordingly, a gene includes, but is not necessarily limited to, promoter sequences, terminators, translational regulatory sequences such as ribosome binding sites and internal ribosome entry sites, enhancers, silencers, insulators, boundary elements, replication origins, matrix attachment sites and locus control regions.
“Eukaryotic” cells include, but are not limited to, fungal cells (such as yeast), plant cells, animal cells, mammalian cells and human cells.
The term “nuclease” as used herein refers to an enzyme capable of cleaving the phosphodiester bonds between the nucleotide subunits of nucleic acid. A nuclease may be isolated or derived from a natural source. The natural source may be any living organism. Alternatively, a nuclease may be a modified or a synthetic protein which retains the phosphodiester bond cleaving activity. Gene modification can be achieved using a nuclease, for example a CRISPR nuclease.
According to embodiments of the present invention, there is provided a method for inactivating alleles of the Beta-2 microglobulin (B2M) gene in a cell, the method comprising
In some embodiments, the guide sequence portion of the RNA molecule comprises 17-50 contiguous nucleotides containing nucleotides in the sequence set forth in any one of SEQ ID NOs: 1-1538 modified to comprise up to five mismatches relative to the target site.
In some embodiments, the method is a method of preparing modified immune cells (e.g., T cells) for use in immunotherapy. In some embodiments, the method is performed in vitro or ex vivo.
In some embodiments, the composition is introduced to a cell in a subject or to a cell in culture.
In some embodiments, the cell is a lymphocyte, a T cell, a T regulatory cell, a B cell, a natural killer (NK) cell, a macrophage, a stem cell, or a fibroblast, blood cell, hepatocyte, keratinocyte, or any other cell type capable of being reprogrammed to an induced pluripotent stem cell (iPSC).
In some embodiments, the cell is a hematopoietic stem cell (HSC), induced pluripotent stem cell (iPS cell), iPSc-derived cell, natural killer cell (NK), iPS-derived NK cell (iNK), T cell, innate-like T cell (iT), natural killer T cell (NKT), γδ T cell, iPSc-derived T cell, invariant NKT cells (iNKT), iPSc-derived NKT, monocyte, or macrophage.
In some embodiments, the CRISPR nuclease and the RNA molecule are introduced to the cell at substantially the same time or at different times.
In some embodiments, alleles of the B2M gene in the cell are subjected to an insertion or deletion mutation.
In some embodiments, the insertion or deletion mutation creates an early stop codon.
In some embodiments, the inactivating results in a truncated protein encoded by the mutated allele.
In some embodiments, the composition introduced to the cell further comprises a second RNA molecule comprising a guide sequence portion, wherein the guide sequence portion of the RNA molecule comprises 17-50 contiguous nucleotides containing nucleotides in the sequence set forth in any one of SEQ ID NOs: 1-1538.
According to embodiments of the present invention, there is provided a method for inactivating alleles of the Beta-2 microglobulin (B2M) gene in a cell, the method comprising
In some embodiments, the guide sequence portion of the RNA molecule comprises 1, 2, 3, 4, or 5 nucleotide mismatches relative to a fully-complementary target sequence of the guide sequence portion.
In some embodiments, the guide sequence portion provides higher targeting specificity to the complex of the CRISPR nuclease and the RNA molecule relative to a guide sequence portion that has higher complementarity to an allele of the B2M gene.
In some embodiments, the composition introduced to the cell further comprises a second RNA molecule comprising a guide sequence portion, wherein the guide sequence portion of the RNA molecule comprises 17-50 contiguous nucleotides containing nucleotides in the sequence set forth in any one of SEQ ID NOs: 1-1538, or any one of SEQ ID NOs: 1-1538 modified to contain 1, 2, 3, 4, or 5 nucleotide mismatches relative to a fully-complementary target sequence of the guide sequence portion.
According to embodiments of the present invention, there is provided a composition comprising an RNA molecule which comprises 17-50 contiguous nucleotides containing nucleotides in the sequence set forth in any one of SEQ ID NOs: 1-1538.
In some embodiments, the RNA molecule comprises 17-50 contiguous nucleotides containing nucleotides in the sequence set forth in any one of SEQ ID NOs: 75, 98, 136, 621, 685, 728, 747, 866, and 923.
In some embodiments, the RNA molecule comprises 17-50 contiguous nucleotides containing nucleotides in the sequence set forth in any one of SEQ ID NOs: 1-1538 other than SEQ ID NOs: 75, 98, 136, 621, 685, 728, 747, 866, and 923.
In some embodiments, the composition further comprises a second RNA molecule which comprises 17-50 contiguous nucleotides containing nucleotides in the sequence set forth in any one of SEQ ID NOs: 1-1538.
In some embodiments, the second RNA molecule which comprises 17-50 contiguous nucleotides containing nucleotides in the sequence set forth in any one of SEQ ID NOs: 75, 98, 136, 621, 685, 728, 747, 866, and 923.
In some embodiments, the second RNA molecule which comprises 17-50 contiguous nucleotides containing nucleotides in the sequence set forth in any one of SEQ ID NOs: 1-1538 is other than SEQ ID NOs: 75, 98, 136, 621, 685, 728, 747, 866, and 923.
According to embodiments of the present invention, there is provided a composition comprising an RNA molecule which comprises 17-50 contiguous nucleotides containing nucleotides in the sequence set forth in any one of SEQ ID NOs: 1-1538, or any one of SEQ ID NOs: 1-1538 modified to contain 1, 2, 3, 4, or 5 nucleotide mismatches relative to a fully-complementary target sequence of the guide sequence portion.
In some embodiments, the composition further comprises a second RNA molecule which comprises 17-50 contiguous nucleotides containing nucleotides in the sequence set forth in any one of SEQ ID NOs: 1-1538, or any one of SEQ ID NOs: 1-1538 modified to contain 1, 2, 3, 4, or 5 nucleotide mismatches relative to a fully-complementary target sequence of the guide sequence portion.
In some embodiments, any one of the compositions described above further comprises a CRISPR nuclease.
In some embodiments, any one of the compositions described above further comprises a tracrRNA molecule.
According to embodiments of the present invention, there is provided a cell modified by any one of the methods described herein or modified using the any one of the compositions described herein. The modified cell may also have additional genes altered in order to improve their use for adoptive transfer, for example, reducing or preventing graft-versus-host disease (GVHD).
In some embodiments, the cell is any one of a wherein the cell is a lymphocyte, a T cell, a T regulatory cell, a B cell, a natural killer (NK) cell, a macrophage, a stem cell, or a fibroblast, blood cell, hepatocyte, keratinocyte, or any other cell type capable of being reprogrammed to an induced pluripotent stem cell (iPSC).
In some embodiments, the cell is a hematopoietic stem cell (HSC), induced pluripotent stem cell (iPS cell), iPSc-derived cell, natural killer cell (NK), iPS-derived NK cell (iNK), T cell, innate-like T cell (iT), natural killer T cell (NKT), γδ T cell, iPSc-derived T cell, invariant NKT cell (iNKT), iPS c-derived NKT, monocyte, or macrophage.
In some embodiments, the cell is a stem cell or any cell type capable of being reprogrammed to an induced pluripotent stem cell (iPSC).
In some embodiments, the stem cell is differentiated after it is modified.
In some embodiments, the stem cell is differentiated into any one of a lymphocyte, a T cell, a T regulatory cell, a B cell, a natural killer (NK) cell, innate-like T cell (iT), natural killer T cells (NKT), γδ T cell, invariant NKT cells (iNKT), monocyte, or macrophage.
According to embodiments of the present invention, there is provided a medicament comprising any one of the compositions described herein for use in inactivating a B2M allele in a cell, wherein the medicament is administered by delivering to the cell the composition.
According to embodiments of the present invention, there is provided a use of any one of the compositions or modified cells described herein for treating, ameliorating, or preventing host-versus-graft rejection (HvG), comprising delivering the composition or the modified cell to a subject experiencing or at risk of experiencing host-versus-graft rejection (HvG).
According to embodiments of the present invention, there is provided a medicament comprising any one of the compositions or modified cells described herein for use in treating, ameliorating, or preventing host-versus-graft rejection (HvG), wherein the medicament is administered by delivering the composition or the modified cell to a subject experiencing or at risk of experiencing host-versus-graft rejection (HvG).
According to embodiments of the present invention, there is provided a kit for inactivating a B2M allele in a cell, comprising any one of the compositions described herein and instructions for delivering the composition to the cell.
In some embodiments, the composition is delivered to the cell ex vivo.
According to embodiments of the present invention, there is provided a kit for treating or preventing host-versus-graft rejection (HvG) in a subject, comprising any one of the compositions or modified cells described herein and instructions for delivering the composition or modified cell to a subject experiencing or at risk of experiencing host-versus-graft rejection (HvG).
According to embodiments of the present invention, the modified immune cells (e.g., T cells) obtained by the described methods are intended to be used as a medicament for treating a cancer, infection, or immune disease in a subject in need thereof. The administration of the modified immune cell or a population thereof to a subject may be carried out in any convenient manner known in the art, including, but not limited to, aerosol inhalation, injection, ingestion, transfusion, implantation or transplantation. Injection or transfusion may be performed subcutaneously, intradermaliy, intratumorally, intranodally, intramedullary, intramuscularly, by intravenous or intralymphatic injection, or intraperitoneally. According to embodiments of the present invention, there is provided a method for adoptive cell therapy or prophylaxis comprising administering the modified cells to a subject suffering from or determined to be at risk of suffering from a cancer or an infection.
According to embodiments of the present invention, there is provided use of any one of the compositions or modified cells described herein for reducing or preventing host versus graft response (HvG) during treating, ameliorating, or preventing cancer, a disease, or an infection in a subject, comprising delivering the composition or modified cell to a subject experiencing or at risk of experiencing host-versus-graft rejection (HvG).
According to embodiments of the present invention, there is provided a medicament comprising any one of the modified cells described herein for treating, ameliorating, or preventing host-versus-graft rejection (HvG), such that the medicament is administered by delivering the composition to a subject experiencing or at risk of experiencing host-versus-graft rejection (HvG).
According to embodiments of the present invention, there is provided an RNA molecule for use in modifying a cell (e.g. lymphocyte, T-cell, CAR-T cell) to treat, ameliorate, or prevent host-versus-graft rejection (HvG) in a subject. The RNA molecule may be delivered to the cell ex vivo, in vitro, or in vivo.
According to embodiments of the present invention, there is provided a kit for inactivating a B2M allele in a cell, comprising any one of the compositions described herein and instructions for delivering the composition to the cell.
According to embodiments of the present invention, there is provided a kit for treating or preventing host-versus-graft rejection (HvG) in a subject, comprising any one of the compositions or modified cells described herein and instructions for delivering the composition or modified cell to a subject experiencing or at risk of experiencing host-versus-graft rejection (HvG).
According to embodiments of the present invention, there is provided a cell modified by the method described herein or modified using the compositions described herein.
According to embodiments of the present invention, there is provided a gene editing composition comprising an RNA molecule comprising a guide sequence portion having 17-50 contiguous nucleotides containing nucleotides in the sequence set forth in any one of SEQ ID NOs: 1-1538. In some embodiments, the RNA molecule further comprises a portion having a sequence which binds to a CRISPR nuclease. In some embodiments, the sequence which binds to a CRISPR nuclease is a tracrRNA sequence.
In some embodiments, the RNA molecule further comprises a portion having a tracr mate sequence.
In some embodiments, the RNA molecule may further comprise one or more linker portions.
According to embodiments of the present invention, an RNA molecule may be up to 1000, 900, 800, 700, 600, 500, 450, 400, 350, 300, 290, 280, 270, 260, 250, 240, 230, 220, 210, 200, 190, 180, 170, 160, 150, 140, 130, 120, 110, or 100 nucleotides in length. Each possibility represents a separate embodiment. In embodiments of the present invention, the RNA molecule may be 17 up to 300 nucleotides in length, 100 up to 300 nucleotides in length, 150 up to 300 nucleotides in length, 100 up to 500 nucleotides in length, 100 up to 400 nucleotides in length, 200 up to 300 nucleotides in length, 100 to 200 nucleotides in length, or 150 up to 250 nucleotides in length. Each possibility represents a separate embodiment.
According to some embodiments of the present invention, the composition further comprises a tracrRNA molecule.
According to some embodiments of the present invention, there is provided a method for inactivating B2M expression in a cell, the method comprising delivering to the cell a composition comprising an RNA molecule comprising a guide sequence portion having 17-50 contiguous nucleotides containing nucleotides in the sequence set forth in any one of SEQ ID NOs: 1-1538 and a CRISPR nuclease.
According to some embodiments of the present invention, there is provided a method for preventing host-versus-graft rejection (HvG), the method comprising delivering to a cell of a subject a composition comprising an RNA molecule comprising a guide sequence portion having 17-50 contiguous nucleotides containing nucleotides in the sequence set forth in any one of SEQ ID NOs: 1-1538 and a CRISPR nuclease.
According to embodiments of the present invention, at least one CRISPR nuclease and the RNA molecule or RNA molecules are delivered to the subject and/or cells substantially at the same time or at different times.
In some embodiments, a tracrRNA molecule is delivered to the subject and/or cells substantially at the same time or at different times as the CRISPR nuclease and RNA molecule or RNA molecules.
The compositions and methods of the present disclosure may be utilized for treating, preventing, ameliorating, or slowing progression of host-versus-graft rejection (HvG).
Any one of, or combination of, the above-mentioned strategies for deactivating B2M expression may be used in the context of the invention.
In embodiments of the present invention, an RNA molecule is used to direct a CRISPR nuclease to an exon or a splice site of a B2M allele in order to create a double-stranded break (DSB), leading to insertion or deletion of nucleotides by inducing an error-prone non-homologous end-joining (NHEJ) mechanism and formation of a frameshift mutation in the B2M allele. The frameshift mutation may result in, for example, inactivation or knockout of the B2M allele by generation of an early stop codon in the B2M allele and to generation of a truncated protein or to nonsense-mediated mRNA decay of the transcript of the allele. In further embodiments, one RNA molecule is used to direct a CRISPR nuclease to a promotor of a B2M allele.
In some embodiments, the method is utilized for treating a subject at risk for host-versus-graft rejection (HvG), which are disease phenotypes resulting from expression of the B2M gene. In such embodiments, the method results in improvement, amelioration, or prevention of the disease phenotype.
Embodiments of compositions described herein include at least one CRISPR nuclease, RNA molecule(s), and a tracrRNA molecule, being effective in a subject or cells at the same time. The at least one CRISPR nuclease, RNA molecule(s), and tracrRNA may be delivered substantially at the same time or can be delivered at different times but have effect at the same time. For example, this includes delivering the CRISPR nuclease to the subject or cells before the RNA molecule and/or tracrRNA is substantially extant in the subject or cells.
In some embodiments, the cell is a lymphocyte. In some embodiments, the cell is a T cell. In some embodiments, the cell is a T regulatory cell. In some embodiments, the cell is a B cell. In some embodiments, the cell is a natural killer (NK) cell. In some embodiments, the cell is a macrophage. In some embodiments, the cell is a stem cell. In some embodiments, the cell is a fibroblast, blood cell, hepatocyte, keratinocyte, or any other cell type capable of being reprogrammed to an induced pluripotent stem cell (iPSC).
The present invention provides methods to knockout B2M alleles in cells of a subject, thereby avoiding host-versus-graft rejection (HvG) upon adoptive transfer of the cells or cells derived therefrom to a subject in need of the adoptive transfer. The provided methods to knockout B2M alleles in a cell may be used to treat, prevent, or ameliorate host-versus-graft rejection (HvG).
B2M editing strategies include, but are not limited to, biallelic knockout by targeting any one of, or a combination of, Exons 1-3, including within seven nucleotides upstream and downstream of the exons to flank splice donor and acceptor sites, as frameshifts in these exons lead to non-functional, truncated B2M proteins or non-sense mediated decay of the mutated B2M transcripts.
In some embodiments, the sequence specific nuclease is selected from CRISPR nucleases, or is a functional variant thereof. In some embodiments, the sequence specific nuclease is an RNA guided DNA nuclease. In such embodiments, the RNA sequence which guides the RNA guided DNA nuclease (e.g., Cpf1) binds to and/or directs the RNA guided DNA nuclease to all B2M alleles in a cell. In some embodiments, the CRISPR complex does not further comprise a tracrRNA. A skilled artisan will appreciate that RNA molecules can be engineered to bind to a target of choice in a genome by commonly known methods in the art.
The term “PAM” as used herein refers to a nucleotide sequence of a target DNA located in proximity to the targeted DNA sequence and recognized by the CRISPR nuclease complex. The PAM sequence may differ depending on the nuclease identity. In addition, there are CRISPR nucleases that can target almost all PAMs. In some embodiments of the present invention, a CRISPR system utilizes one or more RNA molecules having a guide sequence portion to direct a CRISPR nuclease to a target DNA site via Watson-Crick base-pairing between the guide sequence portion and the protospacer on the target DNA site, which is next to the protospacer adjacent motif (PAM), which is an additional requirement for target recognition. The CRISPR nuclease then mediates cleavage of the target DNA site to create a double-stranded break within the protospacer. In a non-limiting example, a type II CRISPR system utilizes a mature crRNA:tracrRNA complex that directs the CRISPR nuclease, e.g. Cas9 to the target DNA the target DNA via Watson-Crick base-pairing between the guide sequence portion of the crRNA and the protospacer on the target DNA next to the protospacer adjacent motif (PAM). A skilled artisan will appreciate that each of the engineered RNA molecule of the present invention is further designed such as to associate with a target genomic DNA sequence of interest next to a protospacer adjacent motif (PAM), e.g., a PAM matching the sequence relevant for the type of CRISPR nuclease utilized, such as for a non-limiting example, NGG or NAG, wherein “N” is any nucleobase, for Streptococcus pyogenes Cas9 WT (SpCAS9); NNGRRT for Staphylococcus aureus (SaCas9); NNNVRYM for Jejuni Cas9 WT; NGAN or NGNG for SpCas9-VQR variant; NGCG for SpCas9-VRER variant; NGAG for SpCas9-EQR variant; NRRH for SpCas9-NRRH variant, wherein N is any nucleobase, R is A or G and H is A, C, or T; NRTH for SpCas9-NRTH variant, wherein N is any nucleobase, R is A or G and H is A, C, or T; NRCH for SpCas9-NRCH variant, wherein N is any nucleobase, R is A or G and H is A, C, or T; NG for SpG variant of SpCas9 wherein N is any nucleobase; NG or NA for SpCas9-NG variant of SpCas9 wherein N is any nucleobase; NR or NRN or NYN for SpRY variant of SpCas9, wherein N is any nucleobase, R is A or G and Y is C or T; NNG for Streptococcus canis Cas9 variant (ScCas9), wherein N is any nucleobase; NNNRRT for SaKKH-Cas9 variant of Staphylococcus aureus (SaCas9), wherein N is any nucleobase, and R is A or G; NNNNGATT for Neisseria meningitidis (NmCas9), wherein N is any nucleobase; TTN for Alicyclobacillus acidiphilus Cas12b (AacCas12b), wherein N is any nucleobase; or TTTV for Cpf1, wherein V is A, C or G. RNA molecules of the present invention are each designed to form complexes in conjunction with one or more different CRISPR nucleases and designed to target polynucleotide sequences of interest utilizing one or more different PAM sequences respective to the CRISPR nuclease utilized.
In some embodiments, an RNA-guided DNA nuclease e.g., a CRISPR nuclease, may be used to cause a DNA break, either double or single-stranded in nature, at a desired location in the genome of a cell. The most commonly used RNA-guided DNA nucleases are derived from CRISPR systems, however, other RNA-guided DNA nucleases are also contemplated for use in the genome editing compositions and methods described herein. For instance, see U.S. Patent Publication No. 2015/0211023, incorporated herein by reference.
CRISPR systems that may be used in the practice of the invention vary greatly. CRISPR systems can be a type I, a type II, or a type III system. Non-limiting examples of suitable CRISPR proteins include Cas3, Cas4, Cas5, Cas5e (or CasD), Cas6, Cas6e, Cas6f, Cas7, Cas8al, Cas8a2, Cas8b, Cas8c, Cas9, Casl 0, Cas1 Od, CasF, CasG, CasH, Csy1, Csy2, Csy3, Cse1 (or CasA), Cse2 (or CasB), Cse3 (or CasE), Cse4 (or CasC), Csc1, Csc2, Csa5, Csn2, Csm2, Csm3, Csm4, Csm5, Csm6, Cmr1, Cmr3, Cmr4, Cmr5, Cmr6, Csb1, Csb2, Csb3, Csx17, Csx14, Csx10, Csx16, CsaX, Csx3, Csz1, Csx15, Csf1, Csf2, Csf3, Csf4, and Cul966.
In some embodiments, the RNA-guided DNA nuclease is a CRISPR nuclease derived from a type II CRISPR system (e.g., Cas9). The CRISPR nuclease may be derived from Streptococcus pyogenes, Streptococcus thermophilus, Streptococcus sp., Staphylococcus aureus, Neisseria meningitidis, Treponema denticola, Nocardiopsis dassonvillei, Streptomyces pristinaespiralis, Streptomyces viridochromogenes, Streptomyces viridochromogenes, Streptosporangium roseum, Streptosporangium roseum, Alicyclobacillus acidocaldarius, Bacillus pseudomycoides, Bacillus selenitireducens, Exiguobacterium sibiricum, Lactobacillus delbrueckii, Lactobacillus salivarius, Microscilla marina, Burkholderiales bacterium, Polaromonas naphthalenivorans, Polaromonas sp., Crocosphaera watsonii, Cyanothece sp., Microcystis aeruginosa, Synechococcus sp., Acetohalobium arabaticum, Ammonifex degensii, Caldicelulosiruptor becscii, Candidatus Desulforudis, Clostridium botulinum, Clostridium Finegoldia magna, Natranaerobius thermophilus, Pelotomaculumthermopropionicum, Acidithiobacillus caldus, Acidithiobacillus ferrooxidans, Allochromatium vinosum, Marinobacter sp., Nitrosococcus halophilus, Nitrosococcus watsoni, Pseudoalteromonas haloplanktis, Ktedonobacter racemifer, Methanohalobium evestigatum, Anabaena variabilis, Nodularia spumigena, Nostoc sp., Arthrospira maxima, Arthrospira platensis, Arthrospira sp., Lyngbya sp., Microcoleus chthonoplastes, Oscillatoria sp., Petrotoga mobilis, Thermosipho africanus, Acaryochloris marina, or any species which encodes a CRISPR nuclease with a known PAM sequence. CRISPR nucleases encoded by uncultured bacteria may also be used in the context of the invention. (See Burstein et al. Nature, 2017). Variants of CRIPSR proteins having known PAM sequences e.g., SpCas9 D1135E variant, SpCas9 VQR variant, SpCas9 EQR variant, or SpCas9 VRER variant may also be used in the context of the invention.
Thus, an RNA guided DNA nuclease of a CRISPR system, such as a Cas9 protein or modified Cas9 or homolog or ortholog of Cas9, or other RNA guided DNA nucleases belonging to other types of CRISPR systems, such as Cpf1 and its homologs and orthologs, may be used in the compositions of the present invention. Additional CRISPR nucleases may also be used, for example, the nucleases described in PCT International Application Publication Nos. WO2020/223514 and WO2020/223553, which are hereby incorporated by reference.
In certain embodiments, the CRIPSR nuclease may be a “functional derivative” of a naturally occurring Cas protein. A “functional derivative” of a native sequence polypeptide is a compound having a qualitative biological property in common with a native sequence polypeptide. “Functional derivatives” include, but are not limited to, fragments of a native sequence and derivatives of a native sequence polypeptide and its fragments, provided that they have a biological activity in common with a corresponding native sequence polypeptide. A biological activity contemplated herein is the ability of the functional derivative to hydrolyze a DNA substrate into fragments. The term “derivative” encompasses both amino acid sequence variants of polypeptide, covalent modifications, and fusions thereof. Suitable derivatives of a Cas polypeptide or a fragment thereof include but are not limited to mutants, fusions, covalent modifications of Cas protein or a fragment thereof. Derivatives include, but are not limited to, CRISPR nickases, catalytically inactive or “dead” CRISPR nucleases, and fusion of a CRISPR nuclease or derivative thereof to other enzymes such as base editors or retrotransposons. See for example, Anzalone et al. (2019) and PCT International Application No. PCT/US2020/037560.
Cas protein, which includes Cas protein or a fragment thereof, as well as derivatives of Cas protein or a fragment thereof, may be obtainable from a cell or synthesized chemically or by a combination of these two procedures. The cell may be a cell that naturally produces Cas protein, or a cell that naturally produces Cas protein and is genetically engineered to produce the endogenous Cas protein at a higher expression level or to produce a Cas protein from an exogenously introduced nucleic acid, which nucleic acid encodes a Cas that is same or different from the endogenous Cas. In some cases, the cell does not naturally produce Cas protein and is genetically engineered to produce a Cas protein.
In some embodiments, the CRISPR nuclease is Cpf1. Cpf1 is a single RNA-guided endonuclease which utilizes a T-rich protospacer-adjacent motif. Cpf1 cleaves DNA via a staggered DNA double-stranded break. Two Cpf1 enzymes from Acidaminococcus and Lachnospiraceae have been shown to carry out efficient genome-editing activity in human cells. (See Zetsche et al., 2015).
Thus, an RNA guided DNA nuclease of a Type II CRISPR System, such as a Cas9 protein or modified Cas9 or homologs, orthologues, or variants of Cas9, or other RNA guided DNA nucleases belonging to other types of CRISPR systems, such as Cpf1 and its homologs, orthologues, or variants, may be used in the present invention.
In some embodiments, the guide molecule comprises one or more chemical modifications which imparts a new or improved property (e.g., improved stability from degradation, improved hybridization energetics, or improved binding properties with an RNA guided DNA nuclease). Suitable chemical modifications include, but are not limited to: modified bases, modified sugar moieties, or modified inter-nucleoside linkages. Non-limiting examples of suitable chemical modifications include: 4-acetylcytidine, 5-(carboxyhydroxymethyl)uridine, 2′-O-methylcytidine, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluridine, dihydrouridine, 2′-O-methylpseudouridine, “beta, D-galactosylqueosine”, 2′-O-methylguanosine, inosine, N6-isopentenyladenosine, 1-methyladenosine, 1-methylpseudouridine, 1-methylguanosine, 1-methylinosine, “2,2-dimethylguanosine”, 2-methyladenosine, 2-methylguanosine, 3-methylcytidine, 5-methylcytidine, N6-methyladenosine, 7-methylguanosine, 5-methylaminomethyluridine, 5-methoxyaminomethyl-2-thiouridine, “beta, D-mannosylqueosine”, 5-methoxycarbonylmethyl-2-thiouridine, 5-methoxycarbonylmethyluridine, 5-methoxyuridine, 2-methylthio-N6-isopentenyladenosine, N-((9-beta-D-ribofuranosyl-2-methylthiopurine-6-yl)carbamoyl)threonine, N-((9-beta-D-ribofuranosylpurine-6-yl)N-methylcarbamoyl)threonine, uridine-5-oxyacetic acid-methylester, uridine-5-oxyacetic acid, wybutoxosine, queuosine, 2-thiocytidine, 5-methyl-2-thiouridine, 2-thiouridine, 4-thiouridine, 5-methyluridine, N-((9-beta-D-ribofuranosylpurine-6-yl)-carbamoyl)threonine, 2′-O-methyl-5-methyluridine, 2′-O-methyluridine, wybutosine, “3-(3-amino-3-carboxy-propyl)uridine, (acp3)u”, 2′-O-methyl (M), 3′-phosphorothioate (MS), 3′-thioPACE (MSP), pseudouridine, or 1-methyl pseudo-uridine. Each possibility represents a separate embodiment of the present invention.
In addition to targeting B2M alleles by a RNA-guided CRISPR nuclease, other means of inhibiting B2M expression in a target cell include but are not limited to use of a gapmer, shRNA, siRNA, a customized TALEN, meganuclease, or zinc finger nuclease, a small molecule inhibitor, and any other method known in the art for reducing or eliminating expression of a gene in a target cell. See, for example, U.S. Pat. Nos. 6,506,559; 7,560,438; 8,420,391; 8,552,171; 7,056,704; 7,078,196; 8,362,231; 8,372,968; 9,045,754; and PCT International Publication Nos. WO/2004/067736; WO/2006/097853; WO/2003/087341; WO/2000/0415661; WO/2003/080809; WO/2010/079430; WO/2010/079430; WO/2011/072246; WO/2018/057989; and WO/2017/164230, the entire contents of each of which are incorporated herein by reference.
Advantageously, the guide RNA molecules presented herein provide improved B2M knockout efficiency when complexed with a CRISPR nuclease in a cell relative to other guide RNA molecules. These specifically designed sequences may also be useful for identifying B2M target sites for other nucleotide targeting-based gene-editing or gene-silencing methods, for example, siRNA, TALENs, meganucleases or zinc-finger nucleases.
Any one of the compositions described herein may be delivered to a target cell by any suitable means. RNA molecule compositions of the present invention may be targeted to any cell which contains and/or expresses a B2M allele, such as a mammalian lymphocyte or stem cell. For example, in one embodiment the RNA molecule specifically targets B2M alleles in a target cell and the target cell is a lymphocyte, a T cell, a T regulatory cell, a B cell, a natural killer (NK) cell, a macrophage, a stem cell, or a fibroblast, blood cell, hepatocyte, keratinocyte, or any other cell type capable of being reprogrammed to an induced pluripotent stem cell (iPSC). The delivery to the cell may be performed in vivo, ex vivo, or in vitro. Further, the nucleic acid compositions described herein may be delivered to a cell as one or more of DNA molecules, RNA molecules, ribonucleoproteins (RNP), nucleic acid vectors, or any combination thereof.
In some embodiments, the RNA molecule comprises a chemical modification. Non-limiting examples of suitable chemical modifications include 2′-O-methyl (M). 2′-O-methyl, 3′phosphorothioate (MS) or 2′-O-methyl, 3′thioPACE (MSP), pseudouridine, and 1-methyl pseudo-uridine. Each possibility represents a separate embodiment of the present invention.
Any suitable viral vector system may be used to deliver nucleic acid compositions e.g., the RNA molecule compositions of the subject invention. Conventional viral and non-viral based gene transfer methods can be used to introduce nucleic acids and target tissues. In certain embodiments, nucleic acids are administered for in vivo or ex vivo gene therapy uses. Non-viral vector delivery systems include naked nucleic acid, and nucleic acid complexed with a delivery vehicle such as a liposome or poloxamer. For a review of gene therapy procedures, see Anderson (1992); Nabel & Felgner (1993); Mitani & Caskey (1993); Dillon (1993); Miller (1992); Van Brunt (1988); Vigne (1995); Kremer & Perricaudet (1995); Haddada et al. (1995); and Yu et al. (1994).
Methods of non-viral delivery of nucleic acids and/or proteins include electroporation, lipofection, microinjection, biolistics, particle gun acceleration, virosomes, liposomes, immunoliposomes, lipid nanoparticles (LNPs), polycation or lipid:nucleic acid conjugates, artificial virions, and agent-enhanced uptake of nucleic acids or can be delivered to plant cells by bacteria or viruses (e.g., Agrobacterium, Rhizobium sp. NGR234, Sinorhizoboiummeliloti, Mesorhizobium loti, tobacco mosaic virus, potato virus X, cauliflower mosaic virus and cassava vein mosaic virus). (See, e.g., Chung et al., 2006). Sonoporation using, e.g., the Sonitron 2000 system (Rich-Mar), can also be used for delivery of nucleic acids. Cationic-lipid mediated delivery of proteins and/or nucleic acids is also contemplated as an in vivo, ex vivo, or in vitro delivery method. (See Zuris et al. (2015); see also Coelho et al. (2013); Judge et al. (2006); and Basha et al. (2011)).
Non-viral vectors, such as transposon-based systems e.g. recombinant Sleeping Beauty transposon systems or recombinant PiggyBac transposon systems, may also be delivered to a target cell and utilized for transposition of a polynucleotide sequence of a molecule of the composition or a polynucleotide sequence encoding a molecule of the composition in the target cell.
Additional exemplary nucleic acid delivery systems include those provided by Amaxa® Biosystems (Cologne, Germany), Maxcyte, Inc. (Rockville, Md.), BTX Molecular Delivery Systems (Holliston, Mass.) and Copernicus Therapeutics Inc., (see, e.g., U.S. Pat. No. 6,008,336). Lipofection is described in e.g., U.S. Pat. Nos. 5,049,386, 4,946,787; and 4,897,355, and lipofection reagents are sold commercially (e.g., Transfectam™, Lipofectin™ and Lipofectamine™ RNAiMAX). Cationic and neutral lipids that are suitable for efficient receptor-recognition lipofection of polynucleotides include those disclosed in PCT International Publication Nos. WO/1991/017424 and WO/1991/016024. Delivery can be to cells (ex vivo administration) or target tissues (in vivo administration).
The preparation of lipid:nucleic acid complexes, including targeted liposomes such as immunolipid complexes, is well known to one of skill in the art (see, e.g., Crystal, Science (1995); Blaese et al., (1995); Behr et al., (1994); Remy et al. (1994); Gao and Huang (1995); Ahmad and Allen (1992); U.S. Pat. Nos. 4,186,183; 4,217,344; 4,235,871; 4,261,975; 4,485,054; 4,501,728; 4,774,085; 4,837,028; and 4,946,787).
Additional methods of delivery include the use of packaging the nucleic acids to be delivered into EnGeneIC delivery vehicles (EDVs). These EDVs are specifically delivered to target tissues using bispecific antibodies where one arm of the antibody has specificity for the target tissue and the other has specificity for the EDV. The antibody brings the EDVs to the target cell surface and then the EDV is brought into the cell by endocytosis. Once in the cell, the contents are released (See MacDiarmid et al., 2009).
The use of RNA or DNA viral based systems for viral mediated delivery of nucleic acids take advantage of highly evolved processes for targeting a virus to specific cells in the body and trafficking the viral payload to the nucleus. Viral vectors can be administered directly to patients (in vivo) or they can be used to treat cells in vitro and the modified cells are administered to patients (ex vivo). Conventional viral based systems for the delivery of nucleic acids include, but are not limited to, retroviral, lentivirus, adenoviral, adeno-associated, vaccinia and herpes simplex virus vectors for gene transfer.
The tropism of a retrovirus can be altered by incorporating foreign envelope proteins, expanding the potential target population of target cells. Lentiviral vectors are retroviral vectors that are able to transduce or infect non-dividing cells and typically produce high viral titers. Selection of a retroviral gene transfer system depends on the target tissue. Retroviral vectors are comprised of cis-acting long terminal repeats with packaging capacity for up to 6-10 kb of foreign sequence. The minimum cis-acting LTRs are sufficient for replication and packaging of the vectors, which are then used to integrate the therapeutic gene into the target cell to provide permanent transgene expression. Widely used retroviral vectors include those based upon murine leukemia virus (MuLV), gibbon ape leukemia virus (GaLV), Simian Immunodeficiency virus (SIV), human immunodeficiency virus (HIV), and combinations thereof (See, e.g., Buchschacher et al. (1992); Johann et al. (1992); Sommerfelt et al. (1990); Wilson et al. (1989); Miller et al. (1991); PCT International Publication No. WO/1994/026877A1).
At least six viral vector approaches are currently available for gene transfer in clinical trials, which utilize approaches that involve complementation of defective vectors by genes inserted into helper cell lines to generate the transducing agent.
pLASN and MFG-S are examples of retroviral vectors that have been used in clinical trials (See Dunbar et al., 1995; Kohn et al., 1995; Malech et al., 1997). PA317/pLASN was the first therapeutic vector used in a gene therapy trial (Blaese et al., 1995). Transduction efficiencies of 50% or greater have been observed for MFG-S packaged vectors. (Ellem et al., (1997); Dranoff et al., 1997).
Packaging cells are used to form virus particles that are capable of infecting a host cell. Such cells include 293 cells, which package adenovirus, AAV, and Psi-2 cells or PA317 cells, which package retrovirus. Viral vectors used in gene therapy are usually generated by a producer cell line that packages a nucleic acid vector into a viral particle. The vectors typically contain the minimal viral sequences required for packaging and subsequent integration into a host (if applicable), other viral sequences being replaced by an expression cassette encoding the protein to be expressed. The missing viral functions are supplied in trans by the packaging cell line. For example, AAV vectors used in gene therapy typically only possess inverted terminal repeat (ITR) sequences from the AAV genome which are required for packaging and integration into the host genome. Viral DNA is packaged in a cell line, which contains a helper plasmid encoding the other AAV genes, namely rep and cap, but lacking ITR sequences. The cell line is also infected with adenovirus as a helper. The helper virus promotes replication of the AAV vector and expression of AAV genes from the helper plasmid. The helper plasmid is not packaged in significant amounts due to a lack of ITR sequences. Contamination with adenovirus can be reduced by, e.g., heat treatment to which adenovirus is more sensitive than AAV. Additionally, AAV can be produced at clinical scale using baculovirus systems (see U.S. Pat. No. 7,479,554).
In many gene therapy applications, it is desirable that the gene therapy vector be delivered with a high degree of specificity to a particular tissue type. Accordingly, a viral vector can be modified to have specificity for a given cell type by expressing a ligand as a fusion protein with a viral coat protein on the outer surface of the virus. The ligand is chosen to have affinity for a receptor known to be present on the cell type of interest. For example, Han et al. (1995) reported that Moloney murine leukemia virus can be modified to express human heregulin fused to gp70, and the recombinant virus infects certain human breast cancer cells expressing human epidermal growth factor receptor. This principle can be extended to other virus-target cell pairs, in which the target cell expresses a receptor and the virus expresses a fusion protein comprising a ligand for the cell-surface receptor. For example, filamentous phage can be engineered to display antibody fragments (e.g., FAB or Fv) having specific binding affinity for virtually any chosen cellular receptor. Although the above description applies primarily to viral vectors, the same principles can be applied to nonviral vectors. Such vectors can be engineered to contain specific uptake sequences which favor uptake by specific target cells.
Gene therapy vectors can be delivered in vivo by administration to an individual patient, for example by systemic administration (e.g., intravitreal, intravenous, intraperitoneal, intramuscular, subdermal, or intracranial infusion) or topical application.
Alternatively, vectors can be delivered to cells ex vivo, such as cells explanted from an individual patient (e.g., lymphocytes, bone marrow aspirates, tissue biopsy) or universal donor hematopoietic stem cells, followed by reimplantation of the cells into a patient, optionally after selection for cells which have incorporated the vector. A non-limiting exemplary ex vivo approach may involve removal of tissue (e.g., peripheral blood, bone marrow, and spleen) from a patient for culture, nucleic acid transfer to the cultured cells (e.g., hematopoietic stem cells), followed by grafting the cells to a target tissue (e.g., bone marrow, and spleen) of the patient. In some embodiments, the stem cell or hematopoietic stem cell may be further treated with a viability enhancer.
Ex vivo cell transfection for diagnostics, research, or for gene therapy (e.g., via re-infusion of the transfected cells into the host organism) is well known to those of skill in the art. In a preferred embodiment, cells are isolated from the subject organism, transfected with a nucleic acid composition, and re-infused back into the subject organism (e.g., patient). Various cell types suitable for ex vivo transfection are well known to those of skill in the art (See, e.g., Freshney, “Culture of Animal Cells, A Manual of Basic Technique and Specialized Applications (6th edition, 2010) and the references cited therein for a discussion of how to isolate and culture cells from patients).
Vectors (e.g., retroviruses, liposomes, etc.) containing therapeutic nucleic acid compositions can also be administered directly to an organism for transduction of cells in vivo. Administration is by any of the routes normally used for introducing a molecule into ultimate contact with blood or tissue cells including, but not limited to, injection, infusion, topical application (e.g., eye drops and cream) and electroporation. Suitable methods of administering such nucleic acids are available and well known to those of skill in the art, and, although more than one route can be used to administer a particular composition, a particular route can often provide a more immediate and more effective reaction than another route. According to some embodiments, the composition is delivered via IV injection.
Vectors suitable for introduction of transgenes into immune cells (e.g., T-cells) include non-integrating lentivirus vectors. See, e.g., U.S. Patent Publication No. 2009/0117617.
Pharmaceutically acceptable carriers are determined in part by the particular composition being administered, as well as by the particular method used to administer the composition. Accordingly, there is a wide variety of suitable formulations of pharmaceutical compositions available, as described below (See, e.g., Remington's Pharmaceutical Sciences, 17th ed., 1989).
Examples of RNA Guide Sequences which Specifically Target Alleles of B2M Gene
Although a large number of guide sequences can be designed to target the B2M gene, the nucleotide sequences described in Table 1 and are identified by SEQ ID NOs: 1-1538 were specifically selected to effectively implement the methods set forth herein.
Table 1 shows guide sequences designed for use as described in the embodiments above to associate with target sequences of the B2M gene. Each engineered guide molecule is further designed such as to associate with a target genomic DNA sequence of interest that lies next to a protospacer adjacent motif (PAM), e.g., a PAM matching the sequence NGG or NAG, where “N” is any nucleobase. The guide sequences were designed to work in conjunction with one or more different CRISPR nucleases, including, but not limited to, e.g. SpCas9WT (PAM SEQ: NGG), SpCas9.VQR.1 (PAM SEQ: NGAN), SpCas9.VQR.2 (PAM SEQ: NGNG), SpCas9.EQR (PAM SEQ: NGAG), SpCas9.VRER (PAM SEQ: NGCG), SaCas9WT (PAM SEQ: NNGRRT), SpRY (PAM SEQ: NRN or NYN), NmCas9WT (PAM SEQ: NNNNGATT), Cpf1 (PAM SEQ: TTTV), or JeCas9WT (PAM SEQ: NNNVRYM). RNA molecules of the present invention are each designed to form complexes in conjunction with one or more different CRISPR nucleases and designed to target polynucleotide sequences of interest utilizing one or more different PAM sequences respective to the CRISPR nuclease utilized.
As used herein, the following nucleotide identifiers are used to represent a referenced nucleotide base(s):
Examples are provided below to facilitate a more complete understanding of the invention. The following examples illustrate the exemplary modes of making and practicing the invention. However, the scope of the invention is not limited to specific embodiments disclosed in these Examples, which are for purposes of illustration only.
Guide sequences comprising 17-50 contiguous nucleotides containing nucleotides in the sequence set forth in any one of SEQ ID NOs: 1-1538 are screened for high on target activity using SpCas9 in T cells. On target activity is determined by DNA capillary electrophoresis analysis.
Additional examples demonstrating the editing ability of B2M specific RNA guides are described below and may also be found in PCT International Publication No. WO 2020/223514 A2, the contents of which are hereby incorporated by reference.
B2M Editing by an OMNI-50 Nuclease was Observed in Primary T Cells, as can be seen in Table 2. 57% of the B2M guides were active, with editing levels ranging between 5% and 61%. Considering the potential further optimization, full knock-out B2M by OMNI-50 is possible with the appropriate strategy.
B2M and TRAC genes may be knocked out simultaneously by using a multiplexing approach. B2M and TRAC multiplex editing was tested by mixing two RNP populations and electroporating the mix into primary T cells. gRNA 32 was used for TRAC targeting and gRNA 15 was used for B2M targeting (spacer sequences are listed in Table 3). At 72 h cells were harvested and tested for editing by NGS. The TRAC gene measured 50% editing, and the B2M gene measured 25% editing. These results were similar to editing levels with a single RNP that was performed side-by-side to the multiplex test (Table 3).
The B2M gene encodes a protein found in association with the major histocompatibility complex (MHC) class I heavy chain on the surface of nearly all nucleated cells. In HeLa cells, the CRIPSR nucleases listed in Table 4 were screened by introducing a nuclease and guide RNA molecule (Table 5) to a cell. Briefly, a screen was performed in 96-well format with 64 ng nuclease co-transfected with each of the guides at 20 ng using JetOPTIMUS reagent (Polyplus). Cells were harvested 72 hours post DNA transfection. Cell lysis and genomic DNA extraction was performed using Quick Extract (Lucigen) and endogenous genomic regions were amplified using specific primers to measure editing activity by next-generation sequencing (NGS). The screen identified six (6) active novel nucleases. Editing was observed in nine (9) sites along the B2M gene (
OMNI-103 CRISPR nuclease was further screened in HeLa cells for additional sites along the B2M gene. To this end, the corresponding OMNI-P2A-mCherry expression vector (Table 6) was transfected into HeLa cells together with a sgRNA molecule designed to target specific location in the B2M gene (gRNA or “spacer” sequences are listed in Table 5). At 72 h, cells were harvested, and half of the cells were used for quantification of transfection efficiency by FACS using mCherry fluorescence as marker. The other half of the cells were lysed, and their genomic DNA content was used in PCR reaction that amplified the corresponding putative genomic targets. Amplicons were subjected to NGS and the resulting sequences were then used to calculate the percentage of editing events in each target site. Short insertions or deletions (indels) around the cut site are the typical outcome of repair of DNA ends following nuclease induced DNA cleavage. The calculation of % editing was therefore deduced from the fraction of indel-containing sequences within each amplicon. Significant editing activity was observed in six (6) sites along the B2M gene (
OMNI-103 was further developed for use as part of an RNP and tested in a U2OS cell line complexed with a synthetic gRNA comprising a guide sequence portion targeting site 12 (S12), which showed high editing in the HeLa DNA screen. Briefly, 2×10 5 U2OS cells were mixed with preassembled RNPs composed of 105 pmole OMNI-103 protein and 120 pmole of a sgRNA comprising a 22-nucleotide guide sequence portion mixed with 100 pmole of electroporation enhancer (IDT-1075916). The mixture was electroporated into the cells using SE cell 4D-nucleofector X Kit S (V4XP-3032, Lonza) by applying the DN-100 program. OMNI-103 with no gRNA molecule served as a negative control. A fraction of cells were harvested 72 h post electroporation and genomic DNA was extracted to measure on-target activity by NGS. According to NGS analysis, in this assay indel formation was above 90% as well (
OMNI-103 was further tested as part of an RNP for B2M editing in primary T cells using the same gRNA molecules showing editing activity in the U2OS cell system. Briefly, primary T cells were isolated from blood donations (Israel blood bank) using the buffy coat method for PBMC isolation, followed by negative isolation of CD3+ cells (T cell isolation kit, 130-096-535 Miltenyi). Primary T cells were then activated by CD3 and CD28 beads (T cell activation/expansion kit, 130-091-441 Miltenyi). 2×105 primary T cells were mixed with preassembled RNPs composed of 113 pmole OMNI-103 protein and 160 pmole of a sgRNA having a 22-nucleotide guides sequence portion, and electroporated using P3 cell 4D-nucleofector X Kit S (V4XP-3032, Lonza) by applying the EH-115 program. A fraction of the cells were harvested 72 h post electroporation and B2M surface expression was measured by flow cytometry (anti-B2M APC, 1:100, #316312 Biolegend). According to FACS analysis, editing activity measured 68% (
Aim: Calibrate electroporation in primary NK with OMNI-103 and B2M-S12.
Procedure: Cells were isolated from an apheresis sample. Cells were accepted with feeders and NK percentage was measured to be >82%. There were 5×105 cells per well and the electroporation program was tested with OMNI-103 (113 μmol) tag free (Phenyl) sd60082 and an sgRNA comprising a B2M-S12 guide sequence portion (Agilent). After 72 hours half the number of cells were measured using FACS. The gating strategy was as follows: lymphocytes were gated on singlets and then on live cells (DAPI stain). From the live cells, the CD56 positive cells (˜95%) were gated first, followed by the B2M negative cells.
This application claims the benefit of U.S. Provisional Application No. 63/125,214, filed Dec. 14, 2020, the content of which are hereby incorporated by reference.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/US2021/063302 | 12/14/2021 | WO |
Number | Date | Country | |
---|---|---|---|
63125214 | Dec 2020 | US |