The invention of stent assemblies configured for assembling in bifurcating vessels is herein described, by way of example only, with reference to the accompanying drawings.
With specific reference now to the drawings in detail, it is stressed that the particulars shown are by way of example and for purposes of illustrative discussion of the preferred embodiments of the present invention only, and are presented in the cause of providing what is believed to be the most useful and readily understood description of the principles and conceptual aspects of the invention. In this regard, no attempt is made to show structural details of the invention in more detail than is necessary for a fundamental understanding of the invention, the description taken with the drawings making apparent to those skilled in the art how the several forms of the invention may be embodied in practice.
In the drawings:
a-1d show deployment of prior art stents in bifurcating vessels;
a-2e show stents and stent jackets being deployed in cross sections of bifurcating vessels, according to embodiments of the invention; and
a-8d show alternative embodiments of the stents and stent jackets of
The present invention, which relates to stent assemblies configured for assembling in bifurcating vessels, is herein described, by way of example only, with reference to the accompanying drawings. The principles and operation of the present invention may be better understood with reference to the drawings and accompanying descriptions.
Before explaining at least one embodiment of the invention in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of the components set forth in the following description or illustrated in the drawings. The invention is capable of other embodiments or of being practiced or carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein is for the purpose of description and should not be regarded as limiting.
Referring now to the drawings:
In
b-1d show the crush method, noted above, for treating a bifurcation. As seen in
As seen in
Deployed stent assembly 100 crushes stenotic tissue 240 in lumens 151, 129 and 125, thereby allowing better circulation through arteries 127. However, as noted above and seen in
Referring to
In alternative embodiments proximal stent 202 and distal stent 208 are configured and appropriately sized as cardiovascular stents, peripheral stents, abdominal aortic aneurysm stents, cerebral stents, carotid stents, endovascular stents, aortic valve stents, and pulmonary valve stents.
As seen in
Optionally, balloon 260 is inflated in a manner that crushes stent jacket 204 to aid in opening in lumens 151, 129 and 125 and to avoid jailing of upper branch lumen 151 by stent jacket 204.
As seen in
As seen in
In addition to the support provided by stents 202, 206 and 208, stent jacket 204 spanning therebetween, supports stenotic tissue 240 at the bifurcation of upper branch lumen 151. Using stent jacket 204 as a support along the bifurcation of upper branch lumen 151 results in low bifurcation-related bulk that could cause restenosis and/or thrombosis noted above.
In alternative embodiments, balloon 260 (
In embodiments, stents 202, 206 and 208 comprise any metallic base including, inter alia: stainless steel, nitinol, tantalum, MP35N alloy, a cobalt-based alloy, a cobalt-chromium alloy, platinum, titanium, or other biocompatible metal alloys.
In further embodiments, stents 202, 206 and 208 are deployed in any vessel comprising, inter alia: cardiovascular tissue, peripheral tissue, an abdominal aortic aneurysm, cerebral tissue, carotid tissue, endovascular tissue, aortic valves, and/or pulmonary tissue.
In still further embodiments, stent jacket 204 comprises any material manufactured by a process including, inter alia: interlacing knitting, interlocked knitting, braiding, interlacing, and/or dipping a porous mold into one or more reagents.
As used herein, any reference to a “knitted material” includes any material that is manufactured by a knitting process, including, inter alia: a material knitted from a single fiber, similar to the process used in pantyhose nylon; a double fiber knit, referred to as a “double knit material”; and includes fibers, either mono filament or multi filament fiber of, inter alia: polyethylene, polyvinyl chloride, polyurethane, nylon, a biocompatible polymer fiber, and stainless steal nitinol, or any other metal.
In embodiments, proximal stent 202, distal stent 208 and branch stent 206 comprise a metallic base from the group consisting of: stainless steel, nitinol, tantalum, MP35N alloy, a cobalt-based alloy, a cobalt-chromium alloy, platinum, titanium, or other biocompatible metal alloys.
In embodiments, proximal stent 202, distal stent 208 and branch stent 206 are manufactured with sufficient diameters to press at least a portion of the inner walls of artery 127 with a pressure of at least one atmosphere and no more than about 50 atmospheres. In embodiments, proximal stent 202, distal stent 208 and branch stent 206 are manufactured with sufficient diameters to press at least a portion of the inner walls of artery 127 with a pressure of about 15 atmospheres.
a shows a stent system 300 in which proximal stent 202 has been deployed in proximal lumen 129, and branch stent 206 has been deployed in upper branch lumen 151, while stent jacket 204 spans across distal lumen 125. Typically, upper branch lumen 151 has a smaller diameter than proximal lumen 129 and first balloon (not shown) having a smaller expanded diameter is used to expand branch stent 206.
As seen in
As seen in
Referring to
Dual branch stent assembly 400 has been positioned so that distal stent 208, upon expansion with a balloon (not shown), opens distal lumen 125. Proximal stent 202 is then expanded with balloon 260 to open proximal lumen 129.
As seen in
As seen in
As seen in
Referring to
In
In
Balloon 260 is then fully expanded to cause upper branch stent 206 to fully expand. As seen in
Referring to
In
Balloon 260 is then deflated and pulled percutaneously in proximal direction 514 and removed from arteries 127.
Referring to
In embodiments, as seen in
As seen in
Referring to
As balloon 260 continues to expand, folds in billowing wall 812 are compressing to adhere to each other and compressed against artery 127. In distinct contrast, as seen in
As seen in
As used herein, the terms proximal and proximally refer to a position and a movement in an upstream direction from lumen 129 toward vessel lumen 151. As used herein, the terms distal and distally refer to a position and a movement, respectively, in a downstream direction from lumen 151 toward lumen 129. In embodiments, stent jacket 204 has a thickness of at least about 20 microns and no more than about 200 microns.
Additional objects, advantages, and novel features of the present invention will become apparent to one ordinarily skilled in the art upon examination of the following examples, which are not intended to be limiting. Additionally, each of the various embodiments and aspects of the present invention as delineated hereinabove and as claimed in the claims section below finds experimental support in the following examples.
It is appreciated that certain features of the invention, which are, for clarity, described in the context of separate embodiments, may also be provided in combination in a single embodiment. Conversely, various features of the invention, which are, for brevity, described in the context of a single embodiment, may also be provided separately or in any suitable subcombination.
Although the invention has been described in conjunction with specific embodiments thereof, it is evident that many alternatives, modifications and variations will be apparent to those skilled in the art. Accordingly, it is intended to embrace all such alternatives, modifications and variations that fall within the spirit and broad scope of the appended claims. All publications, patents and patent applications mentioned in this specification are herein incorporated in their entirety by reference into the specification, to the same extent as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated herein by reference. In addition, citation or identification of any reference in this application shall not be construed as an admission hat such reference is available as prior art to the present invention.
This application is a continuation-in-part of PCT Patent Application No. PCT/IB2006/051874 filed May 24, 2006, which in turn claims the benefit of U.S. Provisional Patent Applications Nos. 60/683,788 filed May 24, 2005; 60/716,100 filed Sep. 12, 2005; and 60/742,460 filed Dec. 5, 2005. This application is also a continuation-in-part of pending U.S. patent application Ser. No. 11/582,354 filed Oct. 18, 2006. In addition, this application claims priority from U.S. Provisional Patent Applications Nos. 60/852,392 filed Oct. 18, 2006, 60/860,485 filed Nov. 22, 2006, 60/860,486 filed Nov. 22, 2006 and 60/877,162 filed Dec. 27, 2006. The contents of the above Applications are hereby incorporated by reference as if fully disclosed herein.
Number | Date | Country | |
---|---|---|---|
60852392 | Oct 2006 | US | |
60860485 | Nov 2006 | US | |
60860486 | Nov 2006 | US | |
60877162 | Dec 2006 | US |
Number | Date | Country | |
---|---|---|---|
Parent | PCT/IB06/51874 | May 2006 | US |
Child | 11797168 | US | |
Parent | 11582354 | Oct 2006 | US |
Child | PCT/IB06/51874 | US |