In one of its aspects, the present invention relates to an endovascular sleeve for use in delivery of a bifurcated stent. In another of its aspects, the present invention relates to bifurcated stent delivery kit. In yet another of its aspects, the present invention relates to a method for delivery of a bifurcated stent.
Stents are generally known. Indeed, the term “stent” has been used interchangeably with terms such as “intraluminal vascular graft” and “expansible prosthesis”. As used throughout this specification, the term “stent” is intended to have a broad meaning and encompasses any expandable prosthetic device for implantation in a body passageway (e.g., a lumen or artery).
In the past ten years, the use of stents has attracted an increasing amount of attention due the potential of these devices to be used, in certain cases, as an alternative to surgery. Generally, a stent is used to obtain and maintain the patency of the body passageway while maintaining the integrity of the passageway. As used in this specification, the term “body passageway” is intended to have a broad meaning and encompasses any duct (e.g., natural or iatrogenic) within the human body and can include a member selected from the group comprising: blood vessels, respiratory ducts, gastrointestinal ducts and tho like.
Stent development has evolved to the point where the vast majority of currently available stents rely on controlled plastic deformation of the entire structure of the stent at the target body passageway so that only sufficient force to maintain the patency of the body passageway is applied during expansion of the stent.
Generally, in many of these systems, a stent, in association with a balloon, is delivered to the target area of the body passageway by a catheter system. Once the stent has been properly located (for example, for intravascular implantation, the target area of the vessel can be filled with a contrast medium to facilitate visualization during fluoroscopy), the balloon is expanded thereby plastically deforming the entire structure of the stent so that the latter is urged in place against the body passageway. As indicated above, the amount of force applied is at least that necessary to expand the stent (i.e., the applied force exceeds the minimum force above which the stent material will undergo plastic deformation) while maintaining the patency of the body passageway. At this point, the balloon is deflated and withdrawn within the catheter, and is subsequently removed.
Ideally, the stent will remain in place and maintain the target area of the body passageway substantially free of blockage (or narrowing). See, for example, any of the following patents:
U.S. Pat. No. 4,733,665 (Palmaz),
U.S. Pat. No. 4,739,762 (Palmaz),
U.S. Pat. No. 4,800,882 (Gianturco),
U.S. Pat. No. 4,907,336 (Gianturco),
U.S. Pat. No. 5,035,706 (Gianturco et al.),
U.S. Pat. No. 5,037,392 (Hillstead),
U.S. Pat. No. 5,041,126 (Gianturco),
U.S. Pat. No. 5,102,417 (Palmaz),
U.S. Pat. No. 5,147,385 (Beck et al.),
U.S. Pat. No. 5,282,824 (Gianturco),
U.S. Pat. No. 5,316,023 (Palmaz et al.),
Canadian patent application number 2,171,047 (Penn et al.),
Canadian patent application number 2,175,722 (Penn et al.),
Canadian patent application number 2,185,740 (Penn et al.),
Canadian patent application number 2,192,520 (Penn et al.),
International patent application number PCT/CA97/00151 (Penn et al.), and
International patent application number PCT/CA97/00152 (Penn et al.),
the contents of each of which are hereby incorporated by reference, for a discussion on previous stent designs and deployment systems.
All of the stents described in the above-identified patents share the common design of being mono-tubular and thus, are best suited to be delivered and implanted in-line in the body passageway. These known stents are inappropriate for use in a bifurcated body passageway (e.g., a body passageway comprising a parent passageway that splits into a pair of passageways). Further, these stents are inappropriate for use in a body passageway having side branches since: (i) inaccurate placement of the stent substantially increases the risk to the patient, (ii) the risk of passageway closure in the side branches is increased, and (iii) the side branches will be substantially inaccessible.
Indeed, the Physician Guide published in support of the Palmaz-Schatz stent states on page 32 (the contents of which are hereby incorporated by reference):
This contraindication for conventional mono-tubular stents is corroborated by a number of investigators. See, for example, the following:
1. Interventional Cardiovascular Medicine: Principles and Practice (1994); Publisher: Churchill Livingstone Inc.; pages 221-223 (Ohman et al.), 487-488 (Labinaz et al.), 667-668 (Bashore et al.) and 897 (Bailey et al.), including references cited therein;
2. Gianturco-RoubinFlex-Stent™ Coronary Stent: Physician's Guide; page 2, Paragraph 3 under WARNINGS;
3. Circulation, Vol. 83, No. 1, January 1991 (Schatz et al.); entitled “Clinical Experience With the Palmaz-Schatz Coronary Stent”; pages 148-161 at page 149; and
4. American Heart Journal, Vol. 127, No. 2, February 1994 (Eeckhout et al.); entitled “Complications and follow-up after intracoronarystenting: Critical analysis of a 6-year single-center experience”; pages 262-272 at page 263, the contents of each of which are hereby incorporated by reference.
Further, some investigators have attempted to install individual stents in each branch of the bifurcated body passageway. However, this approach is fraught with at least two significant problems. First, implantation of three individual stents is technically challenging and, together with the expansive forces generated upon implantation, results in subjecting the central walls of the bifurcated body passageway to undue stress and trauma which may lead to postprocedural complications. Second, since the central walls (i.e., in the crotch area) of the bifurcated body passageway are not supported by the individual stents, this area of the passageway is left substantially unprotected and susceptible to blockage.
One particular problem area with bifurcated body passageways is the occurrence of bifurcation lesions within the coronary circulation. Generally, these legions may be classified as follows:
See the Atlas of Interventional Cardiology (Popma et al.), 1994, pages 77-79, the contents of which are hereby incorporated by reference. The presence of bifurcation lesions is predictive of increased procedural complications including acute vessel closure.
U.S. Pat. No. 4,994,071 (MacGregor), the contents of which are hereby incorporated by reference, discloses a bifurcating stent apparatus. The particular design incorporates a series of generally parallel oriented loops interconnected by a sequence of “half-birch” connections. The lattice structure of the illustrated stent is constructed of wire. The use of such wire is important to obtain the loop structure of the illustrated design. U.S. Pat. Nos. 3,993,078 (Bergentz et al.) and 5,342,387 (Summers), the contents of each of which are hereby incorporated by reference, also disclose and illustrate a bifurcated stent design constructed of wire.
In published Canadian patent application number 2,134,997 (Penn et al.) and published International patent application PCT/CA97/00294 (Penn et al.), the contents of each of which are hereby incorporated by reference, we describe various novel bifurcated stents.
Thus, while bifurcated stents are generally known, the base of knowledge relating thereto is significantly less than that relating to monotubular stents. Not surprisingly there is a similar imbalance of knowledge relating to the delivery systems for such stents. Specifically, there is vast knowledge relating delivery systems for monotubular stents compared to the knowledge that exists for bifurcated stent delivery systems.
In the delivery of any stent (monotubular or bifurcated) it is reasonably well accepted that the stent is mounted on a catheter which is navigated over a guidewire previously inserted through a guide catheter to the target location. Thus, when the object is to deliver a bifurcated stent, it is envisaged that a pair of guidewires would be used—i.e., one for each of the two passageways that branch off the primary passageway. As such, it is important that, in the primary passage, the guidewires do not become entangled, either in the guide catheter or the body passageway, as this will prevent navigation of the catheter to the target location. In addition, the limited size of the guide catheter determines the bulkiness of the bifurcated stent delivery system. The practical result of this is that the current approach of delivering bifurcated stents is bulky, cumbersome, and technically challenging. To date, the present inventors are unaware of a solution to the problems of conventional bifurcated stent delivery.
Accordingly, it would be desirable to have a system which could be used to navigate a pair of guidewires in a substantially untangled manner to facilitate delivery of the bifurcated stent. It would be further advantageous is such a system were relatively miniaturized compared to conventional bifurcated stent delivery systems.
It is an object of the present invention to provide a novel bifurcated stent delivery system which obviates or mitigates at least one of the above-mentioned disadvantages of the prior art.
Thus, in one of its aspects, the present invention provides an endovascular sleeve for delivering a pair of guidewires to a bifurcated body passageway, the sleeve comprising a first tubular passageway and a second tubular passageway fixed with respect to one another, the first tubular passageway comprising a first distal end and a first proximal end, the second tubular passageway comprising a second distal end and a second proximal end, the first distal end being longer than the second distal end to define a junction which abuts against a crotch in the bifurcated body passageway.
A bifurcated stent delivery kit for delivery of a bifurcated stent to a bifurcated body passageway, the kit comprising: a catheter; a pair of guidewires; and an endovascular sleeve for delivering the guidewires to a bifurcated body passageway, the sleeve comprising a first tubular passageway and a second tubular passageway fixed with respect to one another, the first tubular passageway comprising a first distal end and a first proximal end, the second tubular passageway comprising a second distal end and a second proximal end, the first distal end being longer than the second distal end to define a junction which abuts against a crotch in the bifurcated body passageway.
In yet another of its aspects, the present invention provides method for delivery of a bifurcated stent to a target bifurcated body passageway having a proximal body passageway, a first distal body passageway and a second distal body passageway using an endovascular sleeve comprising a first tubular passageway and a second tubular passageway fixed with respect to one another, the first tubular passageway comprising a first distal end and a first proximal end, the second tubular passageway comprising a second distal end and a second proximal end, the first distal end being longer than the second distal end to define a junction which abuts against a crotch in the bifurcated body passageway, the method comprising the steps of: (i) navigating a first guidewire through the primary proximal body passageway and into the first distal body passageway; (ii) feeding the first tubular passageway of the endovascular sleeve over the first guidewire; (iii) navigating the endovascular sleeve through the primary proximal body passageway until the first distal end is disposed in the first distal body passageway and the junction abuts a crotch in the bifurcated body passageway; (iv) navigating a second guidewire through the second tubular passageway and into the second distal body passageway; (v) withdrawing the endovascular sleeve from the body passageway; (vi) guiding a catheter over the first guidewire and the second guidewire, the catheter having a bifurcated stent disposed thereon; (vii) navigating the bifurcated stent to the target bifurcated body passageway; and (viii) expanding the bifurcated stent.
Thus, the present inventors have developed an endovascular sleeve which can be utilized to navigate a pair of guidewires to a bifurcated body passageway such that, once in place, the guidewires are substantially untwisted or untangle. This greatly facilitates delivery of the bifurcated stent to the bifurcated artery.
Embodiments of the present invention will be described with reference to the accompanying drawings wherein like numerals designate like parts and in which:
With reference to
As illustrated, first distal end 22 extends beyond second distal end 32. This offset between first distal end 22 and second distal end 32 defines a junction 45 Preferably, first distal end 22 extends beyond second distal end 32 by a margin of at least about 0.3 cm, more preferably by a margin in the range of from about 0.3 cm to about 3 cm, most preferably by a margin in the range of from about 0.5 cm to about 2 cm. Further, first proximal end 24 is significantly offset with respect to second proximal end 34. As will be developed below, this offset renders endovascular sleeve 10 as an “over-the-wire/monorail” delivery system. As shown, each of first distal end 22 and second distal end 32 are chamfered or beveled.
With reference to
The material used to constructed endovascular sleeve 10 is not particularly restricted provided of course that it: (i) sufficient integrity to by navigated through tortuous body passageways, and (ii) is non-toxic to the subject in which endovascular sleeve 10 is being navigated. Non-limiting examples of suitable materials include bioplastic polymers, a flexible metal tube, and the like.
With reference to
As shown, a bifurcated body passageway 50 comprises a proximal passageway 52 and a pair of distal passageways 54, 56. The junction of distal passageways 54, 56 defines a crotch 58. For clarity, the stenosis of bifurcated body passageway 50 is not illustrated.
With reference to
With reference to
With reference to
With reference to
With reference to
With reference to
As illustrated, endovascular sleeve 10 is introduced to a subject 70 via a suitable incision near the groin of subject 70. Generally speaking, the concordance of the perspectives view illustrated in
As discussed above, endovascular sleeve 10 may be regarded as an “over-the-wire/monorail” delivery system. By this it is meant that, once the sleeve is in the correct position, one tubular passageway (30) remains over a guidewire (62) such that the proximal end thereof (34) emanates from the subject whereas the proximal end (24) of the other tubular passageway (20) does not emanate from the subject. In other words, the section of the other tubular passageway (20) between the bifurcated body passageway (50) and incision (72) in the subject (70) does not completely cover the other guidewire (60).
As discussed above, endovascular sleeve 100 may be regarded as a “double over-the-wire” delivery system. By this is meant that, once the sleeve is in the correct position, both tubular passage ways (120, 130) remain over their respective guidewires (60, 62) such that the proximal end (24) of each tubular passageway (120, 130) emanates from the subject. In other words, both guidewires (60, 62) are substantially completely covered by endovascular sleeve 100.
With reference to
While this invention has been described with reference to illustrative embodiments, this description is not intended to be construed in a limiting sense. Various modifications of the illustrative embodiments, as well as other embodiments of the invention, will be apparent to persons skilled in the art upon reference to this description. It is therefore contemplated that the appended claims will cover any such modifications or embodiments.
Number | Date | Country | Kind |
---|---|---|---|
PCT/CA99/00695 | Jul 1999 | CA | national |
This application is a continuation of U.S. patent application Ser. No. 11/458,819, filed Jul. 20, 2006, which is a continuation of U.S. patent application Ser. No. 09/744,950, filed Jun. 18, 2001 (now abandoned), which is a 371 of international Appln. No. PCT/CA99/00695, filed Jul. 20, 1999, which claims the benefit of U.S. patent Appln. No. 60/094,950, filed Jul. 31, 1998, the contents of which are incorporated herein by reference.
Number | Date | Country | |
---|---|---|---|
Parent | 11458819 | Jul 2006 | US |
Child | 12418890 | US | |
Parent | 09744950 | Jun 2001 | US |
Child | 11458819 | US |