Bifurcation stent delivery system and methods

Information

  • Patent Grant
  • 8747456
  • Patent Number
    8,747,456
  • Date Filed
    Wednesday, December 31, 2008
    16 years ago
  • Date Issued
    Tuesday, June 10, 2014
    10 years ago
Abstract
A catheter assembly may include a main balloon arranged to reside within the main vessel, and a branch balloon configured to extend from the main vessel into the branch vessel. A stent may be situated around the main balloon and may include a branch aperture at a location between proximal and distal open ends of the stent. The branch balloon may extend from within the stent, through the branch aperture, and into the branch vessel. The branch balloon, when inflated, may extend into the branch vessel. The main balloon, when inflated, may also expand the stent within the main vessel. In some arrangements, the branch balloon, when inflated, can function as an anchor within the branch vessel that resists radial and axial movement of the stent relative to the branch vessel and main vessel during expansion of the stent by the main balloon.
Description
FIELD

This disclosure relates generally to bifurcation treatment systems and methods of treating a bifurcated vessel. Example embodiments also relate to catheter configurations adapted for aligning and/or positioning features of the bifurcation treatment system relative to the bifurcated vessel.


BACKGROUND

Catheters can be used with stents and balloon inflatable structures to treat conditions such as strictures, stenoses, and narrowing in various parts of the body. Various catheter designs have been developed for the dilatation of stenoses and to deliver and deploy stents at treatment sites within the body.


Stents are typically intraluminally placed by a catheter within a vein, artery, or other tubular shaped body organ for treating conditions such as, for example, occlusions, stenoses, aneurysms, dissection, or weakened, diseased, or abnormally dilated vessel or vessel wall, by expanding the vessel or by reinforcing the vessel wall. Stents can improve angioplasty results by preventing elastic recoil and remodeling of the vessel wall and treating dissections in blood vessel walls caused by balloon angioplasty of coronary arteries.


While conventional stent technology is relatively well developed, stent technologies related to treatment of the region of a vessel bifurcation are still being developed. One challenge related to treatment of a vessel bifurcation involves alignment of the stent relative to the vessel branches of the vessel bifurcation. Another challenge relates to removal of the bifurcation treatment catheter from the vessel bifurcation treatment site.


SUMMARY OF THE DISCLOSURE

The illustrated examples disclosed herein relate generally to catheter assemblies and methods for treatment of a vessel bifurcation. An example catheter assembly may include a main balloon arranged to reside within the main vessel, and a branch balloon configured to extend from the main vessel into the branch vessel. In this arrangement, the main balloon may extend through the stent between open proximal and distal ends of the stent. The branch balloon may extend from within the stent, through a branch aperture in the stent, and into the branch vessel. The catheter assembly may be configured to inflate the branch balloon to extend the branch balloon into the branch vessel, and inflate the main balloon to expand the stent within the main vessel. The branch balloon may function as a guide that helps maintain radial and axial alignment of the stent branch aperture relative to an ostium of the branch vessel during expansion of the stent by the main balloon. The branch balloon may be positioned on the main balloon. Alternatively, the branch balloon may be positioned at an end portion of a branch catheter shaft that extends adjacent to a main catheter shaft, wherein the main catheter shaft has the main balloon positioned at a distal end portion thereof.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a schematic side view of an example catheter assembly in accordance with principles of the present disclosure, wherein the catheter assembly is positioned adjacent to a vessel bifurcation;



FIG. 2 is a schematic side view of the catheter assembly shown in FIG. 1 with a branch catheter of the catheter assembly positioned within a branch vessel of the vessel bifurcation;



FIG. 3 is a schematic side view of the catheter assembly shown in FIG. 1 with a branch balloon of the catheter assembly inflated within the branch vessel of the vessel bifurcation;



FIG. 4 is a schematic side view of the catheter assembly shown in FIG. 1 with the main and branch balloons inflated within the vessel bifurcation;



FIG. 5 is a schematic side view of the stent of the catheter assembly shown in FIG. 1 further expanded with a post delivery dilation catheter;



FIG. 6 is a schematic cross-sectional view of the catheter assembly shown in FIG. 3;



FIG. 7 is a schematic side view of the branch catheter shown in FIGS. 1-6 in an inflated state;



FIG. 7A is a schematic top view of the branch catheter shown in FIG. 7 including an example base portion configuration for the branch balloon;



FIG. 7B is a schematic top view of the branch catheter shown in FIG. 7 including another example base portion configuration for the branch balloon;



FIG. 8 is a schematic side view of the branch catheter shown in FIG. 7 in another example deflated state arrangement;



FIG. 9 is a schematic side view of an example branch catheter with an inflated branch balloon arrangement in accordance with principles of the present disclosure;



FIG. 9A is a schematic side view of the branch catheter shown in FIG. 7 with the branch balloon directed at an angle relative to a main shaft of the branch catheter;



FIG. 10 is a schematic side view of the branch catheter shown in FIG. 7 with the branch balloon in a deflated state;



FIG. 11 is a schematic side view of a further example branch catheter with an inflated branch balloon arrangement in accordance with principles of the present disclosure;



FIG. 12 is a schematic side view of a yet further example branch catheter with an inflated branch balloon arrangement in accordance with principles of the present disclosure;



FIG. 13 is a schematic side view of a yet further example branch catheter with a conical shaped inflated branch balloon arrangement in accordance with principles of the present disclosure;



FIG. 14 is a schematic side view of a yet further example branch catheter with a conical shaped inflated branch balloon arrangement in accordance with principles of the present disclosure;



FIG. 15 is a schematic side view of another example catheter assembly in accordance with the present disclosure, wherein the main balloon and branch balloon are both in a deflated state and the branch balloon includes a branch guidewire lumen;



FIG. 16 is a schematic side view of the example catheter assembly shown in FIG. 15 with the branch balloon in an inflated state and the main balloon in a deflated state;



FIG. 17 is a schematic side view of the example catheter assembly shown in FIG. 15 with the main and branch balloons in an inflated state;



FIG. 18 is a schematic side view of the stent of the catheter assembly shown in FIG. 15 further expanded with a post delivery dilation catheter;



FIG. 19 is a schematic side view of another example catheter assembly in accordance with the present disclosure, wherein the main balloon and branch balloon are both in an inflated state and the branch guidewire member and main guidewire members are secured together proximal of the main balloon;



FIG. 20 is a schematic cross-sectional view of the catheter assembly shown in FIG. 19 taken along cross-sectional indicators 20-20;



FIG. 21 is a schematic cross-sectional view of the catheter assembly shown in FIG. 19 taken along cross-sectional indicators 21-21;



FIG. 22 is a schematic side view of a port bond arrangement for a catheter assembly;



FIG. 23 is a schematic cross-sectional view of the port bond arrangement shown in FIG. 22 taken along cross-sectional indicators 23-23;



FIG. 24 is a schematic cross-sectional view of the port bond arrangement shown in FIG. 22 taken along cross-sectional indicators 24-24;



FIG. 25 is a schematic side view of another example catheter assembly in accordance with the present disclosure, wherein the main and branch guidewire lumens and the inflation lumens are defined in a single catheter member;



FIG. 26 is a schematic cross-sectional view of the catheter assembly shown in FIG. 25 taken along cross-sectional indicators 26-26;



FIG. 27 is a schematic cross-sectional view of another example configuration of the catheter assembly shown in FIG. 25;



FIG. 28 is a schematic side view of another example balloon arrangement that includes a side balloon positioned on a main balloon with one side of the side balloon tethered to the main balloon;



FIG. 29 is a schematic side view of another example catheter assembly in accordance with the present disclosure, wherein the side balloon is positioned on a side inflation lumen separate from the branch catheter;



FIG. 30 is a schematic side view of another example catheter assembly in accordance with the present disclosure, wherein the branch balloon is retractable into an internal volume of the main balloon prior to inflation of the main and branch balloons;



FIG. 31 is a schematic side view of the example catheter assembly of FIG. 30 with the main balloon inflated;



FIG. 32 is a schematic side view of the example catheter assembly of FIG. 30 with the main balloon inflated and the side balloon partially inflated;



FIG. 33 is a schematic side view of the example catheter assembly of FIG. 30 with the main and side balloons inflated; and



FIG. 34 is a schematic side view of the example catheter assembly of FIG. 30 positioned to treat a vessel bifurcation.





DETAILED DESCRIPTION

This disclosure relates to bifurcation treatment systems and related methods of treating bifurcations in a patient's body. Bifurcations typically include a main lumen and a branch lumen that extends or branches off from the main lumen. An example bifurcation is a vessel bifurcation. A vessel bifurcation can be defined with a parent or first vessel that splits into at least two branch vessels. Alternatively, a vessel bifurcation can be defined as a continuous main vessel with at least one branch vessel that branches off from the main vessel.


The disclosed systems and methods can include a main catheter branch, a side catheter branch, and an inflatable member (e.g., second balloon or side balloon) which when inflated extends in a direction generally radially away from the main catheter branch. The inflatable member can be positioned on the side catheter branch or on the main catheter branch. The term side catheter branch is defined as a portion of a catheter assembly that is configured to extend from a main vessel into a branch vessel of a vessel bifurcation. Typically, the side catheter branch defines a branch guidewire lumen sized for passing the side catheter branch over a guidewire and into the branch vessel. The term main catheter branch is defined as a portion of a catheter assembly that remains in a first vessel of a vessel bifurcation when the side catheter branch is positioned within a vessel branching from the first vessel. The inflatable member can be part of the main catheter branch or the side catheter branch.


In one example, the main catheter branch can include first and second balloon portions. The first balloon portion is an elongate balloon positioned at a distal end portion of the main catheter branch. The second balloon portion is positioned on the side catheter branch. In another example, the main catheter branch includes first and second balloon portions wherein the first balloon portion is an elongate balloon and the second balloon portion extends from a sidewall of the first balloon. The second balloon portion can be integral with the first balloon portion. The first and second balloon portions can be in fluid communication with each other. Alternatively, the first and second balloon portions can be fluidly separated and configured to inflate separate from each other.


The second balloon portion can include a variable width dimension at different locations along its length (e.g., a variable width at different locations between proximal and distal ends of the second balloon if the second balloon has as circular cross section). For example, one second balloon configuration includes a tapered balloon that decreases in width from the proximal end portion to the distal end portion of the second balloon. A maximum width dimension of that portion of the second balloon that is configured to extend into the branch vessel is sized smaller than the minimum internal width dimension of the branch vessel in that portion of the branch vessel into which the second balloon extends. That portion of the branch vessel into which the second balloon extends from the ostium of the branch vessel a distance along an longitudinal axis of the branch vessel a distance no greater than a total length of the branch balloon.


The second balloon portion can be configured and arranged to extend at an angle relative to a longitudinal dimension of the main balloon. The angle of extension can be between 0° and 90°, and more preferable between about 30° and 60°. The second balloon can be integral with the main balloon. The second balloon can also be positioned on a side inflation lumen that extends adjacent to the main balloon.


The main catheter shaft of the catheter assembly can be configured to define multiple guidewire lumens. The main catheter shaft can also be configured to define at least one inflation lumen in addition to at least one guidewire lumen. In other arrangements, the main and guidewire members defining the main and branch guidewire lumens are secured together or formed integral with each other at a location proximal of the main balloon.


An example catheter assembly 10 having inventive features in accordance with the present disclosure is shown and described with reference to FIGS. 1-13. Catheter assembly 10 includes a main catheter shaft 12, a branch catheter shaft 14, a main balloon 16, a branch balloon 18, a stent 20, and main and branch guidewires 22, 24. Catheter assembly 10 is shown in FIGS. 1-5 with reference to a vessel bifurcation 26 having a main vessel 28 and a branch vessel 30.


The main catheter shaft 12 has a distal end portion 40 adapted for positioning within a patient, and a proximal end portion (not shown) adapted for positioning outside of the patient. The branch catheter shaft 14 extends side-by-side with the main catheter shaft 12. The branch catheter shaft 14 includes a distal end 42. A proximal end portion (not shown) of the branch catheter shaft 14 can be integrated into the main catheter shaft 12 at a location distal of a proximal end portion of the main catheter shaft 12 and proximal of the stent 20. Alternatively, the branch catheter shaft 14 can extend separate from the main catheter shaft 12 from the distal end portion 42 to a location outside of the patient.


The main balloon 16 is positioned at the distal end portion 40 of the main catheter shaft 12. The main balloon 16 is an elongate tube-shaped structure sized to traverse the vessel bifurcation 26 (i.e., extend within the main vessel 28 from a proximal side to a distal side of an ostium of branch vessel 30). The main balloon branch 16 includes distal and proximal ends 44, 46, a main guidewire housing 47 defining a main guidewire lumen 48, and an inflation lumen 50 that extends in fluid communication with an interior of the main catheter shaft 12. The main balloon 16 is inflatable from the deflated state shown in FIG. 1 to the inflated state shown in FIG. 4 upon filling of the main balloon 16 with inflation fluid. The main balloon 16 is deflatable upon removal of the inflation fluid through the inflation lumen 50 and proximally out through the main catheter shaft 12.


The branch balloon 18 is positioned at the distal end portion 42 of the branch catheter shaft 14. The branch lumen 18 includes distal and proximal ends 52, 54, a first portion 56 having a maximum width dimension W1, a second portion 58 having a maximum width dimension W2, and a base portion 60 having a maximum width dimension W3 (see FIG. 7). The branch balloon 18 further includes a branch guidewire housing 61 defining a branch guidewire lumen 62 that extends between the proximal and distal ends 52, 54 and an inflation lumen 64 that is in fluid communication with an interior of the branch catheter shaft 14 (see FIG. 7). The branch balloon 18 can have a generally cylindrical or conical tube-shaped structure with a radially concentric cross-sectional shape at each point along its length between ends 52, 54.


Upon inflation, the branch balloon 18 extends at an acute branch angle β (see FIG. 3) measured between a longitudinal axis A of the main balloon 16 and a longitudinal axis B of the branch balloon 18. The angle β typically is in the range of 20 to 90° inclusive, and more typically about 45° to about 75° inclusive. The angle β is typically measure within a plane that is aligned along the axis A. The angle β is also typically arranged facing in a direction toward the distal portion of the main balloon 16. The angle β is typically measured when in a rest state with the main and branch balloons inflated. A rest state is a state for the catheter assembly when no external forces are applied move the main and branch balloons relative to each other. The catheter assembly configurations disclosed herein can be used with vessel bifurcations having an angled relationship between the branch and main vessel that is outside of the range of 20° to 90° for the angle β.


Materials used in the balloons, catheter shafts, and other components of the catheter assemblies disclosed herein can be made of any suitable material including, for example, thermoplastic polymers, polyethylene (high density, low density, intermediate density, linear low density), various co-polymers and blends of polyethylene, ionomers, polyesters, polycarbonates, polyamides, poly-vinyl chloride, acrylonitrile-butadiene-styrene copolymers, polyether-polyester copolymers, and polyetherpolyamide copolymers. One suitable material is Surlyn®, a copolymer polyolefin material (DuPont de Nemours, Wilmington, Del.). Still further suitable materials include thermoplastic polymers and thermoset polymeric materials, poly(ethylene terephthalate) (commonly referred to as PET), thermoplastic polyamide, polyphenylene sulfides, polypropylene. Some other example materials include polyurethanes and block copolymers, such as polyamide-polyether block copolymers or amide-tetramethylene glycol copolymers. Additional examples include the PEBAX® (a polyamide/polyether/polyester block copolymer) family of polymers, e.g., PEBAX® 70D, 72D, 2533, 5533, 6333, 7033, or 7233 (available from Arkema, Philadelphia, Pa.).


Other examples include nylons, such as aliphatic nylons, for example, Vestamid L2101 1F, Nylon 11 (Arkema), Nylon 6 (Honeywell), Nylon 6/10 (BASF), Nylon 6/12 (Ashley Polymers), or Nylon 12. Additional examples of nylons include aromatic nylons, such as Grivory (EMS) and Nylon MXD-6. Other nylons and/or combinations of nylons can also be used. Still further examples include polybutylene terephthalate (PBT), such as CELANEX® (available from Ticona, Summit, N.J.), polyester/ether block copolymers such as ARNITEL® (available from DSM, Erionspilla, Ind.), e.g., ARNITEL® EM740, aromatic amides such as Trogamid (PA6-3-T, Degussa), and thermoplastic elastomers such as HYTREL® (Dupont de Nemours, Wilmington, Del.). In some embodiments, the PEBAX®, HYTREL®, and ARNITEL® materials have a Shore D hardness of about 45D to about 82D. The balloon materials can be used pure or as blends. For example, a blend may include a PBT and one or more PBT thermoplastic elastomers, such as RITEFLEX® (available from Ticona), ARNITEL®, or HYTREL®, or polyethylene terephthalate (PET) and a thermoplastic elastomer, such as a PBT thermoplastic elastomer. Additional examples of balloon material can be found in U.S. Pat. No. 6,146,356. It should be understood that the specific materials disclosed below for the individual embodiments does not limit the embodiment to those materials.


The forming of balloons 16, 18 using the above listed materials can be determined, within a range, by controlling blowing conditions such as initial dimensions of tubing, pre-stretching, hoop ratio, heat set conditions, grinding and laser ablation of the tube. Compliance characteristics for balloon 16, 18 made from these example materials ranging from non-compliant to compliant characteristics. In one example, the balloon has wall strengths in excess of 20,000 psi.



FIGS. 3 and 7 illustrate the variable width structure of the branch balloon 18. The first portion 56 is positioned near the distal end portion 52. The first portion 56 has a maximum width W1 that is less than the maximum width W2 of the second portion 58. The widths W1, W2 are smaller than a width W4 of the branch vessel 30, wherein the width W4 is determined with or without the inclusive of any plaque present along the branch vessel 30. The maximum width dimension W3 of the base portion 60 is greater than a maximum width dimension W4 of a branch aperture 74 of the stent 20 (see FIG. 4) with the branch balloon 18 inflated. The base portion 60 is retained within the stent 20 due in part to the grater size of width W3 relative to the maximum size W4 of the branch aperture 74. The width W1 can improve insertability of the branch balloon 18 into the branch vessel 30. The size of width W2, which is greater than W1 and smaller than W3 is sized to minimize the amount of space between the interior of branch vessel 30 and the branch balloon 18 to help reduce the amount of axial and radial movement of the catheter assembly 10 relative to the branch vessel 30.


The first portion 56 has a length L1, the second portion 58 has a length L2, and the overall length of the branch balloon 18 between the base portion 60 and the distal end portion 52 has a length L3 (see FIG. 7). The lengths L1-L3 can vary in different applications to vary the performance characteristics of the branch balloon 18. In one example, the length L3 is greater than the width W4 of the branch vessel 30. In another example, the length L3 is at least as great as the width W2 of the second portion 56. In some configurations, the length L3 is about 100% to 500% of the maximum value of width W2. In other configurations, the length L3 is about 100% to 200% of the width W5 at the ostium of branch vessel 30 (see FIG. 5). The branch balloon 18, when inflated and before inflation of the main balloon 16, preferably extends into the branch vessel 30 a distance at least as great as the width W5 at the ostium of branch vessel 30.


Typically, a longer balloon can help maintain the axial and radial orientation of the catheter assembly relative to an ostium of a branch vessel better than a shorter balloon having the same widths. Typically, a balloon that is too short can risk losing the desired axial and radial orientation after the desired orientation has been obtained. Changing the widths W1-W3 can also influence the performance characteristics of the branch balloon 18. Achieving optimum length features, ratios of lengths to the various widths, and the widths alone of the branch balloon 18 can influence how well the branch balloon 18 operates in a given vessel bifurcation environment. The width of features of the branch balloon 18, particularly at the base 60 and second portion 58 can influence how much resistance to radial and longitudinal movement of the catheter system 10 is applied during inflation of the main balloon 16.


Providing a branch balloon that is positioned along a branch vessel guidewire lumen and tapered towards the distal end portion helps to maintain an elongate, low profile branch balloon when the branch balloon is deflated. An elongate, low profile branch balloon can improve the retractability of the branch balloon from a stent that is deployed at a vessel bifurcation by reducing potential catch points where the balloon might catch on the stent while being removed.


In addition to varying the size (e.g., circumference, diameter or length) of the branch balloon 18, the shape and materials of the branch balloon can vary for different portions of the branch balloon 18. For example, the cross-sectional shape of the first and second portions 56, 58 can be oval, triangular, or polygonal rather than circular. Also, the materials used in the first portion 56 can be different than the materials used for the second portion 58 and the base 60. Varying the size, shape and materials of the branch balloon 18 can result in optimization of the performance characteristics of each portion of the branch balloon 18 for its intended purpose.



FIGS. 7A and 7B illustrate different structures for the base portion 60. FIG. 7A illustrates the base portion 60 as a disk shaped member having a generally constant diameter. FIG. 7B illustrates the base portion 60 having members 65, 63 extending in the proximal and distal directions. FIG. 7B does not include portions of the base 60 extending in the transverse direction (e.g., the direction perpendicular to the longitudinal axis of the catheter assembly 10 in the deflated state).


The branch balloon 18 shown in FIGS. 1-8 is connected to the branch catheter shaft 14 at a peripheral edge of the base 60. FIGS. 9-13 illustrate other example branch balloons wherein the branch catheter shaft 14 is connected to the branch balloon 18 at a proximal end portion 54 of the balloon 18. In some arrangements, the balloon 18 is formed from the branch catheter shaft 14, whereas in other arrangements the balloon 18 is separately formed and then attached to the branch catheter shaft. The branch catheter shaft 14 is aligned along a central axis B extending through the first, second and base portions 56, 58, 60.


The branch balloon 18 of FIGS. 9-10 has a base portion 60 extending on opposing sides of the second portion 58 as first and second base portions 65, 63. FIG. 9 illustrates the branch balloon portion 18 extending from a distal end portion of the branch catheter shaft 14 in an inflated state in which the branch balloon 18 is unconstrained (e.g., before being positioned and inflated within stent 20). FIG. 9A illustrates an arrangement of the branch balloon 18 that typically results when the branch catheter shaft 14 and base portion 60 are positioned within a stent and the first and second portions 56, 58 extend through a branch aperture of the stent (e.g., through branch aperture 74 of stent 20 shown in FIG. 1. FIG. 10 illustrates the branch balloon 18 in a deflated state. The first and second base portions 65, 63 extend in the proximal and distal directions, respectively, when the balloon 18 is inflated (see FIG. 9A). When the first and second members 65, 63 are oriented facing distally and proximally as shown in FIG. 10, the base 60 can more easily inflate within the stent. In other embodiments (e.g., the arrangement of base 60 shown in FIG. 8) the members 65, 63 are not directed in either the proximal or distal direction when the branch balloon 18 is in a deflated state. Rather, as shown in FIG. 8, the base portion 60 is recessed to fit generally within an outer profile cylindrical circumference of the entire branch balloon 18 between the proximal and distal ends 54, 52.



FIG. 11 illustrates another example branch balloon 18 that does not include a defined base portion 60. The branch balloon 18 of FIG. 11 can be anchored or otherwise held relative to the stent 20 with an interference fit between the second portion 58 and the expandable structure 76 of stent 20 that surrounds the branch aperture 74.



FIG. 12 illustrates another example branch balloon 18 having a base portion 60 that extends transverse to only one side of the second portion 58. The use of any type of base portion 60 having a circumference or width measurement greater than a size of the branch aperture 74 of the stent 20 can help anchor or otherwise maintain a fixed relative position between the proximal end portion 54 of branch balloon 18 and the stent 20 at the proximal end portion 54 of the branch balloon 18. The base portion 60 can be referred to as a pylon or anchor structure for the branch balloon 18.



FIGS. 13 and 14 illustrate various conical shaped branch balloons 18. The balloon 18 shown in FIG. 13 has a base portion 60 at proximal end portion 54 having a maximum width dimension W3 that tapers towards the distal end portion 52. The balloon 18 in FIG. 13 has a length L3 from the proximal end portion 54 to the distal end portion 52. The balloon 18 shown in FIG. 14 has a base portion 60 having a maximum width dimension W3, and a conical section that tapers from a maximum width dimension W2 adjacent to the base portion 60 to the distal end portion 52. The balloon 18 shown in FIG. 14 has a total length L3 from the proximal end portion 54 to the distal end portion 52, and a conical section length L3 from the distal side of base 60 to the distal end portion 52. The lengths and widths of the balloons 18 shown in FIGS. 13 and 14 can vary in accordance within, for example, the ranges described above for the balloon 18 shown in FIGS. 9-10.


Referring now to FIGS. 1-5, an example method of treating the vessel bifurcation 26 with the catheter assembly 10 is described. First referring to FIG. 1, a distal end portion of the main guidewire 22 is inserted into the main vessel 28 beyond the ostium leading into branch vessel 30. A distal end portion of branch guidewire 24 is inserted through the ostium leading into the branch vessel 30 and into the branch vessel 30. The proximal end portions of guidewires 22, 24 (not shown) are inserted into the distal ends 44, 52 of the main and branch balloons 16, 18, respectively. The catheter assembly 10 is advanced over the guidewires 22, 24 into an area of the vessel bifurcation 26.


In alternative methods, only one of the guidewires 22, 24 is positioned within respective main and branch vessels 28, 30 prior to advancing the catheter assembly 10 to the area of the vessel bifurcation 26. In this alternative arrangement, the other of the guidewires 22, 24 is arranged as a fixed wire within the catheter assembly 10 and advanced with the catheter assembly 10 to the vessel bifurcation. Once the catheter assembly 10 has reached the vessel bifurcation, the guidewire fixed in the catheter assembly 10 is advanced into the targeted vessel that does not already have a guidewire positioned therein, and the catheter assembly is further advanced distally until radial and axial alignment of the stent branch aperture 74 with the ostium of branch vessel 30 is achieved.


Referring now to FIG. 2, the catheter assembly 10 is further advanced distally until the branch balloon 18 extends into the branch vessel 30. Minor adjustments to the radial and axial position of the catheter assembly 10 can be made in order to ensure that the branch aperture 74 of the stent 20 is positioned facing radially towards the opening or ostium into branch vessel 30. A plurality of markers 36a, b and 38a, b associated with the main and branch balloons 16, 18 can be used to help confirm the axial and radial alignment of the stent branch aperture 74 relative to the ostium of branch vessel 30. Various markers, marker materials, and marker arrangements for use as alignment features of catheter assembly 10 are described in U.S. Pat. No. 6,692,483 to Vardi, and co-pending U.S. Provisional Patent Application Ser. No. 60/776,149, filed on Sep. 22, 2006, and entitled Marker Arrangement for Bifurcation Catheter, which patent matters are incorporated herein by reference.


The branch balloon 18 in the inflated state shown in FIG. 3 can be used for visualization by the physician of portions of the catheter assembly even without the markers 36a, b. The inflation fluid used to fill the branch balloon 18 can include a contract agent that is visible under fluoroscopy. Further, the main and branch vessels 28, 30 into which the catheter assembly 10 is inserted can periodically be filled with a contrast agent that is also visible under fluoroscopy. Providing visualization of the vessels 28, 30 and the branch balloon 18 permits the physician to make radial and axial adjustments to the position of catheter assembly 10 to better ensure alignment of the stent branch aperture 74 relative to the ostium of branch vessel 30 before inflating main balloon 16.


Referring now to FIG. 3, the branch balloon 18 is inflated with inflation fluid that travels through branch catheter shaft 14 and into the branch balloon 18. The base portion 60 of the branch balloon 18 is retained within the stent 20. The first and second portions 56, 58 of the branch balloon 18 extend through the branch aperture 74 and into the branch vessel 30. As discussed above, the widths W1, W2 of the first and second portions 56, 58 are smaller than the widths W5 of the ostium of branch vessel 30. Preferably, there is little resistance to expansion of the branch balloon 18 except for the material of the branch balloon itself. Some resistance to expansion may be exerted by portions of the expandable stent structure 76 surrounding branch aperture 74. The first and second portions 56, 58 extend at an angle β from the main balloon 16.


Referring now to FIG. 4, the main balloon 16 is inflated after the branch balloon 18 has been inflated. The main balloon 16 is inflated with inflation fluid that travels through main catheter shafts 14 and the inflation lumen 50. Typically, the stent 20 is secured to at least the main balloon 16 using an attachment method such as crimping, which permits release of the stent 20 from the balloon 16 after inflation of the balloon 16. The stent 20 may also be secured to the branch balloon 18 using a similar attachment method such as crimping. Due to the connection between stent 20 and main balloon 16, the stent 20 and main balloon 16 move axially and radially together relative to the vessel bifurcation 26. Since the branch balloon 18 extends in engagement with the stent 20 through the branch aperture 74 and into the branch vessel 30, the branch balloon 18 provides an axial and radial anchoring of the stent 20 and main balloon 16 as the main balloon 16 is inflated. Thus, the branch balloon 18, when inflated and positioned within the branch vessel 30 helps to maintain alignment of the branch aperture 74 with the ostium into branch vessel 30 during expansion of the stent 20 within main vessel 28.


After the stent 20 has been expanded as shown in FIG. 4, the main and branch balloons 16, 18 are deflated by removal of inflation fluid through the main and branch catheter shafts 12, 14. After deflation of balloons 16, 18, the catheter assembly 10 is removed proximally. The main guidewire 22 can also be removed at this time.


Referring now to FIG. 5, a separate dilation catheter 32 is advanced over the branch guidewire 24 through the interior of stent 20 and out of the branch aperture 74 into the branch vessel 30. The dilation catheter 32 is inflated to expand expandable structure surrounding the branch aperture 74 into the branch vessel 30. Preferably, the dilation catheter 32 expands the expandable structure surrounding the branch aperture 74 into contact with side walls of the branch vessel 30 surrounding the ostium of the branch vessel 30 such as, for example, the carina 29. The dilation catheter 32 is then deflated and removed. Additional treatment of vessel bifurcation 26 can take place using additional stents, balloon catheters, or other structures and devices that extend, for example, into the branch vessel 30 and overlap with the expandable structure 76 surrounding the branch aperture 74.



FIGS. 15-18 illustrate another example catheter assembly 100 that 15 includes a main catheter shaft 12, a main balloon 16, and a branch balloon 18 that is positioned on and extends radially outward from the main balloon 16. The main catheter shaft 12 defines an inflation lumen 50 that is in fluid communication with the main and branch balloons 16, 18. The main balloon 16 includes distal and proximal ends 44, 46. A main guidewire lumen 48 extends through the main balloon 16. The main balloon distal end portion 44 is secured to the main guidewire lumen 48, and the proximal end portion 46 is connected to the main catheter shaft 12.


The branch balloon 18 includes distal and proximal ends 52, 54, a first portion 56, and a second portion 58. The branch balloon 18 extends radially from the main balloon 16 at an angle β measured between a central longitudinal axis A of the main balloon 16 and a central longitudinal axis B of the branch balloon 18 (see FIG. 17). The angle β is typically between about 20° and about 90°. FIG. 17 illustrates an angle of about 90°. FIGS. 19, 25 and 28 illustrate an angle of about 60°. FIG. 29 illustrates an angle of about 45°. The main balloon 16 functions as the base portion 60 for the branch balloon 18 (e.g., see description above for catheter assembly 10) for holding the branch balloon 18 within the stent 20 when the main and branch balloons 16, 18 are inflated.


The first and second portions 56, 58 define first and second maximum width dimensions W1, W2 measured around an outer periphery at different longitudinal positions along the branch balloon 18. Typically, the width W1 is less than the width W2. The widths W1, W2 are typically less than a maximum internal width dimension W5 of the branch vessel into which the balloon 18 is inserted. However, in some arrangements, one or both of the widths W1, W2 are at least the same size as the internal width dimension of the branch vessel into which the balloon 18 is inserted. When the width W1 is smaller than the branch vessel internal width dimension, it can be easier to insert the branch balloon 18 into the branch vessel of a vessel bifurcation. The greater width W2 can minimize spacing between the second portion 58 and the branch vessel into which the branch balloon 18 is inserted to improve resistance by the balloon 18 to axial and radial movement of the catheter assembly 100 relative to the vessel bifurcation.


A method of using the catheter assembly 100 to treat a vessel bifurcation (e.g., vessel bifurcation 26 having main and branch vessels 28, 30 shown in FIGS. 1-5) is now described with reference to FIGS. 15-18. The main guidewire 22 is positioned within the main vessel 28 distally beyond an ostium of the branch vessel 30. The branch guidewire 24 is positioned within the branch vessel 30 distally beyond the ostium of the branch vessel 30. A proximal end portion of the guidewire 22 is inserted into the distal end portion 44 of the main balloon 16 and a proximal end portion of the guidewire 24 is inserted into the distal end portion 52 of the branch balloon 18. The catheter assembly 100 is advanced over the guidewire 22 to a position traversing the ostium into branch vessel 30. A proximal end portion (not shown) of the main catheter shaft 12 is coupled to a manifold (not shown) that controls delivery of inflation fluid to and from the main and branch balloons 16, 18. The catheter assembly 100 is oriented radially and axially relative to the branch vessel 30 such that the branch aperture 74 and branch balloon 18 are facing the ostium of branch vessel 30. Inflation fluid is delivered to the main and branch balloons 16, 18. The branch balloon 18 is typically inflated into the inflated state shown in FIG. 16 prior to inflating of the main balloon 16 into the inflated state (see FIG. 17). The inflated branch balloon 18 extends through the branch aperture 74 into the branch vessel 28 to help axially and radially orient the stent 20 relative to the ostium of the branch vessel 24. The pressure within the main balloon 16 resulting from further delivery of inflation fluid increases sufficiently to expand the stent 20 into the expanded state shown in FIG. 17.


As discussed above, the stent 20 is typically secured to the main balloon 16 using, for example, a crimping technique. Securing the stent 20 and balloon 16 together provides a fixed axial and radial orientation of the branch balloon 18 relative to the side opening 74 in the stent 20 as the balloons 16, 18 are expanded.


After the stent 20 has been fully expanded into engagement with the main vessel 28, the main and branch balloons 16, 18 are deflated by removal of inflation fluid through the main catheter shaft 12. The deflated catheter assembly 100 is removed proximally from the stent 20. The shape of the branch balloon 18, means of attachment of the branch balloon 18 to the main balloon 16, and the angle at which the branch balloon 18 extends relative to the main balloon 16 can all contribute to improved ease in retracting the catheter assembly 100 from the stent 20.


After removal of the catheter assembly 100 from the stent 20, a dilation catheter 32 is advanced over the guidewire 24 (or a different guidewire that has been advance through the branch aperture 74 of stent 20) through an interior of the stent 20 and out of the branch aperture 74 into the branch vessel 30. The dilation catheter 32 is inflated to expand the expandable structure 76 surrounding the branch aperture 74. Preferably, the dilation catheter 32 expands the expandable structure 76 into engagement with the branch catheter 30, in particular, the carina 29 of vessel bifurcation 26 at the distal juncture between the main and branch vessels 28, 30 (see FIG. 5). The dilation catheter 32 is then deflated and removed proximally.


The vessel bifurcation 26, after post-dilation treatment by dilation catheter 32, can be further treated with other stents, inflatable balloons, or other devices and methods. For example, a separate branch stent can be inserted through the branch aperture 74 into the branch vessel 30 and expanded. Preferably, the additional branch stent overlaps with the expandable structure 76 to provide a substantially continuous structure of stent material between the stent 20 and the branch stent positioned within the branch vessel 30. Alternatively, expansion of the expandable structure 76 can be performed using the separate branch stent rather than the dilation catheter 32.


In another arrangement related to catheter assembly 100, a longitudinal position of the main guidewire 22 is fixed relative to the main balloon 16. In one example, the main guidewire lumen 48 can be eliminated completely and the distal end of the main balloon 16 is secured directly to the main guidewire 22 instead of the main guidewire lumen 48. In another example, the main guidewire lumen 48 extend to a location proximal of the distal end of the main balloon 16 (e.g., to a distal end of the main catheter shaft 12) and the distal end of the main balloon 16 is secured directly to the main guidewire 22. In a still further example, the main guidewire lumen 48 remains positioned as shown in FIGS. 15-17 and the main guidewire 22 is secured to the main guidewire lumen 48 to fix a longitudinal position of the main guidewire 22 relative to the main balloon 16.


Another example catheter assembly 200 is now described with reference to FIGS. 19-21. Catheter assembly 200 is similar to catheter assembly 100 in that the branch balloon 18 is positioned on the main balloon 16 and the branch guidewire lumen 62 extends through the branch balloon 18 to a distal end portion 52 of the branch balloon 18. The branch guidewire lumen 62 is sized to advance over a branch guidewire 24 when the catheter assembly 200 is used for treatment of a vessel bifurcation (e.g., see vessel bifurcation 26 in FIGS. 1-5). The main guidewire 22 is typically positioned within a main branch of the vessel bifurcation and the branch guidewire 24 is positioned within a branch vessel of the vessel bifurcation. The catheter assembly 200 in the deflated state shown (not shown) is advanced over the main and branch guidewires 22, 24 to a treatment site of the vessel bifurcation.



FIG. 19 illustrates the branch balloon 18 inflated about the branch guidewire housing 61 and extending at an angle β relative to the main balloon 16. The main balloon 16 is shown inflated about the main guidewire housing 47. As discussed above with reference to catheter assembly 100, the branch balloon 18 can inflate into the extended position shown in FIG. 20 before the main balloon 16 inflates, at the same time the main balloon 16 inflates, or after the main balloon 16 inflates.


The guidewire housings 47, 61 can be secured together along at least a portion of their length. FIG. 20 illustrates a cross-section of the catheter shaft 12 and guidewire housings 47, 61 at a location proximal of the main balloon 16. The guidewire housings 47, 61 are combined as a single guidewire shaft 90. Some configurations for the guidewire shaft 90 provide a reduced overall profile for the guidewire housings 47, 61 as compared to using two separate guidewire shafts (e.g., see the stacked guidewire housings 47, 61 in FIG. 20). The use of a single guidewire shaft 90 can also provide an overall circular cross-section for the combined guidewire housings 47, 61. The guidewire shaft 90 can be formed as, for example, an extruded member or a co-molded member. The guidewire shaft 90 can be transitioned in shape and size into to separate shafts that define the guidewire housings 47, 61 as shown in the cross-section of FIG. 21. The guidewire housings 47, 61 are preferably shaped as separate shaft members at their distal ends to provide a generally circular outer circumference surface against which the distal ends 44, 52 of the balloons 16, 18, respectively, can be secured to provide a fluid tight connection.



FIGS. 22-24 illustrate aspects of a port bond arrangement 92 for use in a catheter assembly such as the assembly 200 described above. The port bond arrangement provides a pair of rapid exchange (Rx) ports for the guidewires 22, 24 at a location proximal of the main balloon 16 and distal of a proximal end portion (not shown) of the catheter shaft 12. The rapid exchange ports for the guidewires 22, 24 can be positioned adjacent to each other or axially spaced apart from each other. FIG. 22 illustrates a first guidewire port 43 positioned along one side of the port bond arrangement 92 at a proximal end portion of a main guidewire housing 47. A second guidewire port (not shown) can be positioned on a side opposite the port 43 at a proximal end portion of a branch guidewire housing 61. FIG. 23 illustrates one arrangement for the main and branch guidewire housings 47, 61 combined as a single guidewire shaft 90. In other arrangements, the guidewire housings 47, 61 can be separate shaft members having a generally circular cross-section.


The port bond arrangement 90 includes first and second catheter shaft 12a, 12b. The first catheter shaft 12a can be, for example, any desired hypotube structure. The second catheter shaft 12b can be referred to a as midshaft member that spans between the first catheter shaft 12a and the main balloon 16. The second catheter shaft 12b includes a guidewire bond region 94 wherein the guidewire housings 47, 61 are exposed to provide access to the Rx ports (e.g., port 43). The second catheter shaft 12b defines an inflation lumen 50 that is in fluid communication with the balloons 16, 18 and an inflation lumen (not numbered) defined by the first catheter shaft 12a. FIG. 23 illustrates an example configuration for the inflation lumen defined by the second catheter shaft 12b at a location just distal of the guidewire port 43. FIG. 24 illustrates an example configuration for the inflation lumen 50 at a location distal of the guidewire bond region 94. Other configurations for the inflation lumen 50 and the guidewire bond region 94 are possible.


The port bond arrangement 90 can further include a core wire 25 that extends through inflation lumens defined by the first and second catheter shafts 12a, b. The core wire 25 can provide support and rigidity for the port bond arrangement 90 and the catheter assemblies 100, 200 generally. The core wire 25 can be positioned permanently using, for example, welding or adhesives, or can be a separately insertable and removable member.


Referring now to FIGS. 25-27, an alternative catheter shaft configuration is described with reference to a combined main balloon 16 and branch balloon 18 arrangement. As shown in the cross-sectional view of FIG. 26, the catheter shaft 12 can define an inflation lumen 50, a main guidewire lumen 48, and a branch guidewire lumen 62 along at least that portion of the catheter shaft 12 that is proximal of the main balloon 16. At a location within the main balloon 16, the catheter branch 12 is divided into at least a main guidewire housing 47 that defines the main guidewire lumen 48, and a branch guidewire housing 61 that defines the branch guidewire lumen 62. The guidewire shaft 12 can include a least one inflation lumen port in fluid communication with the inflation lumen 50 and exposed within an interior of the main balloon 16 to provide inflation of the balloons 16, 18.



FIG. 27 illustrates an alternative configuration for the catheter shaft 12. The catheter shaft 12 in FIG. 27 defines main and branch guidewire housings 47, 61 and two inflation lumens 50A, 50B. Alternative numbers of lumens and arrangements of lumens in the catheter shaft 12 are possible. In one arrangement, both of the lumens 50A, 50B are in fluid communication with both the main balloon 16 and branch balloon 18. In other arrangements, one of the inflation lumens 50A, 50B is in fluid communication with only the main balloon 16 and the other of the inflation lumens 50A, 50B is in fluid communication only with the branch balloon 18. The catheter shaft 12 shown in FIGS. 25-27 can be made using, for example, extruding or molding techniques.



FIG. 28 illustrates a balloon arrangement 300 that includes a main balloon 16 and a branch balloon 18. The branch balloon 18 is positioned at a location between proximal and distal ends 44, 46 of the main balloon 16. The branch balloon 18 can be co-molded with the main balloon 16. Alternatively, the branch balloon 18 can be formed as a separate member that is mounted to the main balloon 16 in a separate assembly step. The branch balloon 18 extends in a direction generally radially away from the main balloon 16. In some cases, there may be challenges involved in providing the branch balloon 18 at an angle β that is less than 90°, particularly when using molding techniques or methods of mounting a separately formed branch balloon 18 to an exterior of the main balloon 16. One way to obtain an inflated arrangement of the branch balloon 18 at an angle β less than 90° is to first position the branch balloon 18 on the main balloon 16 so the branch balloon 18 extends at any desired angle β when inflated (e.g., 90°), and then tether one side of the branch balloon 18 to the main balloon 16 with a tether member 80. FIG. 28 illustrates the tether member 80 secured at a top end portion 52 of the branch balloon along a distal facing side 53 of the branch balloon 18. The length of the tether member 80 is less than a maximum length of the branch balloon 18 measured between the distal end 52 and a proximal end 54. The tether member 80 tends to pull the branch balloon 18 in a distal direction when the branch balloon 18 is inflated to orient the branch balloon 18 at an angle β less than 90°.


The tether member 80 can be secured to the main and branch balloons 16, 18 in a variety of ways using, for example, adhesives, laser welding, and co-molding techniques. The use of multiple tether members 80 for a single branch balloon 18 is also possible. The tether member 80 can also be secured at multiple locations along the length of the branch balloon 18, and may not in some arrangements be secured to the main balloon 16. The tether member 18 can also be used in other balloon arrangements such as the balloon arrangement described below with reference to FIG. 29, wherein the branch balloon 18 is positioned on a separate side inflation member.



FIG. 29 illustrates an alternative balloon arrangement that includes a main balloon 16 and a branch balloon 18, wherein the branch balloon 18 is positioned on a separate side inflation member 85. The side inflation member 85 includes a distal portion 82 having a proximal end thereof secured in fluid communication with the branch balloon 18 and a distal end thereof secured to the main guidewire housing 47 at a location distal of the main balloon 16. The side inflation member 85 also includes a proximal portion 84 having a distal end thereof secured in fluid communication with the branch balloon 18 and a proximal end thereof secured to the catheter shaft 12 at a location proximal of the main balloon 16. The branch balloon 18 extends at an angle β less than 90° relative to a longitudinal dimension of the main balloon 16. The angled configuration of the branch balloon 18 can be provided using, for example, the molding or tethering techniques described above with reference to the remaining Figures.


The angled arrangement of the branch balloon 18 can help maintain a branch catheter 14 in proper radial alignment with the main and branch balloon 16, 18 during inflation of the balloons 16, 18. Proper radial alignment of the branch catheter 14 sometimes includes positioning the branch catheter 14 along a proximal side surface of the branch balloon 18 during inflation of the main and branch balloon 16, 18 as shown in FIG. 29, which can help maintain proper radial and axial alignment of features of the stent (not shown) being expanded by the balloons 16, 18 relative to features of the vessel bifurcation being treated.


In the example catheter assemblies described above, the branch balloon can include a lubricious coating on an exterior surface thereof. The coating can promote insertion of the branch balloon into the branch vessel of a vessel bifurcation. The coating can also improve removal of the branch balloon from the branch vessel and the branch aperture of the stent when deflating and removing the catheter assembly from the vessel bifurcation after expansion of the stent. Some example coating for use with the branch balloon include hydrophilic polymers such as polyarylene oxides, polyvinylpyrolidones, polyvinylalcohols, hydroxyl alkyl cellulosics, algins, saccharides, caprolactones, and the like, and mixtures and combinations thereof. Hydrophilic polymers can be blended among themselves or with formulated amounts of water insoluble compounds (including some polymers) to yield coating with suitable lubricity, bonding and solubility. In some examples, portions of the devices described herein can be coated with a hydrophilic polymer or a fluoropolymer such as polytetrafluoroethylene (PTFE), better known as TEFLON®.


The branch balloons 18 described herein can be made as separate pieces that are attached to either a branch catheter shaft (catheter assembly 10) or main balloon (catheter assemblies 100, 200) in a separate step. Alternatively, the branch balloon can be formed from a branch catheter shaft or a main balloon in a molding process that results in an integral piece. In one example process, the branch balloon is molded from an extruded tube as is typical in the art. The extruded tube can be ground or otherwise reduced in thickness in advance of or after the molding step to create uniform thickness of material along the length of the branch balloon regardless of the width of the branch balloon. In one example, the thickness of the material for branch balloon is about 0.003 to about 0.01 inches when in an inflated state.


The overall structure of branch balloon 18 provides for insertion into the branch vessel 30 when being inflated and during inflation of the main balloon 16 without obstruction. Further, the branch balloon 18 has sufficient stiffness to resist bending when rotational and axial forces are applied to the inflated branch balloon 18 during inflation of the main balloon 16. The stiffness of the branch balloon 18 is dependent upon at least the following parameters: thickness of the material of the branch balloon 18, the type of attachment to the main balloon (catheter assemblies 100, 200) or to the branch catheter shaft (catheter assembly 10), the width, length, and cross-sectional shape of the branch balloon 18, and the type of material used in the branch balloon 18. The branch balloon 18 is also structured to avoid dilating the branch vessel 30. The width and compliance of the branch balloon 18 are two parameters that can influence whether the branch balloon 18 dilates the branch vessel 30. Typically, the branch balloon 18 is configured as a semi-compliant balloon.


While the example stent delivery systems 10, 100 described above illustrate a balloon expandable stent having a predetermined branch aperture, other types of stents can be used with the catheter features described above. A variety of stents can be used with the systems and methods disclosed herein. Examples of such stents can be found in, for example, in U.S. Pat. Nos. 6,210,429 and 6,325,826 to Vardi et al., and co-pending U.S. patent application Ser. No. 10/644,550, filed on Aug. 21, 2003, and titled “Stent With a Protruding Branch Portion For Bifurcated Vessels,” the entire contents of which are incorporated herein by reference. In general, the aforementioned stents have a tubular shape with a continuous sidewall that extends between the proximal and distal ends. Proximal and distal stent apertures are defined at respective proximal and distal ends of the stent. A branch aperture is defined in the sidewall of the stent. The branch aperture provides access between an interior of the stent and an exterior of the stent. In some stents, the branch aperture includes expandable structure around a peripheral edge thereof that expands in a generally radial outward direction relative to a longitudinal axis of the stent. The expandable structure can be configured to extend into the branch lumen of the bifurcation upon expansion of the stent. The stent includes a plurality of strut structures that define the sidewall. The struts are expandable from a first, unexpanded state to a second, expanded state. Typically, the stent is configured to maintain the expanded state. The struts define a plurality of cell openings or cells along a length of the stent. The size and shape of the cells is typically different than the size and shape of the branch aperture. The stent is typically expanded once the stent is properly positioned in the main lumen of the bifurcation with the branch aperture aligned radially and axially with an opening into the branch lumen. The stent, including the expandable structure surrounding the branch aperture, can be expanded with a single expansion or with multiple expansions using, 10 for example, one or more inflatable balloons.



FIGS. 30-34 illustrate another example catheter assembly 400 that includes a main catheter shaft 12, a main balloon 16, a branch balloon 18, and a stent 20. The catheter assembly 400 can be used with a main guidewire 22 and a branch guidewire 24 that help position the catheter assembly 400 relative to features of a vessel bifurcation during use. The branch balloon 18 is retractable into an internal volume of the main balloon 16 as shown in FIGS. 30, 31, and 34. Delivering inflation fluid to the main balloon 12 inflates the main balloon to expand the stent 20. Further delivery of inflation to the main balloon 12 causes the branch balloon 18 to inflate and protrude out of the main balloon 12, through the stent 20, and radially outward into an extended position relative to the main balloon 12. The branch balloon 18 can be configured to retract back into the main balloon 12 when deflated. Further details concerning the operation and features of the catheter assembly 400 are provided in the following description.


The main catheter shaft 12 includes a distal end 40. The main balloon 16 is positioned extending from the distal end 40 of the main catheter shaft 12. The main balloon 16 includes distal and proximal ends 44, 46, and a main guidewire housing 47 that extends continuously from at least the distal end 40 of the main catheter shaft 12 to the distal end 44 of the main balloon 16. Typically, a proximal end 46 of the main balloon 16 is mounted to the main catheter shaft 12 while the distal end 44 of the main balloon 16 is mounted to the main guidewire housing 47.


The branch balloon 18 includes distal and proximal ends 52, 54, a branch 5 guidewire housing 61 having a distal end 59 and a proximal end 69 (see FIG. 34). The branch balloon 18 can be formed integral with the main balloon 16 using, for example, a vacuum molding process. In other examples, the branch balloon 18 can be separately formed and later secured to the main balloon 16 in a separate step using, for example, heat welding or laser welding of the proximal end 54 of the branch balloon 18 to the main balloon 16 at a location positioned between the distal and proximal ends 44, 46 of the main balloon 16. The distal end 52 of the branch balloon 18 is typically secured to the branch guidewire housing 61.


In one example arrangement, the proximal end 69 of the guidewire housing 61 exits the main catheter shaft 12 at a rapid exchange port area 98. The rapid exchange port area 98 is typically positioned at a distance L4 from the distal end 52 of the branch balloon 18 as shown in FIG. 34. The location of the rapid exchange port area 98 can also be determined relative to the distal end 59 of the branch guidewire housing 61, which is a distance L4 plus a distance L5 as shown in FIG. 34, wherein the distance L5 is the distance measured from the distal end 52 of the branch balloon 18 to the distal end 59 of the branch guidewire housing 61. A distance L4 is typically in the range of about 50 to about 300 millimeters, and more preferably in the range of about 50 to about 200 millimeters. The distance L5 is typically in the range of about 10 to about 100 mm, and more preferably about 10 to about 20 mm.


In other arrangements, a separate rapid exchange port area can be provided for the main guidewire housing 47 at a distal end thereof. In one example, the rapid exchange port area for the main guidewire housing 47 is positioned within the same rapid exchange port area as the branch guidewire housing 61.


The stent 20 includes distal and proximal ends 70, 72, a side opening 74, and an expandable portion 76 that defines the side opening 74. The expandable portion 76 is configured to expand radially outward into, for example, a branch vessel at a vessel bifurcation (see FIG. 30). The stent 20 is positioned on the main balloon 16 with the side opening 74 aligned with the location on the main branch 16 where the branch balloon 18 extends radially outward as shown in FIGS. 32 and 33.


The catheter assembly 400 can be used to treat a vessel bifurcation 26 that includes a main vessel 28 and a branch vessel 30 extending from the main vessel 28 as shown in FIG. 34. Typically, when treating a vessel bifurcation 26, the catheter assembly 400 is arranged with the main balloon 16 and stent 20 positioned within the main vessel 28 and the side opening 74 of the stent 20 arranged facing an opening into the branch vessel 30. Later inflation of the main and branch balloons 16, 18 result in the expandable portion 76 of the stent 20 extending into the branch vessel 30 while the body of the stent 20 remains in the main vessel 28.


Providing a catheter assembly wherein the branch balloon is retractable into the main balloon, otherwise described as an invaginated branch balloon, makes it possible to maintain the branch balloon entirely within the stent prior to inflation of the main and branch balloons. Using a retractable branch balloon in combination with a branch guidewire housing that extends through the side opening in the stent and into a branch vessel can provide improved axial and radial alignment of the stent side opening relative to the branch vessel prior to and during inflation of the main and branch balloons, while also providing a path along which the branch balloon can travel as the branch balloon extends from within the main balloon when uninflated (see FIGS. 30 and 31) to a radially outward extending position when fully inflated (see FIG. 33). As the branch balloon is inflated and begins to move from within the main balloon through the side opening 74 of the stent 20, the expandable portion 76 (also referred to as “petals”) are also moved in a radially outward direction.


In other arrangements when at least a portion of the side balloon extends through the side opening 74 prior to inflation of the side balloon (e.g., see catheter assembly 100 shown in FIGS. 15-17) inflation of the side balloon might result, in some instances, in bending or otherwise moving portions of the expandable portion 76 of the stent 20 in a radial inward direction or in a primarily longitudinal direction. Particularly, that portion of the expandable portion 76 oriented on a distal side of the side opening 74 can be more susceptible to deformation and/or movement in some direction other than a radial outward direction and into the branch vessel.


A common orientation of the branch vessel 30 relative to the main vessel 28 is extending at an acute angle such as shown in FIG. 34. Therefore, positioning a branch balloon 18 on the main balloon 16 so that the branch balloon 18 extends at an acute angle relative to the main balloon 16 when fully inflated can help better align and engage both the branch balloon 18 and the expandable portion 76 of the stent 20 with the branch vessel 30. The angle λ (see FIG. 33) at which the branch balloon 18 extends relative to the main balloon 16 can be in the range of, for example, 0° to about 90°, and more preferably about 30° to about 60°. Orienting the branch vessel 18 at an obtuse angle relative to the main balloon 16 rather than a right angle or acute angle is less common, but is a possible arrangement within the scope of the present disclosure.


Typically, the proximal end 69 of the branch guidewire housing 61 maintains a fixed axial position relative to the main catheter shaft 12 (e.g., at the rapid exchange port area 96 shown in FIG. 34). Since the distal end 54 of the branch balloon 18 is secured to the branch guidewire housing 60, the branch guidewire housing distal end 59 should be advanced distally into the branch vessel 30 as the branch balloon 18 inflates and moves from a position internal the main balloon 16 to a position extending radially outward from the main balloon 16. In order for the branch guidewire housing 61 to axially move in a distal direction, there must either be an additional amount of slack or extra length of branch guidewire housing 61 available between the distal end 52 of the branch balloon 18 and the proximal end 69 of the branch guidewire lumen 61, or the branch guidewire lumen 61 preferably include properties that permit elongation of the branch guidewire housing 61. In one example, the branch guidewire housing 61 comprises a material with a percentage elongation capability of about 1% to about 5%, and preferably about 2% to about 3%. Thus, for a branch guidewire housing 61 having a length L4 of about 200 mm, about 5 to about 10 mm of elongation is possible. This amount of elongation should be sufficient for permitting the branch balloon 18 to extend from a position within the main balloon 16 (see FIG. 30) to a position extending radially outward from the main balloon 16 (see FIG. 33) when fully inflated.


Providing a branch guidewire housing 61 with elongation properties can provide elastic characteristics that can assist in withdrawing the branch balloon 18 back into the stent 20 during deflation of the main and branch balloon 16, 18. Typically, elongation of the branch guidewire housing 61 is elastic in nature such that any percentage elongation results in recoil back to the original length. An axial force is applied to the branch guidewire housing 61 as the branch balloon 18 inflates, thereby elongating the branch guidewire housing 61. Once the branch guidewire 18 begins to deflate, the applied axial force begins to release and the elastic forces of the branch guidewire housing 61 react in an axially proximal direction thereby drawing the branch balloon 18 back through the side opening 74 of the stent 20, and sometimes back into the interior of the main balloon 16. This ability to retract the branch balloon 18 automatically can provide less chances of, for example, the branch balloon 18 catching on or deforming the stent 20 when retracting the main and branch balloons 16, 18 from the stent 20.


A method of treating a vessel bifurcation is now described with reference to FIGS. 30-34 and catheter 400. A main guidewire 22 is advanced into the main vessel 28 to a position distally beyond an opening into the branch vessel 30. A branch guidewire 24 is also advanced through the main vessel 28 and into the branch vessel 30. The catheter assembly 400 is advanced over the main and branch guidewires 22, 24 into position adjacent to the vessel bifurcation 26. The distal end 59 of the branch guidewire housing 61 extends through the side opening 74 to a position outside of the stent 20 while the stent 20 is crimped around deflated main and branch balloons 16, 18. Further distal advancement of the catheter assembly 400 advances the distal end 59 of the branch guidewire housing 61 into the branch vessel 30 and helps orient the side opening 74 of the stent in axial and radial orientation with an opening into the branch vessel 30.


With the side opening 74 oriented facing the opening into the branch vessel 30, the main balloon 16 is inflated to expand the main body of the stent into engagement with the main vessel 28 (see FIG. 31). Delivery of still further inflation fluid begins to inflate the branch balloon 18 thereby moving the branch balloon 18 from a position within the main balloon 16 radially outward through the side opening 74 (see FIG. 32) until the branch balloon 18 is fully inflated (see FIG. 33). Movement of the branch balloon 18 from the position shown in FIG. 31 to the position shown in FIG. 33 moves the expandable portion 76 of the stent 20 into a radially outward orientation and into the branch vessel 30. Such movement of the branch balloon 18 also elongates the branch guidewire housing 61 some percent elongation. With the stent expandable portion 76 extending at least partially into the branch vessel 30, the main and branch balloons 16, 18 can be deflated and withdrawn from the stent 20.


After removal of the catheter assembly 400 from the stent 20, a dilation catheter 32 can be advanced over the guidewire 22 (or a different guidewire that has been advanced through the branch aperture 74 of stent 20) through an interior of the stent 20 and out of the branch aperture 74 into the branch vessel 30. The dilation catheter 32 is inflated to expand the expandable structure 76 surrounding the branch aperture 74. Preferably, the dilation catheter 32 expands the expandable structure 76 into engagement with the branch catheter 30, in particular, the carina 29 of vessel bifurcation 26 at the distal juncture between the main and branch vessels 28, 30 (see FIG. 5). The dilation catheter 32 is then deflated and removed proximally. The vessel bifurcation 26, after post-dilation treatment by dilation catheter 32, can be further treated with other stents, inflatable balloons, or other devices and methods. For example, a separate branch stent can be inserted through the branch aperture 74 into the branch vessel 30 and expanded. Preferably, the additional branch stent overlaps with the expandable structure 76 to provide a substantially continuous structure of stent material between the stent 20 and the branch stent positioned within the branch vessel 30. Alternatively, expansion of the expandable structure 76 can be performed using the separate branch stent rather than the dilation catheter 32.


One aspect of the present disclosure relates to a catheter assembly for treatment of a vessel bifurcation. The catheter assembly includes a main catheter shaft, a stent having a branch aperture defined in a sidewall of the stent between proximal and distal ends of the stent, a main balloon, and a branch balloon. The main balloon is positioned at a distal end portion of the main catheter shaft and extends through the stent between proximal and distal ends of the stent. The branch balloon extends from within the stent adjacent the main balloon, through the branch aperture of the stent, and into a branch vessel of the vessel bifurcation when inflated. The branch balloon when inflated has a length dimension along a longitudinal direction of extension of the branch balloon that is at least as great as a maximum width dimension of the branch balloon measured perpendicular to the length dimension.


Another aspect of the present disclosure relates to a catheter assembly adapted for treatment of a vessel bifurcation. The catheter assembly includes a main catheter shaft, a main balloon, and a branch balloon. The main balloon extends from a distal end portion of the main catheter shaft within a main vessel of the vessel bifurcation. The branch balloon extends radially outward relative to the main balloon when inflated. The branch balloon has a length sufficient to extend into a branch vessel of the vessel bifurcation when the main balloon is in a deflated state and the branch balloon is in an inflated state.


A further aspect of the present disclosure relates to a method of treating a vessel bifurcation with a catheter assembly. The vessel bifurcation includes a main vessel, a branch vessel extending from the main vessel, a stent having a branch aperture between proximal and distal ends of the stent, a main catheter shaft, a main balloon at a distal end portion of the main catheter shaft, and a branch balloon. The main balloon extends between proximal and distal ends of the stent. The branch balloon extends through the branch aperture of the stent. Some of the steps of the method include positioning the catheter assembly within the main vessel with the branch aperture facing an ostium of the branch vessel, and inflating the branch balloon to extend the branch balloon from within the main vessel into the branch vessel. A further step of the method includes expanding the stent with the main balloon after inflating the branch balloon. The branch balloon maintains contact with an interior of the branch vessel to resist axial and rotational movement of the catheter assembly while the main balloon is inflated.


Another aspect of the present disclosure relates to a catheter assembly for treatment of a vessel bifurcation. The catheter assembly includes a main catheter shaft, a main balloon, a branch balloon, and first and second guidewire housings. The main catheter shaft has a proximal end portion and a distal end portion. The main balloon extends from the distal end portion of the main catheter shaft and includes a proximal end portion and a distal end portion. The branch balloon has a proximal end portion and a distal end portion, and extends in a direction radially outward relative to the main balloon. The first guidewire housing defines a first guidewire lumen and extends through a portion of the main catheter shaft and through the main balloon between the proximal and distal end portion of the main balloon. The second guidewire housing defines a second guidewire lumen and extends through a portion of the main catheter shaft, into the main balloon through the proximal end portion of the main balloon, and through the branch balloon between the proximal and distal ends of the side balloon.


A further aspect of the present disclosure relates to a catheter assembly adapted for treatment of a vessel bifurcation. The catheter assembly includes a main catheter shaft, a main balloon, a branch balloon, and a stent. The main catheter shaft has a proximal end portion and a distal end portion. The main balloon extends from the distal end portion of the main catheter shaft and includes a proximal end portion, a distal end portion, and a main balloon interior. The branch balloon includes a proximal end portion and a distal end portion, and extends in a direction radially outward relative to the main balloon when in an inflated state. The stent includes a branch aperture positioned at a location between proximal and distal open ends of the stent. The main balloon extends within the stent from the proximal open end to the distal open end of the stent. The branch balloon extends through the branch aperture of the stent when inflated and is positioned within the stent prior to inflation. In some arrangements, the branch balloon is positioned within the main balloon interior prior to inflation. The above specification, examples and data provide a complete description of the manufacture and use of the composition of the invention. Since many embodiments of the invention can be made without departing from the spirit and scope of the invention, the invention resides in the claims hereinafter appended.

Claims
  • 1. A catheter assembly adapted for treatment of a vessel bifurcation, comprising: a main catheter shaft having a proximal end portion and a distal end portion;a main balloon positioned at the distal end portion of the main catheter shaft, the main balloon extending within a main vessel of the vessel bifurcation;a branch balloon when inflated extending radially outward at a branch angle relative to the main balloon, the branch balloon having a length sufficient to extend into a branch vessel of the vessel bifurcation when the main balloon is in a deflated state and the branch balloon is in an inflated state, wherein the branch balloon has at least three distinct sections along a length of the branch balloon, including a base section adjacent the main balloon, and first and second sections extending away from the main balloon, the base, first, and second sections each having a length, wherein the combined lengths of the base, first, and second sections is equal to a length of the branch balloon, the base, first, and second sections having different maximum width dimensions, wherein the maximum width dimension of the base section is greater than the maximum width dimension of the first and second sections;a main guidewire housing defining a main guidewire lumen that extends through the main balloon; anda branch guidewire housing that defines a branch guidewire lumen, wherein the branch guidewire housing extends through branch balloon.
  • 2. The catheter assembly of claim 1, wherein the branch balloon is molded integral with the main balloon.
  • 3. The catheter assembly of claim 1, further comprising a stent, the stent having a proximal open end, a distal open end, and a branch aperture, the branch aperture defined in a sidewall of the stent at a location between the proximal and distal open ends of the stent, wherein the branch balloon extends through the branch aperture when inflated.
  • 4. The catheter assembly of claim 3, wherein the maximum width dimension of the first and second sections of the branch balloon extending outside of the stent is less than the maximum width dimension of the base section of the branch vessel, wherein the maximum width dimension of the base section is greater than a maximum width dimension of the branch aperture of the stent such that the base section is retained within the stent when the branch balloon is inflated.
  • 5. The catheter assembly of claim 1, wherein the branch angle is within the range of 25° to 90° inclusive relative to a longitudinal axis of the main balloon.
  • 6. The catheter assembly of claim 1, further comprising a branch catheter defining a branch guidewire lumen and having a distal end portion, wherein the branch balloon is positioned at the distal end portion of the branch catheter.
  • 7. The catheter assembly of claim 1, further comprising a tether member, the tether member having a distal end mounted to the branch balloon and a proximal end mounted to the main balloon, wherein the tether defines in part the branch angle when the branch balloon is inflated.
  • 8. The catheter assembly of claim 1, wherein the first and second sections each have a substantially constant circumference along a majority of their length.
  • 9. A catheter assembly for treatment of a vessel bifurcation, the catheter assembly comprising: a main catheter shaft having a proximal end portion and a distal end portion;a main balloon extending from the distal end portion of the main catheter shaft, the main balloon having a proximal end portion and a distal end portion;a branch balloon, the branch balloon having a proximal end portion and a distal end portion, the branch balloon extending in a direction radially outward relative to the main balloon;a first guidewire housing, the first guidewire housing defining a first guidewire lumen and extending through a portion of the main catheter shaft and through the main balloon between the proximal and distal end portions of the main balloon; anda second guidewire housing, the second guidewire housing defining a second guidewire lumen and extending through a portion of the main catheter shaft, into the main balloon through the proximal end portion of the main balloon, and through the branch balloon between the proximal and distal ends of the branch balloon.
  • 10. The catheter assembly of claim 9, wherein the first and second guidewire housings are formed as a single shaft that defines the first and second guidewire lumens.
  • 11. The catheter assembly of claim 9, wherein at least a portion of the main catheter shaft and at least a portion of the first and second guidewire housings are formed as a single shaft that defines the first and second guidewire lumens.
  • 12. The catheter assembly of claim 11, wherein the single shaft further defines an inflation lumen, the inflation lumen in fluid communication with at least the main balloon.
  • 13. The catheter assembly of claim 9, wherein the branch balloon is integral with the main balloon.
  • 14. The catheter assembly of claim 9, wherein the branch balloon is positioned within an interior portion of the main balloon when the branch balloon is in a deflated state, and the branch balloon is positioned exterior of the main balloon when in an inflated state.
RELATED APPLICATIONS

This application claims priority to U.S. Provisional Application Ser. No. 61/018,043, filed Dec. 31, 2007, entitled “ALIGNMENT BALLOON FOR BIFURCATIONS STENT DELIVERY SYSTEM AND METHODS”, the entirety of which is incorporated herein by reference.

US Referenced Citations (515)
Number Name Date Kind
1596754 Moschelle Aug 1926 A
3657744 Ersek Apr 1972 A
3872893 Roberts Mar 1975 A
3884242 Bazell et al. May 1975 A
4140126 Choudhury Feb 1979 A
4309994 Grunwald Jan 1982 A
4385631 Uthmann May 1983 A
4410476 Redding et al. Oct 1983 A
4413989 Schjeldahl et al. Nov 1983 A
4421810 Rasmussen Dec 1983 A
4453545 Inoue Jun 1984 A
4503569 Dotter Mar 1985 A
4552554 Gould et al. Nov 1985 A
4681570 Dalton Jul 1987 A
4689174 Lupke Aug 1987 A
4731055 Melinyshyn et al. Mar 1988 A
4733665 Palmaz Mar 1988 A
4739762 Palmaz Apr 1988 A
4759748 Reed Jul 1988 A
4762128 Rosenbluth Aug 1988 A
4769005 Ginsburg et al. Sep 1988 A
4769029 Patel Sep 1988 A
4774949 Fogarty Oct 1988 A
4819664 Nazari Apr 1989 A
4872874 Taheri Oct 1989 A
4878495 Grayzel Nov 1989 A
4896670 Crittenden Jan 1990 A
4900314 Quackenbush Feb 1990 A
4905667 Foerster et al. Mar 1990 A
4906244 Pinchuk et al. Mar 1990 A
4909258 Kuntz et al. Mar 1990 A
4946464 Pevsner Aug 1990 A
4950227 Savin et al. Aug 1990 A
4957501 Lahille et al. Sep 1990 A
4957508 Kaneko et al. Sep 1990 A
4964850 Bouton et al. Oct 1990 A
4983167 Sahota Jan 1991 A
4994071 MacGregor Feb 1991 A
4998923 Samson et al. Mar 1991 A
5042976 Ishitsu et al. Aug 1991 A
5054501 Chuttani et al. Oct 1991 A
5059170 Cameron Oct 1991 A
5059177 Towne et al. Oct 1991 A
5061240 Cherian Oct 1991 A
5064435 Porter Nov 1991 A
5085664 Bozzo Feb 1992 A
5102403 Alt Apr 1992 A
5102417 Palmaz Apr 1992 A
5104404 Wolff Apr 1992 A
5117831 Jang et al. Jun 1992 A
5122125 Deuss Jun 1992 A
5135536 Hillstead Aug 1992 A
5147317 Shank et al. Sep 1992 A
5159920 Condon et al. Nov 1992 A
5176617 Fischell et al. Jan 1993 A
5192297 Hull Mar 1993 A
5195984 Schatz Mar 1993 A
5211683 Maginot May 1993 A
5217440 Frassica Jun 1993 A
5222971 Willard et al. Jun 1993 A
5226913 Pinchuk Jul 1993 A
5234457 Andersen Aug 1993 A
5236446 Dumon Aug 1993 A
5244619 Burnham Sep 1993 A
5254619 Ando Oct 1993 A
5257974 Cox Nov 1993 A
5263932 Jang Nov 1993 A
5282472 Companion et al. Feb 1994 A
5304220 Maginot Apr 1994 A
5320605 Sahota Jun 1994 A
5324257 Osborne et al. Jun 1994 A
5337733 Bauerfeind et al. Aug 1994 A
5338300 Cox Aug 1994 A
5342295 Imran Aug 1994 A
5342297 Jang Aug 1994 A
5342387 Summers Aug 1994 A
5350395 Yock Sep 1994 A
5383892 Cardon et al. Jan 1995 A
5387235 Chuter Feb 1995 A
5395332 Ressemann et al. Mar 1995 A
5395334 Keith et al. Mar 1995 A
5404887 Prather Apr 1995 A
5409458 Khairkhahan et al. Apr 1995 A
5413581 Goy May 1995 A
5413586 Dibie et al. May 1995 A
5417208 Winkler May 1995 A
5425765 Tiefenbrun et al. Jun 1995 A
5437638 Bowman Aug 1995 A
5443497 Venbrux Aug 1995 A
5445624 Jimenez Aug 1995 A
5449373 Pinchasik et al. Sep 1995 A
5449382 Dayton Sep 1995 A
5456694 Marin et al. Oct 1995 A
5456712 Maginot Oct 1995 A
5456714 Owen Oct 1995 A
5458605 Klemm Oct 1995 A
5462530 Jang Oct 1995 A
5476471 Shifrin et al. Dec 1995 A
5487730 Marcadis et al. Jan 1996 A
5489271 Andersen Feb 1996 A
5489295 Piplani et al. Feb 1996 A
5496292 Burnham Mar 1996 A
5505702 Arney Apr 1996 A
5507768 Lau et al. Apr 1996 A
5507769 Marin et al. Apr 1996 A
5514154 Lau et al. May 1996 A
5514178 Torchio May 1996 A
5522801 Wang Jun 1996 A
5531788 Dibie et al. Jul 1996 A
5545132 Fagan et al. Aug 1996 A
5549553 Ressemann et al. Aug 1996 A
5549554 Miraki Aug 1996 A
5562620 Klein et al. Oct 1996 A
5562724 Vorwerk et al. Oct 1996 A
5562725 Schmitt et al. Oct 1996 A
5562726 Chuter Oct 1996 A
5569201 Burns Oct 1996 A
5569295 Lam Oct 1996 A
5571087 Ressemann et al. Nov 1996 A
5575771 Walinsky Nov 1996 A
5575817 Martin Nov 1996 A
5575818 Pinchuk Nov 1996 A
5591228 Edoga Jan 1997 A
5593442 Klein Jan 1997 A
5607444 Lam Mar 1997 A
5609605 Marshall et al. Mar 1997 A
5609625 Piplani et al. Mar 1997 A
5609627 Goicoechea et al. Mar 1997 A
5609629 Fearnot et al. Mar 1997 A
5613949 Miraki Mar 1997 A
5613980 Chauhan Mar 1997 A
5613981 Boyle et al. Mar 1997 A
5617878 Taheri Apr 1997 A
5626600 Horzewski et al. May 1997 A
5628788 Pinchuk May 1997 A
5632762 Myler May 1997 A
5632763 Glastra May 1997 A
5632772 Alcime et al. May 1997 A
5634902 Johnson et al. Jun 1997 A
5636641 Fariabi Jun 1997 A
5639278 Dereume et al. Jun 1997 A
5643340 Nunokawa Jul 1997 A
5653743 Martin Aug 1997 A
5662614 Edoga Sep 1997 A
5669924 Shaknovich Sep 1997 A
5669932 Fischell et al. Sep 1997 A
5676696 Marcade Oct 1997 A
5676697 McDonald Oct 1997 A
5679400 Tuch Oct 1997 A
5681345 Euteneuer Oct 1997 A
5683450 Goicoechea et al. Nov 1997 A
5683451 Lenker et al. Nov 1997 A
5690642 Osborne et al. Nov 1997 A
5693084 Chuter Dec 1997 A
5693086 Goicoechea et al. Dec 1997 A
5693088 Lazarus Dec 1997 A
5697971 Fischell et al. Dec 1997 A
5707348 Krogh Jan 1998 A
5707354 Salmon et al. Jan 1998 A
5709713 Evans Jan 1998 A
5716365 Goicoechea et al. Feb 1998 A
5718683 Ressemann et al. Feb 1998 A
5718724 Goicoechea et al. Feb 1998 A
5720735 Dorros Feb 1998 A
5723004 Dereume et al. Mar 1998 A
5724977 Yock et al. Mar 1998 A
5728158 Lau et al. Mar 1998 A
5733303 Israel et al. Mar 1998 A
5735893 Lau et al. Apr 1998 A
5746766 Edoga May 1998 A
5749825 Fischell et al. May 1998 A
5749848 Jang et al. May 1998 A
5749890 Shaknovich May 1998 A
5755734 Richter et al. May 1998 A
5755735 Richter et al. May 1998 A
5755770 Ravenscroft May 1998 A
5755771 Penn et al. May 1998 A
5755773 Evans et al. May 1998 A
5755778 Kleshinski May 1998 A
5762631 Klein Jun 1998 A
5776101 Goy Jul 1998 A
5776161 Globerman Jul 1998 A
5776180 Goicoechea et al. Jul 1998 A
5782906 Marshall et al. Jul 1998 A
5788707 Del Toro et al. Aug 1998 A
5792105 Lin et al. Aug 1998 A
5800450 Lary et al. Sep 1998 A
5800508 Goicoechea et al. Sep 1998 A
5814061 Osborne et al. Sep 1998 A
5817126 Imran Oct 1998 A
5824008 Bolduc et al. Oct 1998 A
5824036 Lauterjung Oct 1998 A
5824039 Piplani et al. Oct 1998 A
5824040 Cox et al. Oct 1998 A
5824041 Lenker et al. Oct 1998 A
5824042 Lombardi et al. Oct 1998 A
5824044 Quiachon et al. Oct 1998 A
5827320 Richter et al. Oct 1998 A
5833650 Imran Nov 1998 A
5836966 St. Germain Nov 1998 A
5837008 Berg et al. Nov 1998 A
5843031 Hermann et al. Dec 1998 A
5843160 Rhodes Dec 1998 A
5843164 Frantzen et al. Dec 1998 A
5846204 Solomon Dec 1998 A
5851210 Torossian Dec 1998 A
5851464 Davila et al. Dec 1998 A
5855600 Alt Jan 1999 A
5855601 Bessler et al. Jan 1999 A
5865178 Yock Feb 1999 A
5868777 Lam Feb 1999 A
5871536 Lazarus Feb 1999 A
5871537 Holman et al. Feb 1999 A
5891133 Murphy-Chutorian Apr 1999 A
5893887 Jayaraman Apr 1999 A
5897588 Hull et al. Apr 1999 A
5906640 Penn et al. May 1999 A
5907893 Zadno-Azizi et al. Jun 1999 A
5913895 Burpee et al. Jun 1999 A
5913897 Corso, Jr. et al. Jun 1999 A
5921958 Ressemann et al. Jul 1999 A
5922020 Klein et al. Jul 1999 A
5928248 Acker Jul 1999 A
5938682 Hojeibane et al. Aug 1999 A
5938696 Goicoechea et al. Aug 1999 A
5948016 Jang Sep 1999 A
5951599 McCrory Sep 1999 A
5961490 Adams Oct 1999 A
5961548 Shmulewitz Oct 1999 A
5967986 Cimochowski et al. Oct 1999 A
5972017 Berg et al. Oct 1999 A
5972018 Israel et al. Oct 1999 A
6007517 Anderson Dec 1999 A
6013054 Jiun Yan Jan 2000 A
6013091 Ley et al. Jan 2000 A
6015431 Thornton et al. Jan 2000 A
6017324 Tu et al. Jan 2000 A
6017363 Hojelbane Jan 2000 A
6024763 Lenker et al. Feb 2000 A
6030414 Taheri Feb 2000 A
6033434 Borghi Mar 2000 A
6033435 Penn et al. Mar 2000 A
6036682 Lange et al. Mar 2000 A
6039749 Marin et al. Mar 2000 A
6042597 Kveen et al. Mar 2000 A
6045557 White et al. Apr 2000 A
6048361 Von Oepen Apr 2000 A
6056775 Borghi et al. May 2000 A
6059823 Holman et al. May 2000 A
6059824 Taheri May 2000 A
6066166 Bischoff et al. May 2000 A
6066168 Lau et al. May 2000 A
6068655 Seguin et al. May 2000 A
6071285 Lashinski et al. Jun 2000 A
6086611 Duffy et al. Jul 2000 A
6090127 Globerman Jul 2000 A
6090128 Douglas Jul 2000 A
6096045 Del Toro et al. Aug 2000 A
6096073 Webster et al. Aug 2000 A
6099497 Adams et al. Aug 2000 A
6102938 Evans et al. Aug 2000 A
6113579 Eidenschink et al. Sep 2000 A
6117117 Mauch Sep 2000 A
6117156 Richter et al. Sep 2000 A
6126685 Lenker et al. Oct 2000 A
6129738 Lashinski et al. Oct 2000 A
6129754 Kanesaka et al. Oct 2000 A
6142973 Carleton et al. Nov 2000 A
6143002 Vietmeier Nov 2000 A
6146356 Wang et al. Nov 2000 A
6152945 Bachinski et al. Nov 2000 A
6159187 Park et al. Dec 2000 A
6159238 Killion et al. Dec 2000 A
6165195 Wilson et al. Dec 2000 A
6165197 Yock Dec 2000 A
6165214 Lazarus Dec 2000 A
6168621 Vrba Jan 2001 B1
6179867 Cox Jan 2001 B1
6183506 Penn et al. Feb 2001 B1
6183509 Dibie Feb 2001 B1
6190353 Makower et al. Feb 2001 B1
6190403 Fischell et al. Feb 2001 B1
6193746 Strecker Feb 2001 B1
6203568 Lombardi et al. Mar 2001 B1
6203569 Wijay Mar 2001 B1
6210380 Mauch Apr 2001 B1
6210429 Vardi et al. Apr 2001 B1
6210431 Power Apr 2001 B1
6210433 Larre Apr 2001 B1
6217527 Selmon et al. Apr 2001 B1
6217608 Penn et al. Apr 2001 B1
6221080 Power Apr 2001 B1
6221090 Wilson Apr 2001 B1
6221097 Wang et al. Apr 2001 B1
6221098 Wilson et al. Apr 2001 B1
6231563 White et al. May 2001 B1
6231598 Berry et al. May 2001 B1
6231600 Zhong May 2001 B1
6235051 Murphy May 2001 B1
6241762 Shanley Jun 2001 B1
6251133 Richter et al. Jun 2001 B1
6254593 Wilson Jul 2001 B1
6258073 Mauch Jul 2001 B1
6258099 Mareiro et al. Jul 2001 B1
6258115 Dubrul Jul 2001 B1
6258116 Hojeibane Jul 2001 B1
6258121 Yang et al. Jul 2001 B1
6258534 Laugharn, Jr. et al. Jul 2001 B1
6261273 Ruiz Jul 2001 B1
6261305 Marotta et al. Jul 2001 B1
6261316 Shaolian et al. Jul 2001 B1
6261319 Kveen et al. Jul 2001 B1
6264662 Lauterjung Jul 2001 B1
6264682 Wilson et al. Jul 2001 B1
6264686 Rieu et al. Jul 2001 B1
6273911 Cox et al. Aug 2001 B1
6273913 Wright et al. Aug 2001 B1
6287277 Yan Sep 2001 B1
6287314 Lee et al. Sep 2001 B1
6290673 Shanley Sep 2001 B1
6293967 Shanley Sep 2001 B1
6293968 Taheri Sep 2001 B1
6299634 Bergeron Oct 2001 B1
6302906 Goicoechea et al. Oct 2001 B1
6309412 Lau et al. Oct 2001 B1
6309414 Rolando et al. Oct 2001 B1
6312459 Huang et al. Nov 2001 B1
6319275 Lashinski et al. Nov 2001 B1
6325821 Gaschino et al. Dec 2001 B1
6325826 Vardi et al. Dec 2001 B1
6331186 Wang et al. Dec 2001 B1
6334864 Amplatz et al. Jan 2002 B1
6334870 Ehr et al. Jan 2002 B1
6342066 Toro et al. Jan 2002 B1
6346089 Dibie Feb 2002 B1
6350277 Kocur Feb 2002 B1
6350278 Lenker et al. Feb 2002 B1
6355060 Lenker et al. Mar 2002 B1
6361544 Wilson et al. Mar 2002 B1
6361555 Wilson Mar 2002 B1
6361558 Hieshima et al. Mar 2002 B1
6371978 Wilson Apr 2002 B1
6379372 Dehdashtian et al. Apr 2002 B1
6383213 Wilson et al. May 2002 B2
6383215 Sass May 2002 B1
6387120 Wilson et al. May 2002 B2
6395018 Castaneda May 2002 B1
6398792 O'Connor Jun 2002 B1
6398804 Spielberg Jun 2002 B1
6428567 Wilson et al. Aug 2002 B2
6428570 Globerman Aug 2002 B1
6432133 Lau et al. Aug 2002 B1
6436090 Sanchez et al. Aug 2002 B1
6436104 Hojeibane Aug 2002 B2
6436134 Richter et al. Aug 2002 B2
6440161 Madrid et al. Aug 2002 B1
6443880 Blais et al. Sep 2002 B2
6468302 Cox et al. Oct 2002 B2
6475166 Escano Nov 2002 B1
6475208 Mauch Nov 2002 B2
6478814 Wang et al. Nov 2002 B2
6478816 Kveen et al. Nov 2002 B1
6482211 Choi Nov 2002 B1
6485511 Lau et al. Nov 2002 B2
6488694 Lau et al. Dec 2002 B1
6494875 Mauch Dec 2002 B1
6494905 Zedler et al. Dec 2002 B1
6508836 Wilson et al. Jan 2003 B2
6511504 Lau et al. Jan 2003 B1
6511505 Cox et al. Jan 2003 B2
6514281 Blaesser et al. Feb 2003 B1
6517558 Gittings et al. Feb 2003 B2
6520988 Colombo et al. Feb 2003 B1
6527799 Shanley Mar 2003 B2
6540719 Bigus et al. Apr 2003 B2
6540779 Richter et al. Apr 2003 B2
6554858 Dereume et al. Apr 2003 B2
6572647 Supper et al. Jun 2003 B1
6576009 Ryan et al. Jun 2003 B2
6579309 Loos et al. Jun 2003 B1
6579312 Wilson et al. Jun 2003 B2
6582394 Reiss et al. Jun 2003 B1
6582459 Lau et al. Jun 2003 B1
6596020 Vardi et al. Jul 2003 B2
6596022 Lau et al. Jul 2003 B2
6599315 Wilson Jul 2003 B2
6599316 Vardi et al. Jul 2003 B2
6602284 Cox et al. Aug 2003 B2
6641609 Globerman Nov 2003 B2
6645241 Strecker Nov 2003 B1
6645242 Quinn Nov 2003 B1
6652573 von Oepen Nov 2003 B2
6669717 Marotta et al. Dec 2003 B2
6676667 Mareiro et al. Jan 2004 B2
6676691 Hosny Jan 2004 B1
6679911 Burgermeister Jan 2004 B2
6682536 Vardi et al. Jan 2004 B2
6689156 Davidson et al. Feb 2004 B1
6692483 Vardi et al. Feb 2004 B2
6695877 Brucker et al. Feb 2004 B2
6706062 Vardi et al. Mar 2004 B2
6709440 Callol et al. Mar 2004 B2
6736841 Musbach et al. May 2004 B2
6746411 Khaw Jun 2004 B2
6749628 Callol et al. Jun 2004 B1
6770092 Richter Aug 2004 B2
6776793 Brown et al. Aug 2004 B2
6780174 Mauch Aug 2004 B2
6802856 Wilson Oct 2004 B2
6811566 Penn et al. Nov 2004 B1
6827735 Greenberg Dec 2004 B2
6827736 Perouse Dec 2004 B2
6835203 Vardi et al. Dec 2004 B1
6843803 Ryan et al. Jan 2005 B2
6852124 Cox et al. Feb 2005 B2
6855125 Shanley Feb 2005 B2
6858038 Heuser Feb 2005 B2
6884258 Vardi et al. Apr 2005 B2
6890349 McGuckin, Jr. et al. May 2005 B2
6896699 Wilson et al. May 2005 B2
6905477 McDonnell et al. Jun 2005 B2
6908477 McGuckin, Jr. et al. Jun 2005 B2
6932837 Amplatz et al. Aug 2005 B2
6939368 Simso Sep 2005 B2
6942689 Majercak Sep 2005 B2
6955687 Richter et al. Oct 2005 B2
6955688 Wilson et al. Oct 2005 B2
6962602 Vardi et al. Nov 2005 B2
6980174 Flasza et al. Dec 2005 B2
7004963 Wang et al. Feb 2006 B2
7018400 Lashinski et al. Mar 2006 B2
7056323 Mareiro et al. Jun 2006 B2
7060091 Killion et al. Jun 2006 B2
7105019 Hojeibane Sep 2006 B2
7112225 Ginn Sep 2006 B2
7118593 Davidson et al. Oct 2006 B2
7125419 Sequin et al. Oct 2006 B2
7163553 Limon Jan 2007 B2
7220275 Davidson et al. May 2007 B2
7225518 Eidenschink et al. Jun 2007 B2
7238197 Sequin et al. Jul 2007 B2
7244853 Schreiber et al. Jul 2007 B2
7252679 Fischell et al. Aug 2007 B2
7314480 Eidenschink et al. Jan 2008 B2
7326242 Eidenschink Feb 2008 B2
7334557 Callan Feb 2008 B2
7341598 Davidson et al. Mar 2008 B2
7344514 Shanley Mar 2008 B2
7344556 Seguin et al. Mar 2008 B2
7387639 Bourang et al. Jun 2008 B2
7425219 Quadri Sep 2008 B2
7476243 Eidenschink Jan 2009 B2
7483738 Tamarkin et al. Jan 2009 B2
20010025195 Shaolian et al. Sep 2001 A1
20010037146 Lau et al. Nov 2001 A1
20010039448 Dibie Nov 2001 A1
20020013618 Marotta et al. Jan 2002 A1
20020032478 Boekstegers et al. Mar 2002 A1
20020058990 Jang May 2002 A1
20020123790 White et al. Sep 2002 A1
20020156516 Vardi et al. Oct 2002 A1
20020165604 Shanley Nov 2002 A1
20020193872 Trout, III et al. Dec 2002 A1
20020193873 Brucker et al. Dec 2002 A1
20030009209 Hojelbane Jan 2003 A1
20030009214 Shanley Jan 2003 A1
20030014102 Hong et al. Jan 2003 A1
20030055483 Gumm Mar 2003 A1
20030097169 Brucker et al. May 2003 A1
20030125802 Callol et al. Jul 2003 A1
20030144623 Heath et al. Jul 2003 A1
20030181923 Vardi Sep 2003 A1
20030195606 Davidson et al. Oct 2003 A1
20040015227 Vardi et al. Jan 2004 A1
20040044396 Clerc et al. Mar 2004 A1
20040049259 Strecker Mar 2004 A1
20040059406 Cully et al. Mar 2004 A1
20040117003 Ouriel et al. Jun 2004 A1
20040138737 Davidson et al. Jul 2004 A1
20040148006 Davidson et al. Jul 2004 A1
20040167463 Zawacki et al. Aug 2004 A1
20040176837 Atladottir et al. Sep 2004 A1
20040186560 Alt Sep 2004 A1
20040225345 Fischell et al. Nov 2004 A1
20050004656 Das Jan 2005 A1
20050010278 Vardi et al. Jan 2005 A1
20050015108 Williams et al. Jan 2005 A1
20050060027 Khenansho et al. Mar 2005 A1
20050075722 Chuter Apr 2005 A1
20050096726 Sequin et al. May 2005 A1
20050102021 Osborne May 2005 A1
20050102023 Yadin et al. May 2005 A1
20050119731 Brucker et al. Jun 2005 A1
20050131526 Wong Jun 2005 A1
20050149161 Eidenschink et al. Jul 2005 A1
20050154442 Eidenschink et al. Jul 2005 A1
20050209673 Shaked Sep 2005 A1
20050228483 Kaplan et al. Oct 2005 A1
20050245941 Vardi et al. Nov 2005 A1
20060004323 Chang et al. Jan 2006 A1
20060036315 Yadin et al. Feb 2006 A1
20060041303 Israel Feb 2006 A1
20060064064 Jang Mar 2006 A1
20060079956 Eigler et al. Apr 2006 A1
20060100694 Globerman May 2006 A1
20060173528 Feld et al. Aug 2006 A1
20070067019 Miller et al. Mar 2007 A1
20070073376 Krolik et al. Mar 2007 A1
20070179591 Baker et al. Aug 2007 A1
20070203562 Malewicz et al. Aug 2007 A1
20080065141 Holman et al. Mar 2008 A1
20080086191 Valencia et al. Apr 2008 A1
20080255581 Bourang et al. Oct 2008 A1
20080288041 Holman et al. Nov 2008 A1
20090036830 Jablonski et al. Feb 2009 A1
Foreign Referenced Citations (159)
Number Date Country
2227446 Dec 1997 CA
220864 Jul 1999 CA
2318314 Jul 1999 CA
2403826 Sep 2001 CA
2237829 Nov 2006 CA
9014845.2 Sep 1991 DE
29701883 Mar 1997 DE
29701758 May 1997 DE
60036233 May 2008 DE
0347023 Dec 1989 EP
0515201 Mar 1997 EP
0751752 Jun 1998 EP
0479557 Jul 1998 EP
0891751 Jan 1999 EP
0895759 Feb 1999 EP
0897700 Feb 1999 EP
0783873 Apr 2000 EP
1031328 Aug 2000 EP
0883384 Dec 2000 EP
0862 392 Aug 2001 EP
0808140 Dec 2001 EP
0698380 Feb 2002 EP
0884028 Feb 2002 EP
0705116 Apr 2002 EP
0646365 Jan 2004 EP
0684022 Feb 2004 EP
0897698 Jun 2004 EP
1182989 Dec 2004 EP
0937442 Jan 2005 EP
0551179 Apr 2005 EP
1157674 Jul 2005 EP
0804907 Nov 2005 EP
1031330 Nov 2005 EP
0170513 Jun 2006 EP
0876805 Aug 2006 EP
1190685 Sep 2006 EP
0880949 Jul 2007 EP
1512380 Aug 2007 EP
1031329 Jul 2008 EP
2337002 Jul 1977 FR
2678508 Jan 1993 FR
2740346 Apr 1997 FR
2756173 May 1998 FR
285530 Feb 1928 GB
2385530 Aug 2003 GB
8-299456 Nov 1996 JP
WO 8806026 Aug 1988 WO
WO 9013332 Nov 1990 WO
WO 9112779 Sep 1991 WO
WO 9214508 Sep 1992 WO
WO 9219308 Nov 1992 WO
WO 9304722 Mar 1993 WO
WO 9508965 Apr 1995 WO
WO 9521592 Aug 1995 WO
WO 9629955 Oct 1996 WO
WO 9634580 Nov 1996 WO
WO 9636269 Nov 1996 WO
WO 9641592 Dec 1996 WO
WO 9707752 Mar 1997 WO
WO 9709946 Mar 1997 WO
WO 9715346 May 1997 WO
WO 9716217 May 1997 WO
WO 9726936 Jul 1997 WO
WO 9732544 Sep 1997 WO
WO 9733532 Sep 1997 WO
WO 9741803 Nov 1997 WO
WO 9745073 Dec 1997 WO
WO 9746174 Dec 1997 WO
WO 9817204 Apr 1998 WO
WO 9819628 May 1998 WO
WO 9824104 Jun 1998 WO
WO 9835634 Aug 1998 WO
WO 9836709 Aug 1998 WO
WO 9837833 Sep 1998 WO
WO 9844871 Oct 1998 WO
WO 9847447 Oct 1998 WO
WO 9848733 Nov 1998 WO
WO 9848879 Nov 1998 WO
WO 9852497 Nov 1998 WO
WO 9900835 Jan 1999 WO
WO 9903426 Jan 1999 WO
WO 9904726 Feb 1999 WO
WO 9915103 Apr 1999 WO
WO 9917680 Apr 1999 WO
WO 9915109 Apr 1999 WO
WO 9924104 May 1999 WO
WO 9934749 Jul 1999 WO
WO 9935979 Jul 1999 WO
WO 9936002 Jul 1999 WO
WO 9936015 Jul 1999 WO
WO 9939661 Aug 1999 WO
WO 9944539 Sep 1999 WO
WO 9949793 Oct 1999 WO
WO 9956661 Nov 1999 WO
WO 9958059 Nov 1999 WO
WO 9965419 Dec 1999 WO
WO 0000104 Jan 2000 WO
WO 0007523 Feb 2000 WO
WO 0010489 Mar 2000 WO
WO 0012166 Mar 2000 WO
WO 0013613 Mar 2000 WO
WO 0016719 Mar 2000 WO
WO 0027307 May 2000 WO
WO 0027463 May 2000 WO
WO 0028922 May 2000 WO
WO 0044307 Aug 2000 WO
WO 0044309 Aug 2000 WO
WO 0048531 Aug 2000 WO
WO 0047134 Aug 2000 WO
WO 0049951 Aug 2000 WO
WO 0053122 Sep 2000 WO
WO 0051523 Sep 2000 WO
WO 0057813 Oct 2000 WO
WO 0067673 Nov 2000 WO
WO 0071055 Nov 2000 WO
WO 0071054 Nov 2000 WO
WO 0074595 Dec 2000 WO
WO 0121095 Mar 2001 WO
WO 0121109 Mar 2001 WO
WO 0121244 Mar 2001 WO
WO 0135715 May 2001 WO
WO 0135863 May 2001 WO
WO 0139697 Jun 2001 WO
WO 0139699 Jun 2001 WO
WO 0141677 Jun 2001 WO
WO 0143665 Jun 2001 WO
WO 0143809 Jun 2001 WO
WO 0145594 Jun 2001 WO
WO 0145785 Jun 2001 WO
WO 0149342 Jul 2001 WO
WO 0154621 Aug 2001 WO
WO 0154622 Aug 2001 WO
WO 0158385 Aug 2001 WO
WO 0160284 Aug 2001 WO
WO 0170294 Sep 2001 WO
WO 0170299 Sep 2001 WO
WO 0174273 Oct 2001 WO
WO 0189409 Nov 2001 WO
WO 0200138 Jan 2002 WO
WO 02053066 Jul 2002 WO
WO 02068012 Sep 2002 WO
WO 02076333 Oct 2002 WO
WO 02091951 Nov 2002 WO
WO 02094336 Nov 2002 WO
WO 03007842 Jan 2003 WO
WO 03055414 Jul 2003 WO
WO 03063924 Aug 2003 WO
WO 2004026174 Apr 2004 WO
WO 2004026180 Apr 2004 WO
WO 2005009295 Feb 2005 WO
WO 2005011528 Feb 2005 WO
WO 2005014077 Feb 2005 WO
2005041810 May 2005 WO
WO 2005107643 Nov 2005 WO
WO 2006028925 Mar 2006 WO
WO 2006033126 Mar 2006 WO
2006113838 Oct 2006 WO
WO 2006124162 Nov 2006 WO
WO 2007100672 Sep 2007 WO
Non-Patent Literature Citations (22)
Entry
Caputo et al., “Stent Jail: A Minimum-Security Prison,” The American Journal of Cardiology, vol. 77, pp. 1226-1230, Jun. 1, 1996.
Carrie et al., “T-Shaped Stent Placement: A Technique for the Treatment of Dissected Bifurcation Lesions,” Catheterization and Cardiovascular Diagnosis, vol. 37, pp. 311-313, 1996.
Chevalier et al., “Placement of Coronary Stents in Bifurcation Lesions by the “Culotte” Technique,” The American Journal of Cardiology, vol. 82, pp. 943-949, Oct. 15, 1998.
Colombo et al., “Kissing Stents for Bifurcational Coronary Lesion,” Catheterization and Cardiovascular Diagnosis, vol. 30, pp. 327-330, 1993.
U.S. Appl. No. 08/642,297, filed May 3, 1996, to Richter et al.
U.S. Appl. No. 09/325,996 filed Jun. 4, 1999, to Vardi et al.
U.S. Appl. No. 09/533,616, filed Mar. 22, 2000, to Vardi et al.
U.S. Appl. No. 09/614,472, filed Jul. 11, 2000, to Davidson et al.
U.S. Appl. No. 09/663,111, filed Sep. 15, 2000, to Davidson et al.
U.S. Appl. No. 12/183,163, filed Jul. 31, 2008, to Gunderson.
U.S. Appl. No. 12/183,869, filed Jul. 31, 2008, to Prindle et al.
U.S. Appl. No. 12/183,894, filed Jul. 31, 2008, to Tegels.
Dichek et al., “Seeding of Intravascular Stents with Genetically Engineered Endothelial Cells,” Circulation,vol. 80, No. 5, pp. 1347-1353, Nov. 1989.
Fischman et al., “A Randomized Comparison of Coronary-Stent Placement and Balloon Angioplasty in the Treatment of Coronary Artery Disease,” New England Journal of Medicine, vol. 331, No. 8, pp. 496-501, Aug. 25, 1994.
Katoh et al., “New Double Wire Technique to Stent Ostial Lesions,” Catheterization and Cardiovascular Diagnosis, vol. 40, pp. 400-402, 1997.
Lear et al., “The Northridge Earthquake as a Trigger for Acute Myocardial Infarction,” 1 page, 1996.
Lewis et al., “Acute Procedural Results in the Treatment of 30 Coronary Artery Bifurcation Lesions with a Double-Wire Atherectomy Technique for Side-Branch Protection,” American Heart Journal, vol. 127, No. 6, pp. 1600-1607, 1994.
Nakamura et al., “Techniques for Palmaz-Schatz Stent Deployment in Lesions with a Large Side Branch,” Catheterization and Cardiovascular Diagnosis, vol. 34, pp. 353-361, 1995.
Satler et al. “Bifurcation Disease: To Treat or Not to Treat,” Catheterization and Cardiovascular Interventions, vol. 50, pp. 411-412, 2000.
SCIMED Life Systems, Inc., “TRIO 14 PTCA Catheter, Re-Engineering Over-The-Wire Balloon Technology,” Brochure, 4 pages, 1994.
Serruys et al., “A Comparison of Balloon Expandable-Stent Implantation with Balloon Angioplasty in Patients with Coronary Artery Disease,” The New England Journal of Medicine, vol. 331, No. 8, pp. 489-495, Aug. 25, 1994.
Yamashita et al., “Bifurcation Lesions: Two Stents Versus One Stent—Immediate and Follow-up Results,” Journal of the American College of Cardiology, vol. 35, No. 5, pp. 1145-1151, Apr. 2000.
Related Publications (1)
Number Date Country
20090171430 A1 Jul 2009 US
Provisional Applications (1)
Number Date Country
61018043 Dec 2007 US