1. Field of Invention
The present invention relates to the field of keys and to key operated latch-actuators.
The invention relates in particular to keys having a tubular stem and to latch-actuators having a stud for receiving the tubular key.
The keys and latch-actuators of the invention are adapted and can be made in a wide variety of binary-coded forms so that a particular latch will be openable only by a key having a binary-coded configuration corresponding to that of the latch-actuator.
2. Brief Description of the Related Art
Latches can be used to secure doors, panels or other members. It is desired that the latch be securely locked when the latch is not in use and therefore prevent unauthorized use by one who does not have a key or tool to unlock the latch. Once unlocked the latch can be opened and then closed.
Although many latches are known in the prior art, none are seen to teach or suggest the unique features of the present invention or to achieve the advantages of the present invention.
The present invention is directed to a latch for securing two members together and a key for opening the latch. The latch can be attached to one of the members such as a panel. The latch can be unlocked with the key by a user. Illustrated and described in U.S. Pat. Nos. 4,878,367 to Bisbing and 4,583,775 to Bisbing the specifications of which are herein incorporated in their entirety by reference, are forms of latches to which the key and latch-actuator can be applied.
A closure element or door has mounted thereon a latch having a support base and a shaft or means for rotating a pawl which can be mounted on the shaft The pawl is movable rotationally by the shaft and also can be movable in the longitudinal or axial direction of the shaft. To latch a door to a frame, the pawl is first rotated to a position such that it is in line with frame member. In one embodiment of the present invention the pawl can then be moved longitudinally so that it engages the edge of the frame member.
The key has a tubular stem The stem portion has a bore having an internal circumferential surface having at selected locations recesses of preselected circumferential width. In accordance with the present invention, the positions and circumferential width of the recesses vary from key to key, thus, each key is different from every other key.
The latch actuator comprises a cap portion, cap subassembly and a bushing. The bushing has at least one bushing projection or means for preventing insertion of the key such that the key can only be inserted in the bushing when outer key recesses are mated with the bushing projection thus permitting insertion of the key. The cap is provided with projections which are of a size and so positioned as to correspond with the recesses of the key so as to allow the cap to enter into the bore of the key thus resulting in a mating engagement thereof.
In a preferred embodiment of the present invention, the bushing rotates independently of the cap and a cap portion of the cap rotates independently of the cap subassembly which consists of the remaining portion or parts of the cap. Because the cap portion rotates freely from the cap subassembly which is the part of the cap driven by the key, the arrangement makes it impossible, or at least very difficult, to rotate the shaft and in turn the pawl by means of a tool other than the tubular key which mates with the cap subassembly of the latch-actuator.
In another embodiment of the invention, the cap portion which rotates freely and independently of the cap subassembly is held to the cap subassembly by a rivet.
The present invention will be now described with reference to the accompanying drawings in which:
As already indicated, the present invention is directed to a coded key and latch-actuator and these will now be described in detail.
Referring to
It has been found convenient to express the key combination as a binary number in which a single notch or recess counts as a “zero” and an intervening single unnotched area counts as a “one”. For example, the internal circumference of the bore of the tubular key 80 is assumed to be divided into twelve equal divisions. Assume that the count starts at a point in
In
The bushing 9 has at least one bushing projection 6 or means for preventing insertion of an unauthorized tool such that the key 80 can only be inserted in the bushing 9 when outer key recess(es) 86 are mated with the bushing projection(s) 6 thus permitting insertion of the key 80. The cap subassembly 10 is provided with projections 15 which are of a size and so positioned as to correspond with the recesses 85 of the key 80 so as to allow the cap subassembly 10 to enter into the bore of the key 80 thus resulting in a mating engagement of key recesses 85 on key 80 and projections 15 on cap subassembly. In an alternate embodiment of the present invention the bushing 9 can have two or more bushing projections 6 as seen in
The cap portion 8 rotates independently of the cap subassembly 10 which consists of the remaining portion or parts of the cap. In a preferred embodiment of the present invention, the bushing 9 rotates independently of the cap portion 8 and the cap subassembly 10. Because the cap portion 8 rotates freely from the cap subassembly 10 which is the part of the cap driven by the key 80, the arrangement makes it impossible, or at least very difficult, to rotate the shaft 50 and in turn the pawl 70 by means of a tool other than the tubular key 80 which mates with the cap subassembly 10 of the latch-actuator.
Illustrated in
A latch 1 is shown which uses a single cross pin 60 mounted on and carried by the shaft 50 which carries the latching pawl 70. This single cross pin 60 functions both as a cam follower and also as a motion-control pin. Cam slots 25 are provided for each end of the cross pin 60. Two sets intersecting motion-control slots, i.e. axial slots 41 and circumferential slots 42 are provided in a sleeve 40. When the cross pin 60 is in the axial motion-control slot 41, only axial movement of the latching pawl 70 is possible. When the cross pin 60 is in the lateral motion-control slot 41 or recess, only angular movement of the latching pawl 70 is possible. The structural arrangement is such that during a single continuous turning motion of the latch 1, the cross pin 60 transfers from one of the motion-control slots 41 to the other, thereby to achieve, in sequence, during unlatching, axial and then angular movement of the latching pawl 70, and to achieve, in sequence, during latching, angular and then axial movement of the latching pawl 70. The sequential steps may, however, be reversed by modifying the latch structure.
The major components of a latch of the present invention are a drive plug or cap subassembly 10 a bushing 9, a support base 30, a rotatable slotted sleeve cam 20, a fixed slotted motion-control sleeve 40, a shaft 50, and a latch pawl 70. Shaft 50 carries a cross pin 60 which functions both as a cam follower and also as a motion-control pin.
As seen in
As seen in
The sleeve-like cam 20 is provided with a pair of cam slots 25 spaced 180 degrees apart circumferentially. Each of the cam slots 25 runs in a direction which has both circumferential and axial components.
Positioned coaxially between shaft 50 and the sleeve-like cam 20 is a fixed motion control sleeve 40 having a pair of axial slots 41 and a pair of circumferential slots 42. One slot of each pair is spaced 180 degrees from the other. The inward end of each axial slot 41 connects with one end of one of the circumferential slots 42. The motion-control sleeve 40 is prevented from moving rotationally relative to support base 30 by a pair of ears 44 which project axially inwardly into slots 45 in the inward end 32 of the support base 30.
The support base 30 is a generally hollow cylindrical component which is mounted on the door 2 of the cabinet in a rectangular or square cutout portion 3 of the door 2, while a sleeve portion 31 projects inwardly through a hole or opening in door 2. The inward end 32 of support base 30 is closed except for a central hole through which shaft 50 passes. The inward ends of the fixed motion-control sleeve 40 and rotatable sleeve-like cam 20 abut against the end 32 of the support base 30.
The pairs of respective axial and circumferential slots 41 and 42 in the fixed motion-control sleeve 40 function respectively as axial motion-control slots and as lateral motion-control slots. These motion-control slots receive in sequence, in one order or the other, the opposite ends of cross pin 60, as will be described.
Shaft 50 is an elongated shaft, the outer or head end of which is received within the cavity or bore 18 in cap subassembly 10. Shaft 50 projects inwardly through the hole in the inward end 32 of support base 30, and beyond, with the shaft 50 so supported that the center axis of the shaft 50 coincides with the center axis of motion-control sleeve 40 and cam 20. The inner end 54 of shaft 50 is threaded, and thereon is mounted a latching pawl 70, with the position of the pawl 70 on the shaft 50 being held in place by a pair of nuts 71 and being axially adjustable.
The relative positions of motion-control sleeve 40 and cam 20 could be reversed. That is, motion-control sleeve 40 could be radially outside of cam 20 rather than within 20 as shown.
Mounted on shaft 50 is the cross pin 60 which projects laterally in both directions from the shaft. Cross pin 60 functions as a cam follower and also as a motion-control pin.
The outward end of shaft 50 is provided with a center bore 61 in which a coil compression spring 62 is placed. The outward end of compression spring 62 bears against the cap 10. Thus, compression spring 62 biases shaft 50 inwardly toward the unlatching position. This biasing force maintains the ends of cross pin 60 in close contact with the inner wall 22 of cam slot 25. The biasing spring 62 is desirable but not essential since even without the spring 62 the ends of the cross pin 60 would follow the cam slots 25. However, the cam slots 25 have a width which is somewhat greater than the diameter of the cross pin 60 and accordingly the biasing spring 62 is useful in maintaining the cross pin 60 against the inward wall of the axial and circumferential slots 41 and 42 respectively. Cross pin 60 controls whether, in response to rotation of the cap subassembly 10, shaft 50 and pawl 70 will move only axially or only angularly. This is determined by whether the opposite ends of pin 60 are within the axial motion-control slots 41 or in the lateral motion-control slots 42.
As seen best in
In
To unlatch the door 2 from the cabinet frame 4, cap subassembly 10 is turned in the counterclockwise direction when viewing
After cap subassembly 10 and cam 20 have been rotated as a unit cross pin 60 has moved axially inwardly, and is now aligned with the opposed lateral slots 42. Further rotation of cap 10 and cam 20 now causes rotational movement of cross pin 60, shaft 50 and pawl 70, as the opposed ends of cross pin 60 move into the opposed lateral circumferential slots 42. In this manner, pawl 70 is moved out of alignment with frame member 4 and, after further rotation, the door 2 is fully unlatched, as is illustrated in
The latching action is simply the reverse of the unlatching action which has just been described. On latching, as cap subassembly 10 is turned clockwise, the opposite ends of cross pin 60 move laterally in the lateral circumferential slots 42 and shaft 50 rotates on its axis. Then the cross pin 60 translates axially outwardly. These sequential motions are caused by the cam walls 22 of the cam slots 25 which urge the ends of the cross pin 60 through the lateral motion-control circumferential slots 42 in the lateral or circumferential direction until the ends of the cross pin 60 abut against the edge of the axial motion-control slots 41. Thereafter, cam walls 22 of the cam slots 25 urge the ends of the cross pin 60 axially outwardly through axial slots 41. Thus, cam 20 and the motion-control slots, i.e. axial slots 41 and circumferential slots 42 cause the angular and axial motions to take place in sequence, in response to turning the cap subassembly 10 in the latching direction in one continuous motion.
As seen in
An alternate embodiment of the present invention is shown in
The latch and all external components can be stainless steel for high strength and toughness and to ensure tamper-resistance.
It will be apparent to those skilled in the art that various modifications can be made to the latch of the present invention without departing from the scope and spirit of the invention, and it is intended that the present invention cover modifications and variations of the latch which are within the scope of the appended claims and their equivalents.
This application claims priority to a provisional U.S. patent application Ser. No. 60/845,335 entitled “BINARY CODED KEY AND TAMPER RESISTANT LATCH” filed Sep. 17, 2006.
Number | Date | Country | |
---|---|---|---|
60845335 | Sep 2006 | US |