Bioerodible metallic ENDOPROSTHESES

Information

  • Patent Grant
  • 8002821
  • Patent Number
    8,002,821
  • Date Filed
    Thursday, September 13, 2007
    17 years ago
  • Date Issued
    Tuesday, August 23, 2011
    13 years ago
Abstract
Endoprostheses such as stents are disclosed that are, or that include portions that are, bioerodible.
Description
TECHNICAL FIELD

This disclosure relates to endoprostheses, and to methods of making and delivering the same.


BACKGROUND

The body includes various passageways such as arteries, other blood vessels, and other body lumens. These passageways sometimes become occluded or weakened. For example, the passageways can be occluded by a tumor, restricted by plaque, or weakened by an aneurysm. When this occurs, the passageway can be reopened or reinforced with a medical endoprosthesis. An endoprosthesis is typically a tubular member that is placed in a lumen in the body. Examples of endoprostheses include stents, covered stents, and stent-grafts.


Endoprostheses can be delivered inside the body by a catheter that supports the endoprosthesis in a compacted or reduced-size form as the endoprosthesis is transported to a desired site. Upon reaching the site, the endoprosthesis is expanded, e.g., so that it can contact the walls of the lumen.


The expansion mechanism may include forcing the endoprosthesis to expand radially. For example, the expansion mechanism can include the catheter carrying a balloon, which carries a balloon-expandable endoprosthesis. The balloon can be inflated to deform and to fix the expanded endoprosthesis at a predetermined position in contact with the lumen wall. The balloon can then be deflated, and the catheter withdrawn from the lumen.


SUMMARY

This disclosure generally relates to endoprostheses that are, or that include portions that are, erodible or bioerodible.


In one aspect, the disclosure features implantable endoprostheses that include a bioerodible body that includes a first bioerodible material. The bioerodible body carries a plurality of discrete, spaced apart biocrodible regions that include a second biocrodible material different from the first biocrodible material.


In embodiments, each discrete, spaced apart region extends from an outer surface of the bioerodible body. In such embodiments, a longitudinal spacing between immediately adjacent regions can be, e.g., between about 1.0 μm and about 35 μm, and/or a transverse spacing between immediately adjacent regions can be, e.g., between about 1.0 μm and about 35 μm, measured along an outer surface of the bioerodible body from which the regions extend. Also, in such embodiments, a thickness of the bioerodible body can be, e.g., from about 0.5 mm to about 5.0 mm; a thickness of each region can be, e.g., from about 0.01 μm to about 5 μm; and/or an outermost top surface of each region can have, e.g., an area of not more than about 25 μm2.


In embodiments, each discrete, spaced apart region extends inwardly beyond an outermost surface of the bioerodible body. In such embodiments, a longitudinal spacing between immediately adjacent regions can be, e.g., between about 1.0 μm and about 35 μm and/or a transverse spacing between immediately adjacent regions can be, e.g., between about 1.0 μm and about 35 μm, measured along an outer surface of the bioerodible body. Also, in such embodiments, a thickness of the bioerodible body can be, e.g., from about 0.5 mm to about 5.0 mm; a thickness of each region can be, e.g., from about 0.01 μm to about 5 μm; and/or an outermost top surface of each region has an area of not more than about 25 μ2.


In embodiments, the endoprosthesis further includes a coating about the endoprosthesis. If desired, the coating can, e.g., include a therapeutic agent thereon and/or therein, such as one that inhibits restenosis.


The biocrodible body can be, e.g., in the form of a tube.


The bioerodible body can include, e.g., a bioerodible metallic material, such as iron, magnesium, zinc, aluminum, calcium, or alloys thereof.


Each region can include, e.g., a bioerodible metallic material.


In embodiments, the bioerodible body and each region includes a bioerodible metal. If the metals are disparate, the biocrodible body and each region can together define a galvanic couple. In such instances, a standard cell potential for the galvanic couple can be, e.g., at least +1.0 V.


The implantable endoprosthesis can be, e.g., in the form of a stent, a stent-graft or a filter.


If desired, the biocrodible body and/or one or more of the regions can be, e.g., electrically connected to a battery. Such embodiments can, e.g., increase an overall bioerosion rate of the endoprosthesis. In such embodiments, a current of, e.g., from about 1 μA to about 250 μA can flow through a circuit that includes the bioerodible body and/or one or more of the regions and the battery.


In another aspect, the disclosure features, implantable endoprostheses that include a bioerodible body. Fragments having a maximum dimension of not more than about 25 μm are generated during erosion of the implantable endoprosthesis in Ringer's solution.


For example, the bioerodible body can include a first bioerodible material, and can carry a plurality of discrete, spaced apart bioerodible regions that include a second bioerodible material different from the first bioerodible material.


Preferably, the maximum dimension is not more than about 10 μm, not more than about 5 μm or not more than 1 μm.


In another aspect, the disclosure features implantable endoprostheses that include a bioerodible body and a coating about the bioerodible body. The coating substantially prevents fragments of the bioerodible body from detaching from the endoprosthesis during bioerosion.


In embodiments, the bioerodible body includes a metallic material, and/or the bioerodible body includes a first bioerodible material, and the bioerodible body carries a plurality of discrete, spaced apart bioerodible regions that include a second bioerodible material different from the first bioerodible material. If desired, each discrete, spaced apart region can extend from an outer surface of the bioerodible body.


In embodiments, the coating is disposed between the spaced apart regions.


In another aspect, the disclosure features methods of making implantable endoprostheses. The methods include providing a bioerodible body that includes a first bioerodible material; and forming a plurality of discrete, spaced apart bioerodible regions that includes a second bioerodible material different from the first bioerodible material. The regions are formed such that the bioerodible body carries the bioerodible regions. In some embodiments, a coating is formed on the bioerodible body.


Aspects and/or embodiments may have one or more of the following advantages. The endoprostheses can be configured to erode in a predetermined fashion and/or at a predetermined time after implantation into a subject, e.g., a human subject. For example, the predetermined manner of erosion can be from an inside of the endoprosthesis to an outside of the endoprosthesis, or from a first end of the endoprosthesis to a second end of the endoprosthesis. Many of the endoprostheses have portions which are protected from contact with bodily materials until it is desired for such portions to contact the bodily materials. The endoprostheses can exhibit a reduced likelihood of uncontrolled fragmentation. The manner of fragmentation and fragmentation size can be controlled. The endoprostheses may not need to be removed from the body after implantation. Lumens implanted with such endoprostheses can exhibit reduced restenosis. The endoprostheses can have a low thrombogenecity. Some of the endoprostheses can be configured to deliver a therapeutic agent. Some of the endoprostheses have surfaces that support cellular growth (endothelialization).


An erodible or bioerodible endoprosthesis, e.g., a stent, refers to a device, or a portion thereof, that exhibits substantial mass or density reduction or chemical transformation, after it is introduced into a patient, e.g., a human patient. Mass reduction can occur by, e.g., dissolution of the material that forms the device and/or fragmenting of the device. Chemical transformation can include oxidation/reduction, hydrolysis, substitution, electrochemical and/or addition reactions, or other chemical reactions of the material from which the device, or a portion thereof, is made. The erosion can be the result of a chemical and/or biological interaction of the device with the body environment, e.g., the body itself or body fluids, into which it is implanted and/or erosion can be triggered by applying a triggering influence, such as a chemical reactant or energy to the device, e.g., to increase a reaction rate. For example, a device, or a portion thereof, can be formed from an active metal, e.g., Mg or Ca or an alloy thereof, and which can erode by reaction with water, producing the corresponding metal oxide and hydrogen gas (a redox reaction). For example, a device, or a portion thereof can be formed from an erodible or bioerodible polymer, or an alloy or blend erodible or biocrodible polymers which can erode by hydrolysis with water. The erosion occurs to a desirable extent in a time frame that can provide a therapeutic benefit. For example, in embodiments, the device exhibits substantial mass reduction after a period of time which a function of the device, such as support of the lumen wall or drug delivery is no longer needed or desirable. In particular embodiments, the device exhibits a mass reduction of about 10 percent or more, e.g. about 50 percent or more, after a period of implantation of one day or more, e.g. about 60 days or more, about 180 days or more, about 600 days or more, or 1000 days or less. In embodiments, the device exhibits fragmentation by erosion processes. The fragmentation occurs as, e.g., some regions of the device erode more rapidly than other regions. The faster eroding regions become weakened by more quickly eroding through the body of the endoprosthesis and fragment from the slower eroding regions. The faster eroding and slower eroding regions may be random or predefined. For example, faster eroding regions may be predefined by treating the regions to enhance chemical reactivity of the regions. Alternatively, regions may be treated to reduce erosion rates, e.g., by using coatings. In embodiments, only portions of the device exhibits erodibilty. For example, an exterior layer or coating may be erodible, while an interior layer or body is non-erodible. In embodiments, the endoprosthesis is formed from an erodible material dispersed within a non-erodible material such that after erosion, the device has increased porosity by erosion of the erodible material.


Erosion rates can be measured with a test device suspended in a stream of Ringer's solution flowing at a rate of 0.2 m/second. During testing, all surfaces of the test device can be exposed to the stream. For the purposes of this disclosure, Ringer's solution is a solution of recently boiled distilled water containing 8.6 gram sodium chloride, 0.3 gram potassium chloride, and 0.33 gram calcium chloride per liter.


As used herein, “metallic material” means a pure metal, a metal alloy or a metal composite.


All publications, patent applications, patents, and other references mentioned herein are incorporated by reference herein in their entirety.


Other aspects, features, and advantages will be apparent from the description and drawings, and from the claims.





DESCRIPTION OF DRAWINGS


FIGS. 1A-1C are longitudinal cross-sectional views, illustrating delivery of a stent that includes a bioerodible body that carries a plurality of discrete, spaced apart bioerodible regions extending from an outer surface of the bioerodible body; FIG. 1A showing the stent in a collapsed state; FIG. 1B showing expansion of the stent; and FIG. 1C showing deployment of the stent.



FIG. 2 is a perspective view of the unexpanded stent of FIG. 1A.



FIG. 2A is a transverse cross-sectional view of the stent of FIG. 2, taken along 2A-2A.



FIG. 2B is a longitudinal cross-sectional view of the stent of FIG. 2, taken along 2B-2B.



FIGS. 3A-3E illustrate bioerosion of one embodiment of the stent of FIG. 2; FIGS. 3A and 3B being transverse cross-sectional views; FIGS. 3C and 3D being perspective views; and FIG. 3E being a top view.



FIG. 4 is a perspective view of an alternative embodiment of a stent that includes a biocrodible body that carries a plurality of discrete, spaced apart bioerodible regions that extend inwardly beyond an outermost surface of the bioerodible body.



FIG. 4A is a transverse cross-sectional view of the stent of FIG. 4, taken along 4A-4A.



FIG. 5 is a transverse cross-sectional view the stent of FIG. 2 having a coating that fills spaces between the discrete, spaced apart regions.



FIGS. 5A-5C is a series of transverse cross-sectional views, illustrating bioerosion of one embodiment of the stent of FIG. 5.



FIG. 6 is a series of perspective views, showing one method of manufacturing a stent.





DETAILED DESCRIPTION

Referring to FIGS. 1A-1C and 2-2B, a stent 10 includes a tubular bioerodible body 1 that includes a first biocrodible material. The bioerodible body 11 is circular in transverse cross-section, and carries a plurality of discrete, spaced apart bioerodible regions 13 that extend outwardly from an outer surface 15 of the body 11. As shown, each region 13 defines a projection that is rectangular when viewed from above, although the regions may not be visible with a naked eye due to their size. In some instances, the regions may need to visualized with an optical microscope or scanning electron microscope. The regions 13 include a second bioerodible material that is different from the first biocrodible material. Stent 10 is placed over a balloon 12 carried near a distal end of a catheter 14, and is directed through a lumen 16 (FIG. 1A) until the portion carrying the balloon 12 and stent 10 reaches the region of an occlusion 18. The stent 10 is then radially expanded by inflating the balloon and compressed against the vessel wall with the result that occlusion is compressed, and the vessel wall surrounding it undergoes a radial expansion (FIG. 1B). The pressure is then released from the balloon 12 and the catheter 14 is withdrawn from the vessel (FIG. 1C), leaving behind the expanded stent 10′ in lumen 16.


The material from which the regions 13 are formed, the thickness T1 of the regions, the material from which the bioerodible body 11 is formed, the thickness T of the body, the transverse spacing ST between regions and the longitudinal spacing Sl between regions are chosen to provide the desired mechanical properties, along with a desired bioerosion rate, manner of bioerosion and fragmentation size, e.g., not more than about 25 μ. In embodiments, the fragments have a maximum dimension of not more than about the size of a large white blood cell, e.g., not more than about 15 μm. In preferred embodiments, the maximum dimension is not more than about 10 μm, not more than about 5 μm, or not more than about 1 μm.


Referring as well now to FIGS. 3A-3E, which illustrate bioerosion of one embodiment of the stent shown in FIG. 2 in which body 11 is formed of, e.g., iron and regions 13 are formed of, e.g., magnesium. In the initial stages of bioerosion (FIG. 3A), the regions formed of magnesium erode relatively quickly, their rate of erosion being enhanced by the galvanic reaction between the iron of the body and the magnesium. In these initial stages of bioerosion, crevices 30 appear in the body proximate the regions, and portions 32 just below the regions are weakened due to the galvanic reaction. The crevices 30 enhance the rate of erosion of the iron body, it is believed, because the concentration of reactive ions in the crevices is higher, giving higher reaction rates. As bioerosion continues (FIG. 3B), deep pits 36 are formed in the iron body. Erosion in the pits is enhanced, so that the pits become apertures 40 defined in the iron body (FIG. 3C). The size of the apertures enlarge (FIG. 3D), until the body disintegrates into fragments 45 (FIG. 3E) having a maximum dimension M, e.g., not more than 15 μm, 10 μm, 5 μm, or not more than 1 μm.


In embodiments, the transverse ST spacing between immediately adjacent regions, measured along the outer surface 15 of the bioerodible body 11 is between about 1.0 μm and about 35 μm, e.g., between about 1.0 μm and about 20 μm or between about 2.0 μm and about 15 μm; and the longitudinal spacing ST between immediately adjacent regions is between about 1.0 μm and about 35 μm, e.g., between about 1.0 μm and about 20 μm or between about 2.0 μm and about 15 μm. In embodiments, an outermost top surface 17 (FIG. 2) of each region has an area not more than about 25 μm2, e.g., not more than about 15 μm2, or not more than about 5 μm2. In embodiments, the regions 13 are formed of a biocrodible metallic material or ceramic material, and thickness T1 of the regions is, e.g., between about 0.01 μm and about 10 μm, e.g., between about 0.05 μm and about 7.5 μm, or between about 0.1 μm and about 5 μm. In embodiments, the bioerodible body 11 is formed from a bioerodible metallic material or ceramic material, the transverse thickness T is, e.g., between about 0.1 mm and about 2.5 mm, e.g., between about 0.25 mm and about 2.0 mm, or between about 0.3 mm and about 1.5 mm.


In embodiments, the regions 13 and body 11 are formed of substantially disparate metals having substantially different standard reduction potentials, setting up a galvanic reaction between the disparate metals. For example, a standard cell potential for the galvanic couple can be greater than about 2.00 V, e.g., greater than 1.75 V, 1.50 V, 1.00 V, 0.5 V, or greater than about 0.25 V. In such instances, one of the metals enhances the erosion of the other metal; while, at the same time, the other metal is protected from erosion by the other metal. For example, in a particular embodiment, the body is formed of iron and each region is formed of magnesium. In this instance, the erosion of magnesium is enhanced by the iron; while, at the same time, the erosion of iron is suppressed. Such a stent configuration can reduce overall degradation time of the entire stent and/or enhance control of where degradation starts along the stent. Erosion of magnesium and magnesium alloys is reviewed by Ferrando in J. Mater. Eng., 11, 299 (1989). If desired, the biocrodible body and/or one or more of the regions can be electrically connected to a battery, e.g., to enhance the erosion rate of the stent or a portion of the stent. For example, a current of from about 1 μA to about 250 μA, e.g., from about 5 μA to about 175 μA or from about 10 μA to about 100 μA can flow through a circuit that includes the bioerodible body and/or one or more of the regions and the battery.


In embodiments, body 11 is formed of a material that has a lower bioerosion rate than regions 13. For example, the material of the body can erode at rate that is, e.g., less than about 50 percent of the rate of erosion of the material of the regions, less than about 35 percent, less than about 20 percent, less than about 15 percent, less than about 10 percent, less than about 5 percent, less than about 2.5 percent, or even less than about 1 percent of the rate of erosion of the material of the regions. For example, in a particular embodiment, body 11 is formed of iron and regions 13 are formed of magnesium, e.g., deposited by sputtering on the outer surface 15 of the bioerodible body 11. A stent can be tested by suspending the stent in a stream of Ringer's solution flowing at a rate of 0.2 m/second at 25° C., and measuring the fragments formed during erosion. The number and size of the fragments can be determined using laser light scattering. For the purposes of this disclosure, Ringer's solution is a solution of recently boiled distilled water containing 8.6 gram sodium chloride, 0.3 gram potassium chloride, and 0.33 gram calcium chloride per liter.


The regions 13 can be made by a variety of techniques including dip coating, spray coating, pulsed laser deposition, physical vapor deposition (e.g., sputtering), chemical vapor deposition, vacuum arc deposition, electrochemical plating, powder coating, painting, electro-coating, sol-gel coating and polymer plating (e.g., plasma polymerization). Pulsed laser deposition is described by Wang et al. in Thin Solid Films, 471, 86-90 (2005); vacuum arc deposition is described by Straumal et al. in Thin Solid Films, 383, 224-226 (2001); sputtering is described by Gopalraja et al. in U.S. Pat. No. 6,991,709; coatings on magnesium are reviewed by Gray et al. in Journal of Alloys and Compounds, 336, 88-113 (2002).


Referring now to FIG. 4 and 4A, in an embodiment, a stent 80 includes a tubular bioerodible body 82 that includes a first bioerodible material. The bioerodible body 82 is circular in transverse cross-section, and carries a plurality of discrete, spaced apart bioerodible regions 84 that extend inwardly beyond an outer surface 86 of the bioerodible body 82. As shown, each region 84 is rectangular when viewed from above and forms a smooth transition on its edges with the outer surface 86 of the bioerodible body 82. The regions may not be visible with a naked eye due to their size or due to small visual differences between the body material and the material of the regions. In some instances, the regions may need to visualized with an optical microscope of scanning electron microscope. The regions 84 include a second bioerodible material that is different from the first bioerodible material. Stent 80 can be delivered as discussed above in reference to the stent of FIG. 2.


In embodiments, the regions 84 and body 82 are formed of substantially disparate metals having substantially different standard reduction potentials, setting up a galvanic reaction between the disparate metals. For example, body 82 can be formed of iron and regions 84 can be formed of magnesium or a magnesium alloy. As discussed above, the bioerodible body and/or one or more of the regions can be electrically connected to a battery, e.g., to enhance the erosion rate of the stent or a portion of the stent. Thickness Tt′, the material from which the bioerodible body 82 is formed, the thickness T′, the spacing ST′ and spacing Sl′ can have any of the values discussed above in reference to the stent of FIG. 2. An outermost top surface 90 of each region can, e.g., have an area of not more than about 25 μm2, e.g., not more than about 15 μm2, or not more than about 5 μm2.


The regions can be formed by etching apertures into the stent body and filling the apertures with a second bioerodible material. The regions 84 can be made by techniques including ion implantation (e.g., plasma immersion ion implantation) in which the stent body is modified in discrete regions, laser treatment and chemical treatment. Plasma immersion ion implantation (PIII) is described by Weber et al. in “Medical Balloons And Methods Of Making The Same”, U.S. patent application Ser. No. 11/355,392, filed Feb. 16, 2006, and “Bioerodible Endoprostheses And Methods Of Making The Same”, U.S. patent application Ser. No. 11/355,368, filed Feb. 16, 2006; by Chu in U.S. Pat. No. 6,120,660; and by Brukner and Kutsenko in Acta Materialia, 52, 4329-4335 (2004).


Referring now to FIG. 5, in one embodiment, the stent of FIG. 2 can include a coating 110 that fills the spacing between regions 13, but does not cover the regions 13. In the particular embodiment shown, the thickness Tc of the coating is such that is does not extend beyond the thickness T1 of the regions 13. Coating 110 can be bioerodible or non-bioerodible. When the coating 110 is non-bioerodible, it can be or can include a polymeric material, a metallic material (e.g., a metal or metal alloy) or a ceramic material.


Referring as well now to FIGS. 5A-5C, in a particular embodiment, the body 11 is iron, regions 13 are formed of magnesium and coating 110 is a non-bioerodible, the coating prevents direct contact between the material that forms biocrodible body 11 and the lumen in which the stent is implanted, and also allows for additional control on how the stent bioerodes. In the initial stages of bioerosion (FIG. 5A), the regions formed of magnesium and portions in close proximity under the regions erode relatively quickly, their rate of erosion being enhanced by the galvanic reaction between the iron of the body and the magnesium. As bioerosion continues, deep pits become apertures 120 that do not grow in size externally because of coating 110 prevents bioerosion of the bioerodible material of the body directly underneath (FIG. 5B). Bioerosion then proceeds from the inside toward the outside, the coating 110 acting as “glue” to keep the stent from fragmenting within the lumen.


Referring now to FIG. 6, a stent can be made by providing a hollow tubular pre-stent 50, and then placing a mask 52 about the pre-stent 50. Mask 52 can be made of a thin sheet material, such as MYLAR® polyester film or heat-shrinkable polyolefin film, having a thickness approximately equal to thickness T1 of regions 13. Mask 52 has a plurality of apertures 58 defined in a wall 60 of the mask that correspond dimensionally to regions 13. In addition, mask 52 includes a perforation 62 so that is can be removed after regions 13 are formed. The apertures and perforations can be formed by lithography, laser ablation or cutting. Regions can be formed by the techniques described above. For example, material can be sputtered on assembly 70 while rotating the assembly. Sputtered material can contact the pre-stent through the apertures, but is prevented from contacting the pre-stent in the masked areas. After regions are formed, mask 52 is removed by tearing along the perforation 62 to release the stent.


As described above, regions can be patterned on a stent that increase the rate of erosion. In embodiments regions can be patterned on a stent that decrease the rate of erosion. For example, an erodible or nonerodible metal, ceramic, or polymer coating is provided on a stent that protects portions of the stent from exposure to body fluids or galvanic corrosions while exposing other portions where that erosion proceeds. The coating can be a polymer or a material that is erodible or nonerodible. Coatings can be provided on only the exterior, only on the interior or on both the exterior and the interior or the stent.


In embodiments the bioerodible body is formed from a bioerodible polymeric material, the transverse thickness T can be, e.g., between about 0.5 mm and about 5.0 mm, e.g., between about 0.5 mm and about 3.0 mm, or between about 1 mm and about 2.5 mm. In embodiments in which the regions are formed of a bioerodible polymeric material, the thickness T1 of the regions can be, e.g., between about 1 μm and about 100 μm, e.g., between about 1 μm and about 50 μm, or between about 5 μm and about 35 μm.


Various bioerodible materials, polymers and ceramics can be used in the embodiments described herein.


Example of bioerodible metals or a metal alloys from which the regions 13 can be formed include iron and magnesium. Examples of iron alloys include low-carbon steel (AISI 1018-1025), medium carbon steel (AISI 1030-1055), high carbon steel (1060-1095), and binary Bi—Fe alloys. Other examples of alloys include magnesium alloys, such as, by weight, 50-98% magnesium, 0-40% lithium, 0-5% iron and less than 5% other metals or rare earths; or 79-97% magnesium, 2-5% aluminum, 0-12% lithium and 1-4% rare earths (such as cerium, lanthanum, neodymium and/or praseodymium); or 85-91% magnesium, 6-12% lithium, 2% aluminum and 1% rare earths; or 86-97% magnesium, 0-8% lithium, 2-4% aluminum and 1-2% rare earths; or 8.5-9.5% aluminum, 0.15-0.4% manganese, 0.45-0.9% zinc and the remainder magnesium; or 4.5-5.3% aluminum, 0.28-0.5% manganese and the remainder magnesium; or 55-65% magnesium, 30-40% lithium and 0-5% other metals and/or rare earths. Magnesium alloys are available under the names AZ91D, AM50A, and AE42, which are available from Magnesium-Elektron Corporation (United Kingdom). Other erodible metals or metal alloys are described by Bolz in U.S. Pat. No. 6,287,332 (e.g., zinc-titanium alloy and sodium-magnesium alloys); Heublein in U.S. Patent Application 2002/0004060; Kaese in Published U.S. Patent Application No. 2003/0221307; Stroganov in U.S. Pat. No. 3,687,135; and Park in Science and Technology of Advanced Materials, 2, 73-78 (2001).


Examples of bioerodible ceramics from which the regions 13 can be formed include beta-tertiary calcium phosphate (β-TCP), blends of β-TCP and hydroxy apatite, CaHPO4, CaHPO4-2H2O, CaCO3 and CaMg(CO3)2. Other bioerodible ceramics are discussed by Zimmermann in U.S. Pat. No. 6,908,506, and Lee in U.S. Pat. No. 6,953,594.


Examples of bioerodible polymers from which the regions 13 can be formed include polycaprolactone (PCL), polycaprolactone-polylactide copolymer (e.g., polycaprolactone-polylactide random copolymer), polycaprolactone-polyglycolide copolymer (e.g., polycaprolactone-polyglycolide random copolymer), polycaprolactone-polylactide-polyglycolide copolymer (e.g., polycaprolactone-polylactide-polyglycolide random copolymer), polylactide, polycaprolactone-poly(β-hydroxybutyric acid) copolymer (e.g., polycaprolactone-poly(β-hydroxybutyric acid) random copolymer) poly(β-hydroxybutyric acid) and mixtures of these polymers. Additional examples of biocrodible polymers are described by Sahatjian et. al. in U.S. Published Patent Application No. 2005/0251249.


Examples of non-biocrodible polymers from which the coating 110 can be formed include polycyclooctene (PCO), styrene-butadiene rubber, polyvinyl acetate, polyvinylidinefluoride (PVDF), polymethylmethacrylate (PMMA), polyurethanes, polyethylene, polyvinyl chloride (PVC), and blends thereof. Additional examples of non-bioerodible polymers are described by Sahatjian et. al. in U.S. Published Patent Application No. 2005/0251249. Examples of non-erodible metals and metal alloys from which the coating 110 can be formed include stainless steel, rhenium, molybdenum and molybdenum-rhenium alloy. Examples of non-bioerodible ceramics from which the coating 110 can be formed include oxides of silicon (e.g., silicon dioxide), oxides of titanium (e.g., titanium dioxide) or oxides of zirconium (e.g., zirconium dioxide).


If desired, the any of the stents described herein can include a therapeutic agent on or in the stent and/or a coating about the stent. The therapeutic agent can be a genetic therapeutic agent, a non-genetic therapeutic agent, or cells. Therapeutic agents can be used singularly, or in combination. Therapeutic agents can be, e.g., nonionic, or they may be anionic and/or cationic in nature. A preferred therapeutic agent is one that inhibits restenosis. A specific example of one such therapeutic agent that inhibits restenosis is paclitaxel or derivatives thereof, e.g., docetaxel. Soluble paclitaxel derivatives can be made by tethering solubilizing moieties off the 2′ hydroxyl group of paclitaxel, such as —COCH2CH2CONHCH2CH2(OCH2)nOCH3 (n being, e.g., 1 to about 100 or more). Li et al., U.S. Pat. No. 6,730,699 describes additional water soluble derivatives of paclitaxel.




embedded image


Exemplary non-genetic therapeutic agents include: (a) anti-thrombotic agents such as heparin, heparin derivatives, urokinase, PPack (dextrophenylalanine proline arginine chloromethylketone), and tyrosine; (b) anti-inflammatory agents, including non-steroidal anti-inflammatory agents (NSAID), such as dexamethasone, prednisolone, corticosterone, budesonide, estrogen, sulfasalazine and mesalamine; (c) anti-neoplastic/antiproliferative/anti-miotic agents such as paclitaxel, 5-fluorouracil, cisplatin, vinblastine, vincristine, epothilones, endostatin, angiostatin, angiopeptin, rapamycin (sirolimus), biolimus, tacrolimus, everolimus, monoclonal antibodies capable of blocking smooth muscle cell proliferation, and thymidine kinase inhibitors; (d) anesthetic agents such as lidocaine, bupivacaine and ropivacaine; (e) anti-coagulants such as D-Phe-Pro-Arg chloromethyl ketone, an RGD peptide-containing compound, heparin, hirudin, antithrombin compounds, platelet receptor antagonists, anti-thrombin antibodies, anti-platelet receptor antibodies, aspirin, prostaglandin inhibitors, platelet inhibitors and tick antiplatelet peptides; (f) vascular cell growth promoters such as growth factors, transcriptional activators, and translational promotors; (g) vascular cell growth inhibitors such as growth factor inhibitors, growth factor receptor antagonists, transcriptional repressors, translational repressors, replication inhibitors, inhibitory antibodies, antibodies directed against growth factors, bifunctional molecules consisting of a growth factor and a cytotoxin, bifunctional molecules consisting of an antibody and a cytotoxin; (h) protein kinase and tyrosine kinase inhibitors (e.g., tyrphostins, genistein, quinoxalines); (i) prostacyclin analogs; (j) cholesterol-lowering agents; (k) angiopoietins; (l) antimicrobial agents such as triclosan, cephalosporins, aminoglycosides and nitrofurantoin; (m) cytotoxic agents, cytostatic agents and cell proliferation affectors; (n) vasodilating agents; (o) agents that interfere with endogenous vasoactive mechanisms; (p) inhibitors of leukocyte recruitment, such as monoclonal antibodies; (q) cytokines, (r) hormones; and (s) antispasmodic agents, such as alibendol, ambucetamide, aminopromazine, apoatropine, bevonium methyl sulfate, bietamiverine, butaverine, butropium bromide, n-butylscopolammonium bromide, caroverine, cimetropium bromide, cinnamedrine, clebopride, coniine hydrobromide, coniine hydrochloride, cyclonium iodide, difemerine, diusopromine, dioxaphetyl butyrate, diponium bromide, drofenine, emepronium bromide, ethaverine, feclemine, fenalamide, fenoverine, fenpiprane, fenpiverinium bromide, fentonium bromide, flavoxate, flopropione, gluconic acid, guaiactamine, hydramitrazine, hymecromone, leiopyrrole, mebeverine, moxaverine, nafiverine, octamylamine, octaverine, oxybutynin chloride, pentapiperide, phenamacide hydrochloride, phloroglucinol, pinaverium bromide, piperilate, pipoxolan hydrochloride, pramiverin, prifinium bromide, properidine, propivane, propyromazine, prozapine, racefemine, rociverine, spasmolytol, stilonium iodide, sultroponium, tiemonium iodide, tiquizium bromide, tiropramide, trepibutone, tricromyl, trifolium, trimebutine, tropenzile, trospium chloride, xenytropium bromide, ketorolac, and pharmaceutically acceptable salts thereof.


Exemplary genetic therapeutic agents include anti-sense DNA and RNA as well as DNA coding for: (a) anti-sense RNA, (b) tRNA or rRNA to replace defective or deficient endogenous molecules, (c) angiogenic factors including growth factors such as acidic and basic fibroblast growth factors, vascular endothelial growth factor, epidermal growth factor, transforming growth factor α and β, platelet-derived endothelial growth factor, platelet-derived growth factor, tumor necrosis factor α, hepatocyte growth factor and insulin-like growth factor, (d) cell cycle inhibitors including CD inhibitors, and (e) thymidine kinase (“TK”) and other agents useful for interfering with cell proliferation. Also of interest is DNA encoding for the family of bone morphogenic proteins (“BMP's”), including BMP-2, BMP-3, BMP-4, BMP-5, BMP-6 (Vgr-1), BMP-7 (OP-1), BMP-8, BMP-9, BMP-10, BMP-11, BMP-12, BMP-13, BMP-14, BMP-15, and BMP-16. Currently preferred BMP's are any of BMP-2, BMP-3, BMP-4, BMP-5, BMP-6 and BMP-7. These dimeric proteins can be provided as homodimers, heterodimers, or combinations thereof, alone or together with other molecules. Alternatively, or in addition, molecules capable of inducing an upstream or downstream effect of a BMP can be provided. Such molecules include any of the “hedgehog” proteins, or the DNA's encoding them.


Vectors for delivery of genetic therapeutic agents include viral vectors such as adenoviruses, gutted adenoviruses, adeno-associated virus, retroviruses, alpha virus (Semliki Forest, Sindbis, etc.), lentiviruses, herpes simplex virus, replication competent viruses (e.g., ONYX-015) and hybrid vectors; and non-viral vectors such as artificial chromosomes and mini-chromosomes, plasmid DNA vectors (e.g., pCOR), cationic polymers (e.g., polyethyleneimine, polyethyleneimine (PEI)), graft copolymers (e.g., polyether-PEI and polyethylene oxide-PEI), neutral polymers PVP, SP1017 (SUTPRATEK), lipids such as cationic lipids, liposomes, lipoplexes, nanoparticles, or micro particles, with and without targeting sequences such as the protein transduction domain (PTD).


Cells for use include cells of human origin (autologous or allogeneic), including whole bone marrow, bone marrow derived mono-nuclear cells, progenitor cells (e.g., endothelial progenitor cells), stem cells (e.g., mesenchymal, hematopoietic, neuronal), pluripotent stem cells, fibroblasts, myoblasts, satellite cells, pericytes, cardiomyocytes, skeletal myocytes or macrophage, or from an animal, bacterial or fungal source (xenogeneic), which can be genetically engineered, if desired, to deliver proteins of interest.


Any of the metallic materials, ceramic materials, or polymeric materials used to form the stent bodies, regions or coatings can be made porous. For example, a porous metal material can be made by sintering metal particles, e.g., having diameters between about 0.01 micron and about 20 micron, to form a porous material having small (e.g., from about 0.05 to about 0.5 micron) and large (e.g., from about 1 micron to about 10 micron) interconnected voids though which a fluid may flow. The voids in the porous material can be, e.g., used as depositories for a therapeutic agent that has been intercalated into the porous material or to increase erosion rate to that portion or component.


Such porous materials can have a total porosity, as measured using mercury porosimetry, of from about 80 to about 99 percent, e.g., from about 80 to about 95 percent or from about 85 to about 92 percent, and a specific surface area, as measured using BET (Brunauer, Emmet and Teller), of from about 200 cm2/cm3 to about 10,000 cm2/cm3, e.g., from about 250 cm2/cm3 to about 5,000 cm2/m3 or from about 400 cm2/cm3 to about 1,000 cm2/cm3. When bioerodible materials are utilized, the porous nature of the material can aid in the erosion of the material, as least in part, due to its increased surface area. In addition, when biocrodible materials are utilized, the porosity of the materials can ensure small fragment sizes. Porous materials and methods of making porous materials are described by Date et al. in U.S. Pat. No. 6,964,817; by Hoshino et al. in U.S. Pat. No. 6,117,592; and by Sterzel et al. in U.S. Pat. No. 5,976,454.


The stents described herein can be delivered to a desired site in the body by a number of catheter delivery systems, such as a balloon catheter system, as described above. Exemplary catheter systems are described in U.S. Pat. Nos. 5,195,969, 5,270,086, and 6,726,712. The Radius® and Symbiot® systems, available from Boston Scientific Scimed, Maple Grove, Minn., also exemplify catheter delivery systems.


The stents described herein can be configured for vascular or non-vascular lumens. For example, they can be configured for use in the esophagus or the prostate. Other lumens include biliary lumens, hepatic lumens, pancreatic lumens, uretheral lumens and ureteral lumens.


Any stent described herein can be dyed or rendered radio-opaque by addition of, e.g., radio-opaque materials such as barium sulfate, platinum or gold, or by coating with a radio-opaque material.


Any of the stents described herein or any portion of any stent described herein can be coated with a bioerodible material or a non-bioerodible material. For example, the coating can be used to deliver a drug, to protect a portion of the stent, to reduce uncontrolled fragmentation and/or to prevent contact between the stent or a portion of a stent and a portion of a lumen.


OTHER EMBODIMENTS

A number of embodiments of have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the disclosure.


While stents have been shown, other endoprostheses are possible. For example, the endoprosthesis can be in the form of a stent-graft or a filter.


While embodiments have been shown in which the bioerodible body is in the form of a tube that is circular in cross-section when viewed end-on along the longitudinal axis of the stent (e.g., FIG. 2), the tube can have a non-circular cross-section. For example, the tube can be square, rectangular, hexagonal, or octagonal when viewed end-on along the longitudinal axis of the stent.


While embodiments have been shown in which the bioerodible regions extend from an outer surface of the bioerodible body, and embodiments have been shown in which the regions extend inwardly beyond an outer surface of the bioerodible body, in some embodiments, the regions extend both inwardly beyond and outwardly from an outer surface of the bioerodible body.


While bioerodible regions have been shown that have sharp boundaries, in some embodiments, the boundaries are more diffuse, such as would be expected using Pill.


While biocrodible regions and bodies have been shown that include a single material, in some embodiments, they include multiple materials, e.g., blends or mixtures of materials or layers of different materials.


Referring back now to FIG. 5, in addition to coating 110, the stent can include another coating disposed between the outer surface of the uncoated stent and coating 110. This other coating is, or includes, a chelating agent. For example, the other coating can be a polymeric coating that includes the chelating agent dispersed therein. The chelating agent can, e.g., chelate any metal ions generated from degradation of the stent body, preventing them from interfering with the release of the therapeutic agent from coating 110 because, e.g., the chelates are either too large to diffuse into coating 110, or they are too insoluble to diffuse into the coating. Examples of chelating agents include sodium salts of fatty acids (e.g., common soap), EDTA and porphyrins.


Still other embodiments are within the scope of the following claims.

Claims
  • 1. An implantable endoprosthesis comprising: a bioerodible body comprising a first bioerodible metallic material, the bioerodible body having a thickness of between about 0.5 mm and about 5.0 mm; anda plurality of discrete, spaced apart bioerodible deposits comprising a second bioerodible metallic material different from the first bioerodible metallic material, said deposits of the second bioerodible metallic material overlying the first bioerodible metallic material at a plurality of regions, each deposit having a thickness of between about 0.01 μm to about 5 μm; each region having a surface area of not more than about 25 μm2, wherein the second bioerodible metallic material forms a continuous interface with the first bioerodible metallic material over the entirety of each region;wherein a longitudinal spacing between immediately adjacent deposits is between about 1.0 μm and about 35 μm;wherein a transverse spacing between immediately adjacent deposits is between about 1.0 μm and about 35 μm, measured along an outer surface of the bioerodible body from which the deposits extend;wherein, when implanted within a body lumen, the bioerodible body and each deposit together define a galvanic couple that enhances a rate of erosion of the discrete, spaced apart bioerodible deposits, and wherein a standard cell potential for the galvanic couple is at least +1.0 V;wherein erosion of the discrete, spaced apart bioerodible deposits creates crevices in the bioerodible body proximate the discrete, spaced apart bioerodible deposits, and wherein the crevices in the bioerodible body have an enhanced rate of erosion resulting in the body disintegrating into fragments having a maximum dimension of not more than 15 μm.
  • 2. The implantable endoprosthesis of claim 1, further comprising a coating about the endoprosthesis.
  • 3. The implantable endoprosthesis of claim 2, wherein the coating fills only spaces between the discrete, spaced apart deposits.
  • 4. The implantable endoprosthesis of claim 2, wherein the coating comprises a therapeutic agent.
  • 5. The implantable endoprosthesis of claim 4, wherein the therapeutic agent inhibits restenosis.
  • 6. The implantable endoprosthesis of claim 1, wherein each of the bioerodible metallic materials is selected from the group consisting of iron, magnesium, zinc, aluminum, calcium, and alloys thereof.
  • 7. The implantable endoprosthesis of claim 1, wherein the implantable endoprosthesis is in the form of a stent.
  • 8. The implantable endoprosthesis of claim 1, wherein the fragments have a maximum dimension of not more than 5 μm.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims priority under 35 USC §119(e) to U.S. Provisional Patent Application Ser. No. 60/845,341, filed on Sep. 18, 2006, the entire contents of which are hereby incorporated by reference.

US Referenced Citations (1267)
Number Name Date Kind
2950187 Ototani Aug 1960 A
3687135 Stroganov et al. Aug 1972 A
3758396 Vieth et al. Sep 1973 A
3868578 Oldham Feb 1975 A
3910819 Rembaum et al. Oct 1975 A
3948254 Zaffaroni Apr 1976 A
3952334 Bokros et al. Apr 1976 A
3993072 Zaffaroni Nov 1976 A
4101984 MacGregor Jul 1978 A
4143661 LaForge et al. Mar 1979 A
4202055 Reiner et al. May 1980 A
4237559 Borom Dec 1980 A
4308868 Jhabvala Jan 1982 A
4334327 Lyman et al. Jun 1982 A
4401546 Nakamura et al. Aug 1983 A
4532929 Mattei et al. Aug 1985 A
4539061 Sagiv Sep 1985 A
4542539 Rowe et al. Sep 1985 A
4585652 Miller et al. Apr 1986 A
4634502 Callahan et al. Jan 1987 A
4655771 Wallsten Apr 1987 A
4657544 Pinchuk Apr 1987 A
4665896 LaForge et al. May 1987 A
4705502 Patel Nov 1987 A
4713070 Mano Dec 1987 A
4725273 Kira Feb 1988 A
4733665 Palmaz Mar 1988 A
4767418 Deininger et al. Aug 1988 A
4784659 Fleckenstein et al. Nov 1988 A
4800882 Gianturco Jan 1989 A
4804382 Turina et al. Feb 1989 A
4886062 Wiktor Dec 1989 A
4954126 Wallsten Sep 1990 A
4976692 Atad Dec 1990 A
4994071 MacGregor Feb 1991 A
5059211 Stack et al. Oct 1991 A
5061275 Wallsten et al. Oct 1991 A
5061914 Busch et al. Oct 1991 A
5073365 Katz et al. Dec 1991 A
5079203 Pinnavaia Jan 1992 A
5091024 DeBold et al. Feb 1992 A
5091205 Fan Feb 1992 A
5102403 Alt Apr 1992 A
5120322 Davis et al. Jun 1992 A
5125971 Nonami et al. Jun 1992 A
5147370 McNamara et al. Sep 1992 A
5163958 Pinchuk Nov 1992 A
5195969 Wang et al. Mar 1993 A
5205921 Shirkanzadeh Apr 1993 A
5234457 Andersen Aug 1993 A
5236413 Feiring Aug 1993 A
5236447 Kubo et al. Aug 1993 A
5270086 Hamlin Dec 1993 A
5279292 Baumann et al. Jan 1994 A
5290585 Elton Mar 1994 A
5292558 Heller et al. Mar 1994 A
5302414 Alkhimov et al. Apr 1994 A
5304121 Sahatjian Apr 1994 A
5304195 Twyford, Jr. et al. Apr 1994 A
5306286 Stack et al. Apr 1994 A
5314453 Jeutter May 1994 A
5322520 Milder Jun 1994 A
5342348 Kaplan Aug 1994 A
5348553 Whitney Sep 1994 A
5356433 Rowland et al. Oct 1994 A
5360440 Andersen Nov 1994 A
5366504 Andersen et al. Nov 1994 A
5380298 Zabetakis et al. Jan 1995 A
5383935 Shirkhanzadeh Jan 1995 A
5385776 Maxfield et al. Jan 1995 A
5397307 Goodin Mar 1995 A
5405367 Schulman et al. Apr 1995 A
5439446 Barry Aug 1995 A
5443458 Eury Aug 1995 A
5443496 Schwartz et al. Aug 1995 A
5443500 Sigwart Aug 1995 A
5449373 Pinchasik et al. Sep 1995 A
5449382 Dayton Sep 1995 A
5458627 Baranowski, Jr. et al. Oct 1995 A
5462575 Del Corso Oct 1995 A
5464450 Buscemi et al. Nov 1995 A
5464650 Berg et al. Nov 1995 A
5468574 Ehrenberg et al. Nov 1995 A
5474797 Sioshansi et al. Dec 1995 A
5500013 Buscemi et al. Mar 1996 A
5527337 Stack et al. Jun 1996 A
5536573 Rubner et al. Jul 1996 A
5545208 Wolff et al. Aug 1996 A
5549664 Hirata et al. Aug 1996 A
5551954 Buscemi et al. Sep 1996 A
5578075 Dayton Nov 1996 A
5587200 Lorenz et al. Dec 1996 A
5587507 Kohn et al. Dec 1996 A
5591222 Susawa et al. Jan 1997 A
5591224 Schwartz et al. Jan 1997 A
5599352 Dinh et al. Feb 1997 A
5603556 Klink Feb 1997 A
5605696 Eury et al. Feb 1997 A
5607463 Schwartz et al. Mar 1997 A
5609629 Fearnot et al. Mar 1997 A
5614549 Greenwald et al. Mar 1997 A
5624411 Tuch Apr 1997 A
5628787 Mayer May 1997 A
5629077 Turnlund et al. May 1997 A
5632771 Boatman et al. May 1997 A
5632840 Campbell May 1997 A
5649951 Davidson Jul 1997 A
5658327 Altman et al. Aug 1997 A
5672242 Jen Sep 1997 A
5674192 Sahatjian et al. Oct 1997 A
5674242 Phan Oct 1997 A
5676685 Razavi Oct 1997 A
5679440 Kubota Oct 1997 A
5690670 Davidson Nov 1997 A
5693085 Buirge et al. Dec 1997 A
5693928 Egitto et al. Dec 1997 A
5697967 Dinh et al. Dec 1997 A
5700286 Tartaglia et al. Dec 1997 A
5716981 Hunter et al. Feb 1998 A
5725570 Heath Mar 1998 A
5733925 Kunz et al. Mar 1998 A
5741331 Pinchuk Apr 1998 A
5744515 Clapper Apr 1998 A
5749809 Lin May 1998 A
5749880 Banas et al. May 1998 A
5758562 Thompson Jun 1998 A
5761775 Legome et al. Jun 1998 A
5769883 Buscemi et al. Jun 1998 A
5773925 Kimura et al. Jun 1998 A
5776184 Tuch Jul 1998 A
5779904 Ruderman et al. Jul 1998 A
5780807 Saunders Jul 1998 A
5788626 Thompson Aug 1998 A
5788687 Batich et al. Aug 1998 A
5788979 Alt et al. Aug 1998 A
5797898 Santini, Jr. et al. Aug 1998 A
5800511 Mayer Sep 1998 A
5815904 Clubb et al. Oct 1998 A
5817046 Glickman Oct 1998 A
5824045 Alt Oct 1998 A
5824048 Tuch Oct 1998 A
5824077 Mayer Oct 1998 A
5830217 Ryan Nov 1998 A
5833715 Vachon et al. Nov 1998 A
5837007 Altman et al. Nov 1998 A
5837275 Burrell et al. Nov 1998 A
5840387 Berlowitz-Tarrant et al. Nov 1998 A
5843089 Sahatjian et al. Dec 1998 A
5843172 Yan Dec 1998 A
5854382 Loomis Dec 1998 A
5858556 Eckert et al. Jan 1999 A
5869140 Blohowiak et al. Feb 1999 A
5873904 Ragheb et al. Feb 1999 A
5876756 Takada et al. Mar 1999 A
5879697 Ding et al. Mar 1999 A
5880661 Davidson et al. Mar 1999 A
5882335 Leone et al. Mar 1999 A
5891108 Leone et al. Apr 1999 A
5891191 Stinson Apr 1999 A
5899935 Ding May 1999 A
5902266 Leone et al. May 1999 A
5907893 Zadno-Azizi et al. Jun 1999 A
5922021 Jang Jul 1999 A
5928247 Barry et al. Jul 1999 A
5935506 Schmitz et al. Aug 1999 A
5938903 Broderick Aug 1999 A
5941843 Atanasoska et al. Aug 1999 A
5951458 Hastings et al. Sep 1999 A
5951881 Rogers et al. Sep 1999 A
5954706 Sahatjian Sep 1999 A
5957975 Lafont et al. Sep 1999 A
5958440 Burrell et al. Sep 1999 A
5961547 Razavi Oct 1999 A
5968091 Pinchuk et al. Oct 1999 A
5968092 Buscemi et al. Oct 1999 A
5972027 Johnson Oct 1999 A
5972192 Dubin et al. Oct 1999 A
5976169 Imran Nov 1999 A
5976454 Sterzel et al. Nov 1999 A
5977204 Boyan et al. Nov 1999 A
5980554 Lenker et al. Nov 1999 A
5980564 Stinson Nov 1999 A
5980566 Alt et al. Nov 1999 A
6001125 Golds et al. Dec 1999 A
6013591 Ying et al. Jan 2000 A
6017553 Burrell et al. Jan 2000 A
6017577 Hostettler et al. Jan 2000 A
6021347 Herbst et al. Feb 2000 A
6025036 McGill et al. Feb 2000 A
6027742 Lee et al. Feb 2000 A
6034295 Rehberg et al. Mar 2000 A
6056776 Lau et al. May 2000 A
6063101 Jacobsen et al. May 2000 A
6071305 Brown et al. Jun 2000 A
6080190 Schwartz Jun 2000 A
6086773 Dufresne et al. Jul 2000 A
6096070 Ragheb et al. Aug 2000 A
6096175 Roth Aug 2000 A
6099561 Alt Aug 2000 A
6099562 Ding et al. Aug 2000 A
6106473 Violante et al. Aug 2000 A
6107004 Donadio, III Aug 2000 A
6117592 Hoshino et al. Sep 2000 A
6120535 McDonald et al. Sep 2000 A
6120660 Chu et al. Sep 2000 A
6123861 Santini, Jr. et al. Sep 2000 A
6132463 Lee et al. Oct 2000 A
6139573 Sogard et al. Oct 2000 A
6139574 Vacanti et al. Oct 2000 A
6139913 Van Steenkiste et al. Oct 2000 A
6140740 Porat et al. Oct 2000 A
6143370 Panagiotou et al. Nov 2000 A
6153252 Hossainy et al. Nov 2000 A
6159142 Alt Dec 2000 A
6162238 Kaplan et al. Dec 2000 A
6164284 Schulman et al. Dec 2000 A
6165211 Thompson Dec 2000 A
6167307 Hess Dec 2000 A
6168602 Ryan Jan 2001 B1
6170488 Spillman, Jr. et al. Jan 2001 B1
6174329 Callol et al. Jan 2001 B1
6174330 Stinson Jan 2001 B1
6180222 Schulz et al. Jan 2001 B1
6185455 Loeb et al. Feb 2001 B1
6185457 Kroll et al. Feb 2001 B1
6190404 Palmaz et al. Feb 2001 B1
6192271 Hayman Feb 2001 B1
6201991 Chekanov Mar 2001 B1
6203536 Berg et al. Mar 2001 B1
6206914 Soykan et al. Mar 2001 B1
6206915 Fagan et al. Mar 2001 B1
6206916 Furst Mar 2001 B1
6212434 Scheiner Apr 2001 B1
6214037 Mitchell et al. Apr 2001 B1
6214042 Jacobsen et al. Apr 2001 B1
6217607 Alt Apr 2001 B1
6240616 Yan Jun 2001 B1
6241762 Shanley Jun 2001 B1
6245103 Stinson Jun 2001 B1
6249952 Ding Jun 2001 B1
6251136 Guruwaiya et al. Jun 2001 B1
6251980 Lan et al. Jun 2001 B1
6253252 Schofield Jun 2001 B1
6253443 Johnson Jul 2001 B1
6254632 Wu et al. Jul 2001 B1
6258117 Camrud et al. Jul 2001 B1
6264687 Tomonto Jul 2001 B1
6270831 Kumar et al. Aug 2001 B2
6273908 Ndondo-Lay Aug 2001 B1
6273913 Wright et al. Aug 2001 B1
6277078 Porat et al. Aug 2001 B1
6280385 Melzer et al. Aug 2001 B1
6280411 Lennox Aug 2001 B1
6283386 Van Steenkiste et al. Sep 2001 B1
6287331 Heath Sep 2001 B1
6287332 Bolz et al. Sep 2001 B1
6287335 Drasler et al. Sep 2001 B1
6287628 Hossainy et al. Sep 2001 B1
6290721 Heath Sep 2001 B1
6290722 Wang Sep 2001 B1
6291076 Nakatsugawa Sep 2001 B1
6299604 Ragheb et al. Oct 2001 B1
6299755 Richter Oct 2001 B1
6306144 Sydney et al. Oct 2001 B1
6309414 Rolando et al. Oct 2001 B1
6312463 Rourke et al. Nov 2001 B1
6315708 Salmon et al. Nov 2001 B1
6323146 Pugh et al. Nov 2001 B1
6325825 Kula et al. Dec 2001 B1
6327504 Dolgin et al. Dec 2001 B1
6331312 Lee et al. Dec 2001 B1
6335029 Kamath et al. Jan 2002 B1
6337076 Studin Jan 2002 B1
6338739 Datta et al. Jan 2002 B1
6342507 Naicker et al. Jan 2002 B1
6344055 Shukov Feb 2002 B1
6348960 Etori et al. Feb 2002 B1
6358276 Edwin Mar 2002 B1
6409754 Smith et al. Mar 2002 B1
6364823 Garibaldi et al. Apr 2002 B1
6364856 Ding et al. Apr 2002 B1
6364903 Tseng et al. Apr 2002 B2
6366808 Schroeppel et al. Apr 2002 B1
6368658 Schwarz et al. Apr 2002 B1
6369355 Saunders Apr 2002 B1
6375826 Wang et al. Apr 2002 B1
6379382 Yang et al. Apr 2002 B1
6379383 Palmaz et al. Apr 2002 B1
6383214 Banas et al. May 2002 B1
6387121 Alt May 2002 B1
6387124 Buscemi et al. May 2002 B1
6390967 Forman et al. May 2002 B1
6391033 Ryan May 2002 B2
6391052 Bulrge et al. May 2002 B2
6395326 Castro et al. May 2002 B1
6398806 You Jun 2002 B1
6423092 Datta et al. Jul 2002 B2
6425855 Tomonto Jul 2002 B2
6436133 Furst et al. Aug 2002 B1
6440166 Kolluri Aug 2002 B1
6440487 Delfino et al. Aug 2002 B1
6447540 Fontaine et al. Sep 2002 B1
6458153 Bailey et al. Oct 2002 B1
6468304 Dubois-Rande et al. Oct 2002 B1
6471721 Dang Oct 2002 B1
6471980 Sirhan et al. Oct 2002 B2
6475477 Kohn et al. Nov 2002 B1
6478815 Alt Nov 2002 B1
6479146 Caruso et al. Nov 2002 B1
6486588 Doron Nov 2002 B2
6488702 Besselink Dec 2002 B1
6491666 Santini, Jr. et al. Dec 2002 B1
6491720 Vallana et al. Dec 2002 B1
6492096 Liu et al. Dec 2002 B1
6503556 Harish et al. Jan 2003 B2
6503921 Naicker et al. Jan 2003 B2
6506437 Harish et al. Jan 2003 B1
6506972 Wang Jan 2003 B1
6514283 DiMatteo et al. Feb 2003 B2
6517571 Brauker et al. Feb 2003 B1
6517888 Weber Feb 2003 B1
6524274 Rosenthal et al. Feb 2003 B1
6524334 Thompson Feb 2003 B1
6527801 Dutta Mar 2003 B1
6527938 Bales et al. Mar 2003 B2
6530949 Konya et al. Mar 2003 B2
6530951 Bates et al. Mar 2003 B1
6537310 Palmaz et al. Mar 2003 B1
6537312 Datta et al. Mar 2003 B2
6544582 Yoe Apr 2003 B1
6545097 Pinchuk et al. Apr 2003 B2
6558422 Baker et al. May 2003 B1
6558733 Hossainy et al. May 2003 B1
6565602 Rolando et al. May 2003 B2
6569489 Li May 2003 B1
6584349 Sage et al. Jun 2003 B1
6585764 Wright et al. Jul 2003 B2
6585765 Hossainy et al. Jul 2003 B1
6589286 Litner Jul 2003 B1
6599558 Al-Lamee et al. Jul 2003 B1
6602287 Millare et al. Aug 2003 B1
6607598 Schwarz et al. Aug 2003 B2
6613077 Gilligan et al. Sep 2003 B2
6613083 Alt Sep 2003 B2
6613432 Zamora et al. Sep 2003 B2
6616765 Castro et al. Sep 2003 B1
6626933 Lau et al. Sep 2003 B1
6626936 Stinson Sep 2003 B2
6626939 Burnside et al. Sep 2003 B1
6627321 Ellingsen et al. Sep 2003 B1
6628989 Penner Sep 2003 B1
6629992 Bigus et al. Oct 2003 B2
6635082 Hossainy et al. Oct 2003 B1
6638302 Curcio et al. Oct 2003 B1
6641607 Hossainy et al. Nov 2003 B1
6652575 Wang Nov 2003 B2
6652578 Bailey et al. Nov 2003 B2
6652581 Ding Nov 2003 B1
6652582 Stinson Nov 2003 B1
6660034 Mandrusov et al. Dec 2003 B1
6663662 Pacetti et al. Dec 2003 B2
6663664 Pacetti Dec 2003 B1
6669980 Hansen Dec 2003 B2
6673105 Chen Jan 2004 B1
6673385 Ding et al. Jan 2004 B1
6673999 Wang et al. Jan 2004 B1
6676987 Zhong Jan 2004 B2
6676989 Kirkpatrick et al. Jan 2004 B2
6689160 Okuda et al. Feb 2004 B1
6689803 Hunter Feb 2004 B2
6695865 Boyle et al. Feb 2004 B2
6699281 Vallana et al. Mar 2004 B2
6699282 Sceusa Mar 2004 B1
6709379 Brandau et al. Mar 2004 B1
6709397 Taylor Mar 2004 B2
6709451 Noble et al. Mar 2004 B1
6710053 Naicker et al. Mar 2004 B2
6712844 Pacetti Mar 2004 B2
6712845 Hossainy Mar 2004 B2
6713671 Wang et al. Mar 2004 B1
6716444 Castro et al. Apr 2004 B1
6719987 Burrell et al. Apr 2004 B2
6720402 Langer et al. Apr 2004 B2
6723120 Yan Apr 2004 B2
6723350 Burrell et al. Apr 2004 B2
6725901 Kramer et al. Apr 2004 B1
6726712 Raeder-Devens et al. Apr 2004 B1
6730120 Berg et al. May 2004 B2
6730699 Li et al. May 2004 B2
6733513 Boyle et al. May 2004 B2
6740077 Brandau et al. May 2004 B1
6743388 Sridharan et al. Jun 2004 B2
6752826 Holloway et al. Jun 2004 B2
6752829 Kocur et al. Jun 2004 B2
6753071 Pacetti Jun 2004 B1
6758859 Dang et al. Jul 2004 B1
6764505 Hossainy et al. Jul 2004 B1
6764579 Veerasamy et al. Jul 2004 B2
6764709 Flanagan Jul 2004 B2
6765144 Wang et al. Jul 2004 B1
6767360 Alt et al. Jul 2004 B1
6770086 Girton Aug 2004 B1
6770729 Van Antwerp Aug 2004 B2
6774278 Ragheb et al. Aug 2004 B1
6776022 Kula et al. Aug 2004 B2
6776094 Whitesides et al. Aug 2004 B1
6780424 Claude Aug 2004 B2
6783543 Jang Aug 2004 B2
6790228 Hossainy et al. Sep 2004 B2
6793877 Pettersen et al. Sep 2004 B1
6796435 Izumi Sep 2004 B2
6803070 Weber Oct 2004 B2
6805709 Schaldach et al. Oct 2004 B1
6805898 Wu et al. Oct 2004 B1
6807440 Weber Oct 2004 B2
RE38653 Igaki et al. Nov 2004 E
6815609 Wang et al. Nov 2004 B1
6820676 Palmaz et al. Nov 2004 B2
6827737 Hill et al. Dec 2004 B2
6827966 Qiu et al. Dec 2004 B2
6833004 Ishii et al. Dec 2004 B2
6846323 Yip et al. Jan 2005 B2
6846841 Hunter et al. Jan 2005 B2
6847837 Melzer et al. Jan 2005 B1
6849085 Marton Feb 2005 B2
6849089 Stoll Feb 2005 B2
6852122 Rush Feb 2005 B2
6854172 Kaese Feb 2005 B2
6861088 Weber et al. Mar 2005 B2
6865810 Stinson Mar 2005 B2
6866805 Hong et al. Mar 2005 B2
6869443 Buscemi et al. Mar 2005 B2
6869701 Aita et al. Mar 2005 B1
6875227 Yoon Apr 2005 B2
6878249 Kouyama et al. Apr 2005 B2
6884429 Koziak et al. Apr 2005 B2
6887270 Miller et al. May 2005 B2
6887857 Naimark et al. May 2005 B2
6896697 Yip et al. May 2005 B1
6899731 Li et al. May 2005 B2
6899914 Schaldach et al. May 2005 B2
6904658 Hines Jun 2005 B2
6908506 Zimmermann Jun 2005 B2
6908622 Barry et al. Jun 2005 B2
6908624 Hossainy et al. Jun 2005 B2
6913617 Reiss Jul 2005 B1
6913765 Li et al. Jul 2005 B2
6918869 Shaw et al. Jul 2005 B2
6918927 Bates et al. Jul 2005 B2
6921390 Bucay-Couto et al. Jul 2005 B2
6923996 Epstein et al. Aug 2005 B2
6926735 Henderson Aug 2005 B2
6932930 DeSimone et al. Aug 2005 B2
6936066 Palmaz et al. Aug 2005 B2
6939320 Lennox Sep 2005 B2
6951053 Padilla et al. Oct 2005 B2
6953560 Castro et al. Oct 2005 B1
6953594 Lee et al. Oct 2005 B2
6954977 Maguire et al. Oct 2005 B2
6955661 Herweck et al. Oct 2005 B1
6955685 Escamilla et al. Oct 2005 B2
6962822 Hart et al. Nov 2005 B2
6964817 Date et al. Nov 2005 B2
6971813 Shekalim et al. Dec 2005 B2
6972130 Lee et al. Dec 2005 B1
6973718 Sheppard, Jr. et al. Dec 2005 B2
6979346 Hossainy et al. Dec 2005 B1
6979347 Wu et al. Dec 2005 B1
6979348 Sundar Dec 2005 B2
6984404 Talton et al. Jan 2006 B1
6986899 Hossainy et al. Jan 2006 B2
6989156 Gillis Jan 2006 B2
6991709 Gopalraja et al. Jan 2006 B2
7001421 Cheng et al. Feb 2006 B2
7004968 Lootz et al. Feb 2006 B2
7011670 Radisch, Jr. Mar 2006 B2
7011678 Tenerz et al. Mar 2006 B2
7011680 Alt Mar 2006 B2
7018408 Bailey et al. Mar 2006 B2
7022334 Ding et al. Apr 2006 B1
7041130 Santini, Jr. May 2006 B2
7048767 Namavar May 2006 B2
7048939 Elkins et al. May 2006 B2
7052488 Uhland May 2006 B2
7056338 Shanley et al. Jun 2006 B2
7056339 Elkins et al. Jun 2006 B2
7060051 Palasis Jun 2006 B2
7060240 Costa et al. Jun 2006 B2
7063748 Talton Jun 2006 B2
7067606 Mather et al. Jun 2006 B2
7070576 O'Brien et al. Jul 2006 B2
7078108 Zhang et al. Jul 2006 B2
7099091 Taniguchi et al. Aug 2006 B2
7101391 Scheuermann et al. Sep 2006 B2
7101394 Hamm et al. Sep 2006 B2
7105018 Yip et al. Sep 2006 B1
7105199 Blinn et al. Sep 2006 B2
7108716 Burnside et al. Sep 2006 B2
7157096 Zhang et al. Jan 2007 B2
7160592 Rypacek et al. Jan 2007 B2
7163715 Kramer Jan 2007 B1
7169173 Hossainy et al. Jan 2007 B2
7169178 Santos et al. Jan 2007 B1
7195640 Falotico et al. Mar 2007 B2
7195641 Palmaz et al. Mar 2007 B2
7198675 Fox et al. Apr 2007 B2
7208011 Shanley et al. Apr 2007 B2
7208172 Birdsall et al. Apr 2007 B2
7220816 Pacetti May 2007 B2
7226475 Lenz et al. Jun 2007 B2
7229471 Gale et al. Jun 2007 B2
7235096 Van Tassel et al. Jun 2007 B1
7235098 Palmaz Jun 2007 B2
7238199 Feldman et al. Jul 2007 B2
7241295 Maguire Jul 2007 B2
7244272 Dubson et al. Jul 2007 B2
7261732 Justino Aug 2007 B2
7261735 Llanos et al. Aug 2007 B2
7267960 Galibert et al. Sep 2007 B2
7279174 Pacetti Oct 2007 B2
7279175 Chen Oct 2007 B2
7294409 Lye et al. Nov 2007 B2
7311727 Mazumder et al. Dec 2007 B2
7323189 Pathak Jan 2008 B2
7331993 White Feb 2008 B2
7335375 Li et al. Feb 2008 B2
7344560 Gregorich et al. Mar 2008 B2
7344563 Vallana et al. Mar 2008 B2
7393589 Aharonov et al. Jul 2008 B2
7402173 Scheuermann et al. Jul 2008 B2
7416558 Yip et al. Aug 2008 B2
7432327 Glasgow et al. Oct 2008 B2
7462366 Lanphere Dec 2008 B2
7498385 Swetlin et al. Mar 2009 B2
7507433 Weber Mar 2009 B2
7537610 Reiss May 2009 B2
7547445 Chudzik et al. Jun 2009 B2
7563277 Case et al. Jul 2009 B2
7637941 Manicka et al. Dec 2009 B1
7651527 Krivoruchko et al. Jan 2010 B2
7691401 Castro et al. Apr 2010 B2
7713297 Alt May 2010 B2
7749264 Gregorich et al. Jul 2010 B2
7758635 Parsonage Jul 2010 B2
7771773 Namavar Aug 2010 B2
7776926 Claude et al. Aug 2010 B1
20010001834 Palmaz et al. May 2001 A1
20010002000 Kumar et al. May 2001 A1
20010002435 Berg et al. May 2001 A1
20010013166 Yan Aug 2001 A1
20010021871 Stinson Sep 2001 A1
20010021873 Stinson Sep 2001 A1
20010027299 Yang et al. Oct 2001 A1
20010029398 Jadhav Oct 2001 A1
20010029660 Johnson Oct 2001 A1
20010032011 Stanford Oct 2001 A1
20010032013 Marton Oct 2001 A1
20010032014 Yang et al. Oct 2001 A1
20010044650 Simso et al. Nov 2001 A1
20020000175 Hintermaier et al. Jan 2002 A1
20020000406 Izumi Jan 2002 A1
20020004060 Heublein Jan 2002 A1
20020007102 Salmon et al. Jan 2002 A1
20020007209 Scheerder et al. Jan 2002 A1
20020010505 Richter Jan 2002 A1
20020016623 Kula et al. Feb 2002 A1
20020016624 Patterson et al. Feb 2002 A1
20020028827 Naicker et al. Mar 2002 A1
20020032477 Helmus et al. Mar 2002 A1
20020035394 Fierens et al. Mar 2002 A1
20020038146 Harry Mar 2002 A1
20020042039 Kim et al. Apr 2002 A1
20020049495 Kutryk et al. Apr 2002 A1
20020051730 Bodnar et al. May 2002 A1
20020051846 Kirkpatrick et al. May 2002 A1
20020065553 Weber May 2002 A1
20020082679 Sirhan et al. Jun 2002 A1
20020087123 Hossainy et al. Jul 2002 A1
20020090313 Wang et al. Jul 2002 A1
20020091375 Sahatjian et al. Jul 2002 A1
20020098278 Bates et al. Jul 2002 A1
20020099434 Buscemi et al. Jul 2002 A1
20020099438 Furst Jul 2002 A1
20020103527 Kocur et al. Aug 2002 A1
20020103528 Schaldach et al. Aug 2002 A1
20020111694 Ellingsen et al. Aug 2002 A1
20020121497 Tomonto Sep 2002 A1
20020123801 Pacetti et al. Sep 2002 A1
20020133222 Das Sep 2002 A1
20020133224 Bajgar et al. Sep 2002 A1
20020138100 Stoll et al. Sep 2002 A1
20020138131 Solovay et al. Sep 2002 A1
20020138136 Chandresekaran et al. Sep 2002 A1
20020138154 Li et al. Sep 2002 A1
20020144757 Craig et al. Oct 2002 A1
20020155212 Hossainy Oct 2002 A1
20020165265 Hunter et al. Nov 2002 A1
20020165578 Sawitowski et al. Nov 2002 A1
20020165600 Banas et al. Nov 2002 A1
20020165607 Alt Nov 2002 A1
20020169493 Widenhouse et al. Nov 2002 A1
20020178570 Sogard et al. Dec 2002 A1
20020182241 Borenstein et al. Dec 2002 A1
20020183581 Yoe et al. Dec 2002 A1
20020187260 Sheppard, Jr. et al. Dec 2002 A1
20020193336 Elkins et al. Dec 2002 A1
20020193682 Torchia et al. Dec 2002 A1
20020193869 Dang Dec 2002 A1
20020197178 Yan Dec 2002 A1
20020198601 Bales et al. Dec 2002 A1
20030003127 Brown et al. Jan 2003 A1
20030003220 Zhong et al. Jan 2003 A1
20030004563 Jackson et al. Jan 2003 A1
20030004564 Elkins et al. Jan 2003 A1
20030009214 Shanley Jan 2003 A1
20030018380 Craig et al. Jan 2003 A1
20030018381 Whitcher et al. Jan 2003 A1
20030023300 Bailey et al. Jan 2003 A1
20030028242 Vallana et al. Feb 2003 A1
20030028243 Bates et al. Feb 2003 A1
20030032892 Erlach et al. Feb 2003 A1
20030033007 Sirhan et al. Feb 2003 A1
20030044446 Moro et al. Mar 2003 A1
20030044596 Lazarov et al. Mar 2003 A1
20030050687 Schwade et al. Mar 2003 A1
20030059640 Marton et al. Mar 2003 A1
20030060871 Hill et al. Mar 2003 A1
20030060873 Gertner et al. Mar 2003 A1
20030064095 Martin et al. Apr 2003 A1
20030068355 Shanley et al. Apr 2003 A1
20030069631 Stoll Apr 2003 A1
20030074053 Palmaz et al. Apr 2003 A1
20030077200 Craig et al. Apr 2003 A1
20030077310 Pathak et al. Apr 2003 A1
20030083614 Eisert May 2003 A1
20030083646 Sirhan et al. May 2003 A1
20030083731 Kramer et al. May 2003 A1
20030087024 Flanagan May 2003 A1
20030088307 Shulze et al. May 2003 A1
20030088312 Kopia et al. May 2003 A1
20030099684 Domb May 2003 A1
20030100815 Da Silva et al. May 2003 A1
20030100830 Zhong et al. May 2003 A1
20030104030 Igaki et al. Jun 2003 A1
20030105511 Welsh et al. Jun 2003 A1
20030108659 Bales et al. Jun 2003 A1
20030114917 Holloway et al. Jun 2003 A1
20030114921 Yoon Jun 2003 A1
20030118692 Wang et al. Jun 2003 A1
20030120339 Banik et al. Jun 2003 A1
20030124055 Li et al. Jul 2003 A1
20030125803 Vallana Jul 2003 A1
20030130718 Palmas et al. Jul 2003 A1
20030139799 Ley et al. Jul 2003 A1
20030143330 Loomis et al. Jul 2003 A1
20030144728 Scheuermann et al. Jul 2003 A1
20030150380 Yoe Aug 2003 A1
20030153901 Herweck et al. Aug 2003 A1
20030158598 Ashton et al. Aug 2003 A1
20030170605 Long et al. Sep 2003 A1
20030181975 Ishii et al. Sep 2003 A1
20030185895 Lanphere Oct 2003 A1
20030190406 Hossainy et al. Oct 2003 A1
20030195613 Curcio et al. Oct 2003 A1
20030204239 Carlyle et al. Oct 2003 A1
20030211135 Greenhalgh et al. Nov 2003 A1
20030216803 Ledergerber Nov 2003 A1
20030219562 Rypacek et al. Nov 2003 A1
20030221307 Kaese et al. Dec 2003 A1
20030228523 DeLongchamp et al. Dec 2003 A1
20030236513 Schwarz et al. Dec 2003 A1
20040000046 Stinson Jan 2004 A1
20040000540 Soboyejo et al. Jan 2004 A1
20040006382 Sohier Jan 2004 A1
20040018296 Castro et al. Jan 2004 A1
20040019376 Alt Jan 2004 A1
20040022939 Kim et al. Feb 2004 A1
20040024448 Chang et al. Feb 2004 A1
20040029303 Hart et al. Feb 2004 A1
20040030218 Kocur et al. Feb 2004 A1
20040030377 Dubson et al. Feb 2004 A1
20040034409 Heublein et al. Feb 2004 A1
20040039438 Alt Feb 2004 A1
20040039441 Rowland et al. Feb 2004 A1
20040044397 Stinson Mar 2004 A1
20040047980 Pacetti et al. Mar 2004 A1
20040059407 Escamilla et al. Mar 2004 A1
20040059409 Stenzel Mar 2004 A1
20040067301 Ding Apr 2004 A1
20040071861 Mandrusov et al. Apr 2004 A1
20040073155 Laufer et al. Apr 2004 A1
20040073284 Bates et al. Apr 2004 A1
20040073293 Thompson Apr 2004 A1
20040073297 Rohde et al. Apr 2004 A1
20040073298 Hossainy Apr 2004 A1
20040078071 Escamilla et al. Apr 2004 A1
20040082682 Loomis et al. Apr 2004 A1
20040088038 Dehnad et al. May 2004 A1
20040088041 Stanford May 2004 A1
20040093071 Jang May 2004 A1
20040093075 Kuehne May 2004 A1
20040093076 White et al. May 2004 A1
20040098089 Weber May 2004 A1
20040098108 Harder et al. May 2004 A1
20040098119 Wang May 2004 A1
20040106975 Solovay et al. Jun 2004 A1
20040106984 Stinson Jun 2004 A1
20040106985 Jang Jun 2004 A1
20040111150 Berg et al. Jun 2004 A1
20040116999 Ledergerber Jun 2004 A1
20040117005 Gadde et al. Jun 2004 A1
20040117008 Wnendt et al. Jun 2004 A1
20040122504 Hogendijk Jun 2004 A1
20040126566 Axen et al. Jul 2004 A1
20040133270 Grandt Jul 2004 A1
20040134886 Wagner et al. Jul 2004 A1
20040137039 Sukhishvili et al. Jul 2004 A1
20040138738 Stinson Jul 2004 A1
20040142014 Litvack et al. Jul 2004 A1
20040143317 Stinson et al. Jul 2004 A1
20040143321 Litvack et al. Jul 2004 A1
20040148010 Rush Jul 2004 A1
20040148015 Lye et al. Jul 2004 A1
20040153138 Murphy Aug 2004 A1
20040157073 Burrell et al. Aug 2004 A1
20040158308 Hogendijk et al. Aug 2004 A1
20040158310 Weber et al. Aug 2004 A1
20040167572 Roth et al. Aug 2004 A1
20040167612 Grignani et al. Aug 2004 A1
20040172124 Vallana et al. Sep 2004 A1
20040181252 Boyle et al. Sep 2004 A1
20040181275 Noble et al. Sep 2004 A1
20040181276 Brown et al. Sep 2004 A1
20040181278 Tseng et al. Sep 2004 A1
20040182511 Rakos et al. Sep 2004 A1
20040186553 Yan Sep 2004 A1
20040191293 Claude Sep 2004 A1
20040191404 Hossainy et al. Sep 2004 A1
20040202692 Shanley et al. Oct 2004 A1
20040204750 Dinh Oct 2004 A1
20040211362 Castro et al. Oct 2004 A1
20040219214 Gravett et al. Nov 2004 A1
20040220510 Koullick et al. Nov 2004 A1
20040220659 Girton Nov 2004 A1
20040220660 Shanley et al. Nov 2004 A1
20040220662 Dang et al. Nov 2004 A1
20040224001 Pacetti et al. Nov 2004 A1
20040225346 Mazumder et al. Nov 2004 A1
20040228905 Greenspan et al. Nov 2004 A1
20040230176 Shanahan et al. Nov 2004 A1
20040230225 Penner et al. Nov 2004 A1
20040230293 Yip et al. Nov 2004 A1
20040234737 Pacetti Nov 2004 A1
20040236415 Thomas Nov 2004 A1
20040236416 Falotico Nov 2004 A1
20040237282 Hines Dec 2004 A1
20040242106 Rabasco et al. Dec 2004 A1
20040243217 Andersen Dec 2004 A1
20040243237 Unwin et al. Dec 2004 A1
20040243241 Istephanous et al. Dec 2004 A1
20040247671 Prescott et al. Dec 2004 A1
20040249440 Bucker et al. Dec 2004 A1
20040249443 Shanley et al. Dec 2004 A1
20040249444 Reiss Dec 2004 A1
20040249445 Rosenthal et al. Dec 2004 A1
20040249449 Shanley et al. Dec 2004 A1
20040254419 Wang et al. Dec 2004 A1
20040254635 Shanley et al. Dec 2004 A1
20050004661 Lewis et al. Jan 2005 A1
20050010275 Sahatjian Jan 2005 A1
20050010279 Tenerz et al. Jan 2005 A1
20050015142 Austin et al. Jan 2005 A1
20050019265 Hammer et al. Jan 2005 A1
20050019371 Anderson et al. Jan 2005 A1
20050021127 Kawula Jan 2005 A1
20050021128 Nakahama et al. Jan 2005 A1
20050022627 Chen Feb 2005 A1
20050027350 Momma et al. Feb 2005 A1
20050033407 Weber et al. Feb 2005 A1
20050033411 Wu et al. Feb 2005 A1
20050033412 Wu et al. Feb 2005 A1
20050033417 Borges et al. Feb 2005 A1
20050037047 Song Feb 2005 A1
20050037050 Weber Feb 2005 A1
20050038134 Loomis et al. Feb 2005 A1
20050038501 Moore, Jr. et al. Feb 2005 A1
20050042288 Koblish et al. Feb 2005 A1
20050042440 Bach et al. Feb 2005 A1
20050055044 Kangas Mar 2005 A1
20050055080 Istephanous et al. Mar 2005 A1
20050055085 Rivron et al. Mar 2005 A1
20050060020 Jenson Mar 2005 A1
20050060021 O'Brien et al. Mar 2005 A1
20050064088 Fredrickson Mar 2005 A1
20050069630 Fox et al. Mar 2005 A1
20050070989 Lye et al. Mar 2005 A1
20050070990 Stinson Mar 2005 A1
20050070996 Dinh et al. Mar 2005 A1
20050071016 Hausdorf et al. Mar 2005 A1
20050072544 Palmaz et al. Apr 2005 A1
20050074479 Weber et al. Apr 2005 A1
20050074545 Thomas Apr 2005 A1
20050077305 Guevara Apr 2005 A1
20050079132 Wang et al. Apr 2005 A1
20050079199 Heruth et al. Apr 2005 A1
20050079356 Rathenow et al. Apr 2005 A1
20050092615 Birdsall et al. May 2005 A1
20050096731 Looi et al. May 2005 A1
20050100577 Parker et al. May 2005 A1
20050100609 Claude May 2005 A1
20050102025 Laroche et al. May 2005 A1
20050106212 Gertner et al. May 2005 A1
20050107869 Sirhan et al. May 2005 A1
20050107870 Wang et al. May 2005 A1
20050113936 Brustad et al. May 2005 A1
20050119723 Peacock Jun 2005 A1
20050129727 Weber et al. Jun 2005 A1
20050129731 Horres et al. Jun 2005 A1
20050131509 Atanassoska et al. Jun 2005 A1
20050131521 Marton Jun 2005 A1
20050131522 Stinson et al. Jun 2005 A1
20050131527 Pathak Jun 2005 A1
20050131528 Buscemi et al. Jun 2005 A1
20050136090 Falotico et al. Jun 2005 A1
20050137677 Rush Jun 2005 A1
20050137679 Changelian et al. Jun 2005 A1
20050137684 Changelian et al. Jun 2005 A1
20050149169 Wang et al. Jul 2005 A1
20050149170 Tassel et al. Jul 2005 A1
20050149175 Hunter et al. Jul 2005 A1
20050149177 Weber et al. Jul 2005 A1
20050159804 Lad et al. Jul 2005 A1
20050159805 Weber et al. Jul 2005 A1
20050159809 Hezi-Yamit et al. Jul 2005 A1
20050160600 Bien et al. Jul 2005 A1
20050163821 Sung et al. Jul 2005 A1
20050163954 Shaw Jul 2005 A1
20050165301 Smith et al. Jul 2005 A1
20050165468 Marton Jul 2005 A1
20050165470 Weber Jul 2005 A1
20050169969 Li et al. Aug 2005 A1
20050171595 Feldman et al. Aug 2005 A1
20050177226 Banik et al. Aug 2005 A1
20050180919 Tedeschi Aug 2005 A1
20050182361 Lennox Aug 2005 A1
20050182478 Holman et al. Aug 2005 A1
20050186250 Gertner et al. Aug 2005 A1
20050187611 Ding et al. Aug 2005 A1
20050192657 Colen et al. Sep 2005 A1
20050192662 Ward Sep 2005 A1
20050192664 Eisert Sep 2005 A1
20050196424 Chappa Sep 2005 A1
20050208098 Castro et al. Sep 2005 A1
20050208100 Weber et al. Sep 2005 A1
20050209680 Gale et al. Sep 2005 A1
20050209681 Curcio et al. Sep 2005 A1
20050211680 Li et al. Sep 2005 A1
20050214951 Nahm et al. Sep 2005 A1
20050216074 Sahatjian Sep 2005 A1
20050216075 Wang et al. Sep 2005 A1
20050220853 Dao et al. Oct 2005 A1
20050221072 Dubrow et al. Oct 2005 A1
20050222671 Schaeffer et al. Oct 2005 A1
20050228477 Grainger et al. Oct 2005 A1
20050228483 Kaplan et al. Oct 2005 A1
20050228491 Snyder et al. Oct 2005 A1
20050232968 Palmaz et al. Oct 2005 A1
20050233965 Schwartz et al. Oct 2005 A1
20050234538 Litvack et al. Oct 2005 A1
20050244459 DeWitt et al. Nov 2005 A1
20050251245 Sieradzki et al. Nov 2005 A1
20050251249 Sahatjian Nov 2005 A1
20050255707 Hart et al. Nov 2005 A1
20050261760 Weber Nov 2005 A1
20050266039 Weber Dec 2005 A1
20050266040 Gerberding Dec 2005 A1
20050266041 Gerold et al. Dec 2005 A1
20050267561 Jones et al. Dec 2005 A1
20050271703 Anderson et al. Dec 2005 A1
20050271706 Anderson et al. Dec 2005 A1
20050276837 Anderson et al. Dec 2005 A1
20050278016 Welsh et al. Dec 2005 A1
20050278021 Bates et al. Dec 2005 A1
20050281863 Anderson et al. Dec 2005 A1
20050283224 King Dec 2005 A1
20050283229 Dugan et al. Dec 2005 A1
20050287188 Anderson et al. Dec 2005 A1
20060002979 Ashammakhi et al. Jan 2006 A1
20060009839 Tan Jan 2006 A1
20060013850 Domb Jan 2006 A1
20060014039 Zhang et al. Jan 2006 A1
20060015175 Palmaz et al. Jan 2006 A1
20060015361 Sattler et al. Jan 2006 A1
20060020742 Au et al. Jan 2006 A1
20060025848 Weber et al. Feb 2006 A1
20060035026 Atanassoska et al. Feb 2006 A1
20060036281 Patterson et al. Feb 2006 A1
20060036311 Nakayama et al. Feb 2006 A1
20060038027 O'Connor et al. Feb 2006 A1
20060040388 Bromberg et al. Feb 2006 A1
20060041182 Forbes et al. Feb 2006 A1
20060051397 Maier et al. Mar 2006 A1
20060052744 Weber Mar 2006 A1
20060052863 Harder et al. Mar 2006 A1
20060052864 Harder et al. Mar 2006 A1
20060058868 Gale et al. Mar 2006 A1
20060062820 Gertner et al. Mar 2006 A1
20060064160 Gerold et al. Mar 2006 A1
20060067908 Ding Mar 2006 A1
20060069427 Savage et al. Mar 2006 A1
20060075044 Fox et al. Apr 2006 A1
20060075092 Kidokoro Apr 2006 A1
20060079958 Stratford et al. Apr 2006 A1
20060085062 Lee et al. Apr 2006 A1
20060085065 Krause et al. Apr 2006 A1
20060088566 Parsonage et al. Apr 2006 A1
20060088567 Warner et al. Apr 2006 A1
20060088653 Chappa et al. Apr 2006 A1
20060088666 Kobrin et al. Apr 2006 A1
20060100696 Atanasoska et al. May 2006 A1
20060115512 Peacock et al. Jun 2006 A1
20060118236 House et al. Jun 2006 A1
20060122694 Stinson et al. Jun 2006 A1
20060122697 Shanley et al. Jun 2006 A1
20060124472 Rokicki Jun 2006 A1
20060127266 Miura et al. Jun 2006 A1
20060129215 Helmus et al. Jun 2006 A1
20060129222 Stinson Jun 2006 A1
20060129225 Kopia et al. Jun 2006 A1
20060136048 Pacetti et al. Jun 2006 A1
20060141156 Viel et al. Jun 2006 A1
20060149352 Schlum Jul 2006 A1
20060153729 Stinson et al. Jul 2006 A1
20060155361 Schomig et al. Jul 2006 A1
20060167543 Bailey et al. Jul 2006 A1
20060177480 Sung et al. Aug 2006 A1
20060178727 Richter Aug 2006 A1
20060184235 Rivron et al. Aug 2006 A1
20060193886 Owens et al. Aug 2006 A1
20060193887 Owens et al. Aug 2006 A1
20060193888 Lye et al. Aug 2006 A1
20060193889 Spradlin et al. Aug 2006 A1
20060193890 Owens et al. Aug 2006 A1
20060193892 Furst et al. Aug 2006 A1
20060198869 Furst et al. Sep 2006 A1
20060199876 Troczynski et al. Sep 2006 A1
20060200229 Burgermeister et al. Sep 2006 A1
20060200231 O'Brien et al. Sep 2006 A1
20060200233 Kujawski Sep 2006 A1
20060210595 Singhvi et al. Sep 2006 A1
20060212108 Tittelbach Sep 2006 A1
20060222679 Shanley et al. Oct 2006 A1
20060222844 Stinson Oct 2006 A1
20060224237 Furst et al. Oct 2006 A1
20060229711 Yan et al. Oct 2006 A1
20060229713 Shanley et al. Oct 2006 A1
20060230476 Atanasoska et al. Oct 2006 A1
20060233941 Olson Oct 2006 A1
20060241739 Besselink et al. Oct 2006 A1
20060251701 Lynn et al. Nov 2006 A1
20060259133 Sowinski et al. Nov 2006 A1
20060264138 Sowinski et al. Nov 2006 A1
20060271156 Ledergerber Nov 2006 A1
20060271168 Kleine et al. Nov 2006 A1
20060271169 Lye et al. Nov 2006 A1
20060271192 Olsen et al. Nov 2006 A1
20060275554 Zhao et al. Dec 2006 A1
20060276877 Owens et al. Dec 2006 A1
20060276878 Owens et al. Dec 2006 A1
20060276879 Lye et al. Dec 2006 A1
20060276884 Lye et al. Dec 2006 A1
20060276885 Lye et al. Dec 2006 A1
20060280770 Hossainy et al. Dec 2006 A1
20060287709 Rao Dec 2006 A1
20060292388 Palumbo et al. Dec 2006 A1
20070003589 Astafieva et al. Jan 2007 A1
20070003596 Tittelbach et al. Jan 2007 A1
20070020306 Schultheiss Jan 2007 A1
20070027532 Wang et al. Feb 2007 A1
20070032858 Santos et al. Feb 2007 A1
20070032862 Weber et al. Feb 2007 A1
20070032864 Furst et al. Feb 2007 A1
20070034615 Kleine Feb 2007 A1
20070036905 Kramer Feb 2007 A1
20070038176 Weber et al. Feb 2007 A1
20070038289 Nishide et al. Feb 2007 A1
20070038290 Huang et al. Feb 2007 A1
20070045252 Kleine et al. Mar 2007 A1
20070048350 Falotico et al. Mar 2007 A1
20070050007 Kondyurin et al. Mar 2007 A1
20070050009 Flanagan Mar 2007 A1
20070052497 Tada Mar 2007 A1
20070055349 Santos et al. Mar 2007 A1
20070055354 Santos et al. Mar 2007 A1
20070055364 Hossainy et al. Mar 2007 A1
20070059435 Santos et al. Mar 2007 A1
20070065418 Vallana et al. Mar 2007 A1
20070073385 Schaeffer et al. Mar 2007 A1
20070073390 Lee Mar 2007 A1
20070077163 Furst et al. Apr 2007 A1
20070104753 Flanagan May 2007 A1
20070106347 Lin May 2007 A1
20070106363 Weber May 2007 A1
20070123973 Roth et al. May 2007 A1
20070129789 Cottone, Jr. et al. Jun 2007 A1
20070129792 Picart et al. Jun 2007 A1
20070134288 Parsonage et al. Jun 2007 A1
20070135908 Zhao Jun 2007 A1
20070141106 Bonutti et al. Jun 2007 A1
20070142897 Consigny et al. Jun 2007 A1
20070142899 Lootz et al. Jun 2007 A1
20070148251 Hossainy et al. Jun 2007 A1
20070151093 Curcio et al. Jul 2007 A1
20070156231 Weber Jul 2007 A1
20070156248 Marco et al. Jul 2007 A1
20070160641 Jang Jul 2007 A1
20070168016 Gronemeyer et al. Jul 2007 A1
20070173923 Savage et al. Jul 2007 A1
20070178129 Flanagan Aug 2007 A1
20070181433 Birdsall et al. Aug 2007 A1
20070184083 Coughlin Aug 2007 A1
20070190104 Kamath et al. Aug 2007 A1
20070191923 Weber Aug 2007 A1
20070191928 Rolando et al. Aug 2007 A1
20070191931 Weber Aug 2007 A1
20070191943 Shrivastava et al. Aug 2007 A1
20070197980 Barry et al. Aug 2007 A1
20070202466 Schwarz et al. Aug 2007 A1
20070207186 Scanlon et al. Sep 2007 A1
20070208412 Elmaleh Sep 2007 A1
20070219626 Rolando et al. Sep 2007 A1
20070224116 Chandrasekaran et al. Sep 2007 A1
20070224244 Weber et al. Sep 2007 A1
20070225799 Doty Sep 2007 A1
20070244541 Schulman Oct 2007 A1
20070244569 Weber et al. Oct 2007 A1
20070250155 Simpson Oct 2007 A1
20070250156 Palmaz Oct 2007 A1
20070250158 Krivoruchko et al. Oct 2007 A1
20070255388 Rudakov et al. Nov 2007 A1
20070255392 Johnson Nov 2007 A1
20070264199 Labhasetwar et al. Nov 2007 A1
20070264303 Atanasoska et al. Nov 2007 A1
20070270940 Doty Nov 2007 A1
20070270942 Thomas Nov 2007 A1
20070281073 Gale et al. Dec 2007 A1
20070281117 Kaplan et al. Dec 2007 A1
20070282432 Stinson et al. Dec 2007 A1
20070299509 Ding Dec 2007 A1
20070299512 Korzuschnik et al. Dec 2007 A1
20080003251 Zhou Jan 2008 A1
20080003256 Martens et al. Jan 2008 A1
20080004691 Weber et al. Jan 2008 A1
20080031765 Gerold et al. Feb 2008 A1
20080033522 Grewe et al. Feb 2008 A1
20080033530 Zberg et al. Feb 2008 A1
20080033531 Barthel et al. Feb 2008 A1
20080033533 Borck Feb 2008 A1
20080033536 Wittchow Feb 2008 A1
20080033537 Tittelbach Feb 2008 A1
20080033538 Borck et al. Feb 2008 A1
20080033539 Sternberg et al. Feb 2008 A1
20080033576 Gerold et al. Feb 2008 A1
20080038146 Wachter et al. Feb 2008 A1
20080050413 Horvers et al. Feb 2008 A1
20080051335 Kleiner et al. Feb 2008 A1
20080051866 Chen et al. Feb 2008 A1
20080051872 Borck Feb 2008 A1
20080051881 Feng et al. Feb 2008 A1
20080057105 Atanasoska et al. Mar 2008 A1
20080058919 Kramer-Brown et al. Mar 2008 A1
20080058921 Lindquist Mar 2008 A1
20080058923 Bertsch et al. Mar 2008 A1
20080069854 Xiao et al. Mar 2008 A1
20080071348 Boismier et al. Mar 2008 A1
20080071349 Atanasoska et al. Mar 2008 A1
20080071350 Stinson Mar 2008 A1
20080071351 Flanagan et al. Mar 2008 A1
20080071352 Weber et al. Mar 2008 A1
20080071353 Weber et al. Mar 2008 A1
20080071355 Weber et al. Mar 2008 A1
20080071357 Girton et al. Mar 2008 A1
20080071358 Weber et al. Mar 2008 A1
20080082162 Boismier et al. Apr 2008 A1
20080086199 Dave et al. Apr 2008 A1
20080086201 Weber et al. Apr 2008 A1
20080090097 Shaw et al. Apr 2008 A1
20080097577 Atanasoska et al. Apr 2008 A1
20080103589 Cheng et al. May 2008 A1
20080103594 Loffler et al. May 2008 A1
20080107890 Bureau et al. May 2008 A1
20080109072 Girton May 2008 A1
20080113083 Sutermeister et al. May 2008 A1
20080124373 Xiao et al. May 2008 A1
20080131479 Weber et al. Jun 2008 A1
20080140172 Carpenter et al. Jun 2008 A1
20080140186 Grignani et al. Jun 2008 A1
20080145400 Weber et al. Jun 2008 A1
20080147175 Krivoruchko et al. Jun 2008 A1
20080147177 Scheuermann et al. Jun 2008 A1
20080152929 Zhao Jun 2008 A1
20080160166 Rypacek et al. Jul 2008 A1
20080160259 Nielson et al. Jul 2008 A1
20080161906 Atanasoska et al. Jul 2008 A1
20080171929 Katims Jul 2008 A1
20080175885 Asgari Jul 2008 A1
20080177378 Asgari Jul 2008 A1
20080183269 Kaplan et al. Jul 2008 A2
20080183277 Atanasoska et al. Jul 2008 A1
20080183278 Atanasoska et al. Jul 2008 A1
20080188927 Rohde et al. Aug 2008 A1
20080195170 Asgari Aug 2008 A1
20080195189 Asgari Aug 2008 A1
20080195198 Asgari Aug 2008 A1
20080208308 Allen et al. Aug 2008 A1
20080208313 Yu et al. Aug 2008 A1
20080208352 Krivoruchko et al. Aug 2008 A1
20080213377 Bhatia et al. Sep 2008 A1
20080215129 Venturelli et al. Sep 2008 A1
20080215139 McMorrow et al. Sep 2008 A1
20080215140 Borck et al. Sep 2008 A1
20080241218 McMorrow et al. Oct 2008 A1
20080243113 Shastri et al. Oct 2008 A1
20080243230 Lootz et al. Oct 2008 A1
20080243231 Flanagan et al. Oct 2008 A1
20080243234 Wilcox Oct 2008 A1
20080243240 Doty et al. Oct 2008 A1
20080243242 Kappelt et al. Oct 2008 A1
20080249600 Atanasoska et al. Oct 2008 A1
20080249615 Weber Oct 2008 A1
20080255508 Wang Oct 2008 A1
20080255509 Wang Oct 2008 A1
20080262589 Nagura Oct 2008 A1
20080269872 Lootz et al. Oct 2008 A1
20080288048 Rolando et al. Nov 2008 A1
20080290467 Shue Nov 2008 A1
20080294236 Anand et al. Nov 2008 A1
20080294246 Scheuermann Nov 2008 A1
20080306584 Kramer-Brown Dec 2008 A1
20090005862 Nakatani et al. Jan 2009 A1
20090012599 Broome et al. Jan 2009 A1
20090018639 Kuehling Jan 2009 A1
20090018647 Benco et al. Jan 2009 A1
20090018648 Wittchow Jan 2009 A1
20090024199 Birdsall et al. Jan 2009 A1
20090024209 Ozdil et al. Jan 2009 A1
20090024210 Klocke et al. Jan 2009 A1
20090024211 Wittchow Jan 2009 A1
20090028785 Clarke Jan 2009 A1
20090030494 Stefanadis et al. Jan 2009 A1
20090030500 Weber et al. Jan 2009 A1
20090030504 Weber et al. Jan 2009 A1
20090030506 Klocke et al. Jan 2009 A1
20090030507 Klocke et al. Jan 2009 A1
20090035351 Berglund et al. Feb 2009 A1
20090043330 To Feb 2009 A1
20090043374 Nakano Feb 2009 A1
20090043380 Blaha et al. Feb 2009 A1
20090048660 Adden Feb 2009 A1
20090062905 Moore, Jr. et al. Mar 2009 A1
20090069884 Mueller Mar 2009 A1
20090076588 Weber Mar 2009 A1
20090076596 Adden et al. Mar 2009 A1
20090081293 Murase et al. Mar 2009 A1
20090081450 Ascher et al. Mar 2009 A1
20090088831 Goto Apr 2009 A1
20090088834 Wang Apr 2009 A1
20090093871 Rea et al. Apr 2009 A1
20090095715 Sabaria Apr 2009 A1
20090118809 Scheuermann et al. May 2009 A1
20090118812 Kokate et al. May 2009 A1
20090118813 Scheuermann et al. May 2009 A1
20090118814 Schoenle et al. May 2009 A1
20090118815 Arcand et al. May 2009 A1
20090118818 Foss et al. May 2009 A1
20090118819 Merz et al. May 2009 A1
20090118820 Gregorich et al. May 2009 A1
20090118821 Scheuermann et al. May 2009 A1
20090118822 Holman et al. May 2009 A1
20090118823 Atanasoska et al. May 2009 A1
20090123517 Flanagan et al. May 2009 A1
20090123521 Weber et al. May 2009 A1
20090124956 Swetlin et al. May 2009 A1
20090131540 Hiromoto et al. May 2009 A1
20090143855 Weber et al. Jun 2009 A1
20090149942 Edelman et al. Jun 2009 A1
20090157165 Miller et al. Jun 2009 A1
20090157172 Kokate et al. Jun 2009 A1
20090164002 Becher et al. Jun 2009 A1
20090171452 Yamamoto et al. Jul 2009 A1
20090177273 Piveteau et al. Jul 2009 A1
20090182290 Harder et al. Jul 2009 A1
20090182337 Stopek et al. Jul 2009 A1
20090182425 Duda et al. Jul 2009 A1
20090192571 Stett et al. Jul 2009 A1
20090192594 Borck Jul 2009 A1
20090192595 Nagura et al. Jul 2009 A1
20090192596 Adden Jul 2009 A1
20090196899 Birdsall et al. Aug 2009 A1
20090198320 Mueller et al. Aug 2009 A1
20090202610 Wilson Aug 2009 A1
20090204203 Allen et al. Aug 2009 A1
20090208428 Hill et al. Aug 2009 A1
20090208555 Kuttler et al. Aug 2009 A1
20090214373 Stinson et al. Aug 2009 A1
20090228037 Rego Sep 2009 A1
20090240323 Wilcox Sep 2009 A1
20090254171 Heikkila Oct 2009 A1
20090259300 Dorogy, Jr. et al. Oct 2009 A1
20090270979 Adden Oct 2009 A1
20090274737 Borck Nov 2009 A1
20090281613 Atanasoska et al. Nov 2009 A1
20090287301 Weber Nov 2009 A1
20090287302 Thomas et al. Nov 2009 A1
20090306584 Schmidtlein et al. Dec 2009 A1
20090306756 Cho et al. Dec 2009 A1
20090306765 Weber Dec 2009 A1
20090306766 McDermott et al. Dec 2009 A1
20090311300 Wittchow Dec 2009 A1
20090312807 Boudreault et al. Dec 2009 A1
20090319035 Terry Dec 2009 A1
20090324684 Atanasoska et al. Dec 2009 A1
20090326638 Atanasoska et al. Dec 2009 A1
20100008970 O'Brien et al. Jan 2010 A1
20100010621 Klocke Jan 2010 A1
20100010640 Gerold et al. Jan 2010 A1
20100015206 Flanagan et al. Jan 2010 A1
20100016940 Shokoohi et al. Jan 2010 A1
20100021523 Scheuermann et al. Jan 2010 A1
20100023112 Borck et al. Jan 2010 A1
20100023116 Borck et al. Jan 2010 A1
20100028436 Ohrlander et al. Feb 2010 A1
20100030326 Radhakrishnan et al. Feb 2010 A1
20100034899 Harder et al. Feb 2010 A1
20100042205 Atanasoska et al. Feb 2010 A1
20100042206 Yadav et al. Feb 2010 A1
20100047312 Wittchow Feb 2010 A1
20100047324 Fritz et al. Feb 2010 A1
20100049146 Nielsen et al. Feb 2010 A1
20100049296 Sarasam et al. Feb 2010 A1
20100049299 Popowski et al. Feb 2010 A1
20100049300 Harder Feb 2010 A1
20100055151 Flanagan Mar 2010 A1
20100057188 Weber Mar 2010 A1
20100057197 Weber et al. Mar 2010 A1
20100070024 Venturelli et al. Mar 2010 A1
20100075162 Yang et al. Mar 2010 A1
20100076544 Hoffmann et al. Mar 2010 A1
20100076556 Tomantschger et al. Mar 2010 A1
20100081735 Mao et al. Apr 2010 A1
20100082092 Gerold Apr 2010 A1
20100087910 Weber Apr 2010 A1
20100087911 Mueller Apr 2010 A1
20100087914 Bayer et al. Apr 2010 A1
20100087915 Bayer et al. Apr 2010 A1
20100087916 Bayer et al. Apr 2010 A1
20100092535 Cook et al. Apr 2010 A1
20100106243 Wittchow Apr 2010 A1
20100119576 Harder et al. May 2010 A1
20100119581 Gratz et al. May 2010 A1
20100121432 Klocke et al. May 2010 A1
20100125325 Allen et al. May 2010 A1
20100125328 Flanagan May 2010 A1
20100131050 Zhao May 2010 A1
20100131052 Kappelt et al. May 2010 A1
20100161031 Papirov et al. Jun 2010 A1
20100217370 Scheuermann et al. Aug 2010 A1
Foreign Referenced Citations (105)
Number Date Country
739 507 Nov 1998 AU
2003 203 722 Nov 2003 AU
2 235 031 Oct 1998 CA
2 346 857 May 2000 CA
2 371 800 Aug 2000 CA
198 11 033 Aug 1999 DE
198 56 983 Dec 1999 DE
103 57 281 Jul 2005 DE
103 61 941 Jul 2005 DE
10 2006 038236 Feb 2008 DE
10 2006 38236 Feb 2008 DE
0 006 544 Jun 1979 EP
0 337 035 Oct 1989 EP
0 923 389 Jul 1998 EP
0 923 912 Jun 1999 EP
0 966 979 Dec 1999 EP
0 972 563 Jan 2000 EP
1 054 644 Nov 2000 EP
1 071 490 Jan 2001 EP
1 222 901 Jul 2002 EP
1 260 214 Nov 2002 EP
1 270 023 Jan 2003 EP
1 273 314 Jan 2003 EP
1 370 306 Dec 2003 EP
1 389 471 Feb 2004 EP
1 393 766 Mar 2004 EP
1 419 793 May 2004 EP
0 951 877 Jun 2004 EP
0 875 218 Feb 2005 EP
1 733 746 Dec 2006 EP
1 752 167 Feb 2007 EP
1 465 552 May 2007 EP
1 835 042 Sep 2007 EP
1 750 780 Oct 2007 EP
1 562 565 Mar 2008 EP
1 642 551 Dec 2008 EP
1 653 885 Apr 2009 EP
1 632 256 Sep 2009 EP
1 703 858 Oct 2009 EP
2 139 535 Jan 2010 EP
1 883 380 Mar 2010 EP
2 189 169 May 2010 EP
2 218 242 Dec 2003 RU
WO 9304118 Mar 1993 WO
WO 9711724 Apr 1997 WO
9829025 Jul 1998 WO
WO 9848851 Nov 1998 WO
9933410 Jul 1999 WO
WO 9947077 Sep 1999 WO
WO 9964580 Dec 1999 WO
WO 0025841 May 2000 WO
WO 0048660 Aug 2000 WO
WO 0051136 Aug 2000 WO
0054704 Sep 2000 WO
WO 0066190 Nov 2000 WO
WO 0149338 Jul 2001 WO
WO 0178906 Oct 2001 WO
0180920 Nov 2001 WO
0187371 Nov 2001 WO
WO 0245764 Jun 2002 WO
WO 0247739 Jun 2002 WO
WO 02053202 Jul 2002 WO
03002243 Jan 2003 WO
WO 03013396 Feb 2003 WO
03035134 May 2003 WO
WO 03035131 May 2003 WO
WO 03035278 May 2003 WO
WO 03063733 Aug 2003 WO
WO 03094990 Nov 2003 WO
2004029313 Apr 2004 WO
2004043292 May 2004 WO
WO 2004093643 Nov 2004 WO
2005025449 Mar 2005 WO
WO 2005065576 Jul 2005 WO
WO 2005065576 Jul 2005 WO
2005079335 Sep 2005 WO
WO 2005110395 Nov 2005 WO
WO 2005118019 Dec 2005 WO
WO 2006008739 Jan 2006 WO
WO 2006060033 Jun 2006 WO
WO 2006060534 Jun 2006 WO
WO 2006065356 Jun 2006 WO
2006077154 Jul 2006 WO
2006080381 Aug 2006 WO
2006097503 Sep 2006 WO
2006104644 Oct 2006 WO
WO 2006108065 Oct 2006 WO
WO 2007005806 Jan 2007 WO
2007013102 Feb 2007 WO
WO 2007018931 Feb 2007 WO
2007035791 Mar 2007 WO
WO 2007024552 Mar 2007 WO
2007079363 Jul 2007 WO
2007079636 Jul 2007 WO
WO 2007082147 Sep 2007 WO
2007139668 Dec 2007 WO
2008003450 Mar 2008 WO
2008036457 Mar 2008 WO
2008036548 Mar 2008 WO
2008036554 Mar 2008 WO
WO 2008062414 May 2008 WO
2008092436 Aug 2008 WO
2008106271 Sep 2008 WO
2008118606 Oct 2008 WO
WO 2008117315 Oct 2008 WO
Related Publications (1)
Number Date Country
20080071350 A1 Mar 2008 US
Provisional Applications (1)
Number Date Country
60845341 Sep 2006 US