BIOMARKERS PREDICTIVE OF ANTI-IMMUNE CHECKPOINT RESPONSE

Information

  • Patent Application
  • 20220389519
  • Publication Number
    20220389519
  • Date Filed
    May 27, 2022
    2 years ago
  • Date Published
    December 08, 2022
    a year ago
Abstract
The present invention is based on the identification of novel biomarkers predictive of responsiveness to anti-immune checkpoint therapies.
Description
BACKGROUND OF THE INVENTION

Immune checkpoint therapies can yield durable responses and long-lasting survival benefit across some cancer types (Topalian et al. (2015) Cancer Cell 27:450-461). Indeed, checkpoint therapies have been approved for use in metastatic melanoma, non-small cell lung cancer, bladder cancer, and renal cell carcinoma, including as a first-line therapy for non-small cell lung cancer. However, many subjects among a population of subjects having the same cancer type do not exhibit a therapeutic benefit or relapse despite being treated with the same immune checkpoint therapy. It is presently unclear which factors associated with a cancer or type thereof, such as mutational load, neoantigen presentation, transcriptomic signatures, microbiome features, immune cell infiltration, or other indicators, are predictive of response to immune checkpoint therapies. Accordingly, there remains a great need in the art to identify biomarkers predictive of immune checkpoint therapy in order to better treat cancer of subjects in need thereof.


SUMMARY OF THE INVENTION

The present invention is based, at least in part, on the discovery that alterations in multiple oncogenic signaling pathways, including SWI/SNF pathway but also other chromatin modifiers, such as KDM6A, and EGFR signaling, predict response or resistance to immune checkpoint therapies, including (but not limited to) monoclonal antibodies targeting PD-1, PD-L1, and CTLA-4, across multiple cancer types. The SWI/SNF chromatin remodeling complex, which contains ARID1A, ARID1B, ARID2, SMARCA2, SMARCA4, SMARCB1, and PBRM1 subunits, among other subunits, plays a role in replication, transcription, DNA repair, and control of cell proliferation and differentiation. Although alterations in SWI/SNF subunits are known to play a role in the pathogenesis of ˜20% of human cancers, including clear cell renal cell carcinoma, lung cancer, squamous cell carcinomas, hepatocellular carcinoma, small cell lung cancer, colorectal cancer, and pancreatic cancer (Kadoch and Crabtree (2015) Sci. Adv. 1:e150047), it was heretofore unknown that a mutation in one or more subunits of the SWI/SNF complex (e.g., mutations in one or more subunits of the PBAF complex, such as PBRM1 and ARID2), is predictive of response to immune checkpoint inhibitors. The same lack of predictive response applies to mutations in certain chromatin modifiers, such as KDM6A, and certain EGFR signaling components described herein. Since mutations in certain SWI/SNF complex subunits, chromatin modifiers, and/or EGFR signaling components described herein are found within a variety of cancers and types thereof, including bladder cancer, renal cell carcinoma, lung cancer, and head and neck squamous cell carcinoma, these biomarkers have wide-ranging implications for patient stratification for immune checkpoint therapy across a wide variety of hyperproliferative disorders.


In one aspect, a method of identifying the likelihood of a cancer in a subject to be responsive to an immune checkpoint therapy, the method comprising a) obtaining or providing a subject sample from a patient having cancer; b) measuring the amount or activity of at least one biomarker listed in Table 1 in the subject sample; and c) comparing said amount or activity of the at least one biomarker listed in Table 1 in a control sample, wherein the absence of or a significantly decreased amount or activity of the at least one biomarker listed in Table 1 in the subject sample and/or the presence of or a significantly increased amount or activity of the at least one biomarker listed in Table 1 having a loss of function mutation in the subject sample, relative to the control sample identifies the cancer as being more likely to be responsive to the immune checkpoint therapy; and wherein the presence of or a significantly increased amount or activity of the at least one biomarker listed in Table 1 in the subject sample and/or the absence of or a decreased amount or activity of the at least one biomarker listed in Table 1 having a loss of function mutation in the subject sample, relative to the control sample identifies the cancer as being less likely to be responsive to the immune checkpoint therapy, is provided.


In another aspect, a method of identifying the likelihood of a cancer in a subject to be responsive to immune checkpoint therapy, the method comprising a) obtaining or providing a subject sample from a patient having cancer, wherein the sample comprises nucleic acid molecules from the subject; b) determining the copy number of at least one biomarker listed in Table 1 in the subject sample; and c) comparing said copy number to that of a control sample, wherein a decreased copy number of the at least one biomarker listed in Table 1 in the in the subject sample and/or an increased copy number of the at least one biomarker listed in Table 1 having a loss of function mutation in the subject sample, relative to the control sample identifies the cancer as being more likely to be responsive to the immune checkpoint therapy; and wherein a wild type or increased copy number of the biomarker in the subject sample and/or or a decreased copy number of the at least one biomarker listed in Table 1 having a loss of function mutation in the sample relative to the control sample identifies the cancer as being less likely to be responsive to the immune checkpoint therapy, is provided.


Numerous embodiments are further provided that can be applied to any aspect of the present invention and/or combined with any other embodiment described herein. For example, in one embodiment, the method provided herein further comprises recommending, prescribing, or administering the immune checkpoint therapy if the cancer is determined likely to be responsive to the immune checkpoint therapy or administering an anti-cancer therapy other than the immune checkpoint therapy if the cancer is determined be less likely to be responsive to the immune checkpoint therapy. The anti-cancer therapy may be, for example, selected from the group consisting of targeted therapy, chemotherapy, radiation therapy, and/or hormonal therapy. In another embodiment, the control sample described herein is determined from a cancerous or non-cancerous sample from either the patient or a member of the same species to which the patient belongs. In still another embodiment, the control sample is a cancerous or non-cancerous sample from the patient obtained from an earlier point in time than the patient sample. In yet another embodiment, the control sample is obtained before the patient has received immune checkpoint therapy and the patient sample is obtained after the patient has received immune checkpoint therapy. In another embodiment, the control sample described herein comprises cells or does not comprise cells. In still another embodiment, the control sample comprises cancer cells known to be responsive or non-responsive to the immune checkpoint therapy.


In another aspect, a method of assessing the efficacy of an agent for treating a cancer in a subject that is unlikely to be responsive to an immune checkpoint therapy, comprising a) detecting in a first subject sample and maintained in the presence of the agent the amount or activity of at least one biomarker listed in Table 1; b) detecting the amount or activity of the at least one biomarker listed in Table 1 in a second subject sample and maintained in the absence of the test compound; and c) comparing the amount or activity of the at least one biomarker listed in Table 1 from steps a) and b), wherein the presence of or a significantly increased amount or activity of the at least one biomarker listed in Table 1 in the first subject sample and/or the absence of or a decreased amount or activity of the at least one biomarker listed in Table 1 having a loss of function mutation in the first subject sample, relative to at least one subsequent subject sample, indicates that the agent treats the cancer in the subject, is provided.


In another aspect, a method of assessing the efficacy of an agent for treating a cancer in a subject or prognosing progression of a cancer in a subject, comprising a) detecting in a subject sample at a first point in time the amount or activity of at least one biomarker listed in Table 1; b) repeating step a) during at least one subsequent point in time after administration of the agent; and c) comparing the expression and/or activity detected in steps a) and b), wherein the presence of or a significantly increased amount or activity of the at least one biomarker listed in Table 1 in the first subject sample and/or the absence of or a decreased amount or activity of the at least one biomarker listed in Table 1 having a loss of function mutation in the first subject sample, relative to at least one subsequent subject sample, indicates that the cancer is unlikely to progress or that the agent treats the cancer in the subject, is provided. In one embodiment, between the first point in time and the subsequent point in time, the subject has undergone treatment, completed treatment, and/or is in remission for the cancer. In another embodiment, the first and/or at least one subsequent sample is selected from the group consisting of ex vivo and in vivo samples. In still another embodiment, the first and/or at least one subsequent sample is obtained from an animal model of the cancer. In yet another embodiment, the first and/or at least one subsequent sample is a portion of a single sample or pooled samples obtained from the subject.


In another aspect, a cell-based assay for screening for agents that have a cytotoxic or cytostatic effect on a cancer cell that is unresponsive to an immune checkpoint therapy comprising, contacting the cancer cell with a test agent, and determining the ability of the test agent to decrease the amount or activity of at least one biomarker listed in Table 1 in the subject sample and/or increase the amount or activity of the at least one biomarker listed in Table 1 having a loss of function mutation, is provided. In one embodiment, the step of contacting occurs in vivo, ex vivo, or in vitro. In another embodiment, the subject sample and/or the control sample has not been contacted with any anti-cancer treatment or inhibitor of an immune checkpoint. In still another embodiment, the subject has not been administered any anti-cancer treatment or inhibitor of an immune checkpoint. In yet another embodiment, the method or the cell-based assay provided herein further comprises recommending, prescribing, or administering at least one additional anti-cancer therapeutic agent. In another embodiment, the at least one additional anti-cancer therapeutic agent comprises an anti-PD-1 antibody and/or an anti-CTLA4 antibody.


As described above, numerous embodiments are contemplated for any aspect of the present invention described herein. For example, in one embodiment, the subject sample is selected from the group consisting of serum, whole blood, plasma, urine, cells, cell lines, and biopsies. In another embodiment, the amount of the at least one biomarker listed in Table 1 is detected using a reagent which specifically binds with the protein. For example, the reagent may be selected from the group consisting of an antibody, an antibody derivative, and an antibody fragment. In still another embodiment, the at least one biomarker listed in Table 1 is assessed by detecting the presence in the sample of a transcribed polynucleotide or portion thereof. For example, the transcribed polynucleotide may be an mRNA or a cDNA. The transcribed polynucleotide cam be detected by identifying a nucleic acid that anneals with the biomarker nucleic acid, or a portion thereof, under stringent hybridization conditions. In yet another embodiment, the step of detecting further comprises amplifying the transcribed polynucleotide. In another embodiment, the at least one biomarker listed in Table 1 is human PBRM1, ARID2, BRD7, PHF10, KDM6A, ARID1A, ARID1B, BRG1, BRM, CRB1, or EGFR, or a fragment thereof. In still another embodiment, the immune checkpoint therapy described herein comprises at least one antibody selected from the group consisting of anti-PD-1 antibodies, anti-CTLA-4 antibodies, anti-PD-L1 antibodies, anti-PD-L2 antibodies, and combinations thereof. For example, the immune checkpoint therapy may comprise an anti-PD-1 antibody and/or an anti-CTLA4 antibody. In yet another embodiment, the likelihood of the cancer in the subject to be responsive to immune checkpoint therapy is the likelihood of at least one criteria selected from the group consisting of cellular proliferation, tumor burden, m-stage, metastasis, progressive disease, clinical benefit rate, survival until mortality, pathological complete response, semi-quantitative measures of pathologic response, clinical complete remission, clinical partial remission, clinical stable disease, recurrence-free survival, metastasis free survival, disease free survival, circulating tumor cell decrease, circulating marker response, and RECIST criteria. In another embodiment, the cancer is a solid tumor. In still another embodiment, the cancer is selected from the group consisting of melanoma, lung cancer, head and neck squamous cell carcinoma (HNSCC), sarcoma, bladder cancer, and renal cell cancer. In another embodiment, the cancer is melanoma. In still another embodiment, the cancer is metastatic. In still another embodiment, the subject described herein is a mammal. In yet another embodiment, the mammal is an animal model of cancer. In another embodiment, the mammal is a human.





BRIEF DESCRIPTION OF FIGURES


FIG. 1 summarizes the different types of cancer samples and their sources for analysis.



FIG. 2 depicts two criteria (exclusion and inclusion) for selecting quality controls for analysis.



FIG. 3 depicts that different patients had different degrees of clinical benefit from immune checkpoint therapy.



FIG. 4 compares the amount of nonsynonymous mutations in patients having different degrees of clinical benefit from immune checkpoint therapy.



FIG. 5 shows genes significantly mutated in responders vs. non-responders.



FIG. 6 shows genes significantly mutated in responders vs. non-responders or intermediate responders (such as those having intermediate clinical benefit).



FIG. 7 shows genes significantly mutated (such as those having truncating mutations) in responders vs. non-responders.



FIG. 8 shows genes significantly mutated (such as those having truncating mutations) in responders vs. non-responders or intermediate responders (those having intermediate clinical benefit).



FIG. 9 depicts protein subunits of the SWI/SNF protein complex.



FIG. 10 shows SWI/SNF-relevant genes significantly mutated in responders vs. non-responders.



FIG. 11 shows SWI/SNF-relevant genes significantly mutated (such as those having truncating mutations) in responders vs. non-responders.



FIG. 12 depicts an enzymatic function scheme of KDM6A.



FIG. 13 includes 4 panels, identified as panels A, B, C, and D, which show the Kaplan-Meier analysis result for baseline clinical variables as predictors of PFS for SU2C cohort (N=39).



FIG. 14 shows the quality control processes for analyzing the SU2C cohort.



FIG. 15 depicts the different responses of 39 SU2C lung cancer patients to ati-PD-1/PD-L1 therapy.



FIG. 16 shows the mutational burden and response to immune checkpoint therapies of each patient (N=31).



FIG. 17 shows the relationship between clinical burden and clinical benefit in a cohort in Rizvi et al. (2015) Science 348:124-128. RECIST was not taken into account (such that 2 patients with PR and PFS of ˜4 months were considered nonresponders).



FIG. 18 shows that pre-treatment tumor mutational load was a strong predictor of response to immune checkpoint therapy in anti-PD1/PD-L1-treated lung cancer. All mutations: CB vs. NCB; p=0.003. All mutations: CB or SD vs. NCB; p=0.004. Nonsyns: CB vs. NCB; p=0.0047. Nonsyns: CB or SD vs. NCB; p=0.0064. Clonal: CB vs. NCB; p=0.024. Clonal: CB or SD vs. NCB; p=0.007. If dropping two large outliers (highest mutational load CB and SD), p-values for all mutations go to 0.009 and 0.011.



FIG. 19 shows commonly mutated genes in lung cancer. NF1 alterations were more frequent in responders (3/6 clinical benefit, 3/13 stable disease, 0/12 NCB). EGFR hotspot alterations were seen more frequently in nonresponders. KRAS hotspot alterations seen more frequently in responders (1/6 clinical benefit, 4/13 SD, 1/12 NCB). SU2C-1006: splice site mutation in MET; missense mutation in LTBP1. SU2C-1066: 3 missense mutations in LEPR. SU2C-1068: 2 missense mutations in LEPR. SU2C-1067: Missense mutations in STAG2 and SRCAP. EGFR hotspot is L858. SU2C-1066 may be excluded, since its Purity=0.36.



FIG. 20 shows significantly mutated genes (N=6 clinical benefit vs. 12 no clinical benefit).



FIG. 21 shows that patients with hotspot mutations in EGFR uniformly did not respond to immune checkpoint therapy.



FIG. 22 shows that SAFB2 indels were likely caused by sequencing artifact.





DETAILED DESCRIPTION OF THE INVENTION

It has been determined herein that certain SWI/SNF complex subunits (e.g., PBRM1, ARID2, and other SWI/SNF complex subunits described herein, such as in the Tables and Examples), additional chromatin modifiers (e.g., such as KDM6A), and EGFR signaling components are specific biomarkers for predicted clinical outcome in a wide variety of cancers afflicting patients who have received anti-immune checkpoint-based therapy (e.g., anti-PD1 and/or anti-CTLA4 agents). Accordingly, the present invention relates, in part, to methods for stratifying patients and predicting response of a cancer in a subject to immune checkpoint therapy based upon a determination and analysis of mutations, described herein, of biomarkers, compared to a control. In addition, such analyses can be used in order to provide useful anti-immune checkpoint treatment regimens (e.g., based on predictions of clinical response, subject survival or relapse, timing of adjuvant or neoadjuvant treatment, etc.).


I. Definitions

The articles “a” and “an” are used herein to refer to one or to more than one (i.e. to at least one) of the grammatical object of the article. By way of example, “an element” means one element or more than one element.


The term “altered amount” or “altered level” refers to increased or decreased copy number (e.g., germline and/or somatic) of a biomarker nucleic acid, e.g., increased or decreased expression level in a cancer sample, as compared to the expression level or copy number of the biomarker nucleic acid in a control sample. The term “altered amount” of a biomarker also includes an increased or decreased protein level of a biomarker protein in a sample, e.g., a cancer sample, as compared to the corresponding protein level in a normal, control sample. Furthermore, an altered amount of a biomarker protein may be determined by detecting posttranslational modification such as methylation status of the marker, which may affect the expression or activity of the biomarker protein.


The amount of a biomarker in a subject is “significantly” higher or lower than the normal amount of the biomarker, if the amount of the biomarker is greater or less, respectively, than the normal level by an amount greater than the standard error of the assay employed to assess amount, and preferably at least 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 150%, 200%, 300%, 350%, 400%, 500%, 600%, 700%, 800%, 900%, 1000% or than that amount. Such “significance” can be assessed from any desired or known point of comparison, such as a particular post-treatment versus pre-treatment biomarker measurement ratio (e.g., 1-fold, 1.1-fold, 1.2-fold, 1.3-fold, 1.4-fold, 1.5-fold, and the like) or a particular pre-treatment serum biomarker protein measurement (e.g., 2,500 pg/ml, 2,750 pg/ml, 3,000 pg/ml, 3,175 pg/ml, 3,250 pg/ml, 3,500 pg/ml, and the like). Alternately, the amount of the biomarker in the subject can be considered “significantly” higher or lower than the normal amount if the amount is at least about two, and preferably at least about three, four, or five times, higher or lower, respectively, than the normal amount of the biomarker. Such “significance” can also be applied to any other measured parameter described herein, such as for expression, inhibition, cytotoxicity, cell growth, and the like.


The term “altered level of expression” of a biomarker refers to an expression level or copy number of the biomarker in a test sample, e.g., a sample derived from a patient suffering from cancer, that is greater or less than the standard error of the assay employed to assess expression or copy number, and is preferably at least twice, and more preferably three, four, five or ten or more times the expression level or copy number of the biomarker in a control sample (e.g., sample from a healthy subjects not having the associated disease) and preferably, the average expression level or copy number of the biomarker in several control samples. The altered level of expression is greater or less than the standard error of the assay employed to assess expression or copy number, and is preferably at least 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 150%, 200%, 300%, 350%, 400%, 500%, 600%, 700%, 800%, 900%, 1000% or more times the expression level or copy number of the biomarker in a control sample (e.g., sample from a healthy subjects not having the associated disease) and preferably, the average expression level or copy number of the biomarker in several control samples.


The term “altered activity” of a biomarker refers to an activity of the biomarker which is increased or decreased in a disease state, e.g., in a cancer sample, as compared to the activity of the biomarker in a normal, control sample. Altered activity of the biomarker may be the result of, for example, altered expression of the biomarker, altered protein level of the biomarker, altered structure of the biomarker, or, e.g., an altered interaction with other proteins involved in the same or different pathway as the biomarker or altered interaction with transcriptional activators or inhibitors.


The term “altered structure” of a biomarker refers to the presence of mutations or allelic variants within a biomarker nucleic acid or protein, e.g., mutations which affect expression or activity of the biomarker nucleic acid or protein, as compared to the normal or wild-type gene or protein. For example, mutations include, but are not limited to substitutions, deletions, or addition mutations. Mutations may be present in the coding or non-coding region of the biomarker nucleic acid.


The term “SWI/SNF complex” refers to SWItch/Sucrose Non-Fermentable, a nucleosome remodeling complex found in both eukaryotes and prokaryotes (Neigeborn Carlson (1984) Genetics 108:845-858; Stem et al. (1984) J Mol. Biol. 178:853-868). The SWI/SNF complex was first discovered in the yeast, Saccharomyces cerevisiae, named after yeast mating types switching (SWI) and sucrose nonfermenting (SNF) pathways (Workman and Kingston (1998) Annu Rev Biochem. 67:545-579; Sudarsanam and Winston (2000) Trends Genet. 16:345-351). It is a group of proteins comprising, at least, SWI1, SWI2/SNF2, SWI3, SWI5, and SWI6, as well as other polypeptides (Pazin and Kadonaga (1997) Cell 88:737-740). A genetic screening for suppressive mutations of the SWI/SNF phenotypes identified different histones and chromatin components, suggesting that these proteins were possibly involved in histone binding and chromatin organization (Winston and Carlson (1992) Trends Genet. 8:387-391). Biochemical purification of the SWI/SNF2p in S. cerevisiae demonstrated that this protein was part of a complex containing an additional 11 polypeptides, with a combined molecular weight over 1.5 MDa. The SWI/SNF complex contains the ATPase Swi2/Snf2p, two actin-related proteins (Arp7p and Arp9) and other subunits involved in DNA and protein-protein interactions. The purified SWI/SNF complex was able to alter the nucleosome structure in an ATP-dependent manner (Workman and Kingston (1998), supra; Vignali et al. (2000) Mol Cell Biol. 20:1899-1910). The structures of the SWI/SNF and RSC complexes are highly conserved but not identical, reflecting an increasing complexity of chromatin (e.g., an increased genome size, the presence of DNA methylation, and more complex genetic organization) through evolution. For this reason, the SWI/SNF complex in higher eukaryotes maintains core components, but also substitute or add on other components with more specialized or tissue-specific domains. Yeast contains two distinct and similar remodeling complexes, SWI/SNF and RSC (Remodeling the Structure of Chromatin). In Drosophila, the two complexes are called BAP (Brahma Associated Protein) and PBAP (Polybromo-associated BAP) complexes. The human analogs are BAF (Brgl Associated Factors, or SWI/SNF-A) and PBAF (Polybromo-associated BAF, or SWI/SNF-B). As shown in FIG. 9, the BAF complex comprises, at least, BAF250A (ARID1A), BAF250B (ARID1B), BAF57 (SMARCEl), BAF190/BRM (SMARCA2), BAF47 (SMARCB1), BAF53A (ACTL6A), BRG1/BAF190 (SMARCA4), BAF155 (SMARCC1), and BAF170 (SMARCC2). The PBAF complex comprises, at last, BAF200 (ARID2), BAF180 (PBRM1), BRD7, BAF45A (PHF10), BRG1/BAF190 (SMARCA4), BAF155 (SMARCC1), and BAF170 (SMARCC2). As in Drosophila, human BAF and PBAF share the different core components BAF47, BAF57, BAF60, BAF155, BAF170, BAF45 and the two actins b-Actin and BAF53 (Mohrmann and Verrijzer (2005) Biochim Biophys Acta. 1681:59-73). The central core of the BAF and PBAF is the ATPase catalytic subunit BRG1/hBRM, which contains multiple domains to bind to other protein subunits and acetylated histones. For a summary of different complex subunits and their domain structure, see Tang et al. (2010) Prog Biophys Mol Biol. 102:122-128 (e.g., FIG. 3), Hohmann and Vakoc (2014) Trends Genet. 30:356-363 (e.g., FIG. 1), and Kadoch and Crabtree (2015) Sci. Adv. 1:e1500447. For chromatin remodeling, the SWI/SNF complex use the energy of ATP hydrolysis to slide the DNA around the nucleosome. The first step consists in the binding between the remodeler and the nucleosome. This binding occurs with nanomolar affinity and reduces the digestion of nucleosomal DNA by nucleases. The 3-D structure of the yeast RSC complex was first solved and imaged using negative stain electron microscopy (Asturias et al. (2002) Proc Natl Acad Sci USA 99:13477-13480). The first Cryo-EM structure of the yeast SWI/SNF complex was published in 2008 (Dechassa et al. 2008). DNA footprinting data showed that the SWI/SNF complex makes close contacts with only one gyre of nucleosomal DNA. Protein crosslinking showed that the ATPase SWI2/SNF2p and Swi5p (the homologue of Inilp in human), Snf6, Swi29, Snf11 and Sw82p (not conserved in human) make close contact with the histones. Several individual SWI/SNF subunits are encoded by gene families, whose protein products are mutually exclusive in the complex (Wu et al. (2009) Cell 136:200-206). Thus, only one paralog is incorporated in a given SWI/SNF assembly. The only exceptions are BAF155 and BAF170, which are always present in the complex as homo- or hetero-dimers. Combinatorial association of SWI/SNF subunits could in principle give rise to hundreds of distinct complexes, although the exact number has yet to be determined (Wu et al. (2009), supra). Genetic evidence suggests that distinct subunit configurations of SWI/SNF are equipped to perform specialized functions. As an example, SWI/SNF contains one of two ATPase subunits, BRG1 or BRM/SMARCA2, which share 75% amino acid sequence identity (Khavari et al. (1993) Nature 366:170-174). While in certain cell types BRG1 and BRM can compensate for loss of the other subunit, in other contexts these two ATPases perform divergent functions (Strobeck et al. (2002) J Biol Chem. 277:4782-4789; Hoffman et al. (2014) Proc Natl Acad Sci USA. 111:3128-3133). In some cell types, BRG1 and BRM can even functionally oppose one another to regulate differentiation (Flowers et al. (2009) J Biol Chem. 284:10067-10075). The functional specificity of BRG1 and BRM has been linked to sequence variations near their N-terminus, which have different interaction specificities for transcription factors (Kadam and Emerson (2003) Mol Cell. 11:377-389).


Another example of paralogous subunits that form mutually exclusive SWI/SNF complexes are ARID1A/BAF250A, ARID1B/BAF250B, and ARID2/BAF200. ARID1A and ARID1B share 60% sequence identity, but yet can perform opposing functions in regulating the cell cycle, with MYC being an important downstream target of each paralog (Nagl et al. (2007) EMBO J. 26:752-763). ARID2 has diverged considerably from ARID1A/ARID1B and exists in a unique SWI/SNF assembly known as PBAF (or SWI/SNF-B), which contains several unique subunits not found in ARID1A/B-containing complexes. The composition of SWI/SNF can also be dynamically reconfigured during cell fate transitions through cell type-specific expression patterns of certain subunits. For example, BAF53A/ACTL6A is repressed and replaced by BAF53B/ACTL6B during neuronal differentiation, a switch that is essential for proper neuronal functions in vivo (Lessard et al. (2007) Neuron 55:201-215). These studies stress that SWI/SNF in fact represents a collection of multi-subunit complexes whose integrated functions control diverse cellular processes, which is also incorporated in the scope of definitions of the instant disclosure. Two recently published meta-analyses of cancer genome sequencing data estimate that nearly 20% of human cancers harbor mutations in one (or more) of the genes encoding SWI/SNF (Kadoch et al. (2013) Nat Genet. 45:592-601; Shain and Pollack (2013) PLoS One. 8:e55119). Such mutations are generally loss-of-function, implicating SWI/SNF as a major tumor suppressor in diverse cancers. Specific SWI/SNF gene mutations are generally linked to a specific subset of cancer lineages: SNF5 is mutated in malignant rhabdoid tumors (MRT), PBRM1/BAF180 is frequently inactivated in renal carcinoma, and BRG1 is mutated in non-small cell lung cancer (NSCLC) and several other cancers. In the instant disclosure, the scope of “SWI/SNF complex” may cover at least one fraction or the whole complex (e.g., some or all subunit proteins/other components), either in the human BAF/PBAF forms or their homologs/orthologs in other species (e.g., the yeast and drosophila forms described herein). Preferably, a “SWI/SNF complex” described herein contains at least part of the full complex bio-functionality, such as binding to other subunits/componets, binding to DNA/histone, catalyzing ATP, promoting chromotin remodeling, etc.


The term “BAF complex” refers to at least one type of mammalian SWI/SNF complexes. Its nucleosome remodeling activity can be reconstituted with a set of four core subunits (BRG1/SMARCA4, SNF5/SMARCB1, BAF155/SMARCC1, and BAF170/SMARCC2), which have orthologs in the yeast complex (Phelan et al. (1999) Mol Cell. 3:247-253). However, mammalian SWI/SNF contains several subunits not found in the yeast counterpart, which can provide interaction surfaces for chromatin (e.g. acetyl-lysine recognition by bromodomains) or transcription factors and thus contribute to the genomic targeting of the complex (Wang et al. (1996) EMBO J 15:5370-5382; Wang et al. (1996) Genes Dev. 10:2117-2130; Nie et al. (2000)). A key attribute of mammalian SWI/SNF is the heterogeneity of subunit configurations that can exist in different tissues and even in a single cell type (e.g., as BAF, PBAF, neural progenitor BAF (npBAF), neuron BAF (nBAF), embryonic stem cell BAF (esBAF), etc.). In some embodiments, the BAF complex described herein refers to one type of mammalian SWI/SNF complexes, which is different from PBAF complexes.


The term “PBAF complex” refers to one type of mammalian SWI/SNF complexes originally known as SWI/SNF-B. It is highly related to the BAF complex and can be separated with conventional chromatographic approaches. For example, human BAF and PBAF complexes share multiple identical subunits (such as BRG, BAF170, BAF155, BAF60, BAF57, BAF53, BAF45, actin, SS18, and hSNF5/INI1, as illustrated in FIG. 9). However, while BAF contains BAF250 subunit, PBAF contains BAF180 and BAF200, instead (Lemon et al. (2001) Nature 414:924-998; Yan et al. (2005) Genes Dev. 19:1662-1667). Moreover, they do have selectivity in regulating interferon-responsive genes (Yan et al. (2005), supra, showing that BAF200, but not BAF180, is required for PBAF to mediate expression of IFITM1 gene induced by IFN-α, while the IFITM3 gene expression is dependent on BAF but not PBAF). Due to these differentces, PBAF, but not BAF, was able to activate vitamin D receptor-dependent transcription on a chromatinzed template in vitro (Lemon et al. (2001), supra). The 3-D structure of human PBAF complex preserved in negative stain was found to be similar to yeast RSC but dramatically different from yeast SWI/SNF (Leschziner et al. (2005) Structure 13:267-275).


The term “BRG” or “BRG1/BAF190 (SMARCA4)” refers to a subunit of the SWI/SNF complex, which can be find in either BAF or PBAF complex. It is an ATP-dependent helicase and a transcription activator, encoded by the SMARCA4 gene. BRG1 can also bind BRCA1, as well as regulate the expression of the tumorigenic protein CD44. BRG1 is important for development past the pre-implantation stage. Without having a functional BRG1, exhibited with knockout research, the embryo will not hatch out of the zona pellucida, which will inhibit implantation from occurring on the endometrium (uterine wall). BRG1 is also crucial to the development of sperm. During the first stages of meiosis in spermatogenesis there are high levels of BRG1. When BRG1 is genetically damaged, meiosis is stopped in prophase 1, hindering the development of sperm and would result in infertility. More knockout research has concluded BRGT's aid in the development of smooth muscle. In a BRG1 knockout, smooth muscle in the gastrointestinal tract lacks contractility, and intestines are incomplete in some cases. Another defect occurring in knocking out BRG1 in smooth muscle development is heart complications such as an open ductus arteriosus after birth (Kim et al. (2012) Development 139:1133-1140; Zhang et al. (2011) Mol. Cell. Biol. 31:2618-2631). Mutations in SMARCA4 were first recognized in human lung cancer cell lines (Medina et al. (2008) Hum. Mut. 29:617-622). Later it was recognized that mutations exist in a significant frequency of medulloblastoma and pancreatic cancers among other tumor subtypes (Jones et al. (2012) Nature 488:100-105; Shain et al. (2012) Proc Natl Acad Sci USA 109:E252-E259; Shain and Pollack (2013), supra). Mutations in BRG1 (or SMARCA4) appear to be mutually exclusive with the presence of activation at any of the MYC-genes, which indicates that the BRG1 and MYC proteins are functionally related. Another recent study demonstrated a causal role of BRG1 in the control of retinoic acid and glucocorticoid-induced cell differentiation in lung cancer and in other tumor types. This enables the cancer cell to sustain undifferentiated gene expression programs that affect the control of key cellular processes. Furthermore, it explains why lung cancer and other solid tumors are completely refractory to treatments based on these compounds that are effective therapies for some types of leukemia (Romero et al. (2012) EMBO Mol. Med. 4:603-616). The role of BRG1 in sensitivity or resistance to anti-cancer drugs had been recently highlighted by the elucidation of the mechanisms of action of darinaparsin, an arsenic-based anti-cancer drugs. Darinaparsin has been shown to induce phosphorylation of BRG1, which leads to its exclusion from the chromatin. When excluded from the chromatin, BRG1 can no longer act as a transcriptional co-regulator. This leads to the inability of cells to express HO-1, a cytoprotective enzyme. BRG1 has been shown to interact with proteins such as ACTL6A, ARIDTA, ARIDTB, BRCA1, CTNNB1, CBX5, CREBBP, CCNE1, ESR1, FANCA, HSP90B1, ING1, Myc, NR3C1, P53, POLR2A, PHB, SIN3A, SMARCB1, SMARCC1, SMARCC2, SMARCEl, STAT2, STKT1, etc.


The term “BRG” or “BRG1/BAF190 (SMARCA4)” is intended to include fragments, variants (e.g., allelic variants), and derivatives thereof. Representative human BRG1(SMARCA4) cDNA and human BRG1 protein sequences are well-known in the art and are publicly available from the National Center for Biotechnology Information (NCBI). For example, seven different human BRG1 isoforms are known. Human BRG1 isoform A (NP_001122321.1) is encodable by the transcript variant 1 (NM_001128849.1), which is the longest transcript. Human BRG1 isoform B (NP_001122316.1 or NP_003063.2) is encodable by the transcript variant 2 (NM_001128844.1), which differs in the 5′ UTR and lacks an alternate exon in the 3′ coding region, compared to the variant 1, and also by the transcript variant 3 (NM_003072.3), which lacks an alternate exon in the 3′ coding region compared to variant 1. Human BRG1 isoform C (NP_001122317.1) is encodable by the transcript variant 4 (NM_001128845.1), which lacks two alternate in-frame exons and uses an alternate splice site in the 3′ coding region, compared to variant 1. Human BRG1 isoform D (NP_001122318.1) is encodable by the transcript variant 5 (NM_001128846.1), which lacks two alternate in-frame exons and uses two alternate splice sites in the 3′ coding region, compared to variant 1. Human BRG1 isoform E (NP_001122319.1) is encodable by the transcript variant 6 (NM_001128847.1), which lacks two alternate in-frame exons in the 3′ coding region, compared to variant 1. Human BRG1 isoform F (NP_001122320.1) is encodable by the transcript variant 7 (NM_001128848.1), which lacks two alternate in-frame exons and uses an alternate splice site in the 3′ coding region, compared to variant 1. Nucleic acid and polypeptide sequences of BRG1 orthologs in organisms other than humans are well known and include, for example, chimpanzee BRG1 (XM_016935029.1 and XP_016790518.1, XM_016935038.1 and XP 016790527.1, XM_016935039.1 and XP 016790528.1, XM_016935036.1 and XP_016790525.1, XM_016935037.1 and XP_016790526.1, XM_016935041.1 and XP_016790530.1, XM_016935040.1 and XP_016790529.1, XM_016935042.1 and XP_016790531.1, XM_016935043.1 and XP_016790532.1, XM_016935035.1 and XP_016790524.1, XM_016935032.1 and XP_016790521.1, XM_016935033.1 and XP_016790522.1, XM_016935030.1 and XP_016790519.1, XM_016935031.1 and XP_016790520.1, and XM_016935034.1 and XP_016790523.1), Rhesus monkey BRG1 (XM_015122901.1 and XP_014978387.1, XM_015122902.1 and XP_014978388.1, XM 015122903.1 and XP 014978389.1, XM 015122906.1 and XP 014978392.1, XM_015122905.1 and XP 014978391.1, XM_015122904.1 and XP_014978390.1, XM_015122907.1 and XP 014978393.1, XM_015122909.1 and XP_014978395.1, and XM_015122910.1 and XP_014978396.1), dog BRG1 (XM_014122046.1 and XP_013977521.1, XM_014122043.1 and XP_013977518.1, XM_014122042.1 and XP_013977517.1, XM_014122041.1 and XP_013977516.1, XM_014122045.1 and XP_013977520.1, and XM_014122044.1 and XP_013977519.1), cattle BRG1 (NM_001105614.1 and NP_001099084.1), mouse BRG1 (NM_001174078.1 and NP_001167549.1, NM_001174079.1 and NP_001167550.1, and NM_011417.3 and NP_035547.2), rat BRG1 (NM_134368.1 and NP_599195.1), chicken BRG1 (NM_205059.1 and NP_990390.1), and zebrafish BRG1 (NM_181603.1 and NP_853634.1).


Anti-BRG1 antibodies suitable for detecting BRG1 protein are well-known in the art and include, for example, MABE1118, MABE121, MABE60, and 07-478 (poly- and mono-clonal antibodies from EMD Millipore, Billerica, Mass.), AM26021PU-N, AP23972PU-N, TA322909, TA322910, TA327280, TA347049, TA347050, TA347851, and TA349038 (antibodies from OnGene Technologies, Rockville, Md.), NB100-2594, AF5738, NBP2-22234, NBP2-41270, NBP1-51230, and NBP1-40379 (antibodes from Novus Biologicals, Littleton, Colo.), ab110641, ab4081, ab215998, ab108318, ab70558, ab118558, ab133257, ab92496, ab196535, and ab196315 (antibodies from AbCam, Cambridge, Mass.), Cat #: 720129, 730011, 730051, MA1-10062, PA5-17003, and PA5-17008 (antibodies from ThermoFisher Scientific, Waltham, Mass.), GTX633391, GTX32478, GTX31917, GTX16472, and GTX50842 (antibodies from GeneTex, Irvine, Calif.), antibody 7749 (ProSci, Poway, Calif.), Brg-1 (N-15), Brg-1 (N-15) X, Brg-1 (H-88), Brg-1 (H-88) X, Brg-1 (P-18), Brg-1 (P-18) X, Brg-1 (G-7), Brg-1 (G-7) X, Brg-1 (H-10), and Brg-1 (H-10) X (antibodies from Santa Cruz Biotechnology, Dallas, Tex.), antibody of Cat. AF5738 (R&D Systmes, Minneapolis, Minn.), etc. In addition, reagents are well-known for detecting BRG1 expression. Moreover, multiple siRNA, shRNA, CRISPR constructs for reducing BRG1 Expression can be found in the commercial product lists of the above-referenced companies. PFI 3 is a known small molecule inhibitor of polybromo 1 and BRG1 (e.g., Cat. B7744 from APExBIO, Houston, Tex.). It is to be noted that the term can further be used to refer to any combination of features described herein regarding BRG1 molecules. For example, any combination of sequence composition, percentage identify, sequence length, domain structure, functional activity, etc. can be used to describe an BRG1 molecule of the present invention.


The term “BRM” or “BRM/BAF190 (SMARCA2)” refers to a subunit of the SWI/SNF complex, which can be found in either BAF or PBAF complexes. It is an ATP-dependent helicase and a transcription activator, encoded by the SMARCA2 gene. The catalytic core of the SWI/SNF complex can be either of two closely related ATPases, BRM or BRG1, with the potential that the choice of alternative subunits is a key determinant of specificity. Instead of impeding differentiation as was seen with BRG1 depletion, depletion of BRM caused accelerated progression to the differentiation phenotype. BRM was found to regulate genes different from those as BRG1 targets and be capable of overriding BRG1-dependent activation of the osteocalcin promoter, due to its interaction with different ARID family members (Flowers et al. (2009), supra). The known binding partners for BRM include, for example, ACTL6A, ARID1B, CEBPB, POLR2A, Prohibitin, SIN3A, SMARCB1, and SMARCC1.


The term “BRM” or “BRM/BAF190 (SMARCA2)” is intended to include fragments, variants (e.g., allelic variants), and derivatives thereof. Representative human BRM (SMARCA2) cDNA and human BRM protein sequences are well-known in the art and are publicly available from the National Center for Biotechnology Information (NCBI). For example, seven different human BRM isoforms are known. Human BRM isoform A (NP_003061.3 or NP_001276325.1) is encodable by the transcript variant 1 (NM_003070.4), which is the longest transcript, or the transcript variant 3 (NM_001289396.1), which differs in the 5′ UTR, compared to variant 1. Human BRM isoform B (NP_620614.2) is encodable by the transcript variant 2 (NM_139045.3), which lacks an alternate in-frame exon in the coding region, compared to variant 1. Human BRM isoform C (NP_001276326.1) is encodable by the transcript variant 4 (NM_001289397.1), which uses an alternate in-frame splice site and lacks an alternate in-frame exon in the 3′ coding region, compared to variant 1. Human BRM isoform D (NP_001276327.1) is encodable by the transcript variant 5 (NM_001289398.1), which differs in the 5′ UTR, lacks a portion of the 5′ coding region, and initiates translation at an alternate downstream start codon, compared to variant 1. Human BRM isoform E (NP_001276328.1) is encodable by the transcript variant 6 (NM_001289399.1), which differs in the 5′ UTR, lacks a portion of the 5′ coding region, and initiates translation at an alternate downstream start codon, compared to variant 1. Human BRM isoform F (NP_001276329.1) is encodable by the transcript variant 7 (NM_001289400.1), which differs in the 5′ UTR, lacks a portion of the 5′ coding region, and initiates translation at an alternate downstream start codon, compared to variant 1. Nucleic acid and polypeptide sequences of BRM orthologs in organisms other than humans are well known and include, for example, chimpanzee BRM (XM_016960529.1 and XP_016816018.1), dog BRG1 (XM_005615906.2 and XP_005615963.1, XM_845066.4 and XP_850159.1, XM_005615905.2 and XP 005615962.1, XM_005615904.2 and XP_005615961.1, XM_005615903.2 and XP_005615960.1, and XM_005615902.2 and XP_005615959.1), cattle BRM (NM_001099115.2 and NP_001092585.1), mouse BRM (NM_001347439.1 and NP 001334368.1, NM_011416.2 and NP_035546.2, and NM_026003.2 and NP_080279.1), rat BRM (NM_001004446.1 and NP_001004446.1), chicken BRM (NM_205139.1 and NP_990470.1), tropical clawed frog BRM (XM_012952601.1 and XP_012808055.1, XM_012952608.2 and XP_012808062.1, XM_012952597.2 and XP_012808051.1, XM_012952613.2 and XP_012808067.1, and XM_002941009.4 and XP_002941055.2), and zebrafish BRM (NM_001044775.2 and NP_001038240.1).


Anti-BRM antibodies suitable for detecting BRM protein are well-known in the art and include, for example, antibody MABE89 (EMD Millipore, Billerica, Mass.), antibody TA351725 (OnGene Technologies, Rockville, Md.), NBP1-90015, NBP1-80042, NB100-55308, NB100-55309, NB100-55307, and H00006595-M06 (antibodes from Novus Biologicals, Littleton, Colo.), ab15597, ab12165, ab58188, and ab200480 (antibodies from AbCam, Cambridge, Mass.), Cat #: 11966 and 6889 (antibodies from Cell Signaling, Danvers, Mass.), etc. In addition, reagents are well-known for detecting BRM expression. Moreover, multiple siRNA, shRNA, CRISPR constructs for reducing BRM Expression can be found in the commercial product lists of the above-referenced companies. For example, BRM RNAi product H00006595-R02 (Novus Biologicals), CRISPER gRNA products from GenScript, Piscataway, N.J., and other inhibitory RNA products from Origene, ViGene Biosciences (Rockville, Md.), and Santa Cruz. It is to be noted that the term can further be used to refer to any combination of features described herein regarding BRM molecules. For example, any combination of sequence composition, percentage identify, sequence length, domain structure, functional activity, etc. can be used to describe an BRM molecule of the present invention.


The term “BAF200” or “ARID2” refers to AT-rich interactive domain-containing protein 2, a subunit of the SWI/SNF complex, which can be found in PBAF but not BAF complexes. It facilitates ligand-dependent transcriptional activation by nuclear receptors. The ARID2 gene, located on chromosome 12q in humans, consists of 21 exons; orthologs are known from mouse, rat, cattle, chicken, and mosquito (Zhao et al. (2011) Oncotarget 2:886-891). A conditional knockout mouse line, called Arid2tm1a(EUCOMM)Wtsi was generated as part of the International Knockout Mouse Consortium program, a high-throughput mutagenesis project to generate and distribute animal models of disease (Skames et al. (2011) Nature 474:337-342). Human ARID2 protein has 1835 amino acids and a molecular mass of 197391 Da. The ARID2 protein contains two conserved C-terminal C2H2 zinc fingers motifs, a region rich in the amino acid residues proline and glutamine, a RFX (regulatory factor X)-type winged-helix DNA-binding domain (e.g., amino acids 521-601 of SEQ ID NO:8), and a conserved N-terminal AT-rich DNA interaction domain (e.g., amino acids 19-101 of SEQ ID NO:8; Zhao et al. (2011), supra). Mutation studies have revealed ARID2 to be a significant tumor suppressor in many cancer subtypes. ARID2 mutations are prevalent in hepatocellular carcinoma (Li et al. (2011) Nature Genetics. 43:828-829) and melanoma (Hodis et al. (2012) Cell 150:251-263; Krauthammer et al. (2012) Nature Genetics. 44:1006-1014). Mutations are present in a smaller but significant fraction in a wide range of other tumors (Shain and Pollack (2013), supra). ARID2 mutations are enriched in hepatitis C virus-associated hepatocellular carcinoma in the U.S. and European patient populations compared with the overall mutation frequency (Zhao et al. (2011), supra). The known binding partners for ARID2 include, e.g., Serum Response Factor (SRF) and SRF cofactors MYOCD, NKX2-5 and SRFBPl.


The term “BAF200” or “ARID2” is intended to include fragments, variants (e.g., allelic variants), and derivatives thereof. ReRepresentative human ARID2 cDNA and human ARID2 protein sequences are well-known in the art and are publicly available from the National Center for Biotechnology Information (NCBI). For example, two different human ARID2 isoforms are known. Human ARID2 isoform A (NP_689854.2) is encodable by the transcript variant 1 (NM_152641.3), which is the longer transcript. Human ARID2 isoform B (NP_001334768.1) is encodable by the transcript variant 2 (NM_001347839.1), which differs in the 3′ UTR and 3′ coding region compared to isoform A. The encoded isoform B has a shorter C-terminus compared to isoform A. Nucleic acid and polypeptide sequences of ARID2 orthologs in organisms other than humans are well known and include, for example, chimpanzee ARID2 (XM_016923581.1 and XP_016779070.1, and XM_016923580.1 and XP_016779069.1), Rhesus monkey ARID2 (XM_015151522.1 and XP_015007008.1), dog ARID2 (XM_003433553.2 and XP_003433601.2; and XM_014108583.1 and XP_013964058.1), cattle ARID2 (XM_002687323.5 and XP_002687369.1; and XM_015463314.1 and XP_015318800.1), mouse ARID2 (NM_175251.4 and NP_780460.3), rat ARID2 (XM_345867.8 and XP_345868.4; and XM_008776620.1 and XP_008774842.1), chicken ARID2 (XM_004937552.2 and XP_004937609.1, XM_004937551.2 and XP_004937608.1, XM_004937554.2 and XP_004937611.1, and XM_416046.5 and XP_416046.2), tropical clawed frog ARID2 (XM_002932805.4 and XP_002932851.1, XM_018092278.1 and XP_017947767.1, and XM_018092279.1 and XP_017947768.1), and zebrafish ARID2 (NM_001077763.1 and NP_001071231.1, and XM_005164457.3 and XP_005164514.1). ReRepresentative sequences of ARID2 orthologs are presented below in Table 1.


Anti-ARID2 antibodies suitable for detecting ARID2 protein are well-known in the art and include, for example, antibodies ABE316 and 04-080 (EMD Millipore, Billerica, Mass.), antibodies NBP1-26615, NBP2-43567, and NBP1-26614 (Novus Biologicals, Littleton, Colo.), antibodies ab51019, ab166850, ab113283, and ab56082 (AbCam, Cambridge, Mass.), antibodies Cat #: PA5-35857 and PA5-51258 (ThermoFisher Scinetific, Waltham, Mass.), antibodies GTX129444, GTX129443, and GTX632011 (GeneTex, Irvine, Calif.), ARID2 (H-182) Antibody, ARID2 (H-182) X Antibody, ARID2 (5-13) Antibody, ARID2 (5-13) X Antibody, ARID2 (E-3) Antibody, and ARID2 (E-3) X Antibody (Santa Cruz Biotechnology), etc. In addition, reagents are well-known for detecting ARID2 expression. Multiple clinical tests of PBRM1 are available in NIH Genetic Testing Registry (GTR®) (e.g., GTR Test ID: GTR000541481.2, offered by Fulgent Clinical Diagnostics Lab (Temple City, Calif.)). Moreover, multiple siRNA, shRNA, CRISPR constructs for reducing ARID2 expression can be found in the commercial product lists of the above-referenced companies, such as siRNA product #SR316272, shRNA products #TR306601, TR505226, TG306601, SR420583, and CRISPER products #KN212320 and KN30154 from Origene Technologies (Rockville, Md.), RNAi product H00196528-R01 (Novus Biologicals), CRISPER gRNA products from GenScript (Cat. #KN301549 and KN212320, Piscataway, N.J.) and from Santa Cruz (sc-401863), and RNAi products from Santa Cruz (Cat #sc-96225 and sc-77400). It is to be noted that the term can further be used to refer to any combination of features described herein regarding ARID2 molecules. For example, any combination of sequence composition, percentage identify, sequence length, domain structure, functional activity, etc. can be used to describe an ARID2 molecule of the present invention.


The term “loss-of-function mutation” for BAF200/ARID2 refers to any mutation in a ARID2-related nucleic acid or protein that results in reduced or eliminated ARID2 protein amounts and/or function. For example, nucleic acid mutations include single-base substitutions, multi-base substitutions, insertion mutations, deletion mutations, frameshift mutations, missense mutations, nonsense mutations, splice-site mutations, epigenetic modifications (e.g., methylation, phosphorylation, acetylation, ubiquitylation, sumoylation, histone acetylation, histone deacetylation, and the like), and combinations thereof. In some embodiments, the mutation is a “nonsynonymous mutation,” meaning that the mutation alters the amino acid sequence of ARID2. Such mutations reduce or eliminate ARID2 protein amounts and/or function by eliminating proper coding sequences required for proper ARID2 protein translation and/or coding for ARID2 proteins that are non-functional or have reduced function (e.g., deletion of enzymatic and/or structural domains, reduction in protein stability, alteration of sub-cellular localization, and the like). Such mutations are well-known in the art. In addition, a reRepresentative list describing a wide variety of structural mutations correlated with the functional result of reduced or eliminated ARID2 protein amounts and/or function is described in the Tables and the Examples.


The term “BRD7” refers to Bromodomain-containing protein 7, a subunit of the SWI/SNF complex, which can be found in PBAF but not BAF complexes. BRD7 is a transcriptional corepressor that binds to target promoters (e.g., the ESR1 promoter) and down-regulates the expression of target genes, leading to increased histone H3 acetylation at Lys-9 (H3K9ac). BRD7 can recruit other proteins such as BRCA1 and POU2F1 to, e.g., the ESR1 promoter for its function. BRD7 activates the Wnt signaling pathway in a DVL1-dependent manner by negatively regulating the GSK3B phosphotransferase activity, while BRD7 induces dephosphorylation of GSK3B at Tyr-216. BRD7 is also a coactivator for TP53-mediated activation of gene transcription and is required for TP53-mediated cell-cycle arrest in response to oncogene activation. BRD7 promotes acetylation of TP53 at Lys-382, and thereby promotes efficient recruitment of TP53 to target promoters. BRD7 also inhibits cell cycle progression from G1 to S phase. For studies on BRD7 functions, see Zhou et al. (2006) J. Cell. Biochem. 98:920-930; Harte et al. (2010) Cancer Res. 70:2538-2547; Drost et al. (2010) Nat. Cell Biol. 12:380-389. The known binding partners for BRD7 also include, e.g., Tripartite Motif Containing 24 (TRIM24), Protein Tyrosine Phosphatase, Non-Receptor Type 13 (PTPN13), Disheveled Segment Polarity Protein 1 (DVL1), interferon regulatory factor 2 (IRF2) (Staal et al. (2000) J. Cell. Physiol. US 185:269-279) and heterogeneous nuclear ribonucleoprotein U-like protein 1 (HNRPUL1) (Kzhyshkowska et al. (2003) Biochem. J. England. 371:385-393). Human BRD7 protein has 651 amino acids and a molecular mass of 74139 Da, with a N-terminal nuclear localization signal (e.g., amino acids 65-96 of SEQ ID NO:14), a Bromo-BRD7-like domain (e.g., amino acids 135-232 of SEQ ID NO:14), and a DUF3512 domain (e.g., amino acids 287-533 of SEQ ID NO:14).


The term “BRD7” is intended to include fragments, variants (e.g., allelic variants), and derivatives thereof. ReRepresentative human BRD7 cDNA and human BRD7 protein sequences are well-known in the art and are publicly available from the National Center for Biotechnology Information (NCBI). For example, two different human BRD7 isoforms are known. Human BRD7 isoform A (NP_001167455.1) is encodable by the transcript variant 1 (NM_001173984.2), which is the longer transcript. Human BRD7 isoform B (NP_037395.2) is encodable by the transcript variant 2 (NM_013263.4), which uses an alternate in-frame splice site in the 3′ coding region, compared to variant 1. The resulting isoform B lacks one internal residue, compared to isoform A. Nucleic acid and polypeptide sequences of BRD7 orthologs in organisms other than humans are well known and include, for example, chimpanzee BRD7 (XM_009430766.2 and XP_009429041.1, XM_016929816.1 and XP_016785305.1, XM_016929815.1 and XP_016785304.1, and XM_003315094.4 and XP_003315142.1), Rhesus monkey BRD7 (XM_015126104.1 and XP_014981590.1, XM_015126103.1 and XP_014981589.1, XM_001083389.3 and XP_001083389.2, and XM_015126105.1 and XP_014981591.1), dog BRD7 (XM_014106954.1 and XP_013962429.1), cattle BRD7 (NM_001103260.2 and NP_001096730.1), mouse BRD7 (NM_012047.2 and NP_036177.1), chicken BRD7 (NM_001005839.1 and NP_001005839.1), tropical clawed frog BRD7 (NM_001008007.1 and NP_001008008.1), and zebrafish BRD7 (NM_213366.2 and NP_998531.2). Representative sequences of BRD7 orthologs are presented below in Table 1.


Anti-BRD7 antibodies suitable for detecting BRD7 protein are well-known in the art and include, for example, antibody TA343710 (Origene), antibody NBP1-28727 (Novus Biologicals, Littleton, Colo.), antibodies ab56036, ab46553, ab202324, and ab114061 (AbCam, Cambridge, Mass.), antibodies Cat #: 15125 and 14910 (Cell Signaling), antibody GTX118755 (GeneTex, Irvine, Calif.), BRD7 (P-13) Antibody, BRD7 (T-12) Antibody, BRD7 (H-77) Antibody, BRD7 (H-2) Antibody, and BRD7 (B-8) Antibody (Santa Cruz Biotechnology), etc. In addition, reagents are well-known for detecting BRD7 expression. A clinical test of BRD7 is available in NIH Genetic Testing Registry (GTR®) with GTR Test ID: GTR000540400.2, offered by Fulgent Clinical Diagnostics Lab (Temple City, Calif.)). Moreover, multiple siRNA, shRNA, CRISPR constructs for reducing BRD7 expression can be found in the commercial product lists of the above-referenced companies, such as shRNA product #TR100001 and CRISPER products #KN302255 and KN208734 from Origene Technologies (Rockville, Md.), RNAi product H00029117-R01 (Novus Biologicals), and small molecule inhibitors BI 9564 and TP472 (Tocris Bioscience, UK). It is to be noted that the term can further be used to refer to any combination of features described herein regarding BRD7 molecules. For example, any combination of sequence composition, percentage identify, sequence length, domain structure, functional activity, etc. can be used to describe an BRD7 molecule of the present invention.


The term “loss-of-function mutation” for BRD7 refers to any mutation in a BRD7-related nucleic acid or protein that results in reduced or eliminated BRD7 protein amounts and/or function. For example, nucleic acid mutations include single-base substitutions, multi-base substitutions, insertion mutations, deletion mutations, frameshift mutations, missense mutations, nonsense mutations, splice-site mutations, epigenetic modifications (e.g., methylation, phosphorylation, acetylation, ubiquitylation, sumoylation, histone acetylation, histone deacetylation, and the like), and combinations thereof. In some embodiments, the mutation is a “nonsynonymous mutation,” meaning that the mutation alters the amino acid sequence of BRD7. Such mutations reduce or eliminate BRD7 protein amounts and/or function by eliminating proper coding sequences required for proper BRD7 protein translation and/or coding for BRD7 proteins that are non-functional or have reduced function (e.g., deletion of enzymatic and/or structural domains, reduction in protein stability, alteration of sub-cellular localization, and the like). Such mutations are well-known in the art. In addition, a reRepresentative list describing a wide variety of structural mutations correlated with the functional result of reduced or eliminated BRD7 protein amounts and/or function is described in the Tables and the Examples.


The term “BAF45A” or “PHF10” refers to PHD finger protein 10, a subunit of the PBAF complex having two zinc finger domains at its C-terminus. PHF10 belongs to the neural progenitors-specific chromatin remodeling complex (npBAF complex) and is required for the proliferation of neural progenitors. During neural development a switch from a stem/progenitor to a post-mitotic chromatin remodeling mechanism occurs as neurons exit the cell cycle and become committed to their adult state. The transition from proliferating neural stem/progenitor cells to post-mitotic neurons requires a switch in subunit composition of the npBAF and nBAF complexes. As neural progenitors exit mitosis and differentiate into neurons, npBAF complexes which contain ACTL6A/BAF53A and PHF10/BAF45A, are exchanged for homologous alternative ACTL6B/BAF53B and DPF1/BAF45B or DPF3/BAF45C subunits in neuron-specific complexes (nBAF). The npBAF complex is essential for the self-renewal/proliferative capacity of the multipotent neural stem cells. The nBAF complex along with CREST plays a role regulating the activity of genes essential for dendrite growth. PHF10 gene encodes at least two types of evolutionarily conserved, ubiquitously expressed isoforms that are incorporated into the PBAF complex in a mutually exclusive manner. One isoform contains C-terminal tandem PHD fingers, which in the other isoform are replaced by the consensus sequence for phosphorylation-dependent SUMO 1 conjugation (PDSM) (Brechalov et al. (2014) Cell Cycle 13:1970-1979). PBAF complexes containing different PHF10 isoforms can bind to the promoters of the same genes but produce different effects on the recruitment of Pol II to the promoter and on the level of gene transcription. PHF10 is a transcriptional repressor of caspase 3 and impares the programmed cell death pathway in human gastric cancer at the transcriptional level (Wei et al. (2010) Mol Cancer Ther. 9:1764-1774). Knockdown of PHF10 expression in gastric cancer cells led to significant induction of caspase-3 expression at both the RNA and protein levels and thus induced alteration of caspase-3 substrates in a time-dependent manner (Wei et al. (2010), supra). Results from luciferase assays by the same group indicated that PHF10 acted as a transcriptional repressor when the two PHD domains contained in PHF10 were intact. Human PHF10 protein has 498 amino acids and a molecular mass of 56051 Da, with two domains essential to induce neural progenitor proliferation (e.g., amino acids 89-185 and 292-334 of SEQ ID NO:20) and two PHD finger domains (e.g., amino acids 379-433 and 435-478 of SEQ ID NO:20). By similarity, PHF 10 binds to ACTL6A/BAF53A, SMARCA2/BRM/BAF190B, SMARCA4/BRG1/BAF190A and PBRM1/BAF180.


The term “BAF45A” or “PHF10” is intended to include fragments, variants (e.g., allelic variants), and derivatives thereof. ReRepresentative human PHF10 cDNA and human PHF10 protein sequences are well-known in the art and are publicly available from the National Center for Biotechnology Information (NCBI). For example, two different human PHF10 isoforms are known. Human PHF10 isoform A (NP_060758.2) is encodable by the transcript variant 1 (NM_018288.3), which is the longer transcript. Human PHF10 isoform B (NP_579866.2) is encodable by the transcript variant 2 (NM_133325.2), which uses an alternate splice junction which results in six fewer nt when compared to variant 1. The isoform B lacks 2 internal amino acids compared to isoform A. Nucleic acid and polypeptide sequences of PHF10 orthologs in organisms other than humans are well known and include, for example, chimpanzee PHF10 (XM_016956680.1 and XP 016812169.1, XM_016956679.1 and XP_016812168.1, and XM_016956681.1 and XP_016812170.1), Rhesus monkey PHF10 (XM_015137735.1 and XP_014993221.1, and XM_015137734.1 and XP_014993220.1), dog PHF10 (XM_005627727.2 and XP_005627784.1, XM_005627726.2 and XP_005627783.1, XM_532272.5 and XP_532272.4, XM_014118230.1 and XP_013973705.1, and XM_014118231.1 and XP_013973706.1), cattle PHF10 (NM_001038052.1 and NP_001033141.1), mouse PHF10 (NM_024250.4 and NP_077212.3), rat PHF10 (NM_001024747.2 and NP_001019918.2), chicken PHF10 (XM_015284374.1 and XP_015139860.1), tropical clawed frog PHF10 (NM_001030472.1 and NP_001025643.1), zebrafish PHF10 (NM_200655.3 and NP_956949.3), and C. elegans PHF10 (NM_001047648.2 and NP_001041113.1, NM_001047647.2 and NP_001041112.1, and NM_001313168.1 and NP_001300097.1). Representative sequences of PHF10 orthologs are presented below in Table 1.


Anti-PHF10 antibodies suitable for detecting PHF10 protein are well-known in the art and include, for example, antibody TA346797 (Origene), antibodies NBP1-52879, NBP2-19795, NBP2-33759, and H00055274-B01P (Novus Biologicals, Littleton, Colo.), antibodies ab154637, ab80939, and ab68114 (AbCam, Cambridge, Mass.), antibody Cat #PA5-30678 (ThermoFisher Scientific), antibody Cat #26-352 (ProSci, Poway, Calif.), etc. In addition, reagents are well-known for detecting PHF10 expression. A clinical test of PHF10 for hereditary disease is available with the test ID no. GTR000536577 in NIH Genetic Testing Registry (GTR*), offered by Fulgent Clinical Diagnostics Lab (Temple City, Calif.). Moreover, multiple siRNA, shRNA, CRISPR constructs for reducing PHF10 expression can be found in the commercial product lists of the above-referenced companies, such as siRNA product #sc-95343 and sc-152206 and CRISPER products #sc-410593 from Santa Cruz Biotechnology, RNAi products H00055274-R01 and H00055274-R02 (Novus Biologicals), and multiple CRISPER products from GenScript (Piscataway, N.J.). Human PHF10 knockout cell (from HAP1 cell line) is also available from Horizon Discovery (Cat #HZGHC002778c011, UK). It is to be noted that the term can further be used to refer to any combination of features described herein regarding PHF10 molecules. For example, any combination of sequence composition, percentage identify, sequence length, domain structure, functional activity, etc. can be used to describe an PHF10 molecule of the present invention.


The term “loss-of-function mutation” for BAF45A/PHF10 refers to any mutation in a PHF10-related nucleic acid or protein that results in reduced or eliminated PHF10 protein amounts and/or function. For example, nucleic acid mutations include single-base substitutions, multi-base substitutions, insertion mutations, deletion mutations, frameshift mutations, missense mutations, nonsense mutations, splice-site mutations, epigenetic modifications (e.g., methylation, phosphorylation, acetylation, ubiquitylation, sumoylation, histone acetylation, histone deacetylation, and the like), and combinations thereof. In some embodiments, the mutation is a “nonsynonymous mutation,” meaning that the mutation alters the amino acid sequence of PHF10. Such mutations reduce or eliminate PHF10 protein amounts and/or function by eliminating proper coding sequences required for proper PHF10 protein translation and/or coding for PHF10 proteins that are non-functional or have reduced function (e.g., deletion of enzymatic and/or structural domains, reduction in protein stability, alteration of sub-cellular localization, and the like). Such mutations are well-known in the art. In addition, a reRepresentative list describing a wide variety of structural mutations correlated with the functional result of reduced or eliminated PHF10 protein amounts and/or function is described in the Tables and the Examples.


The term “PBRM1” or “BAF180” refers to protein Polybromo-1, which is a subunit of ATP-dependent chromatin-remodeling complexes. PBRM1 functions in the regulation of gene expression as a constituent of the evolutionary-conserved SWI/SNF chromatin remodelling complexes (Euskirchen et al. (2012) J Biol. Chem. 287:30897-30905). Beside BRD7 and BAF200, PBRM1 is one of the unique components of the SWI/SNF-B complex, also known as polybromo/BRG1-associated factors (or PBAF), absent in the SWI/SNF-A (BAF) complex (Xue et al. (2000) Proc Natl Acad Sci USA. 97:13015-13020; Brownlee et al. (2012) Biochem Soc Trans. 40:364-369). On that account, and because it contains bromodomains known to mediate binding to acetylated histones, PBRM1 has been postulated to target PBAF complex to specific chromatin sites, therefore providing the functional selectivity for the complex (Xue et al. (2000), supra; Lemon et al. (2001) Nature 414:924-928; Brownlee et al. (2012), supra). Although direct evidence for PBRM1 involvement is lacking, SWI/SNF complexes have also been shown to play a role in DNA damage response (Park et al. (2006) EMBO J. 25:3986-3997). In vivo studies have shown that PBRM1 deletion leads to embryonic lethality in mice, where PBRM1 is required for mammalian cardiac chamber maturation and coronary vessel formation (Wang et al. (2004) Genes Dev. 18:3106-3116; Huang et al. (2008) Dev Biol. 319:258-266). PBRM1 mutations are most predominant in renal cell carcinomas (RCCs) and have been detected in over 40% of cases, placing PBRM1 second (after VHL) on the list of most frequently mutated genes in this cancer (Varela et al. (2011) Nature 469:539-542; Hakimi et al. (2013) Eur Urol. 63:848-854; Pena-Llopis et al. (2012) Nat Genet. 44:751-759; Pawlowski et al. (2013) Int J Cancer. 132:E11-E17). PBRM1 mutations have also been found in a smaller group of breast and pancreatic cancers (Xia et al. (2008) Cancer Res. 68:1667-1674; Shain et al. (2012) Proc Natl Acad Sci USA. 109:E252-E259; Numata et al. (2013) Int J Oncol. 42:403-410). PBRM1 mutations are more common in patients with advance stages (Hakimi et al. (2013), supra) and loss of PBRM1 protein expression has been associated with advanced tumour stage, low differentiation grade and worse patient outcome (Pawlowski et al. (2013), supra). In another study, no correlation between PBRM1 status and tumour grade was found (Pena-Llopis et al. (2012), supra). Although PBRM1-mutant tumours are associated with better prognosis than BAP1-mutant tumours, tumours mutated for both PBRM1 and BAP1 exhibit the greatest aggressiveness (Kapur et al. (2013) Lancet Oncol. 14:159-167). PBRM1 is ubiquitously expressed during mouse embryonic development (Wang et al. (2004), supra) and has been detected in various human tissues including pancreas, kidney, skeletal muscle, liver, lung, placenta, brain, heart, intestine, ovaries, testis, prostate, thymus and spleen (Xue et al. (2000), supra; Horikawa and Barrett (2002) DNA Seq. 13:211-215).


PBRM1 protein localises to the nucleus of cells (Nicolas and Goodwin (1996) Gene 175:233-240). As a component of the PBAF chromatin-remodelling complex, it associates with chromatin (Thompson (2009) Biochimie. 91:309-319), and has been reported to confer the localisation of PBAF complex to the kinetochores of mitotic chromosomes (Xue et al. (2000), supra). Human PBRM1 gene encodes a 1582 amino acid protein, also referred to as BAF180. Six bromodomains (BD1-6), known to recognize acetylated lysine residues and frequently found in chromatin-associated proteins, constitute the N-terminal half of PBRM1 (e.g., six BD domains at amino acid residue no. 44-156, 182-284, 383-484, 519-622, 658-762, and 775-882 of SEQ ID NO:2). The C-terminal half of PBRM1 contains two bromo-adjacent homology (BAH) domains (BAH1 and BAH2, e.g., at amino acid residue no. 957-1049 and 1130-1248 of SE ID NO:2), present in some proteins involved in transcription regulation. High mobility group (HMG) domain is located close to the C-terminus of PBRM1 (e.g., amino acid residue no. 1328-1377 of SEQ ID NO:2). HMG domains are found in a number of factors regulating DNA-dependent processes where HMG domains often mediate interactions with DNA.


The term “PBRM1” is intended to include fragments, variants (e.g., allelic variants), and derivatives thereof. ReRepresentative human PBRM1 cDNA and human PBRM1 protein sequences are well-known in the art and are publicly available from the National Center for Biotechnology Information (NCBI). For example, two different human PBRM1 isoforms are known. Human PBRM1 transcript variant 2 (NM_181042.4) represents the longest transcript. Human PBRM1 transcript variant 1 (NM_018313.4, having a CDS from the 115-4863 nucleotide residue of SEQ ID NO:1) differs in the 5′ UTR and uses an alternate exon and splice site in the 3′ coding region, thus encoding a distinct protein sequence (NP_060783.3, as SEQ ID NO:2) of the same length as the isoform (NP_851385.1) encoded by variant 2. Nucleic acid and polypeptide sequences of PBRM1 orthologs in organisms other than humans are well known and include, for example, chimpanzee PBRM1 (XM_009445611.2 and XP_009443886.1, XM_009445608.2 and XP 009443883.1, XM_009445602.2 and XP_009443877.1, XM 016941258.1 and XP 016796747.1, XM_016941256.1 and XP 016796745.1, XM_016941249.1 and XP 016796738.1, XM_016941260.1 and XP_016796749.1, XM_016941253.1 and XP 016796742.1, XM_016941250.1 and XP_016796739.1, XM_016941261.1 and XP 016796750.1, XM_009445605.2 and XP_009443880.1, XM 016941252.1 and XP 016796741.1, XM_009445603.2 and XP 009443878.1, XM_016941263.1 and XP 016796752.1, XM_016941262.1 and XP_016796751.1, XM_009445604.2 and XP 009443879.1, XM_016941251.1 and XP_016796740.1, XM_016941257.1 and XP 016796746.1, XM_016941255.1 and XP_016796744.1, XM 016941254.1 and XP 016796743.1, XM 016941265.1 and XP 016796754.1, XM_016941264.1 and XP 016796753.1, XM_016941248.1 and XP_016796737.1, XM_009445617.2 and XP 009443892.1, XM_009445616.2 and XP_009443891.1, XM_009445619.2 and XP_009443894.1 XM_009445615.2 and XP_009443890.1, XM_009445618.2 and XP_009443893.1, and XM_016941266.1 and XP_016796755.1), rhesus monkey PBRM1 (XM_015130736.1 and XP_014986222.1, XM_015130739.1 and XP_014986225.1, XM_015130737.1 and XP_014986223.1, XM_015130740.1 and XP_014986226.1, XM_015130727.1 and XP_014986213.1, XM_015130726.1 and XP_014986212.1, XM_015130728.1 and XP_014986214.1, XM_015130743.1 and XP_014986229.1, XM_015130731.1 and XP_014986217.1, XM_015130745.1 and XP_014986231.1, XM_015130741.1 and XP_014986227.1, XM_015130734.1 and XP_014986220.1, XM_015130744.1 and XP_014986230.1, XM_015130748.1 and XP_014986234.1, XM_015130746.1 and XP_014986232.1, XM_015130742.1 and XP_014986228.1, XM_015130747.1 and XP_014986233.1, XM_015130730.1 and XP_014986216.1, XM_015130732.1 and XP_014986218.1, XM_015130733.1 and XP_014986219.1, XM_015130735.1 and XP_014986221.1, XM_015130738.1 and XP_014986224.1, and XM_015130725.1 and XP_014986211.1), dog PBRM1 (XM_005632441.2 and XP_005632498.1, XM_014121868.1 and XP_013977343.1, XM_005632451.2 and XP 005632508.1, XM_014121867.1 and XP_013977342.1, XM_005632440.2 and XP 005632497.1, XM_005632446.2 and XP_005632503.1, XM_533797.5 and XP 533797.4, XM_005632442.2 and XP_005632499.1, XM 005632439.2 and XP 005632496.1, XM_014121869.1 and XP 013977344.1, XM_005632448.1 and XP 005632505.1, XM_005632449.1 and XP_005632506.1, XM_005632452.1 and XP 005632509.1, XM_005632445.1 and XP_005632502.1, XM_005632450.1 and XP 005632507.1, XM_005632453.1 and XP_005632510.1, XM_014121870.1 and XP 013977345.1, XM_005632443.1 and XP_005632500.1, XM_005632444.1 and XP_005632501.1, and XM_005632447.2 and XP_005632504.1), cow PBRM1 (XM_005222983.3 and XP_005223040.1, XM_005222979.3 and XP_005223036.1, XM_015459550.1 and XP_015315036.1, XM_015459551.1 and XP_015315037.1, XM_015459548.1 and XP_015315034.1, XM_010817826.1 and XP_010816128.1, XM_010817829.1 and XP_010816131.1, XM_010817830.1 and XP_010816132.1, XM_010817823.1 and XP_010816125.1, XM_010817824.2 and XP_010816126.1, XM_010817819.2 and XP_010816121.1, XM_010817827.2 and XP_010816129.1, XM_010817828.2 and XP_010816130.1, XM_010817817.2 and XP_010816119.1, and XM_010817818.2 and XP_010816120.1), mouse PBRM1 (NM_001081251.1 and NP_001074720.1), chicken PBRM1 (NM_205165.1 and NP_990496.1), tropical clawed frog PBRM1 (XM_018090224.1 and XP_017945713.1), zebrafish PBRM1 (XM_009305786.2 and XP_009304061.1, XM_009305785.2 and XP_009304060.1, and XM_009305787.2 and XP_009304062.1), fruit fly PBRM1 (NM_143031.2 and NP_651288.1), and worm PBRM1 (NM_001025837.3 and NP_001021008.1 and .NM_001025838.2 and NP_001021009.1). ReRepresentative sequences of PBRM1 orthologs are presented below in Table 1.


Anti-PBRM1 antibodies suitable for detecting PBRM1 protein are well-known in the art and include, for example, ABE70 (rabbit polyclonal antibody, EMD Millipore, Billerica, Mass.), TA345237 and TA345238 (rabbit polyclonal antibodies, OriGene Technologies, Rockville, Md.), NBP2-30673 (mouse monoclonal) and other polyclonal antibodes (Novus Biologicals, Littleton, Colo.), ab196022 (rabiit mAb, AbCam, Cambridge, Mass.), PAH437Hu01 and PAH437Hu02 (rabbit polyclonal antibodies, Cloud-Clone Corp., Houston, Tex.), GTX100781 (GeneTex, Irvine, Calif.), 25-498 (ProSci, Poway, Calif.), sc-367222 (Santa Cruz Biotechnology, Dallas, Tex.), etc. In addition, reagents are well-known for detecting PBRM1 expression (see, for example, PBRM1 Hu-Cy3 or Hu-Cy5 SmartFlare™ RNA Detection Probe (EMD Millipore). Multiple clinical tests of PBRM1 are available in NIH Genetic Testing Registry (GTR®) (e.g., GTR Test ID: GTR000537378.2 which is offered by Fulgent Clinical Diagnostics Lab (Temple City, Calif.)). Moreover, multiple siRAN, shRNA, CRISPR constructs for reducing PBRM1 expression can be found in the commercial product lists of the above-referenced companies. Ribavirin and PFI 3 are known PBRM1 inhibitors. It is to be noted that the term can further be used to refer to any combination of features described herein regarding PBRM1 molecules. For example, any combination of sequence composition, percentage identify, sequence length, domain structure, functional activity, etc. can be used to describe an PBRM1 molecule of the present invention.


The term “PBRM1 loss-of-function mutation” refers to any mutation in a PBRM1-related nucleic acid or protein that results in reduced or eliminated PBRM1 protein amounts and/or function. For example, nucleic acid mutations include single-base substitutions, multi-base substitutions, insertion mutations, deletion mutations, frameshift mutations, missense mutations, nonsense mutations, splice-site mutations, epigenetic modifications (e.g., methylation, phosphorylation, acetylation, ubiquitylation, sumoylation, histone acetylation, histone deacetylation, and the like), and combinations thereof. In some embodiments, the mutation is a “nonsynonymous mutation,” meaning that the mutation alters the amino acid sequence of PBRM1. Such mutations reduce or eliminate PBRM1 protein amounts and/or function by eliminating proper coding sequences required for proper PBRM1 protein translation and/or coding for PBRM1 proteins that are non-functional or have reduced function (e.g., deletion of enzymatic and/or structural domains, reduction in protein stability, alteration of sub-cellular localization, and the like). Such mutations are well-known in the art. In addition, a reRepresentative list describing a wide variety of structural mutations correlated with the functional result of reduced or eliminated PBRM1 protein amounts and/or function is described in the Tables and the Examples.


The term “BAF250A” or “ARID1A” refers to AT-rich interactive domain-containing protein 1A, a subunit of the SWI/SNF complex, which can be find in BAF but not PBAF complex. In humans there are two BAF250 isoforms, BAF250A/ARID1A and BAF250B/ARID1B. They are thought to be E3 ubiquitin ligases that target histone H2B (Li et al. (2010) Mol. Cell. Biol. 30:1673-1688). ARID1A is highly expressed in the spleen, thymus, prostate, testes, ovaries, small intestine, colon and peripheral leukocytes. ARID1A is involved in transcriptional activation and repression of select genes by chromatin remodeling. It is also involved in vitamin D-coupled transcription regulation by associating with the WINAC complex, a chromatin-remodeling complex recruited by vitamin D receptor. ARID1A belongs to the neural progenitors-specific chromatin remodeling (npBAF) and the neuron-specific chromatin remodeling (nBAF) complexes, which are involved in switching developing neurons from stem/progenitors to post-mitotic chromatin remodeling as they exit the cell cycle and become committed to their adult state. ARID1A also plays key roles in maintaining embryonic stem cell pluripotency and in cardiac development and function (Lei et al. (2012) J Biol. Chem. 287:24255-24262; Gao et al. (2008) Proc. Natl. Acad. Sci. U.S.A. 105:6656-6661). Loss of BAF250a expression was seen in 42% of the ovarian clear cell carcinoma samples and 21% of the endometrioid carcinoma samples, compared with just 1% of the high-grade serous carcinoma samples. ARID1A deficiency also impairs the DNA damage checkpoint and sensitizes cells to PARP inhibitors (Shen et al. (2015) Cancer Discov. 5:752-767). Human ARID1A protein has 2285 amino acids and a molecular mass of 242045 Da, with at least a DNA-binding domain that can specifically bind an AT-rich DNA sequence, recognized by a SWI/SNF complex at the beta-globin locus, and a C-terminus domain for glucocorticoid receptor-dependent transcriptional activation. ARID1A has been shown to interact with proteins such as SMARCB1/BAF47 (Kato et al. (2002) J. Biol. Chem. 277:5498-505; Wang et al. (1996) EMBO J. 15:5370-5382) and SMARCA4/BRG1 (Wang et al. (1996), supra; Zhao et al. (1998) Cell 95:625-636), etc.


The term “BAF250A” or “ARID1A” is intended to include fragments, variants (e.g., allelic variants), and derivatives thereof. Representative human BAF250A (ARID1A) cDNA and human BAF250A (ARID1A) protein sequences are well-known in the art and are publicly available from the National Center for Biotechnology Information (NCBI). For example, two different human ARID1A isoforms are known. Human ARID1A isoform A (NP_006006.3) is encodable by the transcript variant 1 (NM_006015.4), which is the longer transcript. Human ARID1A isoform B (NP_624361.1) is encodable by the transcript variant 2 (NM_139135.2), which lacks a segment in the coding region compared to variant 1. Isoform B thus lacks an internal segment, compared to isoform A. Nucleic acid and polypeptide sequences of ARID1A orthologs in organisms other than humans are well known and include, for example, chimpanzee ARID1A (XM_016956953.1 and XP_016812442.1, XM_016956958.1 and XP_016812447.1, and XM_009451423.2 and XP_009449698.2), Rhesus monkey ARID1A (XM_015132119.1 and XP_014987605.1, and XM_015132127.1 and XP_014987613.1), dog ARID1A (XM_847453.5 and XP_852546.3, XM_005617743.2 and XP_005617800.1, XM_005617742.2 and XP 005617799.1, XM_005617744.2 and XP_005617801.1, XM_005617746.2 and XP_005617803.1, and XM_005617745.2 and XP_005617802.1), cattle ARID1A (NM_001205785.1 and NP_001192714.1), mouse ARID1A (NM_001080819.1 and NP_001074288.1), rat ARID1A (NM_001106635.1 and NP_001100105.1), chicken ARID1A (XM_015297557.1 and XP_015153043.1, XM_015297556.1 and XP_015153042.1, and XM_417693.5 and XP_417693.5), tropical clawed frog ARID1A (XM_002934639.4 and XP_002934685.2), and zebrafish ARID1A (XM_009294131.2 and XP_009292406.1, and XM_009294132.2 and XP_009292407.1).


Anti-ARID1A antibodies suitable for detecting ARID1A protein are well-known in the art and include, for example, antibody Cat #04-080 (EMD Millipore, Billerica, Mass.), antibodies TA349170, TA350870, and TA350871 (OriGene Technologies, Rockville, Md.), antibodies NBP1-88932, NB100-55334, NBP2-43566, NB100-55333, and H00008289-Q01 (Novus Biologicals, Littleton, Colo.), antibodies ab182560, ab182561, ab176395, and ab97995 (AbCam, Cambridge, Mass.), antibodies Cat #: 12354 and 12854 (Cell Signaling Technology, Danvers, Mass.), antibodies GTX129433, GTX129432, GTX632013, GTX12388, and GTX31619 (GeneTex, Irvine, Calif.), etc. In addition, reagents are well-known for detecting ARID1A expression. For example, multiple clinical tests for ARID1A are available at NIH Genetic Testing Registry (GTR©) (e.g., GTR Test ID: GTR000520952.1 for mental retardation, offered by Centogene AG, Germany). Moreover, multiple siRNA, shRNA, CRISPR constructs for reducing ARID1A Expression can be found in the commercial product lists of the above-referenced companies, such as RNAi products H00008289-R01, H00008289-R02, and H00008289-R03 (Novus Biologicals) and CRISPR products KN301547G1 and KN301547G2 (Origene). Other CRISPR products include sc-400469 (Santa Cruz Biotechnology) and those from GenScript (Piscataway, N.J.). It is to be noted that the term can further be used to refer to any combination of features described herein regarding ARID1A molecules. For example, any combination of sequence composition, percentage identify, sequence length, domain structure, functional activity, etc. can be used to describe an ARID1A molecule of the present invention.


The term “loss-of-function mutation” for BAF250A/ARID1A refers to any mutation in an ARID1A-related nucleic acid or protein that results in reduced or eliminated ARID1A protein amounts and/or function. For example, nucleic acid mutations include single-base substitutions, multi-base substitutions, insertion mutations, deletion mutations, frameshift mutations, missense mutations, nonsense mutations, splice-site mutations, epigenetic modifications (e.g., methylation, phosphorylation, acetylation, ubiquitylation, sumoylation, histone acetylation, histone deacetylation, and the like), and combinations thereof. In some embodiments, the mutation is a “nonsynonymous mutation,” meaning that the mutation alters the amino acid sequence of ARID1A. Such mutations reduce or eliminate ARID1A protein amounts and/or function by eliminating proper coding sequences required for proper ARID1A protein translation and/or coding for ARID1A proteins that are non-functional or have reduced function (e.g., deletion of enzymatic and/or structural domains, reduction in protein stability, alteration of sub-cellular localization, and the like). Such mutations are well-known in the art. In addition, a representative list describing a wide variety of structural mutations correlated with the functional result of reduced or eliminated ARID1A protein amounts and/or function is described in the Tables and the Examples.


The term “BAF250B” or “ARID1B” refers to AT-rich interactive domain-containing protein 1B, a subunit of the SWI/SNF complex, which can be find in BAF but not PBAF complex. ARID1B and ARID1A are alternative and mutually exclusive ARID-subunits of the SWI/SNF complex. Germline mutations in ARID1B are associated with Coffin-Siris syndrome (Tsurusaki et al. (2012) Nat. Genet. 44:376-378; Santen et al. (2012) Nat. Genet. 44:379-380). Somatic mutations in ARID1B are associated with several cancer subtypes, suggesting that it is a tumor suppressor gene (Shai and Pollack (2013) PLoS ONE 8:e55119; Sausen et al. (2013) Nat. Genet. 45:12-17; Shain et al. (2012) Proc. Natl. Acad. Sci. U.S.A. 109:E252-E259; Fujimoto et al. (2012) Nat. Genet. 44:760-764). Human ARID1A protein has 2236 amino acids and a molecular mass of 236123 Da, with at least a DNA-binding domain that can specifically bind an AT-rich DNA sequence, recognized by a SWI/SNF complex at the beta-globin locus, and a C-terminus domain for glucocorticoid receptor-dependent transcriptional activation. ARID1B has been shown to interact with SMARCA4/BRG1 (Hurlstone et al. (2002) Biochem. J. 364:255-264; Inoue et al. (2002) J Biol. Chem. 277:41674-41685 and SMARCA2/BRM (Inoue et al. (2002), supra).


The term “BAF250B” or “ARID1B” is intended to include fragments, variants (e.g., allelic variants), and derivatives thereof. Representative human BAF250B (ARID1B) cDNA and human BAF250B (ARID1B) protein sequences are well-known in the art and are publicly available from the National Center for Biotechnology Information (NCBI). For example, three different human ARID1B isoforms are known. Human ARID1B isoform A (NP_059989.2) is encodable by the transcript variant 1 (NM_017519.2). Human ARID1B isoform B (NP_065783.3) is encodable by the transcript variant 2 (NM_020732.3). Human ARID1B isoform C (NP_001333742.1) is encodable by the transcript variant 3 (NM_001346813.1). Nucleic acid and polypeptide sequences of ARID1B orthologs in organisms other than humans are well known and include, for example, Rhesus monkey ARID1B (XM_015137088.1 and XP_014992574.1), dog ARID1B (XM_014112912.1 and XP_013968387.1), cattle ARID1B (XM_010808714.2 and XP_010807016.1, and XM_015464874.1 and XP_015320360.1), mouse ARID1B (NM_001085355.1 and NP_001078824.1), rat ARID1B (XM_017604567.1 and XP_017460056.1), chicken ARID1B (XM_015284235.1 and XP_015139721.1, XM_015284233.1 and XP 015139719.1, XM_015284238.1 and XP_015139724.1, XM 015284230.1 and XP 015139716.1, XM_015284234.1 and XP 015139720.1, XM_015284231.1 and XP 015139717.1, XM_015284232.1 and XP_015139718.1, XM_015284236.1 and XP_015139722.1, and XM_015284237.1 and XP_015139723.1), tropical clawed frog ARID1B (XM_004914629.3 and XP_004914686.1, XM_004914631.3 and XP 004914688.1, XM_004914630.3 and XP_004914687.1, XM_004914634.3 and XP_004914691.1, XM_002931507.4 and XP_002931553.2, XM_004914632.3 and XP_004914689.1, XM_004914635.3 and XP_004914692.1, XM_004914633.3 and XP_004914690.1, XM_004914636.3 and XP_004914693.1, and XM_004914637.3 and XP_004914694.1), and zebrafish ARID1B (XM_009294544.2 and XP_009292819.1, XM_009294545.2 and XP 009292820.1, XM_005160356.3 and XP_005160413.1, XM_005160355.3 and XP 005160412.1, XM_005160354.3 and XP_005160411.1, and XM_692987.8 and XP_698079.4).


Anti-ARID1B antibodies suitable for detecting ARID1B protein are well-known in the art and include, for example, antibody Cat #ABE316 (EMD Millipore, Billerica, Mass.), antibody TA315663 (OriGene Technologies, Rockville, Md.), antibodies H00057492-M02, H00057492-MO1, NB100-57485, NBP1-89358, and NB100-57484 (Novus Biologicals, Littleton, Colo.), antibodies ab57461, ab69571, ab84461, and ab163568 (AbCam, Cambridge, Mass.), antibodies Cat #: PA5-38739, PA5-49852, and PA5-50918 (ThermoFisher Scientific, Danvers, Mass.), antibodies GTX130708, GTX60275, and GTX56037 (GeneTex, Irvine, Calif.), ARID1B (KMN1) Antibody and other antibodies (Santa Cruz Biotechnology), etc. In addition, reagents are well-known for detecting ARID1B expression. For example, multiple clinical tests for ARID1B are available at NIH Genetic Testing Registry (GTR®) (e.g., GTR Test ID: GTR000520953.1 for mental retardation, offered by Centogene AG, Germany). Moreover, multiple siRNA, shRNA, CRISPR constructs for reducing ARID1B Expression can be found in the commercial product lists of the above-referenced companies, such as RNAi products H00057492-R03, H00057492-R01, and H00057492-R02 (Novus Biologicals) and CRISPR products KN301548 and KN214830 (Origene). Other CRISPR products include sc-402365 (Santa Cruz Biotechnology) and those from GenScript (Piscataway, N.J.). It is to be noted that the term can further be used to refer to any combination of features described herein regarding ARID1B molecules. For example, any combination of sequence composition, percentage identify, sequence length, domain structure, functional activity, etc. can be used to describe an ARID1B molecule of the present invention.


The term “loss-of-function mutation” for BAF250B/ARID1B refers to any mutation in an ARID1B-related nucleic acid or protein that results in reduced or eliminated ARID1B protein amounts and/or function. For example, nucleic acid mutations include single-base substitutions, multi-base substitutions, insertion mutations, deletion mutations, frameshift mutations, missense mutations, nonsense mutations, splice-site mutations, epigenetic modifications (e.g., methylation, phosphorylation, acetylation, ubiquitylation, sumoylation, histone acetylation, histone deacetylation, and the like), and combinations thereof. In some embodiments, the mutation is a “nonsynonymous mutation,” meaning that the mutation alters the amino acid sequence of ARID1B. Such mutations reduce or eliminate ARID1B protein amounts and/or function by eliminating proper coding sequences required for proper ARID1B protein translation and/or coding for ARID1B proteins that are non-functional or have reduced function (e.g., deletion of enzymatic and/or structural domains, reduction in protein stability, alteration of sub-cellular localization, and the like). Such mutations are well-known in the art. In addition, a representative list describing a wide variety of structural mutations correlated with the functional result of reduced or eliminated ARID1B protein amounts and/or function is described in the Tables and the Examples.


The term “CRB1” refers to Crumbs homolog 1, a protein similar to the Drosophila crumbs protein and localizes to the inner segment of mammalian photoreceptors. In Drosophila crumbs localizes to the stalk of the fly photoreceptor and may be a component of the molecular scaffold that controls proper development of polarity in the eye. CRB1 gene is involved in the Hippo signaling pathway. Mutations in this gene are associated with a severe form of retinitis pigmentosa, RP12, and with Leber congenital amaurosis. One study suggests that mutations in this gene are associated with keratoconus in patients that already have Leber's congenital amaurosis (McMahon et al. (2009) Invest. Ophthalmol. Vis. Sci. 50:3185-3187). CRB1 mutation is also related to lung squamous cell carcinoma (SQCC) (Li et al. (2015) Sci. Rep. 5:Article 14237) and retinal dystrophy (Li et al. (2014) Int J Mol Med 33:913-918). The human CRB1 protein has 1406 amino acids and a molecular mass of 154183 Da.


The term “CRB1” is intended to include fragments, variants (e.g., allelic variants), and derivatives thereof. Representative human CRB1 cDNA and human CRB1 protein sequences are well-known in the art and are publicly available from the National Center for Biotechnology Information (NCBI). For example, four different human CRB1 isoforms are known. Human CRB1 isoform A (NP_957705.1) is the longest isoform and is encodable by the transcript variant 1 (NM_201253.2). Human CRB1 isoform B (NP_001180569.1) is encodable by the transcript variant 2 (NM_001193640.1), which lacks two in-frame exons compared to variant 1. The resulting isoform B has the same N- and C-termini but is shorter compared to isoform A. Human CRB1 isoform C (NP_001244894.1) is encodable by the transcript variant 3 (NM_001257965.1), which contains three noncoding exons in place of the first exon and contains an alternate in-frame exon compared to variant 1. The resulting isoform C is shorter at the N-terminus and contains an alternate internal segment compared to isoform A. Human CRB1 isoform D (NP_001244895.1) is encodable by the transcript variant 4 (NM_001257966.1), which lacks an alternate in-frame segment of two coding exons and most of a third compared to variant 1. The resulting isoform D has the same N- and C-termini but lacks an alternate internal segment compared to isoform A. Nucleic acid and polypeptide sequences of CRB1 orthologs in organisms other than humans are well known and include, for example, chimpanzee CRB1 (XM_009440300.2 and XP_009438575.1, XM_009440289.2 and XP_009438564.1, XM_009440291.2 and XP_009438566.1, XM_016934908.1 and XP_016790397.1, XM_016934919.1 and XP_016790408.1, XM_016934927.1 and XP_016790416.1, XM_525009.5 and XP_525009.2, and XM_016934898.1 and XP_016790387.1), Rhesus monkey CRB1 (XM_015120817.1 and XP_014976303.1, XM_001110878.3 and XP_001110878.2, XM_001110912.3 and XP_001110912.2, XM_015120808.1 and XP_014976294.1, and XM_015120812.1 and XP_014976298.1), dog CRB1 (XM_014115056.1 and XP_013970531.1, XM_014115058.1 and XP_013970533.1, XM_005622293.2 and XP_005622350.1, and XM_014115057.1 and XP_013970532.1), cattle CRB1 (XM_010813559.2 and XP_010811861.1), mouse CRB1 (NM_133239.2 and NP_573502.2), rat CRB1 (NM_001107182.1 and NP_001100652.1), chicken CRB1 (XM_015290380.1 and XP_015145866.1, and XM_003641670.3 and XP_003641718.2), tropical clawed frog ARID1B (XM_018093205.1 and XP_017948694.1), and zebrafish CRB1 (NM 001044943.1 and NP_001038408.1).


Anti-CRB1 antibodies suitable for detecting CRB1 protein are well-known in the art and include, for example, antibody Cat #MABN1572 and ABE553 (EMD Millipore, Billerica, Mass.), antibody TA319859 (OnGene Technologies, Rockville, Md.), antibody NBP2-41201 (Novus Biologicals, Littleton, Colo.), antibody ab156282 (AbCam, Cambridge, Mass.), antibody GTX32103 (GeneTex, Irvine, Calif.), CRB1 (H-14) Antibody (Santa Cruz Biotechnology), etc. In addition, reagents are well-known for detecting CRB1 expression. For example, multiple clinical tests for CRB1 are available atNIH Genetic Testing Registry (GTR®) (e.g., GTR Test ID: GTR000515886.2 for retinitis pigmentosa type 12, offered by Centogene AG, Germany). Moreover, multiple siRNA, shRNA, CRISPR constructs for reducing CRB1 Expression can be found in the commercial product lists of the above-referenced companies, such as RNAi products H00023418-R01 and H00023418-R02 (Novus Biologicals) and CRISPR products KN303799 and KN212347 (Origene). Other CRISPR products include sc-418097 (Santa Cruz Biotechnology) and those from GenScript (Piscataway, N.J.). It is to be noted that the term can further be used to refer to any combination of features described herein regarding CRB1 molecules. For example, any combination of sequence composition, percentage identify, sequence length, domain structure, functional activity, etc. can be used to describe an CRB1 molecule of the present invention.


The term “loss-of-function mutation” for CRB1 refers to any mutation in a CRB1-related nucleic acid or protein that results in reduced or eliminated CRB1 protein amounts and/or function. For example, nucleic acid mutations include single-base substitutions, multi-base substitutions, insertion mutations, deletion mutations, frameshift mutations, missense mutations, nonsense mutations, splice-site mutations, epigenetic modifications (e.g., methylation, phosphorylation, acetylation, ubiquitylation, sumoylation, histone acetylation, histone deacetylation, and the like), and combinations thereof. In some embodiments, the mutation is a “nonsynonymous mutation,” meaning that the mutation alters the amino acid sequence of CRB1. Such mutations reduce or eliminate CRB1 protein amounts and/or function by eliminating proper coding sequences required for proper CRB1 protein translation and/or coding for CRB1 proteins that are non-functional or have reduced function (e.g., deletion of enzymatic and/or structural domains, reduction in protein stability, alteration of sub-cellular localization, and the like). Such mutations are well-known in the art. In addition, a representative list describing a wide variety of structural mutations correlated with the functional result of reduced or eliminated CRB1 protein amounts and/or function is described in the Tables and the Examples.


The term “EGFR” refers to the epidermal growth factor receptor, a transmembrane glycoprotein that is a member of the ErbB family of receptors, a subfamily of four closely related receptor tyrosine kinases: EGFR (ErbB-1), HER2/c-neu (ErbB-2), Her 3 (ErbB-3) and Her 4 (ErbB-4). This protein is a receptor for members of the epidermal growth factor family. Binding of the protein to a ligand induces receptor homo- and/or heterodimerization and tyrosine autophosphorylation on key cytoplasmic residues. The activated EGFR then recruits adapter proteins like GRB2 which in turn activates complex downstream signaling cascades, leading to cell proliferation. Known ligands of EGFR include EGF, TGFA/TGF-alpha, amphiregulin, epigen/EPGN, BTC/betacellulin, epiregulin/EREG and HBEGF/heparin-binding EGF. While being activated, autophosphorylation of several tyrosine (Y) residues in the C-terminal domain of EGFR occurs. These include Y992, Y1045, Y1068, Y1148 and Y1173, as shown in the adjacent diagram (Downward et al. (1984) Nature 311:483-485). This autophosphorylation elicits downstream activation and signaling by several other proteins that associate with the phosphorylated tyrosines through their own phosphotyrosine-binding SH2 domains. These downstream signaling proteins initiate several signal transduction cascades, principally the MAPK, Akt and JNK pathways, leading to DNA synthesis and cell proliferation (Oda et al. (2005) Mol. Sys. Biol. 1:2005.0010). Such proteins modulate phenotypes such as cell migration, adhesion, and proliferation. Activation of the receptor is important for the innate immune response in human skin. The kinase domain of EGFR can also cross-phosphorylate tyrosine residues of other receptors it is aggregated with, and can itself be activated in that manner. EGFR activates at least 4 major downstream signaling cascades including the RAS-RAF-MEK-ERK, PI3 kinase-AKT, PLCgamma-PKC and STATs modules. EGFR may also activate the NF-kappa-B signaling cascade and other proteins like RGS16, by activating its GTPase activity, and probably coupling the EGF receptor signaling to the G protein-coupled receptor signaling. EGFR also phosphorylates MUC1 and increases its interaction with SRC and CTNNBT/beta-catenin. Mutations that lead to EGFR overexpression (i.e., upregulation) or overactivity have been associated with a number of cancers, including squamous-cell carcinoma of the lung (80% of cases), anal cancers (Walker et al. (2009) Hum. Pathol. 40:1517-1527), glioblastoma (50%) and epithelian tumors of the head and neck (80-100%) (Kumar et al. (2013) Robbins basic pathology. Philadelphia: Elsevier/Saunders. p. 179). These somatic mutations involving EGFR lead to its constant activation, which produces uncontrolled cell division. In glioblastoma a more or less specific mutation of EGFR, called EGFRvIII is often observed (Kuan et al. (2001) Endocr. Relat. Cancer. 8:83-96). Aberrant EGFR signaling has been implicated in psoriasis, eczema and atherosclerosis (Jost et al. (2000) Eur. J Dermatol. 10:505-510; Dreux et al. (2006) Atherosclerosis 186:38-53). However, its exact roles in these conditions are ill-defined. Human EGFR protein has 1210 amino acids and a molecular mass of 134277 Da, with at least a receptor L domain (amino acid no. 57-168 of SEQ ID NO:92), a Furin-like domain (amino acd no. 185-335 of SDEQ ID NO:92), another receptor L domain (amino acid no. 361-481 of SEQ ID NO:92), a growth factor receptor domain IV (amino acid no. 505-637 of SEQ ID NO: 92), a transmembrane region (amino acid no. 646-668 of SEQ ID NO:92), and a catalytic domain of the protein tyrosince kinase family (amino acid no. 704-1016 of SEQ ID NO:92). The structure and domains of human EGFR may be found at the World Wide Web address of www.uniprot.org/uniprot/P00533#structure and www.ebi.ac.uk/interpro/protein/P00533. EGFR has been shown to interact with proteins such as AR, ARF4, CAV1, CAV3, CBL, CBLB, CBLC, CD44, CDC25A, CRK, CTNNB1, DCN, EGF, GRB14, Grb2, JAK2, MUC1, NCK1, NCK2, PKC alpha, PLCG1, PLSCR1, PTPN1, PTPN11, PTPN6, PTPRK, SH2D3A, SH3KBP1, SHC1, SOS1, Src, STAT1, STAT3, STAT5A, UBC, and WAS.


The term “EGFR” is intended to include fragments, variants (e.g., allelic variants), and derivatives thereof. Representative human EGFR cDNA and human EGFR protein sequences are well-known in the art and are publicly available from the National Center for Biotechnology Information (NCBI). For example, nine different human EGFR isoforms are known. Human EGFR isoform A (NP_005219.2), the longest isoform, is encodable by the transcript variant 1 (NM_005228.4). Human EGFR isoform B (NP_958439.1) is encodable by the transcript variant 2 (NM_201282.1), which uses a different 3′ terminal exon when compared to variant 1. The resulting isoform B has a shorter and distinct C-terminus. Human EGFR isoform C (also known as ErbB1-S, NP_958440.1) is encodable by the transcript variant 3 (NM_201283.1), which uses a different 3′ terminal exon when compared to variant 1. The resulting isoform C has a shorter and distinct C-terminus. Only the extracellular domain is present in isoform C. Human EGFR isoform D (NP_958441.1) is encodable by the transcript variant 4 (NM_201284.1), which uses a different 3′ terminal exon when compared to variant 1. The resulting isoform D has a shorter and distinct C-terminus. Only the extracellular domain is present in isoform D. Human EGFR isoform E (NP_001333826.1) is encodable by the transcript variant 5 (NM_001346897.1), which lacks an in-frame exon in the 5′ coding region and its 3′ terminal exon extends past a splice site that is used in variant 1. The encoded isoform E is shorter and has a distinct C-terminus compared to isoform A. Human EGFR isoform F (NP_001333827.1) is encodable by the transcript variant 6 (NM_001346898.1), which has a 3′ terminal exon that extends past a splice site that is used in variant 1. The encoded isoform F has a shorter and distinct C-terminus compared to isoform A. Human EGFR isoform G (NP_001333828.1) is encodable by the transcript variant 7 (NM_001346899.1), which lacks an in-frame exon in the 5′ coding region, compared to variant 1. Human EGFR isoform H (NP_001333829.1) is encodable by the transcript variant 8 (NM_001346900.1), which uses a novel 5′ terminal exon compared to variant 1. The encoded isoform H has a shorter and distinct N-terminus compared to isoform A. Human EGFR isoform I (a.k.a. EGFRvIII, delta-EGFR, and de2-7EGFR; NP_001333870.1) is encodable by the transcript variant 9 (NM_001346941.1), which has an in-frame deletion of six exons in the 5′ coding region, compared to variant 1. The encoded isoform I has a shorter extracellular domain compared to isoform A. This variant is considered to be tumorigenic and the encoded protein lacks normal ligand binding ability and is constitutively active. Nucleic acid and polypeptide sequences of EGFR orthologs in organisms other than humans are well known and include, for example, chimpanzee EGFR (XM_519102.6 and XP_519102.3, and XM_001156264.5 and XP_001156264.1), Rhesus monkey EGFR (XM_015133436.1 and XP_014988922.1, and XM_015133437.1 and XP_014988923.1), dog EGFR (XM_014120756.1 and XP_013976231.1), cattle EGFR (XM_002696890.4 and XP_002696936.2, and XM_592211.8 and XP_592211.4), mouse EGFR (NM_007912.4 and NP_031938.1, and NM_207655.2 and NP_997538.1), rat EGFR (NM_031507.1 and NP_113695.1, XM_008770416.2 and XP_008768638.1, XM_008770418.2 and XP_008768640.1, and XM_017599073.1 and XP_017454562.1), chicken EGFR (NM_205497.2 and NP_990828.2), tropical clawed frog EGFR (XM_002939914.4 and XP_002939960.2), and zebrafish EGFR (NM_194424.1 and NP_919405.1).


Anti-EGFR antibodies suitable for detecting EGFR protein are well-known in the art and include, for example, antibody Cat #06-847 (EMD Millipore, Billerica, Mass.), antibodies AM00029BT-N, AM00029PU-N, and others (OnGene Technologies, Rockville, Md.), antibodies Cat #MAB8967, AF231, AF1095, and others (R&D Systems, Minneapolis, Minn.), antibodies NB120-10414, NBP1-84814, and others (Novus Biologicals, Littleton, Colo.), antibodies ab52894, ab40815, and others (AbCam, Cambridge, Mass.), antibodies Cat #: 4267, 2244, 48685, and others (Cell Signaling Technology, Danvers, Mass.), antibodies GTX121919, GTX628887, and others (GeneTex, Irvine, Calif.), etc. In addition, reagents are well-known for detecting EGFR expression. For example, multiple clinical tests for EGFR are available at NIH Genetic Testing Registry (GTR®) (e.g., GTR Test ID: GTR000514557.2 for EGFR mutation by Sanger Sequencing, offered by Cancer Genetics, Inc. (Rutherford, N.J.), GTR Test ID: GTR000510455.1 for lung cancer, offered by Centogene AG, Germany, and other tests). Commercial ELISA kits for detecting EGFR are available, at least, from R&D Systems (Cat #DYC1095B-2, DYC1854-2, DEGFRO, DYC3570-2, etc.). Moreover, multiple siRNA, shRNA, CRISPR constructs for reducing EGFR Expression can be found in the commercial product lists of the above-referenced companies, such as RNAi products SC-29301, SC-44340, and others and CRISPR products sc-400015 (Santa Cruz Biotechnology). Other similar products include TG320326, TR320326, TG509941, and others shRNA products, as well as KN214877, KN204201, and others CRISPR products (Origene). Small molecule compounds are known to regulate EGFR expression, such as Cat. #A8197 and other inhibitors (ApexBio, Houston, Tex.), CAS 879127-07-8 and other inhibitors or activators (EMD Millipore). Known EGFR inhibitory drugs include, at least, Iressa™ (gefitinib), Tarceva™ (erlotinib), Tykerb™ (lapatinib), Erbitux™ (cetuximab), Vectibix™ (panitumumab), Caprelsa™ (vandetanib), Tagrisso™ (osimertinib), Portrazza™ (necitumumab), etc. It is to be noted that the term can further be used to refer to any combination of features described herein regarding EGFR molecules. For example, any combination of sequence composition, percentage identify, sequence length, domain structure, functional activity, etc. can be used to describe an EGFR molecule of the present invention.


The term “loss-of-function mutation” for EGFR refers to any mutation in an EGFR-related nucleic acid or protein that results in reduced or eliminated EGFR protein amounts and/or function. For example, nucleic acid mutations include single-base substitutions, multi-base substitutions, insertion mutations, deletion mutations, frameshift mutations, missense mutations, nonsense mutations, splice-site mutations, epigenetic modifications (e.g., methylation, phosphorylation, acetylation, ubiquitylation, sumoylation, histone acetylation, histone deacetylation, and the like), and combinations thereof. In some embodiments, the mutation is a “nonsynonymous mutation,” meaning that the mutation alters the amino acid sequence of EGFR. Such mutations reduce or eliminate EGFR protein amounts and/or function by eliminating proper coding sequences required for proper EGFR protein translation and/or coding for EGFR proteins that are non-functional or have reduced function (e.g., deletion of enzymatic and/or structural domains, reduction in protein stability, alteration of sub-cellular localization, and the like). Such mutations are well-known in the art. In addition, a representative list describing a wide variety of structural mutations correlated with the functional result of reduced or eliminated EGFR protein amounts and/or function is described in the Tables and the Examples. In some embodiments, the term “hotspot mutation” for EGFR refers to a mutation that is commonly known to be mutated in EGFR associated with cancer. In some instances, such “hotspot mutations” can be those known to cause resistance to anti-EGFR therapies such as those described in Example 4.


Unless otherwise specified here within, the terms “antibody” and “antibodies” broadly encompass naturally-occurring forms of antibodies (e.g. IgG, IgA, IgM, IgE) and recombinant antibodies such as single-chain antibodies, chimeric and humanized antibodies and multi-specific antibodies, as well as fragments and derivatives of all of the foregoing, which fragments and derivatives have at least an antigenic binding site. Antibody derivatives may comprise a protein or chemical moiety conjugated to an antibody.


The term “antibody” as used herein also includes an “antigen-binding portion” of an antibody (or simply “antibody portion”). The term “antigen-binding portion”, as used herein, refers to one or more fragments of an antibody that retain the ability to specifically bind to an antigen (e.g., a biomarker polypeptide or fragment thereof). It has been shown that the antigen-binding function of an antibody can be performed by fragments of a full-length antibody. Examples of binding fragments encompassed within the term “antigen-binding portion” of an antibody include (i) a Fab fragment, a monovalent fragment consisting of the VL, VH, CL and CHI domains; (ii) a F(ab′)2 fragment, a bivalent fragment comprising two Fab fragments linked by a disulfide bridge at the hinge region; (iii) a Fd fragment consisting of the VH and CHI domains; (iv) a Fv fragment consisting of the VL and VH domains of a single arm of an antibody, (v) a dAb fragment (Ward et al. (1989) Nature 341:544-546), which consists of a VH domain; and (vi) an isolated complementarity determining region (CDR). Furthermore, although the two domains of the Fv fragment, VL and VH, are coded for by separate genes, they can be joined, using recombinant methods, by a synthetic linker that enables them to be made as a single protein chain in which the VL and VH regions pair to form monovalent polypeptides (known as single chain Fv (scFv); see e.g., Bird et al. (1988) Science 242:423-426; and Huston et al. (1988) Proc. Natl. Acad. Sci. USA 85:5879-5883; and Osbourn et al. 1998, Nature Biotechnology 16: 778). Such single chain antibodies are also intended to be encompassed within the term “antigen-binding portion” of an antibody. Any VH and VL sequences of specific scFv can be linked to human immunoglobulin constant region cDNA or genomic sequences, in order to generate expression vectors encoding complete IgG polypeptides or other isotypes. VH and VL can also be used in the generation of Fab, Fv or other fragments of immunoglobulins using either protein chemistry or recombinant DNA technology. Other forms of single chain antibodies, such as diabodies are also encompassed. Diabodies are bivalent, bispecific antibodies in which VH and VL domains are expressed on a single polypeptide chain, but using a linker that is too short to allow for pairing between the two domains on the same chain, thereby forcing the domains to pair with complementary domains of another chain and creating two antigen binding sites (see e.g., Holliger, P., et al. (1993) Proc. Natl. Acad. Sci. USA 90:6444-6448; Poljak, R. J., et al. (1994) Structure 2:1121-1123).


Still further, an antibody or antigen-binding portion thereof may be part of larger immunoadhesion polypeptides, formed by covalent or noncovalent association of the antibody or antibody portion with one or more other proteins or peptides. Examples of such immunoadhesion polypeptides include use of the streptavidin core region to make a tetrameric scFv polypeptide (Kipriyanov, S. M., et al. (1995) Human Antibodies and Hybridomas 6:93-101) and use of a cysteine residue, biomarker peptide and a C-terminal polyhistidine tag to make bivalent and biotinylated scFv polypeptides (Kipriyanov, S. M., et al. (1994) Mol. Immunol. 31:1047-1058). Antibody portions, such as Fab and F(ab′)2 fragments, can be prepared from whole antibodies using conventional techniques, such as papain or pepsin digestion, respectively, of whole antibodies. Moreover, antibodies, antibody portions and immunoadhesion polypeptides can be obtained using standard recombinant DNA techniques, as described herein.


Antibodies may be polyclonal or monoclonal; xenogeneic, allogeneic, or syngeneic; or modified forms thereof (e.g. humanized, chimeric, etc.). Antibodies may also be fully human. Preferably, antibodies of the present invention bind specifically or substantially specifically to a biomarker polypeptide or fragment thereof. The terms “monoclonal antibodies” and “monoclonal antibody composition”, as used herein, refer to a population of antibody polypeptides that contain only one species of an antigen binding site capable of immunoreacting with a particular epitope of an antigen, whereas the term “polyclonal antibodies” and “polyclonal antibody composition” refer to a population of antibody polypeptides that contain multiple species of antigen binding sites capable of interacting with a particular antigen. A monoclonal antibody composition typically displays a single binding affinity for a particular antigen with which it immunoreacts.


Antibodies may also be “humanized”, which is intended to include antibodies made by a non-human cell having variable and constant regions which have been altered to more closely resemble antibodies that would be made by a human cell. For example, by altering the non-human antibody amino acid sequence to incorporate amino acids found in human germline immunoglobulin sequences. The humanized antibodies of the present invention may include amino acid residues not encoded by human germline immunoglobulin sequences (e.g., mutations introduced by random or site-specific mutagenesis in vitro or by somatic mutation in vivo), for example in the CDRs. The term “humanized antibody”, as used herein, also includes antibodies in which CDR sequences derived from the germline of another mammalian species, such as a mouse, have been grafted onto human framework sequences.


The term “assigned score” refers to the numerical value designated for each of the biomarkers after being measured in a patient sample. The assigned score correlates to the absence, presence or inferred amount of the biomarker in the sample. The assigned score can be generated manually (e.g., by visual inspection) or with the aid of instrumentation for image acquisition and analysis. In certain embodiments, the assigned score is determined by a qualitative assessment, for example, detection of a fluorescent readout on a graded scale, or quantitative assessment. In one embodiment, an “aggregate score,” which refers to the combination of assigned scores from a plurality of measured biomarkers, is determined. In one embodiment the aggregate score is a summation of assigned scores. In another embodiment, combination of assigned scores involves performing mathematical operations on the assigned scores before combining them into an aggregate score. In certain, embodiments, the aggregate score is also referred to herein as the “predictive score.”


The term “biomarker” refers to a measurable entity of the present invention that has been determined to be predictive of immune checkpoint therapy effects on a cancer. Biomarkers can include, without limitation, nucleic acids and proteins, including those shown in Table 1, the Examples, and the Figures.


A “blocking” antibody or an antibody “antagonist” is one which inhibits or reduces at least one biological activity of the antigen(s) it binds. In certain embodiments, the blocking antibodies or antagonist antibodies or fragments thereof described herein substantially or completely inhibit a given biological activity of the antigen(s).


The term “body fluid” refers to fluids that are excreted or secreted from the body as well as fluids that are normally not (e.g. amniotic fluid, aqueous humor, bile, blood and blood plasma, cerebrospinal fluid, cerumen and earwax, cowper's fluid or pre-ejaculatory fluid, chyle, chyme, stool, female ejaculate, interstitial fluid, intracellular fluid, lymph, menses, breast milk, mucus, pleural fluid, pus, saliva, sebum, semen, serum, sweat, synovial fluid, tears, urine, vaginal lubrication, vitreous humor, vomit).


The terms “cancer” or “tumor” or “hyperproliferative” refer to the presence of cells possessing characteristics typical of cancer-causing cells, such as uncontrolled proliferation, immortality, metastatic potential, rapid growth and proliferation rate, and certain characteristic morphological features. In some embodiments, such cells exhibit such characteristics in part or in full due to the expression and activity of immune checkpoint proteins, such as PD-1, PD-L1, and/or CTLA-4. Cancer cells are often in the form of a tumor, but such cells may exist alone within an animal, or may be a non-tumorigenic cancer cell, such as a leukemia cell. As used herein, the term “cancer” includes premalignant as well as malignant cancers. Cancers include, but are not limited to, B cell cancer, e.g., multiple myeloma, Waldenstrom's macroglobulinemia, the heavy chain diseases, such as, for example, alpha chain disease, gamma chain disease, and mu chain disease, benign monoclonal gammopathy, and immunocytic amyloidosis, melanomas, breast cancer, lung cancer, bronchus cancer, colorectal cancer, prostate cancer, pancreatic cancer, stomach cancer, ovarian cancer, urinary bladder cancer, brain or central nervous system cancer, peripheral nervous system cancer, esophageal cancer, cervical cancer, uterine or endometrial cancer, cancer of the oral cavity or pharynx, liver cancer, kidney cancer, testicular cancer, biliary tract cancer, small bowel or appendix cancer, salivary gland cancer, thyroid gland cancer, adrenal gland cancer, osteosarcoma, chondrosarcoma, cancer of hematologic tissues, and the like. Other non-limiting examples of types of cancers applicable to the methods encompassed by the present invention include human sarcomas and carcinomas, e.g., fibrosarcoma, myxosarcoma, liposarcoma, chondrosarcoma, osteogenic sarcoma, chordoma, angiosarcoma, endotheliosarcoma, lymphangiosarcoma, lymphangioendotheliosarcoma, synovioma, mesothelioma, Ewing's tumor, leiomyosarcoma, rhabdomyosarcoma, colon carcinoma, colorectal cancer, pancreatic cancer, breast cancer, ovarian cancer, prostate cancer, squamous cell carcinoma, basal cell carcinoma, adenocarcinoma, sweat gland carcinoma, sebaceous gland carcinoma, papillary carcinoma, papillary adenocarcinomas, cystadenocarcinoma, medullary carcinoma, bronchogenic carcinoma, renal cell carcinoma, hepatoma, bile duct carcinoma, liver cancer, choriocarcinoma, seminoma, embryonal carcinoma, Wilms' tumor, cervical cancer, bone cancer, brain tumor, testicular cancer, lung carcinoma, small cell lung carcinoma, bladder carcinoma, epithelial carcinoma, glioma, astrocytoma, medulloblastoma, craniopharyngioma, ependymoma, pinealoma, hemangioblastoma, acoustic neuroma, oligodendroglioma, meningioma, melanoma, neuroblastoma, retinoblastoma; leukemias, e.g., acute lymphocytic leukemia and acute myelocytic leukemia (myeloblastic, promyelocytic, myelomonocytic, monocytic and erythroleukemia); chronic leukemia (chronic myelocytic (granulocytic) leukemia and chronic lymphocytic leukemia); and polycythemia vera, lymphoma (Hodgkin's disease and non-Hodgkin's disease), multiple myeloma, Waldenstrom's macroglobulinemia, and heavy chain disease. In some embodiments, cancers are epithelial in nature and include but are not limited to, bladder cancer, breast cancer, cervical cancer, colon cancer, gynecologic cancers, renal cancer, laryngeal cancer, lung cancer, oral cancer, head and neck cancer, ovarian cancer, pancreatic cancer, prostate cancer, or skin cancer. In other embodiments, the cancer is breast cancer, prostate cancer, lung cancer, or colon cancer. In still other embodiments, the epithelial cancer is non-small-cell lung cancer, nonpapillary renal cell carcinoma, cervical carcinoma, ovarian carcinoma (e.g., serous ovarian carcinoma), or breast carcinoma. The epithelial cancers may be characterized in various other ways including, but not limited to, serous, endometrioid, mucinous, clear cell, Brenner, or undifferentiated.


The term “coding region” refers to regions of a nucleotide sequence comprising codons which are translated into amino acid residues, whereas the term “noncoding region” refers to regions of a nucleotide sequence that are not translated into amino acids (e.g., 5′ and 3′ untranslated regions).


The term “complementary” refers to the broad concept of sequence complementarity between regions of two nucleic acid strands or between two regions of the same nucleic acid strand. It is known that an adenine residue of a first nucleic acid region is capable of forming specific hydrogen bonds (“base pairing”) with a residue of a second nucleic acid region which is antiparallel to the first region if the residue is thymine or uracil. Similarly, it is known that a cytosine residue of a first nucleic acid strand is capable of base pairing with a residue of a second nucleic acid strand which is antiparallel to the first strand if the residue is guanine. A first region of a nucleic acid is complementary to a second region of the same or a different nucleic acid if, when the two regions are arranged in an antiparallel fashion, at least one nucleotide residue of the first region is capable of base pairing with a residue of the second region. Preferably, the first region comprises a first portion and the second region comprises a second portion, whereby, when the first and second portions are arranged in an antiparallel fashion, at least about 50%, and preferably at least about 75%, at least about 90%, or at least about 95% of the nucleotide residues of the first portion are capable of base pairing with nucleotide residues in the second portion. More preferably, all nucleotide residues of the first portion are capable of base pairing with nucleotide residues in the second portion.


The terms “conjoint therapy” and “combination therapy,” as used herein, refer to the administration of two or more therapeutic substances, e.g., combinations of anti-immune checkpoint therapies, multiple inhibitors of an immune checkpoint of interest, combinations of immune checkpoint therapy with an inhibitor of PBRM1 (ARID2, BRD7, PHF10, KDM6A, ARID1A, ARID1B, BRG1, BRM, CRB1, EGFR, and the like), and combinations thereof. The different agents comprising the combination therapy may be administered concomitant with, prior to, or following the administration of one or more therapeutic agents.


The term “control” refers to any reference standard suitable to provide a comparison to the expression products in the test sample. In one embodiment, the control comprises obtaining a “control sample” from which expression product levels are detected and compared to the expression product levels from the test sample. Such a control sample may comprise any suitable sample, including but not limited to a sample from a control cancer patient (can be stored sample or previous sample measurement) with a known outcome; normal tissue or cells isolated from a subject, such as a normal patient or the cancer patient, cultured primary cells/tissues isolated from a subject such as a normal subject or the cancer patient, adjacent normal cells/tissues obtained from the same organ or body location of the cancer patient, a tissue or cell sample isolated from a normal subject, or a primary cells/tissues obtained from a depository. In another preferred embodiment, the control may comprise a reference standard expression product level from any suitable source, including but not limited to housekeeping genes, an expression product level range from normal tissue (or other previously analyzed control sample), a previously determined expression product level range within a test sample from a group of patients, or a set of patients with a certain outcome (for example, survival for one, two, three, four years, etc.) or receiving a certain treatment (for example, standard of care cancer therapy). It will be understood by those of skill in the art that such control samples and reference standard expression product levels can be used in combination as controls in the methods of the present invention. In one embodiment, the control may comprise normal or non-cancerous cell/tissue sample. In another preferred embodiment, the control may comprise an expression level for a set of patients, such as a set of cancer patients, or for a set of cancer patients receiving a certain treatment, or for a set of patients with one outcome versus another outcome. In the former case, the specific expression product level of each patient can be assigned to a percentile level of expression, or expressed as either higher or lower than the mean or average of the reference standard expression level. In another preferred embodiment, the control may comprise normal cells, cells from patients treated with combination chemotherapy, and cells from patients having benign cancer. In another embodiment, the control may also comprise a measured value for example, average level of expression of a particular gene in a population compared to the level of expression of a housekeeping gene in the same population. Such a population may comprise normal subjects, cancer patients who have not undergone any treatment (i.e., treatment naive), cancer patients undergoing standard of care therapy, or patients having benign cancer. In another preferred embodiment, the control comprises a ratio transformation of expression product levels, including but not limited to determining a ratio of expression product levels of two genes in the test sample and comparing it to any suitable ratio of the same two genes in a reference standard; determining expression product levels of the two or more genes in the test sample and determining a difference in expression product levels in any suitable control; and determining expression product levels of the two or more genes in the test sample, normalizing their expression to expression of housekeeping genes in the test sample, and comparing to any suitable control. In particularly preferred embodiments, the control comprises a control sample which is of the same lineage and/or type as the test sample. In another embodiment, the control may comprise expression product levels grouped as percentiles within or based on a set of patient samples, such as all patients with cancer. In one embodiment a control expression product level is established wherein higher or lower levels of expression product relative to, for instance, a particular percentile, are used as the basis for predicting outcome. In another preferred embodiment, a control expression product level is established using expression product levels from cancer control patients with a known outcome, and the expression product levels from the test sample are compared to the control expression product level as the basis for predicting outcome. As demonstrated by the data below, the methods of the present invention are not limited to use of a specific cut-point in comparing the level of expression product in the test sample to the control.


The “copy number” of a biomarker nucleic acid refers to the number of DNA sequences in a cell (e.g., germline and/or somatic) encoding a particular gene product. Generally, for a given gene, a mammal has two copies of each gene. The copy number can be increased, however, by gene amplification or duplication, or reduced by deletion. For example, germline copy number changes include changes at one or more genomic loci, wherein said one or more genomic loci are not accounted for by the number of copies in the normal complement of germline copies in a control (e.g., the normal copy number in germline DNA for the same species as that from which the specific germline DNA and corresponding copy number were determined). Somatic copy number changes include changes at one or more genomic loci, wherein said one or more genomic loci are not accounted for by the number of copies in germline DNA of a control (e.g., copy number in germline DNA for the same subject as that from which the somatic DNA and corresponding copy number were determined).


The “normal” copy number (e.g., germline and/or somatic) of a biomarker nucleic acid or “normal” level of expression of a biomarker nucleic acid or protein is the activity/level of expression or copy number in a biological sample, e.g., a sample containing tissue, whole blood, serum, plasma, buccal scrape, saliva, cerebrospinal fluid, urine, stool, and bone marrow, from a subject, e.g., a human, not afflicted with cancer, or from a corresponding non-cancerous tissue in the same subject who has cancer.


As used herein, the term “costimulate” with reference to activated immune cells includes the ability of a costimulatory molecule to provide a second, non-activating receptor mediated signal (a “costimulatory signal”) that induces proliferation or effector function. For example, a costimulatory signal can result in cytokine secretion, e.g., in a T cell that has received a T cell-receptor-mediated signal. Immune cells that have received a cell-receptor mediated signal, e.g., via an activating receptor are referred to herein as “activated immune cells.”


The term “determining a suitable treatment regimen for the subject” is taken to mean the determination of a treatment regimen (i.e., a single therapy or a combination of different therapies that are used for the prevention and/or treatment of the cancer in the subject) for a subject that is started, modified and/or ended based or essentially based or at least partially based on the results of the analysis according to the present invention. One example is determining whether to provide targeted therapy against a cancer to provide immunotherapy that generally increases immune responses against the cancer (e.g., immune checkpoint therapy). Another example is starting an adjuvant therapy after surgery whose purpose is to decrease the risk of recurrence, another would be to modify the dosage of a particular chemotherapy. The determination can, in addition to the results of the analysis according to the present invention, be based on personal characteristics of the subject to be treated. In most cases, the actual determination of the suitable treatment regimen for the subject will be performed by the attending physician or doctor.


The term “diagnosing cancer” includes the use of the methods, systems, and code of the present invention to determine the presence or absence of a cancer or subtype thereof in an individual. The term also includes methods, systems, and code for assessing the level of disease activity in an individual.


A molecule is “fixed” or “affixed” to a substrate if it is covalently or non-covalently associated with the substrate such that the substrate can be rinsed with a fluid (e.g. standard saline citrate, pH 7.4) without a substantial fraction of the molecule dissociating from the substrate.


The term “expression signature” or “signature” refers to a group of two or more coordinately expressed biomarkers. For example, the genes, proteins, metabolites, and the like making up this signature may be expressed in a specific cell lineage, stage of differentiation, or during a particular biological response. The biomarkers can reflect biological aspects of the tumors in which they are expressed, such as the cell of origin of the cancer, the nature of the non-malignant cells in the biopsy, and the oncogenic mechanisms responsible for the cancer. Expression data and gene expression levels can be stored on computer readable media, e.g., the computer readable medium used in conjunction with a microarray or chip reading device. Such expression data can be manipulated to generate expression signatures.


“Homologous” as used herein, refers to nucleotide sequence similarity between two regions of the same nucleic acid strand or between regions of two different nucleic acid strands. When a nucleotide residue position in both regions is occupied by the same nucleotide residue, then the regions are homologous at that position. A first region is homologous to a second region if at least one nucleotide residue position of each region is occupied by the same residue. Homology between two regions is expressed in terms of the proportion of nucleotide residue positions of the two regions that are occupied by the same nucleotide residue. By way of example, a region having the nucleotide sequence 5′-ATTGCC-3′ and a region having the nucleotide sequence 5′-TATGGC-3′ share 50% homology. Preferably, the first region comprises a first portion and the second region comprises a second portion, whereby, at least about 50%, and preferably at least about 75%, at least about 90%, or at least about 95% of the nucleotide residue positions of each of the portions are occupied by the same nucleotide residue. More preferably, all nucleotide residue positions of each of the portions are occupied by the same nucleotide residue.


The term “immune cell” refers to cells that play a role in the immune response. Immune cells are of hematopoietic origin, and include lymphocytes, such as B cells and T cells; natural killer cells; myeloid cells, such as monocytes, macrophages, eosinophils, mast cells, basophils, and granulocytes.


The term “immune checkpoint” refers to a group of molecules on the cell surface of CD4+ and/or CD8+ T cells that fine-tune immune responses by down-modulating or inhibiting an anti-tumor immune response. Immune checkpoint proteins are well known in the art and include, without limitation, CTLA-4, PD-1, VISTA, B7-H2, B7-H3, PD-L1, B7-H4, B7-H6, 2B4, ICOS, HVEM, PD-L2, CD160, gp49B, PIR-B, KIR family receptors, TIM-1, TIM-3, TIM-4, LAG-3, BTLA, SIRPalpha (CD47), CD48, 2B4 (CD244), B7.1, B7.2, ILT-2, ILT-4, TIGIT, and A2aR (see, for example, WO 2012/177624). The term further encompasses biologically active protein fragment, as well as nucleic acids encoding full-length immune checkpoint proteins and biologically active protein fragments thereof. In some embodiment, the term further encompasses any fragment according to homology descriptions provided herein.


“Immune checkpoint therapy” refers to the use of agents that inhibit immune checkpoint nucleic acids and/or proteins. Inhibition of one or more immune checkpoints can block or otherwise neutralize inhibitory signaling to thereby upregulate an immune response in order to more efficaciously treat cancer. Exemplary agents useful for inhibiting immune checkpoints include antibodies, small molecules, peptides, peptidomimetics, natural ligands, and derivatives of natural ligands, that can either bind and/or inactivate or inhibit immune checkpoint proteins, or fragments thereof; as well as RNA interference, antisense, nucleic acid aptamers, etc. that can downregulate the expression and/or activity of immune checkpoint nucleic acids, or fragments thereof. Exemplary agents for upregulating an immune response include antibodies against one or more immune checkpoint proteins block the interaction between the proteins and its natural receptor(s); a non-activating form of one or more immune checkpoint proteins (e.g., a dominant negative polypeptide); small molecules or peptides that block the interaction between one or more immune checkpoint proteins and its natural receptor(s); fusion proteins (e.g. the extracellular portion of an immune checkpoint inhibition protein fused to the Fc portion of an antibody or immunoglobulin) that bind to its natural receptor(s); nucleic acid molecules that block immune checkpoint nucleic acid transcription or translation; and the like. Such agents can directly block the interaction between the one or more immune checkpoints and its natural receptor(s) (e.g., antibodies) to prevent inhibitory signaling and upregulate an immune response. Alternatively, agents can indirectly block the interaction between one or more immune checkpoint proteins and its natural receptor(s) to prevent inhibitory signaling and upregulate an immune response. For example, a soluble version of an immune checkpoint protein ligand such as a stabilized extracellular domain can binding to its receptor to indirectly reduce the effective concentration of the receptor to bind to an appropriate ligand. In one embodiment, anti-PD-1 antibodies, anti-PD-L1 antibodies, and anti-CTLA-4 antibodies, either alone or in combination, are used to inhibit immune checkpoints.


“Ipilimumab” is a reRepresentative example of an immune checkpoint therapy. Ipilimumab (previously MDX-010; Medarex Inc., marketed by Bristol-Myers Squibb as YERVOY™) is a fully human anti-human CTLA-4 monoclonal antibody that blocks the binding of CTLA-4 to CD80 and CD86 expressed on antigen presenting cells, thereby, blocking the negative down-regulation of the immune responses elicited by the interaction of these molecules (see, for example, WO 2013/169971, U.S. Pat. Publ. 2002/0086014, and U.S. Pat. Publ. 2003/0086930.


The term “immune response” includes T cell mediated and/or B cell mediated immune responses. Exemplary immune responses include T cell responses, e.g., cytokine production and cellular cytotoxicity. In addition, the term immune response includes immune responses that are indirectly effected by T cell activation, e.g., antibody production (humoral responses) and activation of cytokine responsive cells, e.g., macrophages.


The term “immunotherapeutic agent” can include any molecule, peptide, antibody or other agent which can stimulate a host immune system to generate an immune response to a tumor or cancer in the subject. Various immunotherapeutic agents are useful in the compositions and methods described herein.


The term “inhibit” includes the decrease, limitation, or blockage, of, for example a particular action, function, or interaction. In some embodiments, cancer is “inhibited” if at least one symptom of the cancer is alleviated, terminated, slowed, or prevented. As used herein, cancer is also “inhibited” if recurrence or metastasis of the cancer is reduced, slowed, delayed, or prevented.


The term “interaction”, when referring to an interaction between two molecules, refers to the physical contact (e.g., binding) of the molecules with one another. Generally, such an interaction results in an activity (which produces a biological effect) of one or both of said molecules.


An “isolated protein” refers to a protein that is substantially free of other proteins, cellular material, separation medium, and culture medium when isolated from cells or produced by recombinant DNA techniques, or chemical precursors or other chemicals when chemically synthesized. An “isolated” or “purified” protein or biologically active portion thereof is substantially free of cellular material or other contaminating proteins from the cell or tissue source from which the antibody, polypeptide, peptide or fusion protein is derived, or substantially free from chemical precursors or other chemicals when chemically synthesized. The language “substantially free of cellular material” includes preparations of a biomarker polypeptide or fragment thereof, in which the protein is separated from cellular components of the cells from which it is isolated or recombinantly produced. In one embodiment, the language “substantially free of cellular material” includes preparations of a biomarker protein or fragment thereof, having less than about 30% (by dry weight) of non-biomarker protein (also referred to herein as a “contaminating protein”), more preferably less than about 20% of non-biomarker protein, still more preferably less than about 10% of non-biomarker protein, and most preferably less than about 5% non-biomarker protein. When antibody, polypeptide, peptide or fusion protein or fragment thereof, e.g., a biologically active fragment thereof, is recombinantly produced, it is also preferably substantially free of culture medium, i.e., culture medium represents less than about 20%, more preferably less than about 10%, and most preferably less than about 5% of the volume of the protein preparation.


The term “KDM6A” refers to a particular lysine demethylase containing a JmjC-domain that catalyzes the demethylation of tri-/di-methylated histone H3. The term “KDM6A” is intended to include fragments, variants (e.g., allelic variants), and derivatives thereof. ReRepresentative human KDM6A cDNA and human KDM6A protein sequences are well-known in the art and are publicly available from the National Center for Biotechnology Information (NCBI). For example, the nucleic acid and amino acid sequences of a representative human KDM6A biomarker (also known as UTX or MGC141941 or bA386N14.2 or DKFZp686A03225) is available to the public at the GenBank database under NM_021140.2 and NP_0066963.2. Nucleic acid and polypeptide sequences of KDM6A orthologs in organisms other than humans are well known and include, for example, mouse KDM6A (NM_009483.1 and NP_033509.1), rat KDM6A (XM_002730185.2 and XP_002730231.1), chimpanzee KDM6A (XM_002806207.1 and XP_002806253.1), chicken KDM6A (XM_416762.3 and XP_416762.3), fruit fly KDM6A (NM_001201844.1 and NP_001188773.1), and worm KDM6A (NM_077049.3 and NP_509450.1). Representative sequences of KDM6A orthologs are presented below in Table 1.


Anti-KDM6A antibodies suitable for detecting KDM6A protein are well-known in the art and include, for example, antibody ab36938 (Abcam), 16F9.1 (EMD Millipore), PA5-31828 (ThermoFisher), NBP1-80628 and H00007403-M05 (Novus Biologicals), etc. Moreover, multiple siRNA, shRNA, CRISPR constructs for reducing KDM6A expression can be found in the commercial product lists of the above-referenced companies, such as siRNA product #sc-76881 and sc-76882 and CRISPER products #sc-514859 from Santa Cruz Biotechnology, as well as multiple RNAi products and CRISPER products from Origene and GenScript (Piscataway, N.J.). It is to be noted that the term can further be used to refer to any combination of features described herein regarding KDM6A molecules. For example, any combination of sequence composition, percentage identify, sequence length, domain structure, functional activity, etc. can be used to describe an KDM6A molecule of the present invention.


The term “loss-of-function mutation” for KDM6A refers to any mutation in a KDM6A-related nucleic acid or protein that results in reduced or eliminated KDM6A protein amounts and/or function. For example, nucleic acid mutations include single-base substitutions, multi-base substitutions, insertion mutations, deletion mutations, frameshift mutations, missense mutations, nonsense mutations, splice-site mutations, epigenetic modifications (e.g., methylation, phosphorylation, acetylation, ubiquitylation, sumoylation, histone acetylation, histone deacetylation, and the like), and combinations thereof. In some embodiments, the mutation is a “nonsynonymous mutation,” meaning that the mutation alters the amino acid sequence of KDM6A. Such mutations reduce or eliminate KDM6A protein amounts and/or function by eliminating proper coding sequences required for proper KDM6A protein translation and/or coding for KDM6A proteins that are non-functional or have reduced function (e.g., deletion of enzymatic and/or structural domains, reduction in protein stability, alteration of sub-cellular localization, and the like). Such mutations are well-known in the art. In addition, a representative list describing a wide variety of structural mutations correlated with the functional result of reduced or eliminated KDM6A protein amounts and/or function is described in the Tables and the Examples.


A “kit” is any manufacture (e.g. a package or container) comprising at least one reagent, e.g. a probe or small molecule, for specifically detecting and/or affecting the expression of a marker of the present invention. The kit may be promoted, distributed, or sold as a unit for performing the methods of the present invention. The kit may comprise one or more reagents necessary to express a composition useful in the methods of the present invention. In certain embodiments, the kit may further comprise a reference standard, e.g., a nucleic acid encoding a protein that does not affect or regulate signaling pathways controlling cell growth, division, migration, survival or apoptosis. One skilled in the art can envision many such control proteins, including, but not limited to, common molecular tags (e.g., green fluorescent protein and beta-galactosidase), proteins not classified in any of pathway encompassing cell growth, division, migration, survival or apoptosis by GeneOntology reference, or ubiquitous housekeeping proteins. Reagents in the kit may be provided in individual containers or as mixtures of two or more reagents in a single container. In addition, instructional materials which describe the use of the compositions within the kit can be included.


The term “neoadjuvant therapy” refers to a treatment given before the primary treatment. Examples of neoadjuvant therapy can include chemotherapy, radiation therapy, and hormone therapy. For example, in treating breast cancer, neoadjuvant therapy can allows patients with large breast cancer to undergo breast-conserving surgery.


The “normal” level of expression of a biomarker is the level of expression of the biomarker in cells of a subject, e.g., a human patient, not afflicted with a cancer. An “over-expression” or “significantly higher level of expression” of a biomarker refers to an expression level in a test sample that is greater than the standard error of the assay employed to assess expression, and is preferably at least 10%, and more preferably 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 times or more higher than the expression activity or level of the biomarker in a control sample (e.g., sample from a healthy subject not having the biomarker associated disease) and preferably, the average expression level of the biomarker in several control samples. A “significantly lower level of expression” of a biomarker refers to an expression level in a test sample that is at least 10%, and more preferably 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 times or more lower than the expression level of the biomarker in a control sample (e.g., sample from a healthy subject not having the biomarker associated disease) and preferably, the average expression level of the biomarker in several control samples.


An “over-expression” or “significantly higher level of expression” of a biomarker refers to an expression level in a test sample that is greater than the standard error of the assay employed to assess expression, and is preferably at least 10%, and more preferably 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 times or more higher than the expression activity or level of the biomarker in a control sample (e.g., sample from a healthy subject not having the biomarker associated disease) and preferably, the average expression level of the biomarker in several control samples. A “significantly lower level of expression” of a biomarker refers to an expression level in a test sample that is at least 10%, and more preferably 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 times or more lower than the expression level of the biomarker in a control sample (e.g., sample from a healthy subject not having the biomarker associated disease) and preferably, the average expression level of the biomarker in several control samples.


The term “pre-determined” biomarker amount and/or activity measurement(s) may be a biomarker amount and/or activity measurement(s) used to, by way of example only, evaluate a subject that may be selected for a particular treatment, evaluate a response to a treatment such as an anti-immune checkpoint inhibitor therapy, and/or evaluate the disease state. A pre-determined biomarker amount and/or activity measurement(s) may be determined in populations of patients with or without cancer. The pre-determined biomarker amount and/or activity measurement(s) can be a single number, equally applicable to every patient, or the pre-determined biomarker amount and/or activity measurement(s) can vary according to specific subpopulations of patients. Age, weight, height, and other factors of a subject may affect the pre-determined biomarker amount and/or activity measurement(s) of the individual. Furthermore, the pre-determined biomarker amount and/or activity can be determined for each subject individually. In one embodiment, the amounts determined and/or compared in a method described herein are based on absolute measurements. In another embodiment, the amounts determined and/or compared in a method described herein are based on relative measurements, such as ratios (e.g., serum biomarker normalized to the expression of a housekeeping or otherwise generally constant biomarker). The pre-determined biomarker amount and/or activity measurement(s) can be any suitable standard. For example, the pre-determined biomarker amount and/or activity measurement(s) can be obtained from the same or a different human for whom a patient selection is being assessed. In one embodiment, the pre-determined biomarker amount and/or activity measurement(s) can be obtained from a previous assessment of the same patient. In such a manner, the progress of the selection of the patient can be monitored over time. In addition, the control can be obtained from an assessment of another human or multiple humans, e.g., selected groups of humans, if the subject is a human. In such a manner, the extent of the selection of the human for whom selection is being assessed can be compared to suitable other humans, e.g., other humans who are in a similar situation to the human of interest, such as those suffering from similar or the same condition(s) and/or of the same ethnic group.


The term “predictive” includes the use of a biomarker nucleic acid and/or protein status, e.g., over- or under-activity, emergence, expression, growth, remission, recurrence or resistance of tumors before, during or after therapy, for determining the likelihood of response of a cancer to anti-immune checkpoint treatment (e.g., therapeutic antibodies against CTLA-4, PD-1, PD-L1, and the like). Such predictive use of the biomarker may be confirmed by, e.g., (1) increased or decreased copy number (e.g., by FISH, FISH plus SKY, single-molecule sequencing, e.g., as described in the art at least at J. Biotechnol., 86:289-301, or qPCR), overexpression or underexpression of a biomarker nucleic acid (e.g., by ISH, Northern Blot, or qPCR), increased or decreased biomarker protein (e.g., by IHC), or increased or decreased activity, e.g., in more than about 5%, 6%, 7%, 8%, 9%, 10%, 11%, 12%, 13%, 14%, 15%, 20%, 25%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95%, 100%, or more of assayed human cancers types or cancer samples; (2) its absolute or relatively modulated presence or absence in a biological sample, e.g., a sample containing tissue, whole blood, serum, plasma, buccal scrape, saliva, cerebrospinal fluid, urine, stool, or bone marrow, from a subject, e.g. a human, afflicted with cancer; (3) its absolute or relatively modulated presence or absence in clinical subset of patients with cancer (e.g., those responding to a particular immune checkpoint therapy or those developing resistance thereto).


The term “pre-malignant lesions” as described herein refers to a lesion that, while not cancerous, has potential for becoming cancerous. It also includes the term “pre-malignant disorders” or “potentially malignant disorders.” In particular this refers to a benign, morphologically and/or histologically altered tissue that has a greater than normal risk of malignant transformation, and a disease or a patient's habit that does not necessarily alter the clinical appearance of local tissue but is associated with a greater than normal risk of precancerous lesion or cancer development in that tissue (leukoplakia, erythroplakia, erytroleukoplakia lichen planus (lichenoid reaction) and any lesion or an area which histological examination showed atypia of cells or dysplasia.


The terms “prevent,” “preventing,” “prevention,” “prophylactic treatment,” and the like refer to reducing the probability of developing a disease, disorder, or condition in a subject, who does not have, but is at risk of or susceptible to developing a disease, disorder, or condition.


The term “probe” refers to any molecule which is capable of selectively binding to a specifically intended target molecule, for example, a nucleotide transcript or protein encoded by or corresponding to a biomarker nucleic acid. Probes can be either synthesized by one skilled in the art, or derived from appropriate biological preparations. For purposes of detection of the target molecule, probes may be specifically designed to be labeled, as described herein. Examples of molecules that can be utilized as probes include, but are not limited to, RNA, DNA, proteins, antibodies, and organic molecules.


The term “prognosis” includes a prediction of the probable course and outcome of cancer or the likelihood of recovery from the disease. In some embodiments, the use of statistical algorithms provides a prognosis of cancer in an individual. For example, the prognosis can be surgery, development of a clinical subtype of cancer (e.g., solid tumors, such as lung cancer, melanoma, and renal cell carcinoma), development of one or more clinical factors, development of intestinal cancer, or recovery from the disease.


The term “response to immune checkpoint therapy” relates to any response of the hyperproliferative disorder (e.g., cancer) to an immune checkpoint therapy, such as immune checkpoint therapy, preferably to a change in tumor mass and/or volume after initiation of neoadjuvant or adjuvant chemotherapy. Hyperproliferative disorder response may be assessed, for example for efficacy or in a neoadjuvant or adjuvant situation, where the size of a tumor after systemic intervention can be compared to the initial size and dimensions as measured by CT, PET, mammogram, ultrasound or palpation. Responses may also be assessed by caliper measurement or pathological examination of the tumor after biopsy or surgical resection. Response may be recorded in a quantitative fashion like percentage change in tumor volume or in a qualitative fashion like “pathological complete response” (pCR), “clinical complete remission” (cCR), “clinical partial remission” (cPR), “clinical stable disease” (cSD), “clinical progressive disease” (cPD) or other qualitative criteria. Assessment of hyperproliferative disorder response may be done early after the onset of neoadjuvant or adjuvant therapy, e.g., after a few hours, days, weeks or preferably after a few months. A typical endpoint for response assessment is upon termination of neoadjuvant chemotherapy or upon surgical removal of residual tumor cells and/or the tumor bed. This is typically three months after initiation of neoadjuvant therapy. In some embodiments, clinical efficacy of the therapeutic treatments described herein may be determined by measuring the clinical benefit rate (CBR). The clinical benefit rate is measured by determining the sum of the percentage of patients who are in complete remission (CR), the number of patients who are in partial remission (PR) and the number of patients having stable disease (SD) at a time point at least 6 months out from the end of therapy. The shorthand for this formula is CBR=CR+PR+SD over 6 months. In some embodiments, the CBR for a particular cancer therapeutic regimen is at least 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, or more. Additional criteria for evaluating the response to cancer therapies are related to “survival,” which includes all of the following: survival until mortality, also known as overall survival (wherein said mortality may be either irrespective of cause or tumor related); “recurrence-free survival” (wherein the term recurrence shall include both localized and distant recurrence); metastasis free survival; disease free survival (wherein the term disease shall include cancer and diseases associated therewith). The length of said survival may be calculated by reference to a defined start point (e.g., time of diagnosis or start of treatment) and end point (e.g., death, recurrence or metastasis). In addition, criteria for efficacy of treatment can be expanded to include response to chemotherapy, probability of survival, probability of metastasis within a given time period, and probability of tumor recurrence. For example, in order to determine appropriate threshold values, a particular cancer therapeutic regimen can be administered to a population of subjects and the outcome can be correlated to biomarker measurements that were determined prior to administration of any cancer therapy. The outcome measurement may be pathologic response to therapy given in the neoadjuvant setting. Alternatively, outcome measures, such as overall survival and disease-free survival can be monitored over a period of time for subjects following cancer therapy for whom biomarker measurement values are known. In certain embodiments, the doses administered are standard doses known in the art for cancer therapeutic agents. The period of time for which subjects are monitored can vary. For example, subjects may be monitored for at least 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 45, 50, 55, or 60 months. Biomarker measurement threshold values that correlate to outcome of a cancer therapy can be determined using well-known methods in the art, such as those described in the Examples section.


The term “resistance” refers to an acquired or natural resistance of a cancer sample or a mammal to a cancer therapy (i.e., being nonresponsive to or having reduced or limited response to the therapeutic treatment), such as having a reduced response to a therapeutic treatment by 25% or more, for example, 30%, 40%, 50%, 60%, 70%, 80%, or more, to 2-fold, 3-fold, 4-fold, 5-fold, 10-fold, 15-fold, 20-fold or more. The reduction in response can be measured by comparing with the same cancer sample or mammal before the resistance is acquired, or by comparing with a different cancer sample or a mammal who is known to have no resistance to the therapeutic treatment. A typical acquired resistance to chemotherapy is called “multidrug resistance.” The multidrug resistance can be mediated by P-glycoprotein or can be mediated by other mechanisms, or it can occur when a mammal is infected with a multi-drug-resistant microorganism or a combination of microorganisms. The determination of resistance to a therapeutic treatment is routine in the art and within the skill of an ordinarily skilled clinician, for example, can be measured by cell proliferative assays and cell death assays as described herein as “sensitizing.” In some embodiments, the term “reverses resistance” means that the use of a second agent in combination with a primary cancer therapy (e.g., chemotherapeutic or radiation therapy) is able to produce a significant decrease in tumor volume at a level of statistical significance (e.g., p<0.05) when compared to tumor volume of untreated tumor in the circumstance where the primary cancer therapy (e.g., chemotherapeutic or radiation therapy) alone is unable to produce a statistically significant decrease in tumor volume compared to tumor volume of untreated tumor. This generally applies to tumor volume measurements made at a time when the untreated tumor is growing log rhythmically.


The terms “response” or “responsiveness” refers to an anti-cancer response, e.g. in the sense of reduction of tumor size or inhibiting tumor growth. The terms can also refer to an improved prognosis, for example, as reflected by an increased time to recurrence, which is the period to first recurrence censoring for second primary cancer as a first event or death without evidence of recurrence, or an increased overall survival, which is the period from treatment to death from any cause. To respond or to have a response means there is a beneficial endpoint attained when exposed to a stimulus. Alternatively, a negative or detrimental symptom is minimized, mitigated or attenuated on exposure to a stimulus. It will be appreciated that evaluating the likelihood that a tumor or subject will exhibit a favorable response is equivalent to evaluating the likelihood that the tumor or subject will not exhibit favorable response (i.e., will exhibit a lack of response or be non-responsive).


An “RNA interfering agent” as used herein, is defined as any agent which interferes with or inhibits expression of a target biomarker gene by RNA interference (RNAi). Such RNA interfering agents include, but are not limited to, nucleic acid molecules including RNA molecules which are homologous to the target biomarker gene of the present invention, or a fragment thereof, short interfering RNA (siRNA), and small molecules which interfere with or inhibit expression of a target biomarker nucleic acid by RNA interference (RNAi).


“RNA interference (RNAi)” is an evolutionally conserved process whereby the expression or introduction of RNA of a sequence that is identical or highly similar to a target biomarker nucleic acid results in the sequence specific degradation or specific post-transcriptional gene silencing (PTGS) of messenger RNA (mRNA) transcribed from that targeted gene (see Coburn, G. and Cullen, B. (2002) J. of Virology 76(18):9225), thereby inhibiting expression of the target biomarker nucleic acid. In one embodiment, the RNA is double stranded RNA (dsRNA). This process has been described in plants, invertebrates, and mammalian cells. In nature, RNAi is initiated by the dsRNA-specific endonuclease Dicer, which promotes processive cleavage of long dsRNA into double-stranded fragments termed siRNAs. siRNAs are incorporated into a protein complex that recognizes and cleaves target mRNAs. RNAi can also be initiated by introducing nucleic acid molecules, e.g., synthetic siRNAs or RNA interfering agents, to inhibit or silence the expression of target biomarker nucleic acids. As used herein, “inhibition of target biomarker nucleic acid expression” or “inhibition of marker gene expression” includes any decrease in expression or protein activity or level of the target biomarker nucleic acid or protein encoded by the target biomarker nucleic acid. The decrease may be of at least 30%, 40%, 50%, 60%, 70%, 80%, 90%, 95% or 99% or more as compared to the expression of a target biomarker nucleic acid or the activity or level of the protein encoded by a target biomarker nucleic acid which has not been targeted by an RNA interfering agent.


The term “sample” used for detecting or determining the presence or level of at least one biomarker is typically whole blood, plasma, serum, saliva, urine, stool (e.g., feces), tears, and any other bodily fluid (e.g., as described above under the definition of “body fluids”), or a tissue sample (e.g., biopsy) such as a small intestine, colon sample, or surgical resection tissue. In certain instances, the method of the present invention further comprises obtaining the sample from the individual prior to detecting or determining the presence or level of at least one marker in the sample.


The term “sensitize” means to alter cancer cells or tumor cells in a way that allows for more effective treatment of the associated cancer with a cancer therapy (e.g., anti-immune checkpoint, chemotherapeutic, and/or radiation therapy). In some embodiments, normal cells are not affected to an extent that causes the normal cells to be unduly injured by the immune checkpoint therapy. An increased sensitivity or a reduced sensitivity to a therapeutic treatment is measured according to a known method in the art for the particular treatment and methods described herein below, including, but not limited to, cell proliferative assays (Tanigawa N, Kern D H, Kikasa Y, Morton D L, Cancer Res 1982; 42: 2159-2164), cell death assays (Weisenthal L M, Shoemaker R H, Marsden J A, Dill P L, Baker J A, Moran E M, Cancer Res 1984; 94: 161-173; Weisenthal L M, Lippman M E, Cancer Treat Rep 1985; 69: 615-632; Weisenthal L M, In: Kaspers G J L, Pieters R, Twentyman P R, Weisenthal L M, Veerman A J P, eds. Drug Resistance in Leukemia and Lymphoma. Langhorne, P A: Harwood Academic Publishers, 1993: 415-432; Weisenthal L M, Contrib Gynecol Obstet 1994; 19: 82-90). The sensitivity or resistance may also be measured in animal by measuring the tumor size reduction over a period of time, for example, 6 month for human and 4-6 weeks for mouse. A composition or a method sensitizes response to a therapeutic treatment if the increase in treatment sensitivity or the reduction in resistance is 25% or more, for example, 30%, 40%, 50%, 60%, 70%, 80%, or more, to 2-fold, 3-fold, 4-fold, 5-fold, 10-fold, 15-fold, 20-fold or more, compared to treatment sensitivity or resistance in the absence of such composition or method. The determination of sensitivity or resistance to a therapeutic treatment is routine in the art and within the skill of an ordinarily skilled clinician. It is to be understood that any method described herein for enhancing the efficacy of a cancer therapy can be equally applied to methods for sensitizing hyperproliferative or otherwise cancerous cells (e.g., resistant cells) to the cancer therapy.


The term “synergistic effect” refers to the combined effect of two or more anti-immune checkpoint agents can be greater than the sum of the separate effects of the anticancer agents alone.


“Short interfering RNA” (siRNA), also referred to herein as “small interfering RNA” is defined as an agent which functions to inhibit expression of a target biomarker nucleic acid, e.g., by RNAi. An siRNA may be chemically synthesized, may be produced by in vitro transcription, or may be produced within a host cell. In one embodiment, siRNA is a double stranded RNA (dsRNA) molecule of about 15 to about 40 nucleotides in length, preferably about 15 to about 28 nucleotides, more preferably about 19 to about 25 nucleotides in length, and more preferably about 19, 20, 21, or 22 nucleotides in length, and may contain a 3′ and/or 5′ overhang on each strand having a length of about 0, 1, 2, 3, 4, or 5 nucleotides. The length of the overhang is independent between the two strands, i.e., the length of the overhang on one strand is not dependent on the length of the overhang on the second strand. Preferably the siRNA is capable of promoting RNA interference through degradation or specific post-transcriptional gene silencing (PTGS) of the target messenger RNA (mRNA).


In another embodiment, an siRNA is a small hairpin (also called stem loop) RNA (shRNA). In one embodiment, these shRNAs are composed of a short (e.g., 19-25 nucleotide) antisense strand, followed by a 5-9 nucleotide loop, and the analogous sense strand. Alternatively, the sense strand may precede the nucleotide loop structure and the antisense strand may follow. These shRNAs may be contained in plasmids, retroviruses, and lentiviruses and expressed from, for example, the pol III U6 promoter, or another promoter (see, e.g., Stewart, et al. (2003) RNA 9:493-501 incorporated by reference herein).


RNA interfering agents, e.g., siRNA molecules, may be administered to a patient having or at risk for having cancer, to inhibit expression of a biomarker gene which is overexpressed in cancer and thereby treat, prevent, or inhibit cancer in the subject.


The term “subject” refers to any healthy animal, mammal or human, or any animal, mammal or human afflicted with a cancer, e.g., lung, ovarian, pancreatic, liver, breast, prostate, and colon carcinomas, as well as melanoma and multiple myeloma. The term “subject” is interchangeable with “patient.”


The term “survival” includes all of the following: survival until mortality, also known as overall survival (wherein said mortality may be either irrespective of cause or tumor related); “recurrence-free survival” (wherein the term recurrence shall include both localized and distant recurrence); metastasis free survival; disease free survival (wherein the term disease shall include cancer and diseases associated therewith). The length of said survival may be calculated by reference to a defined start point (e.g. time of diagnosis or start of treatment) and end point (e.g. death, recurrence or metastasis). In addition, criteria for efficacy of treatment can be expanded to include response to chemotherapy, probability of survival, probability of metastasis within a given time period, and probability of tumor recurrence.


The term “therapeutic effect” refers to a local or systemic effect in animals, particularly mammals, and more particularly humans, caused by a pharmacologically active substance. The term thus means any substance intended for use in the diagnosis, cure, mitigation, treatment or prevention of disease or in the enhancement of desirable physical or mental development and conditions in an animal or human. The phrase “therapeutically-effective amount” means that amount of such a substance that produces some desired local or systemic effect at a reasonable benefit/risk ratio applicable to any treatment. In certain embodiments, a therapeutically effective amount of a compound will depend on its therapeutic index, solubility, and the like. For example, certain compounds discovered by the methods of the present invention may be administered in a sufficient amount to produce a reasonable benefit/risk ratio applicable to such treatment.


The terms “therapeutically-effective amount” and “effective amount” as used herein means that amount of a compound, material, or composition comprising a compound of the present invention which is effective for producing some desired therapeutic effect in at least a sub-population of cells in an animal at a reasonable benefit/risk ratio applicable to any medical treatment. Toxicity and therapeutic efficacy of subject compounds may be determined by standard pharmaceutical procedures in cell cultures or experimental animals, e.g., for determining the LD50 and the ED50. Compositions that exhibit large therapeutic indices are preferred. In some embodiments, the LD50 (lethal dosage) can be measured and can be, for example, at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 200%, 300%, 400%, 500%, 600%, 700%, 800%, 900%, 1000% or more reduced for the agent relative to no administration of the agent. Similarly, the ED50 (i.e., the concentration which achieves a half-maximal inhibition of symptoms) can be measured and can be, for example, at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 200%, 300%, 400%, 500%, 600%, 700%, 800%, 900%, 1000% or more increased for the agent relative to no administration of the agent. Also, Similarly, the IC50 (i.e., the concentration which achieves half-maximal cytotoxic or cytostatic effect on cancer cells) can be measured and can be, for example, at least 10%, 20%, 30%, 40%, 50%, 60%, 70%, 80%, 90%, 100%, 200%, 300%, 400%, 500%, 600%, 700%, 800%, 900%, 1000% or more increased for the agent relative to no administration of the agent. In some embodiments, cancer cell growth in an assay can be inhibited by at least about 10%, 15%, 20%, 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or even 100%. In another embodiment, at least about a 10%, 15%, 20%, 25%, 30%, 3%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, 90%, 95%, or even 100% decrease in a solid malignancy can be achieved.


A “transcribed polynucleotide” or “nucleotide transcript” is a polynucleotide (e.g. an mRNA, hnRNA, a cDNA, or an analog of such RNA or cDNA) which is complementary to or homologous with all or a portion of a mature mRNA made by transcription of a biomarker nucleic acid and normal post-transcriptional processing (e.g. splicing), if any, of the RNA transcript, and reverse transcription of the RNA transcript.


As used herein, the term “unresponsiveness” includes refractivity of immune cells to stimulation, e.g., stimulation via an activating receptor or a cytokine. Unresponsiveness can occur, e.g., because of exposure to immunosuppressants or exposure to high doses of antigen. As used herein, the term “anergy” or “tolerance” includes refractivity to activating receptor-mediated stimulation. Such refractivity is generally antigen-specific and persists after exposure to the tolerizing antigen has ceased. For example, anergy in T cells (as opposed to unresponsiveness) is characterized by lack of cytokine production, e.g., IL-2. T cell anergy occurs when T cells are exposed to antigen and receive a first signal (a T cell receptor or CD-3 mediated signal) in the absence of a second signal (a costimulatory signal). Under these conditions, reexposure of the cells to the same antigen (even if reexposure occurs in the presence of a costimulatory polypeptide) results in failure to produce cytokines and, thus, failure to proliferate. Anergic T cells can, however, proliferate if cultured with cytokines (e.g., IL-2). For example, T cell anergy can also be observed by the lack of IL-2 production by T lymphocytes as measured by ELISA or by a proliferation assay using an indicator cell line. Alternatively, a reporter gene construct can be used. For example, anergic T cells fail to initiate IL-2 gene transcription induced by a heterologous promoter under the control of the 5′ IL-2 gene enhancer or by a multimer of the AP1 sequence that can be found within the enhancer (Kang et al. (1992) Science 257:1134).


There is a known and definite correspondence between the amino acid sequence of a particular protein and the nucleotide sequences that can code for the protein, as defined by the genetic code (shown below). Likewise, there is a known and definite correspondence between the nucleotide sequence of a particular nucleic acid and the amino acid sequence encoded by that nucleic acid, as defined by the genetic code.












GENETIC CODE


















Alanine (Ala, A)
GCA, GCC, GCG, GCT



Arginine (Arg, R)
AGA, ACG, CGA, CGC, CGG, CGT



Asparagine (Asn, N)
AAC, AAT



Aspartic acid (Asp, D)
GAC, GAT



Cysteine (Cys, C)
TGC, TGT



Glutamic acid (Glu, E)
GAA, GAG



Glutamine (Gln, Q)
CAA, CAG



Glycine (Gly, G)
GGA, GGC, GGG, GGT



Histidine (His, H)
CAC, CAT



Isoleucine (Ile, I)
ATA, ATC, ATT



Leucine (Leu, L)
CTA, CTC, CTG, CTT, TTA, TTG



Lysine (Lys, K)
AAA, AAG



Methionine (Met, M)
ATG



Phenylalanine (Phe, F)
TTC, TTT



Proline (Pro, P)
CCA, CCC, CCG, CCT



Serine (Ser, S)
AGC, AGT, TCA, TCC, TCG, TCT



Threonine (Thr, T)
ACA, ACC, ACG, ACT



Tryptophan (Trp, W)
TGG



Tyrosine (Tyr, Y)
TAC, TAT



Valine (Val, V)
GTA, GTC, GTG, GTT



Termination signal (end)
TAA, TAG, TGA










An important and well known feature of the genetic code is its redundancy, whereby, for most of the amino acids used to make proteins, more than one coding nucleotide triplet may be employed (illustrated above). Therefore, a number of different nucleotide sequences may code for a given amino acid sequence. Such nucleotide sequences are considered functionally equivalent since they result in the production of the same amino acid sequence in all organisms (although certain organisms may translate some sequences more efficiently than they do others). Moreover, occasionally, a methylated variant of a purine or pyrimidine may be found in a given nucleotide sequence. Such methylations do not affect the coding relationship between the trinucleotide codon and the corresponding amino acid.


In view of the foregoing, the nucleotide sequence of a DNA or RNA encoding a biomarker nucleic acid (or any portion thereof) can be used to derive the polypeptide amino acid sequence, using the genetic code to translate the DNA or RNA into an amino acid sequence. Likewise, for polypeptide amino acid sequence, corresponding nucleotide sequences that can encode the polypeptide can be deduced from the genetic code (which, because of its redundancy, will produce multiple nucleic acid sequences for any given amino acid sequence). Thus, description and/or disclosure herein of a nucleotide sequence which encodes a polypeptide should be considered to also include description and/or disclosure of the amino acid sequence encoded by the nucleotide sequence. Similarly, description and/or disclosure of a polypeptide amino acid sequence herein should be considered to also include description and/or disclosure of all possible nucleotide sequences that can encode the amino acid sequence.


Finally, nucleic acid and amino acid sequence information for the loci and biomarkers of the present invention (e.g., biomarkers listed in Table 1) are well known in the art and readily available on publicly available databases, such as the National Center for Biotechnology Information (NCBI). For example, exemplary nucleic acid and amino acid sequences derived from publicly available sequence databases are provided below.









TABLE 1







SEQ ID NO: 1 Human PBRM1 Transcript Variant 1 cDNA Sequence


(NM_018313.4)








1
gcggccgcgg ccggaggagc aatagcagca gccgtggcgg ccacggggcg gggcgcggcg


61
gtcggtgacc gcggccgggg ctgcaggcgg cggagcggct ggaagttgga ttccatgggt


121
tccaagagaa gaagagctac ctccccttcc agcagtgtca gcggggactt tgatgatggg


181
caccattctg tgtcaacacc aggcccaagc aggaaaagga ggagactttc caatcttcca


241
actgtagatc ctattgccgt gtgccatgaa ctctataata ccatccgaga ctataaggat


301
gaacagggca gacttctctg tgagctcttc attagggcac caaagcgaag aaatcaacca


361
gactattatg aagtggtttc tcagcccatt gacttgatga aaatccaaca gaaactaaaa


421
atggaagagt atgatgatgt taatttgctg actgctgact tccagcttct ttttaacaat


481
gcaaagtcct attataagcc agattctcct gaatataaag ccgcttgcaa actctgggat


541
ttgtaccttc gaacaagaaa tgagtttgtt cagaaaggag aagcagatga cgaagatgat


601
gatgaagatg ggcaagacaa tcagggcaca gtgactgaag gatcttctcc agcttacttg


661
aaggagatcc tggagcagct tcttgaagcc atagttgtag ctacaaatcc atcaggacgt


721
ctcattagcg aactttttca gaaactgcct tctaaagtgc aatatccaga ttattatgca


781
ataattaagg agcctataga tctcaagacc attgcccaga ggatacagaa tggaagctac


841
aaaagtattc atgcaatggc caaagatata gatctcctcg caaaaaatgc caaaacttat


901
aatgagcctg gctctcaagt attcaaggat gcaaattcaa ttaaaaaaat attttatatg


961
aaaaaggctg aaattgaaca tcatgaaatg gctaagtcaa gtcttcgaat gaggactcca


1021
tccaacttgg ctgcagccag actgacaggt ccttcacaca gtaaaggcag ccttggtgaa


1081
gagagaaatc ccactagcaa gtattaccgt aataaaagag cagtacaagg aggtcgttta


1141
tcagcaatta caatggcact tcaatatggc tcagaaagtg aagaagatgc tgctttagct


1201
gctgcacgct atgaagaggg agagtcagaa gcagaaagca tcacttcctt tatggatgtt


1261
tcaaatcctt tttatcagct ttatgacaca gttaggagtt gtcggaataa ccaagggcag


1321
ctaatagctg aaccttttta ccatttgcct tcaaagaaaa aataccctga ttattaccag


1381
caaattaaaa tgcccatatc actacaacag atccgaacaa aactgaagaa tcaagaatat


1441
gaaactttag atcatttgga gtgtgatctg aatttaatgt ttgaaaatgc caaacgctat


1501
aatgtgccca attcagccat ctacaagcga gttctaaaat tgcagcaagt tatgcaggca


1561
aagaagaaag agcttgccag gagagacgat atcgaggacg gagacagcat gatctcttca


1621
gccacctctg atactggtag tgccaaaaga aaaagtaaaa agaacataag aaagcagcga


1681
atgaaaatct tattcaatgt tgttcttgaa gctcgagagc caggttcagg cagaagactt


1741
tgtgacctat ttatggttaa accatccaaa aaggactatc ctgattatta taaaatcatc


1801
ttggagccaa tggacttgaa aataattgag cataacatcc gcaatgacaa atatgctggt


1861
gaagagggaa tgatagaaga catgaagctg atgttccgga atgccaggca ctataatgag


1921
gagggctccc aggtttataa tgatgcacat atcctggaga agttactcaa ggagaaaagg


1981
aaagagctgg gcccactgcc tgatgatgat gacatggctt ctcccaaact caagctgagt


2041
aggaagagtg gcatttctcc taaaaaatca aaatacatga ctccaatgca gcagaaacta


2101
aatgaggtct atgaagctgt aaagaactat actgataaga ggggtcgccg cctcagtgcc


2161
atatttctga ggcttccctc tagatctgag ttgcctgact actatctgac tattaaaaag


2221
cccatggaca tggaaaaaat tcgaagtcac atgatggcca acaagtacca agatattgac


2281
tctatggttg aggactttgt catgatgttt aataatgcct gtacatacaa tgagccggag


2341
tctttgatct acaaagatgc tcttgttcta cacaaagtcc tgcttgaaac acgcagagac


2401
ctggagggag atgaggactc tcatgtccca aatgtgactt tgctgattca agagcttatc


2461
cacaatcttt ttgtgtcagt catgagtcat caggatgatg agggaagatg ctacagcgat


2521
tctttagcag aaattcctgc tgtggatccc aactttccta acaaaccacc ccttacattt


2581
gacataatta ggaagaatgt tgaaaataat cgctaccgtc ggcttgattt atttcaagag


2641
catatgtttg aagtattgga acgagcaaga aggatgaatc ggacagattc agaaatatat


2701
gaagatgcag tagaacttca gcagtttttt attaaaattc gtgatgaact ctgcaaaaat


2761
ggagagattc ttctttcacc ggcactcagc tataccacaa aacatttgca taatgatgtg


2821
gagaaagaga gaaaggaaaa attgccaaaa gaaatagagg aagataaact aaaacgagaa


2881
gaagaaaaaa gagaagctga aaagagtgaa gattcctctg gtgctgcagg cctctcaggc


2941
ttacatcgca catacagcca ggactgtagc tttaaaaaca gcatgtacca tgttggagat


3001
tacgtctatg tggaacctgc agaggccaac ctacaaccac atatcgtctg tattgaaaga


3061
ctgtgggagg attcagctga aaaagaagtt tttaagagtg actattacaa caaagttcca


3121
gttagtaaaa ttctaggcaa gtgtgtggtc atgtttgtca aggaatactt taagttatgc


3181
ccagaaaact tccgagatga ggatgttttt gtctgtgaat cacggtattc tgccaaaacc


3241
aaatctttta agaaaattaa actgtggacc atgcccatca gctcagtcag gtttgtccct


3301
cgggatgtgc ctctgcctgt ggttcgcgtg gcctctgtat ttgcaaatgc agataaaggt


3361
gatgatgaga agaatacaga caactcagag gacagtcgag ctgaagacaa ttttaacttg


3421
gaaaaggaaa aagaagatgt ccctgtggaa atgtccaatg gtgaaccagg ttgccactac


3481
tttgagcagc tccattacaa tgacatgtgg ctgaaggttg gcgactgtgt cttcatcaag


3541
tcccatggcc tggtgcgtcc tcgtgtgggc agaattgaaa aagtatgggt tcgagatgga


3601
gctgcatatt tttatggccc catcttcatt cacccagaag aaacagagca tgagcccaca


3661
aaaatgttct acaaaaaaga agtatttctg agtaatctgg aagaaacctg ccccatgaca


3721
tgtattctcg gaaagtgtgc tgtgttgtca ttcaaggact tcctctcctg caggccaact


3781
gaaataccag aaaatgacat tctgctttgt gagagccgct acaatgagag cgacaagcag


3841
atgaagaaat tcaaaggatt gaagaggttt tcactctctg ctaaagtggt agatgatgaa


3901
atttactact tcagaaaacc aattgttcct cagaaggagc catcaccttt gctggaaaag


3961
aagatccagt tgctagaagc taaatttgcc gagttagaag gtggagatga tgatattgaa


4021
gagatgggag aagaagatag tgagtctacc ccaaagtctg ccaaaggcag tgcaaagaag


4081
gaaggctcca aacggaaaat caacatgagt ggctacatcc tgttcagcag tgagatgagg


4141
gctgtgatta aggcccaaca cccagactac tctttcgggg agctcagccg cctggtgggg


4201
acagaatgga gaaatcttga gacagccaag aaagcagaat atgaaggcat gatgggtggc


4261
tatccgccag gccttccacc tttgcagggc ccagttgatg gccttgttag catgggcagc


4321
atgcagccac ttcaccctgg ggggcctcca ccccaccatc ttccgccagg tgtgcctggc


4381
ctcccgggca tcccaccacc gggtgtgatg aaccaaggag tggcccctat ggtagggact


4441
ccagcaccag gtggaagtcc atatggacaa caggtgggag ttttggggcc tccagggcag


4501
caggcaccac ctccatatcc cggcccacat ccagctggac cccctgtcat acagcagcca


4561
acaacaccca tgtttgtagc tcccccacca aagacccagc ggcttcttca ctcagaggcc


4621
tacctgaaat acattgaagg actcagtgcg gagtccaaca gcattagcaa gtgggatcag


4681
acactggcag ctcgaagacg cgacgtccat ttgtcgaaag aacaggagag ccgcctaccc


4741
tctcactggc tgaaaagcaa aggggcccac accaccatgg cagatgccct ctggcgcctt


4801
cgagatttga tgctccggga caccctcaac attcgccaag catacaacct agaaaatgtt


4861
taatcacatc attacgtttc ttttatatag aagcataaag agttgtggat cagtagccat


4921
tttagttact gggggtgggg ggaaggaaca aaggaggata atttttattg cattttactg


4981
tacatcacaa ggccattttt atatacggac acttttaata agctatttca atttgtttgt


5041
tatattaagt tgactttatc aaatacacaa agattttttt gcatatgttt ccttcgttta


5101
aaaccagttt cataattggt tgtatatgta gacttggagt tttatctttt tacttgttgc


5161
catggaactg aaaccattag aggtttttgt cttggcttgg ggtttttgtt ttcttggttt


5221
tgggtttttt tatatatata tataaaagaa caaaatgaaa aaaaacacac acacacaaga


5281
gtttacagat tagtttaaat tgataatgaa atgtgaagtt tgtcctagtt tacatcttag


5341
agaggggagt atacttgtgt ttgtttcatg tgcctgaata tcttaagcca ctttctgcaa


5401
aagctgtttc ttacagatga agtgctttct ttgaaaggtg gttatttagg ttttagatgt


5461
ttaatagaca cagcacattt gctctattaa ctcagaggct cactacagaa atatgtaatc


5521
agtgctgtgc atctgtctgc agctaatgta cctcctggac accaggaggg gaaaaagcac


5581
tttttcaatt gtgctgagtt agacatctgt gagttagact atggtgtcag tgatttttgc


5641
agaacacgtg cacaaccctg aggtatgttt aatctaggca ggtacgttta aggatatttt


5701
gatctattta taatgaattc acaatttatg cctataaatt tcagatgatt taaaatttta


5761
aacctgttac attgaaaaac attgaagttc gtcttgaaga aagcattaag gtatgcatgg


5821
aggtgattta tttttaaaca taacacctaa cctaacatgg gtaagagagt atggaactag


5881
atatgagctg tataagaagc ataattgtga acaagtagat tgattgcctt catatacaag


5941
tatgttttag tattccttat ttccttatta tcagatgtat tttttctttt aagtttcaat


6001
gttgttataa ttctcaacca gaaatttaat actttctaaa atatttttta aatttagctt


6061
gtgcttttga attacaggag aagggaatca taatttaata aaacgcttac tagaaagacc


6121
attacagatc ccaaacactt gggtttggtg accctgtctt tcttatatga ccctacaata


6181
aacatttgaa ggcagcatag gatggcagac agtaggaaca ttgtttcact tggcggcatg


6241
tttttgaaac ctgctttata gtaactgggt gattgccatt gtggtagagc ttccactgct


6301
gtttataatc tgagagagtt aatctcagag gatgcttttt tccttttaat ctgctatgaa


6361
tcagtaccca gatgtttaat tactgtactt attaaatcat gagggcaaaa gagtgtagaa


6421
tggaaaaaag tctcttgtat ctagatactt taaatatggg aggcccttta acttaattgc


6481
ctttagtcaa ccactggatt tgaatttgca tcaagtattt taaataatat tgaatttaaa


6541
aaaatgtatt gcagtagtgt gtcagtacct tattgttaaa gtgagtcaga taaatcttca


6601
attcctggct atttgggcaa ttgaatcatc atggactgta taatgcaatc agattatttt


6661
gtttctagac atccttgaat tacaccaaag aacatgaaat ttagttgtgg ttaaattatt


6721
tatttatttc atgcattcat tttatttccc ttaaggtctg gatgagactt ctttggggag


6781
cctctaaaaa aatttttcac tgggggccac gtgggtcatt agaagccaga gctctcctcc


6841
aggctccttc ccagtgccta gaggtgctat aggaaacata gatccagcca ggggcttccc


6901
taaagcagtg cagcaccggc ccagggcatc actagacagg ccctaattaa gtttttttta


6961
aaaagcctgt gtatttattt tagaatcatg tttttctgta tattaacttg ggggatatcg


7021
ttaatattta ggatataaga tttgaggtca gccatcttca aaaaagaaaa aaaaattgac


7081
tcaagaaagt acaagtaaac tatacacctt tttttcataa gttttaggaa ctgtagtaat


7141
gtggcttaga aagtataatg gcctaaatgt tttcaaaatg taagttcctg tggagaagaa


7201
ttgtttatat tgcaaacggg gggactgagg ggaacctgta ggtttaaaac agtatgtttg


7261
tcagccaact gatttaaaag gcctttaact gttttggttg ttgttttttt tttaagccac


7321
tctccccttc ctatgaggaa gaattgagag gggcacctat ttctgtaaaa tccccaaatt


7381
ggtgttgatg attttgagct tgaatgtttt catacctgat taaaacttgg tttattctaa


7441
tttctgtatc atatcatctg aggtttacgt ggtaactagt cttataacat gtatgtatct


7501
tttttttgtt gttcatctaa agctttttaa tccaaataaa tacagagttt gcaaagtgat


7561
ttggattaac










SEQ ID NO: 2 Human PBRM1 Variant 1 Amino Acid Sequence (NP_060783.3)








1
mgskrrrats psssvsgdfd dghhsvstpg psrkrrrlsn lptvdpiavc helyntirdy


61
kdeqgrllce ifirapkrrn qpdyyevvsq pidlmkiqqk lkmeeyddvn lltadfqllf


121
nnaksyykpd speykaackl wdlylrtrne fvqkgeadde dddedgqdnq gtvtegsspa


181
ylkeileqll eaivvatnps grliselfqk lpskvqypdy yaiikepidl ktiaqriqng


241
syksihamak didllaknak tynepgsqvf kdansikkif ymkkaeiehh emaksslrmr


301
tpsnlaaarl tgpshskgsl geernptsky yrnkravqgg rlsaitmalq ygseseedaa


361
laaaryeege seaesitsfm dvsnpfyqly dtvrscrnnq gqliaepfyh ipskkkypdy


421
yqqikmpisl qqirtklknq eyetldhlec dlnlmfenak rynvpnsaiy krvlklqqvm


481
qakkkelarr ddiedgdsmi ssatsdtgsa krkskknirk qrmkilfnvv learepgsgr


541
rlcdlfmvkp skkdypdyyk iilepmdlki iehnirndky ageegmiedm klmfrnarhy


601
neegsqvynd ahilekllke krkelgplpd dddmaspklk lsrksgispk kskymtpmqq


661
klnevyeavk nytdkrgrrl saiflrlpsr selpdyylti kkpmdmekir shmmankyqd


721
idsmvedfvm mfnnactyne pesliykdal vlhkvlletr rdlegdedsh vpnvtlliqe


781
lihnlfvsvm shqddegrcy sdslaeipav dpnfpnkppl tfdiirknve nnryrrldlf


841
qehmfevler arrmnrtdse iyedavelqq ffikirdelc kngeillspa lsyttkhlhn


901
dvekerkekl pkeieedklk reeekreaek sedssgaagl sglhrtysqd csfknsmyhv


961
gdyvyvepae anlqphivci erlwedsaek evfksdyynk vpvskilgkc vvmfvkeyfk


1021
lcpenfrded vfvcesrysa ktksfkkikl wtmpissvrf vprdvplpvv rvasvfanad


1081
kgddekntdn sedsraednf nlekekedvp vemsngepgc hyfeqlhynd mwlkvgdcvf


1141
ikshglvrpr vgriekvwvr dgaayfygpi fihpeetehe ptkmfykkev flsnleetcp


1201
mtcilgkcav lsfkdflscr pteipendil icesrynesd kqmkkfkglk rfslsakvvd


1261
deiyyfrkpi vpqkepspll ekkiqlleak faeleggddd ieemgeedse stpksakgsa


1321
kkegskrkin msgyilfsse mravikaqhp dysfgelsrl vgtewrnlet akkaeyegmm


1381
ggyppglppl qgpvdglvsm gsmqplhpgg ppphhlppgv pgipgipppg vmnqgvapmv


1441
gtpapggspy gqqvgvlgpp gqqapppypg phpagppviq qpttpmfvap ppktqrllhs


1501
eaylkyiegl saesnsiskw dqtlaarrrd vhlskeqesr lpshwlkskg ahttmadalw


1561
rlrdlmlrdt lnirqaynle nv










SEQ ID NO: 3 Human PBRM1 Transcript Variant 2 cDNA Sequence


(NM_181042.4)








1
gcggccgggg ctgcaggcgg cggagcggct ggcttgccaa cacttggtgt cacatgtgag


61
cctcccacat gtattcactc tccattccag ctctgtgatt gaactctgct cttattgact


121
agggggcagt tgggcaggca tgcctcattc ctggaattga cagtcattcc taataagttg


181
gattccatgg gttccaagag aagaagagct acctcccctt ccagcagtgt cagcggggac


241
tttgatgatg ggcaccattc tgtgtcaaca ccaggcccaa gcaggaaaag gaggagactt


301
tccaatcttc caactgtaga tcctattgcc gtgtgccatg aactctataa taccatccga


361
gactataagg atgaacaggg cagacttctc tgtgagctct tcattagggc accaaagcga


421
agaaatcaac cagactatta tgaagtggtt tctcagccca ttgacttgat gaaaatccaa


481
cagaaactaa aaatggaaga gtatgatgat gttaatttgc tgactgctga cttccagctt


541
ctttttaaca atgcaaagtc ctattataag ccagattctc ctgaatataa agccgcttgc


601
aaactctggg atttgtacct tcgaacaaga aatgagtttg ttcagaaagg agaagcagat


661
gacgaagatg atgatgaaga tgggcaagac aatcagggca cagtgactga aggatcttct


721
ccagcttact tgaaggagat cctggagcag cttcttgaag ccatagttgt agctacaaat


781
ccatcaggac gtctcattag cgaacttttt cagaaactgc cttctaaagt gcaatatcca


841
gattattatg caataattaa ggagcctata gatctcaaga ccattgccca gaggatacag


901
aatggaagct acaaaagtat tcatgcaatg gccaaagata tagatctcct cgcaaaaaat


961
gccaaaactt ataatgagcc tggctctcaa gtattcaagg atgcaaattc aattaaaaaa


1021
atattttata tgaaaaaggc tgaaattgaa catcatgaaa tggctaagtc aagtcttcga


1081
atgaggactc catccaactt ggctgcagcc agactgacag gtccttcaca cagtaaaggc


1141
agccttggtg aagagagaaa tcccactagc aagtattacc gtaataaaag agcagtacaa


1201
ggaggtcgtt tatcagcaat tacaatggca cttcaatatg gctcagaaag tgaagaagat


1261
gctgctttag ctgctgcacg ctatgaagag ggagagtcag aagcagaaag catcacttcc


1321
tttatggatg tttcaaatcc tttttatcag ctttatgaca cagttaggag ttgtcggaat


1381
aaccaagggc agctaatagc tgaacctttt taccatttgc cttcaaagaa aaaataccct


1441
gattattacc agcaaattaa aatgcccata tcactacaac agatccgaac aaaactgaag


1501
aatcaagaat atgaaacttt agatcatttg gagtgtgatc tgaatttaat gtttgaaaat


1561
gccaaacgct ataatgtgcc caattcagcc atctacaagc gagttctaaa attgcagcaa


1621
gttatgcagg caaagaagaa agagcttgcc aggagagacg atatcgagga cggagacagc


1681
atgatctctt cagccacctc tgatactggt agtgccaaaa gaaaaagtaa aaagaacata


1741
agaaagcagc gaatgaaaat cttattcaat gttgttcttg aagctcgaga gccaggttca


1801
ggcagaagac tttgtgacct atttatggtt aaaccatcca aaaaggacta tcctgattat


1861
tataaaatca tcttggagcc aatggacttg aaaataattg agcataacat ccgcaatgac


1921
aaatatgctg gtgaagaggg aatgatagaa gacatgaagc tgatgttccg gaatgccagg


1981
cactataatg aggagggctc ccaggtttat aatgatgcac atatcctgga gaagttactc


2041
aaggagaaaa ggaaagagct gggcccactg cctgatgatg atgacatggc ttctcccaaa


2101
ctcaagctga gtaggaagag tggcatttct cctaaaaaat caaaatacat gactccaatg


2161
cagcagaaac taaatgaggt ctatgaagct gtaaagaact atactgataa gaggggtcgc


2221
cgcctcagtg ccatatttct gaggcttccc tctagatctg agttgcctga ctactatctg


2281
actattaaaa agcccatgga catggaaaaa attcgaagtc acatgatggc caacaagtac


2341
caagatattg actctatggt tgaggacttt gtcatgatgt ttaataatgc ctgtacatac


2401
aatgagccgg agtctttgat ctacaaagat gctcttgttc tacacaaagt cctgcttgaa


2461
acacgcagag acctggaggg agatgaggac tctcatgtcc caaatgtgac tttgctgatt


2521
caagagctta tccacaatct ttttgtgtca gtcatgagtc atcaggatga tgagggaaga


2581
tgctacagcg attctttagc agaaattcct gctgtggatc ccaactttcc taacaaacca


2641
ccccttacat ttgacataat taggaagaat gttgaaaata atcgctaccg tcggcttgat


2701
ttatttcaag agcatatgtt tgaagtattg gaacgagcaa gaaggatgaa tcggacagat


2761
tcagaaatat atgaagatgc agtagaactt cagcagtttt ttattaaaat tcgtgatgaa


2821
ctctgcaaaa atggagagat tcttctttca ccggcactca gctataccac aaaacatttg


2881
cataatgatg tggagaaaga gagaaaggaa aaattgccaa aagaaataga ggaagataaa


2941
ctaaaacgag aagaagaaaa aagagaagct gaaaagagtg aagattcctc tggtgctgca


3001
ggcctctcag gcttacatcg cacatacagc caggactgta gctttaaaaa cagcatgtac


3061
catgttggag attacgtcta tgtggaacct gcagaggcca acctacaacc acatatcgtc


3121
tgtattgaaa gactgtggga ggattcagct ggtgaaaaat ggttgtatgg ctgttggttt


3181
taccgaccaa atgaaacatt ccacctggct acacgaaaat ttctagaaaa agaagttttt


3241
aagagtgact attacaacaa agttccagtt agtaaaattc taggcaagtg tgtggtcatg


3301
tttgtcaagg aatactttaa gttatgccca gaaaacttcc gagatgagga tgtttttgtc


3361
tgtgaatcac ggtattctgc caaaaccaaa tcttttaaga aaattaaact gtggaccatg


3421
cccatcagct cagtcaggtt tgtccctcgg gatgtgcctc tgcctgtggt tcgcgtggcc


3481
tctgtatttg caaatgcaga taaaggtgat gatgagaaga atacagacaa ctcagaggac


3541
agtcgagctg aagacaattt taacttggaa aaggaaaaag aagatgtccc tgtggaaatg


3601
tccaatggtg aaccaggttg ccactacttt gagcagctcc attacaatga catgtggctg


3661
aaggttggcg actgtgtctt catcaagtcc catggcctgg tgcgtcctcg tgtgggcaga


3721
attgaaaaag tatgggttcg agatggagct gcatattttt atggccccat cttcattcac


3781
ccagaagaaa cagagcatga gcccacaaaa atgttctaca aaaaagaagt atttctgagt


3841
aatctggaag aaacctgccc catgacatgt attctcggaa agtgtgctgt gttgtcattc


3901
aaggacttcc tctcctgcag gccaactgaa ataccagaaa atgacattct gctttgtgag


3961
agccgctaca atgagagcga caagcagatg aagaaattca aaggattgaa gaggttttca


4021
ctctctgcta aagtggtaga tgatgaaatt tactacttca gaaaaccaat tgttcctcag


4081
aaggagccat cacctttgct ggaaaagaag atccagttgc tagaagctaa atttgccgag


4141
ttagaaggtg gagatgatga tattgaagag atgggagaag aagatagtga ggtcattgaa


4201
cctccttctc tacctcagct tcagaccccc ctggccagtg agctggacct catgccctac


4261
acacccccac agtctacccc aaagtctgcc aaaggcagtg caaagaagga aggctccaaa


4321
cggaaaatca acatgagtgg ctacatcctg ttcagcagtg agatgagggc tgtgattaag


4381
gcccaacacc cagactactc tttcggggag ctcagccgcc tggtggggac agaatggaga


4441
aatcttgaga cagccaagaa agcagaatat gaaggtgtga tgaaccaagg agtggcccct


4501
atggtaggga ctccagcacc aggtggaagt ccatatggac aacaggtggg agttttgggg


4561
cctccagggc agcaggcacc acctccatat cccggcccac atccagctgg accccctgtc


4621
atacagcagc caacaacacc catgtttgta gctcccccac caaagaccca gcggcttctt


4681
cactcagagg cctacctgaa atacattgaa ggactcagtg cggagtccaa cagcattagc


4741
aagtgggatc agacactggc agctcgaaga cgcgacgtcc atttgtcgaa agaacaggag


4801
agccgcctac cctctcactg gctgaaaagc aaaggggccc acaccaccat ggcagatgcc


4861
ctctggcgcc ttcgagattt gatgctccgg gacaccctca acattcgcca agcatacaac


4921
ctagaaaatg tttaatcaca tcattacgtt tcttttatat agaagcataa agagttgtgg


4981
atcagtagcc attttagtta ctgggggtgg ggggaaggaa caaaggagga taatttttat


5041
tgcattttac tgtacatcac aaggccattt ttatatacgg acacttttaa taagctattt


5101
caatttgttt gttatattaa gttgacttta tcaaatacac aaagattttt ttgcatatgt


5161
ttccttcgtt taaaaccagt ttcataattg gttgtatatg tagacttgga gttttatctt


5221
tttacttgtt gccatggaac tgaaaccatt agaggttttt gtcttggctt ggggtttttg


5281
ttttcttggt tttgggtttt tttatatata tatataaaag aacaaaatga aaaaaaacac


5341
acacacacaa gagtttacag attagtttaa attgataatg aaatgtgaag tttgtcctag


5401
tttacatctt agagagggga gtatacttgt gtttgtttca tgtgcctgaa tatcttaagc


5461
cactttctgc aaaagctgtt tcttacagat gaagtgcttt ctttgaaagg tggttattta


5521
ggttttagat gtttaataga cacagcacat ttgctctatt aactcagagg ctcactacag


5581
aaatatgtaa tcagtgctgt gcatctgtct gcagctaatg tacctcctgg acaccaggag


5641
gggaaaaagc actttttcaa ttgtgctgag ttagacatct gtgagttaga ctatggtgtc


5701
agtgattttt gcagaacacg tgcacaaccc tgaggtatgt ttaatctagg caggtacgtt


5761
taaggatatt ttgatctatt tataatgaat tcacaattta tgcctataaa tttcagatga


5821
tttaaaattt taaacctgtt acattgaaaa acattgaagt tcgtcttgaa gaaagcatta


5881
aggtatgcat qqaqqtqatt tatttttaaa cataacacct aacctaacat gggtaagaga


5941
gtatggaact agatatgagc tgtataagaa gcataattgt gaacaagtag attgattgcc


6001
ttcatataca agtatgtttt agtattcctt atttccttat tatcagatgt attttttctt


6061
ttaagtttca atgttgttat aattctcaac cagaaattta atactttcta aaatattttt


6121
taaatttagc ttgtgctttt gaattacagg agaagggaat cataatttaa taaaacgctt


6181
actagaaaga ccattacaga tcccaaacac ttgggtttgg tgaccctgtc tttcttatat


6241
gaccctacaa taaacatttg aaggcagcat aggatggcag acagtaggaa cattgtttca


6301
cttggcggca tgtttttgaa acctgcttta tagtaactgg gtgattgcca ttgtggtaga


6361
gcttccactg ctgtttataa tctgagagag ttaatctcag aggatgcttt tttcctttta


6421
atctgctatg aatcagtacc cagatgttta attactgtac ttattaaatc atgagggcaa


6481
aagagtgtag aatggaaaaa agtctcttgt atctagatac tttaaatatg ggaggccctt


6541
taacttaatt gcctttagtc aaccactgga tttgaatttg catcaagtat tttaaataat


6601
attgaattta aaaaaatgta ttgcagtagt gtgtcagtac cttattgtta aagtgagtca


6661
gataaatctt caattcctgg ctatttgggc aattgaatca tcatggactg tataatgcaa


6721
tcagattatt ttgtttctag acatccttga attacaccaa agaacatgaa atttagttgt


6781
ggttaaatta tttatttatt tcatgcattc attttatttc ccttaaggtc tggatgagac


6841
ttctttgggg agcctctaaa aaaatttttc actgggggcc acgtgggtca ttagaagcca


6901
gagctctcct ccaggctcct tcccagtgcc tagaggtgct ataggaaaca tagatccagc


6961
caggggcttc cctaaagcag tgcagcaccg gcccagggca tcactagaca ggccctaatt


7021
aagttttttt taaaaagcct gtgtatttat tttagaatca tgtttttctg tatattaact


7081
tgggggatat cgttaatatt taggatataa gatttgaggt cagccatctt caaaaaagaa


7141
aaaaaaattg actcaagaaa gtacaagtaa actatacacc tttttttcat aagttttagg


7201
aactgtagta atgtggctta gaaagtataa tggcctaaat gttttcaaaa tgtaagttcc


7261
tgtggagaag aattgtttat attgcaaacg gggggactga ggggaacctg taggtttaaa


7321
acagtatgtt tgtcagccaa ctgatttaaa aggcctttaa ctgttttggt tgttgttttt


7381
tttttaagcc actctcccct tcctatgagg aagaattgag aggggcacct atttctgtaa


7441
aatccccaaa ttggtgttga tgattttgag cttgaatgtt ttcatacctg attaaaactt


7501
ggtttattct aatttctgta tcatatcatc tgaggtttac gtggtaacta gtcttataac


7561
atgtatgtat cttttttttg ttgttcatct aaagcttttt aatccaaat










SEQ ID NO: 4 Human PBRM1 Variant 2 Amino Acid Sequence (NP_851385.1)








1
mgskrrrats psssvsgdfd dghhsvstpg psrkrrrlsn lptvdpiavc helyntirdy


61
kdeqgrllce lfirapkrrn qpdyyevvsq pidlmkiqqk lkmeeyddvn lltadfqllf


121
nnaksyykpd speykaackl wdlylrtrne fvqkgeadde dddedgqdnq gtvtegsspa


181
ylkeileqll eaivvatnps grliselfqk ipskvqypdy yaiikepidl ktiaqriqng


241
syksihamak didllaknak tynepgsqvf kdansikkif ymkkaeiehh emaksslrmr


301
tpsnlaaarl tgpshskgsl geernptsky yrnkravqgg rlsaitmalq ygseseedaa


361
laaaryeege seaesitsfm dvsnpfyqly dtvrscrnnq gqliaepfyh lpskkkypdy


421
yqqikmpisl qqirtklknq eyetldhlec dlnlmfenak rynvpnsaiy krvlklqqvm


481
qakkkelarr ddiedgdsmi ssatsdtgsa krkskknirk qrmkilfnvv learepgsgr


541
rlcdlfmvkp skkdypdyyk iilepmdlki iehnirndky ageegmiedm klmfrnarhy


601
neegsqvynd ahilekllke krkelgplpd dddmaspklk lsrksgispk kskymtpmqq


661
klnevyeavk nytdkrgrrl saiflrlpsr selpdyylti kkpmdmekir shmmankyqd


721
idsmvedfvm mfnnactyne pesliykdal vlhkvlletr rdlegdedsh vpnvtlliqe


781
lihnlfvsvm shqddegrcy sdslaeipav dpnfpnkppl tfdiirknve nnryrrldlf


841
qehmfevler arrmnrtdse iyedavelqq ffikirdelc kngeillspa lsyttkhlhn


901
dvekerkekl pkeieedklk reeekreaek sedssgaagl sglhrtysqd csfknsmyhv


961
gdyvyvepae anlqphivci erlwedsage kwlygcwfyr pnetfhlatr kflekevfks


1021
dyynkvpvsk ilgkcvvmfv keyfklcpen frdedvfvce srysaktksf kkiklwtmpi


1081
ssvrfvprdv plpvvrvasv fanadkgdde kntdnsedsr aednfnleke kedvpvemsn


1141
gepgchyfeq lhyndmwlkv gdcvfikshg lvrprvgrie kvwvrdgaay fygpifihpe


1201
eteheptkmf ykkevflsnl eetcpmtcil gkcavlsfkd flscrpteip endillcesr


1261
ynesdkqmkk fkglkrfsls akvvddeiyy frkpivpqke pspllekkiq lleakfaele


1321
ggdddieemg eedseviepp slpqlqtpla seldimpytp pqstpksakg sakkegskrk


1381
inmsgyilfs semravikaq hpdysfgels rlvgtewrnl etakkaeyeg vmnqgvapmv


1441
gtpapggspy gqqvgvlgpp gqqapppypg phpagppviq qpttpmfvap ppktqrllhs


1501
eaylkyiegl saesnsiskw dqtlaarrrd vhlskeqesr lpshwlkskg ahttmadalw


1561
rlrdlmlrdt lnirqaynle nv










SEQ ID NO: 5 Mouse PBRM1 cDNA Sequence (NM_001081251.1)








1
ggatttacgg cagcactggg aggggtgagg gcggtgaggg cggcgggtgc cggagagacg


61
gccgcggcca gaggagcgct agcagccgtg gcggccacgg ggcggggctc ggcggtcggg


121
gaccgcagcc ggggctgcag gcggcggagc ggcgggcttg ccaacacttg gtgtcacatg


181
tgagcctccc acatgtgtgc actctccatt ccagctctgt gattgaactc tgctcttatt


241
gactaggggg cacttgggca ggcatgcttc attcctggag ttgacagtca tttcataaga


301
agttggattc catgggttcc aagagaagaa gagccacctc tccttccagc agtgtcagtg


361
gagactttga tgacgggcac cattctgtgc ctacaccagg cccaagcagg aaaaggagaa


421
gactgtccaa tcttccaact gtagatccta ttgctgtgtg ccatgaactc tataacacca


481
tccgagacta taaggatgaa cagggcagac tcctctgtga gctgttcatt agggctccaa


541
agcggagaaa tcaaccagac tattatgaag tggtttctca gcccattgac ttgatgaaaa


601
tccaacagaa acttaaaatg gaagagtatg atgatgttaa tctactgact gctgacttcc


661
agctgctttt taacaatgca aaggcctact ataagccaga ttcccctgag tataaagctg


721
cttgtaaact ctgggatttg taccttcgaa caagaaatga gtttgttcag aaaggagaag


781
cagacgatga agatgatgac gaagatgggc aagacaatca aggcacactg gctgacggct


841
cttctccagg ttatctgaag gagatcctgg agcagcttct tgaagccata gttgtagcca


901
caaatccatc aggacggctc atcagtgaac tttttcagaa actgccttcc aaagtgcaat


961
atccagacta ttatgcaata attaaggaac ctatagatct caagaccatt gctcagagga


1021
tacagaatgg aagctacaaa agtatacacg caatggccaa agatatagat cttctagcaa


1081
aaaatgccaa aacatacaat gagcctgggt ctcaagtatt caaggatgcc aattcgatta


1141
aaaaaatatt ttatatgaaa aaggcagaaa ttgaacatca tgaaatgact aaatcaagtc


1201
ttcgaataag gactgcatca aatttggctg cagccaggct gacaggtcct tcgcacaata


1261
aaagcagcct tggtgaagaa agaaacccca ctagcaagta ttaccgtaat aaaagagcag


1321
tccaaggggg tcgcttgtca gcaattacca tggcacttca gtatggatca gagagtgaag


1381
aggacgctgc tttagctgct gcacgctatg aagaagggga atctgaagca gagagcatca


1441
cttccttcat ggacgtttcc aacccctttc atcagcttta cgacacagtt aggagctgta


1501
ggaatcacca agggcagctc atagctgaac ctttcttcca tttgccttca aagaaaaaat


1561
acccagatta ttatcagcaa attaaaatgc ccatatcact tcaacagatc agaacaaagc


1621
taaagaacca agaatatgaa actttagatc atttggagtg tgatctgaat ttaatgtttg


1681
aaaatgccaa acgttataac gttcccaatt cagccatcta taagcgagtt ctaaaactgc


1741
agcaagtcat gcaggcaaag aagaaggagc ttgcgaggag agatgacatt gaggacggag


1801
acagcatgat ctcctcagcc acttctgaca ctggtagtgc caaaaggaaa aggaatactc


1861
atgacagtga gatgttgggt ctcaggaggc tatccagtaa aaagaacata agaaaacagc


1921
gaatgaaaat tttattcaat gttgttcttg aagctcgaga gccaggttca ggcagaagac


1981
tttgcgatct atttatggtt aagccatcca agaaggacta tcctgattat tataaaatca


2041
tcttagagcc aatggacctg aaaataattg agcataacat ccgaaatgac aaatatgcag


2101
gtgaagaagg aatgatggaa gacatgaaac tcatgttccg caatgccagg cactacaatg


2161
aggagggctc ccaggtatac aatgatgccc atatcctgga gaagttactc aaagataaaa


2221
ggaaagagct gggccctctg cctgatgatg atgacatggc ttctcccaaa cttaaattga


2281
gtaggaagag tggtgtttct cctaagaaat caaagtacat gactccaatg cagcagaaac


2341
tgaatgaagt gtatgaagct gtaaagaact atactgataa gaggggtcgc cgccttagtg


2401
ctatatttct aagactcccc tctagatcag agctgcctga ctactacctg accattaaaa


2461
agcccatgga catggaaaaa attcgaagtc acatgatggc aaacaagtac caagacatag


2521
attctatggt agaggacttt gtcatgatgt ttaataatgc ctgtacctac aatgaaccag


2581
agtctttgat ctacaaagat gcccttgtac tgcataaagt cctccttgag actcggagag


2641
acctggaggg agatgaggat tctcatgtcc ctaatgtgac gttgctgatt caagagctca


2701
tccataacct ttttgtgtca gtcatgagtc atcaggatga cgaagggagg tgttacagcg


2761
actccttagc agaaattcct gctgtggatc ccaactctcc caataaacct ccccttacat


2821
ttgacattat caggaaaaat gttgaaagta atcggtatcg gcgacttgat ttatttcagg


2881
agcatatgtt tgaagtattg gaacgggcaa gaaggatgaa ccggacagat tccgaaatat


2941
atgaggatgc tgtagaactt cagcagtttt ttattagaat tcgtgatgaa ctctgcaaaa


3001
atggagagat ccttctttct ccagcactca gctataccac aaaacacttg cataacgatg


3061
tggaaaaaga aaaaaaggaa aaattgccta aagaaataga ggaagataaa ctaaaacgcg


3121
aagaagaaaa aagagaagct gaaaaaagtg aagattcctc aggtaccaca ggcctctcag


3181
gcttacatcg tacatacagc caggactgca gctttaagaa cagcatgtat catgtcggag


3241
attatgtcta tgttgaacct gcggaggcca atctacaacc acatatagtg tgtattgaga


3301
gactgtggga ggattcagct ggtgaaaaat ggttgtacgg ctgttggttt tatcggccaa


3361
atgaaacatt ccatttggct acacgaaaat ttctagaaaa agaagttttt aagagtgact


3421
actacaataa agtacctgtt agtaaaattc taggcaaatg tgtagtcatg tttgtcaagg


3481
aatactttaa attatgtcca gaaaactttc gcgatgagga tgtttttgtc tgtgaatcga


3541
ggtattctgc caaaaccaaa tcttttaaga aaattaaact gtggaccatg cccatcagtt


3601
cagttagatt tgtccctcgg gatgtgcctt tgcctgtggt ccgagtggcc tctgtgtttg


3661
caaatgcaga taaaggggat gatgagaaga atacagacaa ctcagatgac aatagagctg


3721
aagacaattt taacttggaa aaggaaaaag aagatgttcc tgtggagatg tccaatggtg


3781
agccaggttg ccactacttt gagcagcttc ggtacaatga catgtggctg aaggttggtg


3841
attgtgtctt catcaaatcc cacggcttgg tgcgccctcg tgtgggcaga attgagaaag


3901
tatgggtccg agatggagct gcatattttt atggccctat cttcattcat ccagaagaaa


3961
cagaacatga gcccacaaaa atgttctaca aaaaagaagt gtttctgagt aatctggaag


4021
agacctgccc tatgagttgt attctgggga aatgtgcagt gctgtcattc aaggacttcc


4081
tctcctgcag gccaactgaa ataccagaaa atgacattct gctttgtgag agccgctata


4141
atgagagtga caagcagatg aagaagttca agggtttgaa gaggttttca ctctctgcta


4201
aagttgtaga tgatgaaatc tactacttca gaaaaccaat cattcctcag aaggaaccct


4261
cacctttgtt agaaaagaag atacaattgc tagaagctaa atttgcagag ttagaaggag


4321
gagatgatga tattgaggag atgggagaag aggatagtga agtcattgaa gctccatctc


4381
tacctcaact gcagacaccc ctggccaatg agttggacct catgccctat acacccccac


4441
agtctacccc aaagtctgcc aaaggcagtg caaagaagga aagttctaaa cgaaaaatca


4501
acatgagtgg ctacattttg ttcagcagtg aaatgagagc tgtgattaaa gcccagcacc


4561
cagactactc ttttggggag ctcagcagac tggtggggac agaatggaga aaccttgaaa


4621
cagccaagaa agcagaatat gaagagcggg cagctaaagt tgctgagcag caggagagag


4681
agcgagcagc acagcaacag cagccgagtg cttctccccg agcaggcacc cctgtggggg


4741
ctctcatggg ggtggtgcca ccaccaacac caatggggat gctcaatcag cagttgacac


4801
ctgttgcagg catgatgggt ggctatccgc caggccttcc acctttgcag ggcccagttg


4861
atggccttgt tagcatgggc agcatgcagc cacttcaccc tggggggcct ccacctcacc


4921
atcttccgcc aggtgtgcct ggcctcccag gcatcccacc accgggtgtg atgaatcaag


4981
gagtagcccc catggtaggg actccagcac caggtggaag tccgtatgga caacaggtag


5041
gagttttggg acctccaggg cagcaggcac cacctccata tcctggtcct catccagctg


5101
gcccccctgt catacagcag ccaacaacgc ccatgtttgt ggctccccca ccaaagaccc


5161
aaaggcttct ccactcagag gcctacctga aatacattga aggactcagt gctgaatcca


5221
acagcattag caagtgggac caaactttgg cagctcgaag acgggatgtc catttgtcca


5281
aagaacagga gagccgccta ccttctcact ggctcaaaag taaaggggca cacaccacca


5341
tggcagatgc cctctggcgc ctacgggatt taatgcttcg agacactctc aacatccgac


5401
aggcatacaa cctagaaaat gtttaatcac atcactgttt cttctgtgga agcaaagagt


5461
tgtggagcgg tagccatttt agttactggg gtgggaggga ggaacaaagg atgataattt


5521
ttattgcatt ttattgtaca tcacacagcc atttttatat aaggacactt ttaataagct


5581
atttcaaatt tggttttgtt acattaagtt gactatcaaa tacacaaaag attttttttg


5641
catatgtttc ctttgtttaa aaccagtttc ataattggtt atatatagta atagttttat


5701
ctttacttgt taaaggactt aaatcatcaa aggttttggc ttggcttagg gttttcgttt


5761
tcttttttat aaatatatat tatatatata tacacatata aaagaaaaaa tgaaaaaaaa


5821
gtttacaaat ttaagttgac aatgaaatgt gaagttggtc ctagtttaca tcttagagga


5881
atgtatatgt atgttttaca tgcctaaata tctgcaggtt ttcttacagg taaagcgaag


5941
tgctttgaaa agtttagatt atacatgtgt gacagatgcg gcatatttgc tctattaaca


6001
cagaggctta ctatagaaat ctaaagtcaa tgctgtacat ccatccagtt agtgtaactg


6061
aagggaaatg taactttgtg ctgagttaga catctgtatt gtcagtgatt cttgtagaat


6121
atgtgctcag atctgagtta tatttagttt tggaaggtaa gttgaagagt acttttgatc


6181
agtttatgat tcagtttatg attttagttt ttgccttcat gttatacatt tatgatttga


6241
aactgtacat ctgttacctt gaaaaacatt gaagaaagta ctgaagtgtg catggaggtg


6301
gtttaagcat aatacttaac ccaagaaaga gtgtaagtgg acacaagctg tgcctgcaca


6361
tagctgtgca gggtagactg cctacataca catggccggg attctttatt tccttgttat


6421
caattatagt gctttgtttg tttcagggtt ggaattctca accagaaata atactttcta


6481
aaatatttta aaattcagct tgtgctttgg attatagaag gaaattatac tttaagaaaa


6541
tgttcacaaa aaaaaaaaaa aaaaaaggac tattacagat cccaatactt ggatttggtg


6601
accttgtctt tctttctttt cttgagacat ggtcctacta ccaaccctgg ctggactgga


6661
gctcagtgta tagaccaggc tagtctcaaa ctctgcctct tcctcccaag tgctgggatt


6721
aagggcaggt accatagtgc tcagcaacca caaccctgtc tttccaacac ggccctagcg


6781
taagcactga ggcagtgtgc agtgctcagg cagcagcaaa catttcccgg gggtggtttt


6841
gaacccgctt gggtggttgt gtggtgctga cgctgccact gccctgttgt tcattgagaa


6901
tgattgttaa atgacactct tcctttagaa tataacggat cagtactcat gtttaattgc


6961
catgcttaat aaatcatgag aacaaaagag tatagaatgg aaagcattcc ctggtagcta


7021
ctttaaatac aggagccctg taacttaata ccagtagtca accactggat ctcagttttc


7081
atcaagtatt ttaaataaat aatcttaaat tttaaaatac gtactgcaga gtatgccagt


7141
atcttattgt taaaactgaa tcaaataaat cttcgattcc tggttatttg gaccattgac


7201
tcatcatgga ctatataatg taataagatt cttttctctt aaggtatcct tgaattacac


7261
caaagaacca gaaacttaat tttggttaaa ttatttattt atttcatgca ttaattttct


7321
ttttcttttt aaaggtttag atgaggctcc ttagggagtc tctaaaaccg cttcactatc


7381
agcaaccagg agtactagaa gccagagcac tcttcctcct ggctcctccc cagtgctcta


7441
gtgctgtagg aaccaagagc cagccccagg ttccccgagg cagtaaaaat ccagcacagg


7501
gggctgtgtc cctaaggcaa gccctgatta cctttaaaaa aaaccaaaaa aacaaacaaa


7561
aaaaaaaaac ctaattaact aaagcattta aggcactatt tattttagaa tcatgctttt


7621
gaagagcatc agtgattact tagggtgtaa tatgtaaaga tcagacatct ccaaaaacag


7681
aaaaagtaca agtaaacaac acactttctc atgactttta agaactgtag taatgtggct


7741
taggaaatat aatggcctaa ttgttttcaa aatgtaagtt cctgtgaaga attttgttta


7801
tattgggttg gggacctata ggtttaaaat agaatgtcag tcagctgact taaaaaacat


7861
tggttttact aagtctgcct tccccttcta aggaagaact gagtgggtaa gggacaggtg


7921
tgtaaaatct ccaaatggat gttacagctt tcagcttgaa cgtttgtttc cagacctgat


7981
taaaatttgg tttattctaa tttctgtact atatcatctg aggttttaag tggtaactgg


8041
ttctatacca tgtatgtatc atatgtttgt tcatcaaagc tttttaatcc aaataaaaac


8101
aacagtttgc aaagtga










SEQ ID NO: 6 Mouse PBRM1 Amino Acid Sequence (NP_001074720.1)








1
mgskrrrats psssvsgdfd dghhsvptpg psrkrrrlsn lptvdpiavc helyntirdy


61
kdeqgrllce lfirapkrrn qpdyyevvsq pidlmkiqqk lkmeeyddvn lltadfqllf


121
nnakayykpd speykaackl wdlylrtrne fvqkgeadde dddedgqdnq gtladgsspg


181
ylkeileqil eaivvatnps grliselfqk lpskvqypdy yaiikepidl ktiaqriqng


241
syksihamak didllaknak tynepgsqvf kdansikkif ymkkaeiehh emtksslrir


301
tasnlaaarl tgpshnkssl geernptsky yrnkravqgg rlsaitmalq ygseseedaa


361
laaaryeege seaesitsfm dvsnpfhqly dtvrscrnhq gqliaepffh ipskkkypdy


421
yqqikmpisl qqirtklknq eyetldhlec dlnlmfenak rynvpnsaiy krvlklqqvm


481
qakkkelarr ddiedgdsmi ssatsdtgsa krkrnthdse mlglrrlssk knirkqrmki


541
lfnvvleare pgsgrrlcdl fmvkpskkdy pdyykiilep mdlkiiehni rndkyageeg


601
mmedmklmfr narhyneegs qvyndahile kllkdkrkel gplpddddma spklklsrks


661
gvspkkskym tpmqqklnev yeavknytdk rgrrlsaifl rlpsrselpd yyltikkpmd


721
mekirshmma nkyqdidsmv edfvmmfnna ctynepesli ykdalvlhkv lletrrdleg


781
dedshvpnvt lliqelihnl fvsvmshqdd egrcysdsla eipavdpnsp nkppltfdii


841
rknvesnryr rldlfqehmf evlerarrmn rtdseiyeda velqqffiri rdelckngei


901
llspalsytt khlhndveke kkeklpkeie edklkreeek reaeksedss gttglsglhr


961
tysqdcsfkn smyhvgdyvy vepaeanlqp hivcierlwe dsagekwlyg cwfyrpnetf


1021
hlatrkflek evfksdyynk vpvskilgkc vvmfvkeyfk lcpenfrded vfvcesrysa


1081
ktksfkkikl wtmpissvrf vprdvplpvv rvasvfanad kgddekntdn sddnraednf


1141
nlekekedvp vemsngepgc hyfeqlrynd mwlkvgdcvf ikshglvrpr vgriekvwvr


1201
dgaayfygpi fihpeetehe ptkmfykkev flsnleetcp mscilgkcav isfkdflscr


1261
pteipendil lcesrynesd kqmkkfkglk rfslsakvvd deiyyfrkpi ipqkepspll


1321
ekkiqlleak faeleggddd ieemgeedse vieapslpql qtplaneldl mpytppqstp


1381
ksakgsakke sskrkinmsg yilfssemra vikaqhpdys fgelsrlvgt ewrnletakk


1441
aeyeeraakv aeqqereraa qqqqpsaspr agtpvgalmg vvppptpmgm lnqqltpvag


1501
mmggyppglp plqgpvdglv smgsmqplhp ggppphhlpp gvpglpgipp pgvmnqgvap


1561
mvgtpapggs pygqqvgvlg ppgqqapppy pgphpagppv iqqpttpmfv apppktqrll


1621
hseaylkyie glsaesnsis kwdqtlaarr rdvhlskeqe srlpshwlks kgahttmada


1681
iwrlrdlmlr dtlnirqayn lenv










SEQ ID NO: 7 Human ARID2 cDNA Sequence Vairant 1 (NM_152641.3, CDS:


from 129 to 5636)








1
ggcccatgac tgagccccgc cgccgccggc cgaggaacgg gctccgggct ctggtaggaa


61
gcgctgggag cggggggcgc ttttaaaaca ccgatctggg ttttttaaaa acctcctttg


121
aaaaaataat ggcaaactcg acggggaagg cgcctccgga cgagcggaga aagggactcg


181
ctttcctgga cgagctgcgg cagttccacc acagcagagg gtcgcctttt aaaaaaatcc


241
ctgcggtggg tgggaaggag ctggatcttc acggtctcta caccagagtc actactttag


301
gcggattcgc gaaggtttct gagaagaatc agtggggaga aattgttgaa gagttcaact


361
ttcccagaag ttgttctaac gctgcctttg ctttaaaaca gtattacttg cgttacctag


421
aaaagtacga gaaagttcat cattttgggg aggatgatga tgaggtacca ccaggcaatc


481
caaagccaca gcttcctatt ggtgcaattc catcttccta caattaccag caacacagtg


541
tgtcggatta tctgcgtcaa agttatgggc tgtccatgga ctttaattcg ccaaatgatt


601
ataataaatt ggtgctttca ctgttatctg gactcccaaa tgaagtggac tttgctatta


661
acgtatgcac tctcctatca aatgaaagca agcacgtcat gcaacttgaa aaagatccta


721
aaatcatcac tttactactt gctaatgccg gggtgtttga cgacacttta ggatcctttt


781
ccactgtatt tggagaagaa tggaaagaga agactgatag agacttcgtt aagttttgga


841
aagacatcgt tgatgataat gaagttcgtg acctcatttc tgacagaaac aagtctcatg


901
aaggtacatc aggagaatgg atttgggagt ctttatttca tccacctcga aagctgggca


961
ttaacgatat tgaaggacag cgggtacttc agattgcagt gattttgaga aatctttcct


1021
ttgaggaggg caatgttaag ctcttggcag ctaatcgtac ctgtcttcgt ttcctattac


1081
tttctgcaca tagtcatttt atttctttaa ggcaattagg ccttgacaca ttaggaaata


1141
ttgcagctga gcttttactg gaccctgttg atttcaaaac tactcatctg atgtttcata


1201
ctgttacaaa atgtctaatg tcaagggata gatttttaaa gatgagaggc atggaaattt


1261
tgggaaatct ttgcaaagca gaagataatg gtgttttaat ttgtgaatat gtggatcagg


1321
attcctacag agagatcatt tgtcatctca ctttacctga tgtgctgctt gtaatctcaa


1381
cactcgaggt gctatacatg ctcacggaaa tgggagatgt tgcttgcaca aaaattgcaa


1441
aagtagaaaa gagcatagac atgttagtgt gtctggtttc tatggatatt cagatgtttg


1501
gccctgatgc actagctgcg gtaaaactca ttgaacaccc aagttccagt catcaaatgt


1561
tatctgaaat taggccacaa gctatagagc aagtccaaac ccagactcat gtagcatctg


1621
ccccagcttc cagagcagtt gtagcgcagc atgttgctcc acctccagga atagtggaaa


1681
tagatagtga gaagtttgct tgtcagtggc taaatgctca ttttgaagta aatccagatt


1741
gttctgtttc tcgagcagaa atgtattctg aatacctctc gacttgcagt aaattagctc


1801
gtggtggaat cctaacatca actggatttt ataaatgtct tagaacggtc tttccaaatc


1861
atacagtgaa gagagtggag gattccagta gcaatgggca ggcacatatt catgtggtag


1921
gagtaaaacg gagggctata ccacttccca ttcagatgta ctatcagcag caaccagttt


1981
ctacttctgt tgttcgtgtt gattctgttc ctgatgtatc tcctgctcct tcacctgcag


2041
gaatccctca tggatcacaa accataggaa accattttca gaggactcct gttgccaacc


2101
aatcttcaaa tctgactgca acacaaatgt cttttcctgt acaaggtgtt catactgtgg


2161
cacaaactgt ttcaagaatt ccacaaaatc cttcacctca tacccaccag caacaaaatg


2221
ctccagtgac tgtcattcaa agtaaagctc caattccttg tgaagttgtt aaggctacag


2281
ttatccagaa ttccataccc cagacaggag ttcctgttag tattgctgtt ggaggaggac


2341
ctccacagag ttctgttgtt cagaatcata gtacagggcc acaacctgtt acagttgtga


2401
attctcagac attgcttcac catccatctg taattccaca gcagtctcca ttacacacag


2461
tggtaccagg acagatccct tcaggcactc ctgttacagt aattcaacaa gctgtcccac


2521
agagtcatat gtttggcaga gtacagaaca taccagcatg tacttctaca gtttcacagg


2581
gtcaacagtt aatcaccaca tcaccccaac ctgtgcaaac ttcatctcaa cagacatcag


2641
ctggtagcca gtcacaagat actgttatca tagcaccccc acagtatgta acaacttctg


2701
catccaatat tgtctcagca acttcagtac agaattttca ggtagctaca ggacaaatgg


2761
ttactattgc tggtgtccca agtccacaag cctcaagggt agggtttcag aacattgcac


2821
caaaacctct cccttctcag caagtttcat ctacagtggt acagcagcct attcaacaac


2881
cacagcagcc aacccaacaa agcgtagtga ttgtaagcca gccagctcaa caaggtcaaa


2941
cttatgcacc agccattcac caaattgttc ttgctaatcc agcagctctt ccagctggtc


3001
agacagttca gctaactgga caacctaaca taactccatc ttcttcacca tcacctgtcc


3061
cagctactaa taaccaagtc cctaccgcca tgtcgccgtc ctctacccct caatcacagg


3121
gaccacctcc tactgtcagt caaatgttat ctgtgaaaag gcagcaacag cagcaacatt


3181
caccagcacc cccaccacag caggtacaag tacaagttca gcagccccaa caagtacaga


3241
tgcaagttca acctcaacag tcgaatgcag gagttggtca gcctgcctct ggtgagtcga


3301
gtctgattaa acagcttctg cttccgaaac gtggtccttc aacaccaggt ggtaagctta


3361
ttctcccagc tccacagatt cctcccccta ataatgcaag agctcctagc cctcaggtgg


3421
tctatcaggt ggccagtaac caagccgcag gttttggagt gcaggggcaa actccagctc


3481
agcagctatt ggttgggcag caaaatgttc agttggtccc aagtgcaatg ccaccctcag


3541
ggggagtaca aactgtgccc atttcgaact tacaaatatt gccaggtcca ctgatctcaa


3601
atagcccagc aaccattttc caagggactt ctggcaacca ggtaaccata acagttgtgc


3661
caaatacgag ttttgcacct gcaactgtga gtcagggaaa tgcaactcag ctcattgctc


3721
cagcaggaat taccatgagc ggaacgcaga caggagttgg acttccagta caaacgcttc


3781
cagccactca agcatctcct gctggacaat catcatgtac tactgctact cccccattca


3841
aaggtgataa aataatttgc caaaaggagg aggaagcaaa ggaagcaaca ggtttacatg


3901
ttcatgaacg taaaattgaa gtcatggaga acccgtcctg ccgacgagga gccacaaaca


3961
ccagcaatgg ggatacaaag gaaaatgaaa tgcatgtggg aagtctttta aatgggagaa


4021
agtacagtga ctcaagtcta cctccttcaa actcagggaa aattcaaagt gagactaatc


4081
agtgctcact aatcagtaat gggccatcat tggaattagg tgagaatgga gcatctggga


4141
aacagaactc agaacaaata gacatgcaag atatcaaaag tgatttgaga aaaccgctag


4201
ttaatggaat ctgtgatttt gataaaggag atggttctca tttaagcaaa aacattccaa


4261
atcataaaac ttccaatcat gtaggaaatg gtgagatatc tccaatggaa ccacaaggga


4321
ctttagatat cactcagcaa gatactgcca aaggtgatca actagaaaga atttctaatg


4381
gacctgtatt aactttgggt ggttcatctg tgagcagtat acaggaggct tcaaatgcgg


4441
caacacagca atttagtggt actgatttgc ttaatggacc tctagcttca agtttgaatt


4501
cagatgtgcc tcagcaacgc ccaagtgtag ttgtctcacc acattctaca acctctgtta


4561
tacagggaca tcaaatcata gcagttcccg actcaggatc aaaagtatcc cattctcctg


4621
ccctatcatc tgacgttcgg tctacaaatg gcacagcaga atgcaaaact gtaaagaggc


4681
cagcagagga tactgatagg gaaacagtcg caggaattcc aaataaagta ggagttagaa


4741
ttgttacaat cagtgacccc aacaatgctg gctgcagcgc aacaatggtt gctgtgccag


4801
caggagcaga tccaagcact gtagctaaag tagcaataga aagtgctgtt cagcaaaagc


4861
aacagcatcc accaacatat gtacagaatg tggtcccgca gaacactcct atgccacctt


4921
caccagctgt acaagtgcag ggccagccta acagttctca gccttctcca ttcagtggat


4981
ccagtcagcc tggagatcca atgagaaaac ctggacagaa cttcatgtgt ctgtggcagt


5041
cttgtaaaaa gtggtttcag acaccctcac aggttttcta ccatgcagca actgaacatg


5101
gaggaaaaga tgtatatcca gggcagtgtc tttgggaagg ttgtgagcct tttcagcgac


5161
agcggttttc ttttattacc cacttgcagg ataagcactg ttcaaaggat gccctacttg


5221
caggattaaa acaagatgaa ccaggacaag caggaagtca gaagtcttct accaagcagc


5281
caactgtagg gggcacaagc tcaactccta gagcacaaaa ggccattgtg aatcatccca


5341
gtgctgcact tatggctctg aggagaggat caagaaacct tgtctttcga gattttacag


5401
atgaaaaaga gggaccaata actaaacaca tccgactaac agctgcctta atattaaaaa


5461
atattggtaa atattcagaa tgtggtcgca gattgttaaa gagacatgaa aataacttat


5521
cagtgctagc cattagtaac atggaagctt cctccaccct tgccaaatgc ctttatgaac


5581
ttaattttac agttcagagt aaggaacaag aaaaagactc agaaatgctg cagtgaaaaa


5641
taattccact tacacagtgg gggactcaaa gtcagccaca tttcacatac tgttactgaa


5701
gaaagcacca agtcttaatg gaacaaagac catagaatga attattttat ctcctcccat


5761
gatgctgaga ggaagcttcg tattctgatc tctgagtgaa tccctttgtt ctctgtttaa


5821
aaaaatctaa aaagaaaaag gaaaaaaaaa aaagaactgc tgtgggattg tcaaccagct


5881
tatctgcagg atgtttcaga tctgataaat cctgatggaa actggtatga tcagaattca


5941
gtaccatcca cattggaata tacatggaat attgtaaaac ctacatgagc agatgaaata


6001
gaagcattaa atatttttat ctatatccaa aaaggagcac atttttatat ttacaaaacc


6061
gtttaagctg gtttgaataa tttaaaaaag tttcagcaca cctatacccc cgatctcaga


6121
gggggccacc aatatctagc tatggatcgt gtgttttgtt tagaaatcag tagcttggtt


6181
ttcttacttg agccaatata ttttcactta tttattatca taaaaattta ccagtctgaa


6241
tagatcttgt aaatatttgt gaatagaatg aatacctttc atgccactgc agccactgga


6301
aatacattct gcggtgtcct agaagcatca ttggtaggtt ctaaagtttt ctagactttc


6361
ctgtcaattg taagtaattg tgatatattc tatgcagtgg atgaatgttc tttaaatttg


6421
tgtaaatact tctgcaaagg tactgatgct gtaaagtcaa aacagttttg tggaactgtg


6481
attttttttt cttttttctt tttttttttc tttttttttt tgtattatac accttgtaga


6541
actcattttg ctggctgaaa gagtatggaa taatatatct catgtcattt tttagaagaa


6601
aaactatttg aaggtatttt ttggttttcc ttaacatgta tccactgtaa acgtttgtcg


6661
tgtacaagct cagagcttgg acagaatttt ttgtatttgt aaattggttt aaatacatgg


6721
aattttatac aggttttctc ctgtgttata tatgcattat gtgcaggtat gatattttct


6781
tcactacttt ttctatctta atatagtgtg gaattttatt gtattattct tccattctta


6841
atactgtacc acattcctgc tcagaaactg ctcacttcct taaattgtct tttttccccc


6901
agcgtgaaat gtatccattt ataactgcct attgcctgtt ctattagcat ccaaaaatgt


6961
ggaaggcctc ccaaccacca tttctgctgt gtccttagga tgtgcagtaa aaaatataga


7021
cctaacagtt tatgttatag aatggcttta tttactttgg tgactgttta tagtttttaa


7081
ataaaagact gaacattttc ttgagtcctt catttctgag tatgcttaag acatcttaaa


7141
aatatagaga gaattctaaa ttcagctgaa ggcaaggtat aacggtcacc tacctatttg


7201
attatatgtt gattgataac atattaaata gagaacaaat aagagaggtc ctttacatga


7261
caaatttgca tgaaataagc agattaacca agtatttatt tttcatcttg ttataatgca


7321
gagcaaatgt agagaacagc aaatgattga tgcagttaaa gctcaatatg ccttttttta


7381
ctggatactg tacatttggc taaaagcttt tattgtttga tgttgtgttt cttgactgtt


7441
tattcagaat cacagtgtat ccaaatcttc agcttgaatt tggaggcaga ttcttagagt


7501
gaaaaagcct cagtttccat attaaaaatg ttttaaatat tttgattgaa ttagtaccaa


7561
tgtaaaatct agtttcttcc tgaaggagga tccctggcgc tgtcctgcca tgtctcaaag


7621
gaatgtttga gaaacttcat ctaatattag ttataaggtt gtggaattta tgcttggccc


7681
accttccaag actggcactg cccaacagac accgctgaaa tcatgtgggt atccctagga


7741
tggccttcag agccctcaaa cttacaagca cctggtagtt gacatcatat ggggaatttt


7801
ctattcaccg tacttatcca aaaatctctt ttaaaaagta aatttgtgca acaacgttta


7861
tttgaaagat aatgtcttct caaaatcaga aactgcagtg gtaattaaat taatagaaaa


7921
gagaacaaac tgcaggttta gaaaaatggt tttcatattc accattcttc cacctcattg


7981
aattgcatgc tgtagttcta gcttttctgc tataatatgt aaatatgact gtagcctttt


8041
aagcttcagt ctcagcagag aatttcctaa atgcgtttga cctaatgaaa ctgatcatgg


8101
cttcccactt aggtttttct tcttatagct ttatagaact atataataat atggacttgc


8161
tgtgtaatgg aattaaagtg cttttgcaca ataagttctg caaaaccctc tcattcatga


8221
aaaggtgctc cttgctagac agaaacttgc tgatttacag tattgttatt tttgtctaaa


8281
gttctgtaaa tacatgcttt aatgttatct ttgagaaatc tatgtaaata atatagtcta


8341
caacatagag actgtataat tctgtgttat atatgtgcct agtgctctgt tggcactcaa


8401
taaattttaa gtaacaaaat tgataatcat atagcgaagg catatttttc ttccaagctc


8461
aagtcaggat tgtgactata tattaatgag actcagtaat ccaacccaca cctgagaact


8521
cgtctcatta ctttatagtc atgtcatgta tgttttttta accatgaaat gacaataaaa


8581
tgatttttaa aatgagaaaa aaaaaaaaaa aaaaaaaaa










SEQ ID NO: 8 Human ARID2 Amino Acid Sequence Isoform A (NP_6X9854.2)








1
manstgkapp derrkglafl delrqfhhsr gspfkkipav ggkeldlhgl ytrvttlggf


61
akvseknqwg eiveefnfpr scsnaafalk qyylryleky ekvhhfgedd devppgnpkp


121
qlpigaipss ynyqqhsvsd ylrqsyglsm dfnspndynk lvlsllsglp nevdfainvc


181
tllsneskhv mqlekdpkii tlllanagvf ddtlgststv fgeewkekrd rdtvkfwkdi


241
vddnevrdli sdrnkshegt sgewiweslf hpprklgind iegqrvlqia vilrnlsfee


301
gnvkllaanr tclrflllsa hshfislrql gldtlgniaa ellldpvdfk tthlmfhtvt


361
kclmsrdrfl kmrgmeilgn lckaedngvl iceyvdqdsy reiichltlp dvllvistle


421
vlymlremgd vactkiakve ksidmlvclv smdiqmtgpd alaavklieh pssshqmlse


481
irpqaieqvq tqthvasapa sravvaqhva pppgiveids ekfacqwlna hfevnpdcsv


541
sraemyseyl stcsklargg iltstgfykc lrtvfpnhtv krvedsssng qahihvvgvk


601
rraiplpiqm yyqqqpvsts vvrvdsvpdv spapspagip hgsqtignhf qrtpvanqss


661
nltarqmsfp vqgvhtvaqt vsripqnpsp hthqqqnapv tviqskapip cevvkatviq


721
nsipqtgvpv siavgggppq ssvvqnhstg pqpvtvvnsq tllhhpsvip qqsplhtvvp


781
gqipsgtpvt viqqavpqsh mfgrvqnipa ctstvsqgqq littspqpvq tssqqtsags


841
qsqdtviiap pqyvttsasn ivsatsvqnf qvatgqmvti agvpspqasr vgfqniapkp


901
lpsqqvsstv vqqpiqqpqq ptqqsvvivs qpaqqgqtya paihqivlan paalpagqtv


961
qlrgqpnitp ssspspvpat nnqvptamss sstpqsqgpp ptvsqmlsvk rqqqqqhspa


1021
pppqqvqvqv qqpqqvqmqv qpqqsnagvg qpasgessli kqlllpkrgp stpggklilp


1081
apqipppnna rapspqvvyq vasnqaagfg vqgqtpaqql lvgqqnvqlv psamppsggv


1141
qtvpisnlqi lpgplisnsp atifqgtsgn qvtitvvpnt sfapatvsqg natqliapag


1201
itmsgtqtgv glpvqtlpat qaspagqssc ttatpptkgd kiicqkeeea keatglhvhe


1261
rkievmenps crrgatntsn gdtkenemhv gsllngrkys dsslppsnsg kiqsetnqcs


1321
lisngpslel gengasgkqn seqidmqdik sdlrkplvng icdfdkgdgs hlsknipnhk


1381
tsnhvgngei spmepqgtld itqqdtakgd qlerisngpv ltlggssvss iqeasnaatq


1441
qfsgtdllng plasslnsdv pqqrpsvvvs phsttsviqg hqiiavpdsg skvshspals


1501
sdvrstngta ecktvkrpae dtdretvagi pnkvgvrivt isdpnnagcs atmvavpaga


1561
dpstvakvai esavqqkqqh pptyvqnvvp qntpmppspa vqvqgqpnss qpspfsgssq


1621
pgdpmrkpgq nfmclwqsck kwfqtpsqvf yhaatehggk dvypgqclwe gcepfqrqrf


1681
sfithlqdkh cskdallagl kqdepgqags qksstkqptv ggtsstpraq kaivnhpsaa


1741
lmalrrgsrn lvfrdftdek egpitkhirl taalilknig kysecgrrll krhennlsvl


1801
aisnmeasst lakclyelnf tvqskeqekd semlq










SEQ ID NO: 9 Human ARID2 cDNA Sequence Vairant 2 (NM_001347839.1. CDS:


from 129 to 5495)








1
ggcccatgac tgagccccgc cgccgccggc cgaggaatgg gctccgggct ctggtaggaa


61
gcgctgggag cggggggcgc ttttaaaaca ccgatctggg ttttttaaaa acctcctttg


121
aaaaaataat ggcaaactcg acggggaagg cgcctccgga cgagcggaga aagggactcg


181
ctttcctgga cgagctgcgg cagttccacc acagcagagg gtcgcctttt aaaaaaatcc


241
ctgcggtggg tgggaaggag ctggatcttc acggtctcta caccagagtc actactttag


301
gcggattcgc gaaggtttct gagaagaacc agtggggaga aattgttgaa gagttcaact


361
ttcccagaag ttgtcctaac gctgcctttg ctttaaaaca gtattacttg cgttacctag


421
aaaagtacga gaaagttcat cattttgggg aggatgatga tgaggtacca ccaggcaatc


481
caaagccaca gcttcctatt ggtgcaattc catcttccta caattaccag caacacagtg


541
tgtcggatta tctgcgtcaa agttatgggc tgtccatgga ctttaattcg ccaaatgatt


601
ataataaatt ggtgctttca ctgttatctg gactcccaaa tgaagtggac tttgctatta


661
acgtatgcac tctcctatca aatgaaagca agcacgtcat gcaacttgaa aaagatccta


721
aaatcatcac tccactactt gctaatgccg gggtgtttga cgacacttta ggatcctttt


781
ccactgtatt tggagaagaa tggaaagaga agactgatag agacttcgtt aagttttgga


841
aagacatcgt tgatgataat gaagtccgtg acctcatttc tgacagaaac aagtctcatg


901
aaggtacatc aggagaatgg atttgggagt ctttatttca tccacctcga aagctgggca


961
ttaacgacat tgaaggacag cgggtacttc agattgcagt gattttgaga aacctttcct


1021
ttgaggaggg caatgttaag ctcttggcag ctaatcgtac ctgtcttcgt ttcctattac


1081
tttctgcaca tagtcatttt atttctttaa ggcaattagg ccttgacaca ttaggaaata


1141
ttgcagctga gcttttactg gaccctgttg atttcaaaac tactcatctg atgtttcata


1201
ctgttacaaa atgtctaatg tcaagggata gatttttaaa gatgagaggc atggaaattt


1261
tgggaaatct ttgcaaagca gaagataatg gtgttttaat ttgtgaatat gtggatcagg


1321
attcctacag agagatcatt tgtcatctca ctttacctga tgtgctgctt gtaatctcaa


1381
cactcgaggt gctatacatg ctcacggaaa tgggagatgt tgcttgcaca aaaattgcaa


1441
aagtagaaaa gagcatagac atgttagtgt gtctggtttc tatggatatt cagatgtttg


1501
gccctgatgc actagctgcg gtaaaactca ttgaacaccc aagttccagt caccaaatgt


1561
tatctgaaat taggccacaa gctatagagc aagtccaaac ccagactcat gtagcatctg


1621
ccccagcttc cagagcagtt gtagcgcagc atgttgctcc acctccagga atagtggaaa


1681
tagatagtga gaagtttgct tgtcagtggc taaacgctca ttttgaagta aatccagatt


1741
gttctgtttc tcgagcagaa atgtattctg aatacctctc gacttgcagt aaattagctc


1801
gtggtggaac cctaacatca actggatttt ataaatgtct tagaacggtc tttccaaatc


1861
atacagtgaa gagagtggag gattccagta gcaatgggca ggcacatatt catgtggtag


1921
gagtaaaacg gagggctata ccacttccca ttcagatgta ctatcagcag caaccagttt


1981
ctacttctgt tgttcgtgtt gattctgttc ctgatgtatc tcctgctcct tcacctgcag


2041
gaatccctca tggatcacaa accataggaa accattttca gaggactcct gttgccaacc


2101
aatcttcaaa tctgactgca acacaaatgt cttttcctgt acaaggtgtt catactgtgg


2161
cacaaactgt ttcaagaatt ccacaaaatc cttcacctca tacccaccag caacaaaatg


2221
ctccagtgac tgccattcaa agtaaagctc caatcccttg tgaagttgtt aaggctacag


2281
ttatccagaa ttccataccc cagacaggag tccctgttag tattgttgtt ggaggaggac


2341
ctccacagag ttctgttgtt cagaatcata gtacagggcc acaacctgtt acagttgtga


2401
attctcagac attgcttcac catccatctg taattccaca gcagtctcca ttacacacag


2461
tggtaccagg acagatccct tcaggcactc ctgttacagt aattcaacaa gctgtcccac


2521
agagtcatat gtttggcaga gtacagaaca taccagcatg tacttctaca gtttcacagg


2581
gtcaacagtt aatcaccaca tcaccccaac ctgtgcaaac ttcatctcaa cagacatcag


2641
ctggtagcca gtcacaagat actgttatca tagcaccccc acagtatgta acaacttctg


2701
catccaatat tgtctcagca acttcagtac agaattttca ggtagctaca ggacaaatgg


2761
ttactattgc tggtgtccca agtccacaag cctcaagggt agggtttcag aacattgcac


2821
caaaacctct cccttctcag caagtttcat ctacagtggt acagcagcct attcaacaac


2881
cacagcagcc aacccaacaa agcgtagtga ttgtaagcca gccagctcaa caaggtcaaa


2941
cttatgcacc agccattcac caaattgttc ttgctaatcc agcagctctt ccagctggtc


3001
agacagttca gctaactgga caacctaaca taactccatc ttcttcacca tcacctgtcc


3061
cagctactaa taaccaagtc cctactgcca tgtcgtcgtc ctctacccct caatcacagg


3121
gaccacctcc tactgtcagt caaatgttat ctgtgaaaag gcagcaacag cagcaacatt


3181
caccagcacc cccaccacag caggtacaag tacaagttca gcagccccaa caagtacaga


3241
tgcaagttca acctcaacag tcgaatgcag gagttggtca gcctgcctct ggtgagtcga


3301
gtctgattaa acagcttctg cttccgaaac gtggtccttc aacaccaggt ggtaagctta


3361
ttctcccagc tccacagatt cctcccccta ataatgcaag agctcctagc cctcaggtgg


3421
tctatcaggt ggccagtaac caagccgcag gttttggagt gcaggggcaa actccagctc


3481
agcagctatt ggttgggcag caaaatgttc agttggtccc aagtgcaatg ccaccctcag


3541
ggggagtaca aactgtgccc atttcgaact tacaaatatt gccaggtcca ctgatctcaa


3601
atagcccagc aaccattttc caagggactt ctggcaacca ggtaaccata acagttgtgc


3661
caaatacgag ttttgcacct gcaactgtga gtcagggaaa tgcaactcag ctcattgctc


3721
cagcaggaat taccatgagc ggaacgcaga caggagttgg acttccagta caaacgcttc


3781
cagccactca agcatctcct gctggacaat catcatgtac tactgctact cccccattca


3841
aaggtgataa aataatttgc caaaaggagg aggaagcaaa ggaagcaaca ggtttacatg


3901
ttcatgaacg taaaattgaa gtcatggaga acccgtcctg ccgacgagga gccacaaaca


3961
ccagcaatgg ggatacaaag gaaaatgaaa tgcatgtggg aagtctttta aatgggagaa


4021
agtacagtga ctcaagtcta cctccttcaa actcagggaa aattcaaagt gagactaatc


4081
agtgctcact aatcagtaat gggccatcat tggaattagg tgagaatgga gcatctggga


4141
aacagaactc agaacaaata gacatgcaag atatcaaaag tgatttgaga aaaccgctag


4201
ttaatggaat ttgtgatttc gataaaggag acggttctca tttaagcaaa aacattccaa


4261
atcataaaac ttccaatcat gtaggaaatg gcgagatatc tccaatggaa ccacaaggga


4321
ccttagatat cactcagcaa gatactgcca aaggtgatca actagaaaga atttctaatg


4381
gacctgtatt aactttgggt ggtccatctg tgagcagtat acaggaggct tcaaatgcgg


4441
caacacagca atttagtggt actgatttgc ttaatggacc tctagcttca agtttgaatt


4501
cagatgtgcc tcagcaacgc ccaagtgtag ttgtcccacc acattctaca acctctgtta


4561
tacagggaca tcaaatcata gcagttcccg actcaggatc aaaagtatcc cattctcctg


4621
ccctatcatc tgacgttcgg tctacaaatg gcacagcaga atgcaaaact gtaaagaggc


4681
cagcagagga tactgatagg gaaacagtcg caggaattcc aaataaagta ggagttagaa


4741
ttgttacaat cagtgacccc aacaatgctg gctgcagcgc aacaatggtt gctgtgccag


4801
caggagcaga tccaagcact gtagctaaag tagcaacaga aagcgccgtt cagcaaaagc


4861
aacagcatcc accaacatat gtacagaatg tggtcccgca gaacactcct atgccacctt


4921
caccagctgc acaagtgcag ggccagccta acagttctca gccttctcca ttcagcggat


4981
ccagtcagcc tggagatcca atgagaaaac ctggacagaa cttcatgtgt ctgtggcagt


5041
cttgtaaaaa gtggtttcag acaccctcac aggttttcta ccatgcagca actgaacatg


5101
gaggaaaaga tgtatatcca gggcagcgtc tttgggaagg ttgtgagcct tttcagcgac


5161
agcggctttc ttttattacc cacttgcagg ataagcactg ttcaaaggat gccctacttg


5221
caggattaaa acaagatgaa ccaggacaag caggaagtca gaagtcttct accaagcagc


5281
caactgtagg gggcacaagc tcaactccta gagcacaaaa ggccattgtg aatcatccca


5341
gtgctgcact tatggctctg aggagaggat caagaaacct tgtctttcga gattttacag


5401
atgaaaaaga gggaccaata actaaacaca tccgactaac agctgcctta atattaaaaa


5461
atattggtaa atattcagaa tgtggtcgca ggcgagtaat atgttttctg tagccaaagt


5521
gaatttagtt tattttattt ttacatataa gttaataaaa ttagataact gtattttctt


5581
cattgttttt ctcaccaatt ttgcaaatac atccaaaagt ttatgcctag gtcaggccat


5641
gatgagctct taaaagtcaa aaataaatag aagttaaaac aaccaaaaaa aaaaaaaaaa


5701
aaa










SEQ ID NO: 10 Human ARID2 Amino Acid Sequence Isoform B (NP_001334768.1)








1
manstgkapp derrkglafl delrqfhhsr gspfkkipav ggkeldlhgl ytrvttlggf


61
akvseknqwg eiveefnfpr scsnaafalk qyylryleky ekvhhfgedd devppgnpkp


121
qlpigaipss ynyqqhsvsd ylrqsyglsm dfnspndynk lvlsllsglp nevdfainvc


181
tllsneskhv mqlekdpkii tlllanagvf ddtlgsfstv fgeewkektd rdfvkfwkdi


241
vddnevrdli sdrnkshegt sgewiweslf hpprklgind iegqrvlqia vilrnlsfee


301
gnvkllaanr tclrflllsa hshfislrql gldtlgniaa ellldpvdfk tthlmfhtvt


361
kclmsrdrfl kmrgmeilgn lckaedngvl iceyvdqdsy reiichltlp dvllvistle


421
vlymltemgd vactkiakve ksidmlvclv smdiqmfgpd alaavklieh pssshqmlse


481
irpqaieqvq tqthvasapa sravvaqhva pppgiveids ekfacqwlna hfevnpdcsv


541
sraemyseyl stcsklargg iltstgfykc lrtvfpnhtv krvedsssng qahihvvgvk


601
rraiplpiqm yyqqqpvsts vvrvdsvpdv spapspagip hgsqtignhf qrtpvanqss


661
nltatqmsfp vqgvhtvaqt vsripqnpsp hthqqqnapv tviqskapip cevvkatviq


721
nsipqtgvpv siavgggppq ssvvqnhstg pqpvtvvnsq tllhhpsvip qqsplhtvvp


781
gqipsgtpvt viqqavpqsh mfgrvqnipa ctstvsqgqq littspqpvq tssqqtsags


841
qsqdtviiap pqyvttsasn ivsatsvqnf qvatqqmvti agvpspqasr vgfqniapkp


901
lpsqqvsstv vqqpiqqpqq ptqqsvvivs qpaqqgqtya paihqivlan paalpagqtv


961
qltgqpnitp ssspspvpat nnqvptamss sstpqsqgpp ptvsqmlsvk rqqqqqhspa


1021
pppqqvqvqv qqpqqvqmqv qpqqsnagvg qpasgessli kqlllpkrgp stpggklilp


1081
apqipppnna rapspqvvyq vasnqaagfg vqgqtpaqql lvgqqnvqlv psamppsggv


1141
qtvpisnlqi lpgplisnsp atifqgtsgn qvtitvvpnt sfapatvsqg natqliapag


1201
itmsgtqtgv glpvqtlpat qaspagqssc ttatppfkgd kiicqkeeea keatglhvhe


1261
rkievmenps crrgatntsn gdtkenemhv gsllngrkys dsslppsnsg kiqsetnqcs


1321
lisngpslel gengasgkqn seqidmqdik sdlrkplvng icdfdkgdgs hlsknipnhk


1381
tsnhvgngei spmepqgtld itqqdtakgd qlerisngpv ltlggssvss iqeasnaatq


1441
qfsgtdllng plasslnsdv pqqrpsvvvs phsttsviqg hqiiavpdsg skvshspals


1501
sdvrstngta ecktvkrpae dcdretvagi pnkvgvrivt isdpnnagcs atmvavpaga


1561
dpstvakvai esavqqkqqh pptyvqnvvp qntpmppspa vqvqgqpnss qpspfsgssq


1621
pgdpmrkpgq nfmclwqsck kwfqtpsqvf yhaatehggk dvypgqclwe gcepfqrqrf


1681
sfithlqdkh cskdallagl kqdepgqags qksstkqptv ggtsstpraq kaivnhpsaa


1741
lmalrrgsrn lvfrdftdek egpitkhirl taalilknig kysecgrr










SEQ ID NO 11 Mouse ARID2 cDNA Sequence (NM_175251.4. CDS: from 129 to


5495)








1
gcgccgccgc cgccgccgcc gccgccgccg ccgccgccac cgccggccca tgactgagcc


61
ccgccaccgc cggccgagga atgggctccg ggcgctggta gggagcgcgg ggagcggggg


121
ccgcgtttga accgcgatct gggttttttc gggagacctc ctttggcaaa ataatggcaa


181
actcgacggg gaaggcgcct ccggacgagc ggaggaaggg actggctttc ctggacgagc


241
tgcggcagtt ccaccacagc agagggtcgc cgtttaagaa gatccctgcg gtgggtggga


301
aggagctgga tcttcacggg ctctacacca gagtcactac tttaggcgga ttcgcgaagg


361
tttctgagaa gaatcagtgg ggagaaattg ttgaagagtt caactttccc agaagttgtt


421
ccaacgctgc ctttgcttta aaacagtatt acttgcgtta tctagaaaag tacgagaaag


481
ttcatcattt tggggaagat gatgatgagg taccaccagg caatccaaag ccacagcttc


541
ctattggtgc aatcccatct tcctacaatt accagcaaca cagcgtgtca gattatctac


601
gccaaagtta tgggttatct atggatttta attcgccaaa tgattataat aaactggtgc


661
tttcactgtt atctggactc ccaaatgaag tggacttcgc tattaatgtg tgcactctcc


721
tatcaaatga aagcaagcac gtcatgcagc ttgagaagga tcccaaaatc atcactttac


781
tgctcgctaa tgcgggggtg ttcgatgaca ctttaggatc attctcttct gtctttggag


841
aagagtggcg agagaagact gatagagact ttgttaagtt ttggaaagac attgttgatg


901
acaatgaagt gcgagatctc atttctgaca gaaacaaggc tcatgaagat acaccaggag


961
aatggatttg ggaatcttta tttcatccac ctcgaaagct gggcattaat gacatcgaag


1021
gccagcgggt tctgcagatc gcagtgatct tgcggaacct ctcctttgag gagagcaatg


1081
ttaagctctt ggcagctaat cgcacctgtc tgcgtttcct gttgctctct gcacacagtc


1141
actttatttc attaaggcag ctaggcctgg acaccttagg gaatatcgca gctgagcttt


1201
tactggaccc tgtggatttc agaaccactc atctgatgtt tcacactgtt acaaaatgcc


1261
tgatgtcaag ggataggttt ttaaagatga ggggcatgga aattttggga aatctctgca


1321
aagcagagga taacggtgtt ttgatttgtg aatatgtgga tcaagattcc tatagagaga


1381
taatttgtca ccccactctg cccgatgtgc tgctggtgac cccaaccctg gaggtgctgt


1441
acatgctcac tgaaatgggg gacgtggcct gcacaaagat egegaaagtg gagaagagca


1501
tagacgtgct ggtgtgtctg gtctctatgg acgctcagat gtttggacct gacgcacttg


1561
ctgccgtgaa gctcattgag catccgagct ccagtcacca agtgttatca gagattaggc


1621
cgcaagccat agagcaggtc caaacccaga cccacatagc ctccggtcca gcttccagag


1681
cagttgtagc acagcatgct gccccccctc caggaatcgt ggaaatagac agtgagaagt


1741
tcgcttgtca gtggctaaat gctcattttg aagtaaatcc agactgttcc gtctctcggg


1801
cagaaatgta ttcagagtac ctctcaactt gcagtaaatt agctcgcggt ggcatcctca


1861
catcaactgg gttttataag tgtcttagaa cagtttttcc aaatcataca gtgaagaggg


1921
tagaagattc cactagcagt gggcaggcgc atatccatgt cataggagtg aagcggcggg


1981
ctctcccgct ccccatccag atgtactatc agcagcagcc aatttccact cctgttgtcc


2041
gtgttgatgc tgttgctgat ctatctccaa ctccttcacc tgcaggaatc cctcatggac


2101
cacaggctgc agggaatcat tttcagagga ctcctgtcac caatcaatct tcaaatttga


2161
ctgcaacaca aatgtctttt ccggtacaag gcattcatac tgtggcacag actgtttcca


2221
gaattccacc aaatccttca gttcataccc accagcaaca aaattctcca gtaactgtca


2281
ttcagaataa agctccaatt ccttgtgaag tcgttaaggc aacagtaatc cagaactctg


2341
tgccccagac ggcagttcct gtgagtatct ctgttggagg agcacctgca cagaattctg


2401
tgggtcagaa ccatagtgca gggccacagc ctgttacagt tgtaaattct cagacattac


2461
ttcaccatcc ttctgtgatg ccacagccat ctccactaca cacagtggtg cccggacagg


2521
tcccttcagg cactcctgtc acagtaatcc agcagactgc accgcagagt cgtatgtttg


2581
gacgagtaca gagcatacca gcgtgtacat ctaccgtctc acagggtcag cagttaatca


2641
ccacatcacc acagcctatg cacacttcac ctcaacagac agcagctggt agccagccac


2701
aagacactgt tatcatagca cccccacagt acgtaacaac ttctgcatcc aatatcgtct


2761
cagcgacttc agtacagaat ttccaggtag ctacaggaca ggtggtcacc atagctggtg


2821
tcccgagccc acagccctcc agggtaggat tccagaacat tgcgcccaag ccacttcctt


2881
ctcagcaagt ttcaccatca gtggtccagc agcctattca acaaccacag cagcctgctc


2941
agcagagtgt agtgattgtg agccagccag cacagcaagg ccaggcgtac gcaccagcca


3001
ttcaccagat cgttctcgct aacccggcag ctctccctgc cggtcagacg gttcagctaa


3061
ctggacaacc aaacataact ccatcgtcat caccatcacc tgtcccgcct actaataacc


3121
aagtccctac tgccatgtca tcttcttcca cccttcagtc acagggaccc cctcctactg


3181
tcagtcagat gctctctgtg aagaggcagc agcagcagca gcactcacca gcagcgccag


3241
cacagcaggt ccaggtccag gttcagcagc cgcagcaggt ccaggtgcaa gtccagccgc


3301
agcaaccgag tgctggggtc ggtcagcctg ctcccaacga gtctagtctc atcaagcagc


3361
tgctgctgcc aaagcggggc ccttcaaccc cagggggcaa gcttatcctc ccagcccctc


3421
agattcctcc ccctaacaat gcaagagctc ctagccctca ggtggtctat caggtggcca


3481
ataaccaagc agctggtttt ggagtgcagg ggcaaactcc ggctcagcag ctattggttg


3541
ggcagcaaaa tgttcagttg gtccaaagtg caatgccacc cgcaggggga gtgcaaaccg


3601
tgcccatttc gaacttacaa atattgccgg gtccgctgat ctcaaacagc ccagcaacca


3661
ttttccaagg gacttctggc aaccaggtaa ctataacagt tgtgccaaat accagttttg


3721
caactgcgac tgtgagtcag ggaaacgctg ctcagctcat tgcgccagcc ggtcttagca


3781
tgagcggagc gcaggcaagc gctggacttc aggtgcagac gcttccagcc ggacaatcag


3841
cgtgtaccac tgctcccctc ccgttcaaag gcgacaagat catttgccaa aaggaggagg


3901
aggcaaagga agcaacaggt ctacatgttc atgaacggaa gattgaggtc atggagaatc


3961
cttcctgtcg gcgaggaacc acaaacacca gcaacgggga tacaagtgag agtgaactcc


4021
aggtgggaag tcttttaaat gggagaaagt atagtgactc aagtctacct ccttcaaact


4081
cagggaaact tcagagtgag acgagccagt gctcactaat cagcaatggg ccatcgttgg


4141
aactaggtga gaatggagcg cctggaaaac agaactcaga accagtagac atgcaggatg


4201
tcaaaggtga tctgaaaaaa gccctcgtca atggaatctg tgattttgat aaaggagatg


4261
gttctcattt aagcaaaaac attccaaatc acaaaacttc taatcatgta ggaaatggtg


4321
agatatctcc agtagaacca caagggactt cgggtgccac tcagcaagat actgccaaag


4381
gtgaccaact agaaagagtt tctaatggac ctgtgttaac tctgggtggg tcaccgtcca


4441
caagcagtat gcaagaagcc ccgagtgtgg cgacaccgcc gttgagtggt actgacctgc


4501
ctaacggacc tctagcttca agtttgaatt cagatgtgcc tcagcaacgc ccaagtgtag


4561
ttgtctcacc acattctaca gcccctgtca tacaggggca tcaagtcata gcagttcccc


4621
actcaggacc tagagtgacc ccttctgctc tatcatctga tgctcggtct acaaacggca


4681
cagccgagtg caaaactgta aagaggccgg cagaggataa tgatagggac actgtcccgg


4741
gaatcccaaa taaagtaggg gttagaattg ttacaatcag cgaccccaac aatgctggct


4801
gcagtgcaac catggttgcg gtcccagctg gagcggaccc aagcactgta gcgaaagtag


4861
caatagaaag tgctgctcag caaaagcagc agcatccacc gacctacatg cagagtgtgg


4921
ccccacagaa cactcctatg ccaccttcac cagctgtaca agtgcagggc cagcctagca


4981
gttctcagcc ttctccagtc agtgcgtcca gtcagcatgc agatccagtg agaaaacctg


5041
ggcagaactt catgtgtctg tggcagtctt gtaaaaagtg gtttcagact ccctcacaag


5101
tgttctatca tgcagctact gaacatggag gaaaagatgt gtatccgggg cagtgtcttt


5161
gggaaggctg tgagcctttc caacggcaga ggttctcttt cattacccac ttacaggata


5221
agcactgttc aaaggatgcc ctgcttgcag gattaaagca agatgaacca ggacaagtgg


5281
caaatcaaaa atcttctacc aagcagccca ccgtgggggg cacaggctct gcgcccagag


5341
cccagaaggc cattgcaagc caccccagtg ctgcactcat ggctctgcgg agaggctcaa


5401
ggaacctcgt cttccgggac ttcacagatg aaaaagaggg accaataact aaacacatcc


5461
gactaacagc tgccttaata ttaaaaaata ttggtaaata ctcagagtgt gggcgcagat


5521
tgttaaagag acatgaaaac aacttatcag tgctcgccat tagtaacatg gaagcttcct


5581
ctacccttgc caaatgcctt tatgaactta attttacagt tcagagtaaa gaacaagaaa


5641
aagactcaga aatgctgtag tgaatcctac cccactgaca cagtggggtc tcaaagtcaa


5701
atacatttca catactgtta ctgaagaaag caccaagtct taatggagca gagaccatag


5761
aatgaattat tttgtgtcct ccatgatgct gagaggaaac ttcgtattct gatctctgaa


5821
cgaatccctt tcttttctgt taaaaaaaaa aaatctaaaa aggaaaaaaa aaaaaaaaaa


5881
aacaaaaact gctgtgggat tgtcaaccag cttatctgca ggatgtctcg gatctggcca


5941
atcctgatgg aaactggtgc gatcagaatt ctgtaccatc cacattggaa tatacatgga


6001
atagtgtaaa acctacgtga gcagatgaaa tagaagcatt aaatattttt atctatatcc


6061
aaaaaggagc acatttttat atttacagaa ccatttaagc tggtttgaat aacgacagag


6121
tttgagcaca cctatccccc agcttcagag gggccaccaa tatctagctg tggatcgtgt


6181
gttttgttta gaatcagtag cttggctttc ttacttgagc caatatattt tcacttattt


6241
attatcataa aaatttacca gtctgaatag atcttgtaaa tatttgtgaa tagaatgaac


6301
actgttcata ccactgcagc cactggagat acatcctgtg gtgtcctaga agcattatcg


6361
gtaggctcta aagttttcta gactttgctg tcaactgtaa gtaattgtga tatattctac


6421
gcagtggatg gatattcttt aaatctgtgt aaatacttct gcaaaggtac tgatgctgta


6481
aagtcaaaca gttttgtgga actgtgattt tttttttcct ccttttttgg tttccttggc


6541
ccccacttgg gtttggtggg gttttgtttt tgttttgttt tgtattatac accttgtaga


6601
actcattttg ctggctgaaa gagtatggaa taatatatct catatgtcat ttttgtagaa


6661
gagaaactat ttggatttcc tttttgttgg tttggttttc cctaacacgt gtccgctgta


6721
cgcattcgtc acgtgcaagc tcagcttgtg cagggttttt tgtatttgta aattggttta


6781
aatacatgga attttataca ggttttctcc tgtgttatat atgcattatg tgcaggtatg


6841
atattttctt cactactttt tctatcttaa tatagtgtgg aattttattg tattattctt


6901
ccattcttaa tactgtacca cattcctgct cagaaactgc tcacttcctt aaattgtctt


6961
ttcccccaag cgtgaaatgt atccacttat aactgcccat tgcctgttct attagcatcc


7021
aaaaatgtgg aaggcctccc aaccaccatt tctgctgtgt ccttaggatg tgcagtaaaa


7081
aaatatagac ctgacagttt atgttataga atggccttat ttactttggt gactgtttat


7141
agtttttaaa taaaagactg aacattttct tgagtccttt atttctgagt atgcttaaga


7201
cattctaaaa tttaaagtct agctgaaggc aaggtcaaac ggtcacctac ttactttata


7261
ctttgtgatt gtagagaaca gaaaggtgca tcatgtgata ggacaccatg gtcacggtag


7321
gaaggagacc aggagaccaa atgttttgtt tacagtagta tgagtagtag ccccagagag


7381
cgagagacag ttagggctcg gttgccttac tgtgtgtccc gcatctatct gactgagagc


7441
tttgtttacc attcgactct aggtttcagt ttaactaatt caggggcagc ttcttggcaa


7501
tgagcttcag tctggacagt tcaaacatct tgattaattt agtaccaaaa agtaatttct


7561
ccccaggggt ccctgtgctc tcagctctaa ctgtaagaaa tgtgtggcga cacccagaac


7621
ttggtattct caggttggtg gcgtttgact tcttcgcctt agcctggggc tgcccagcag


7681
acaccctgag tccaggtacc ttactgtatc cctcaaatat cgccagacta aaggtttcta


7741
agggcagata gttgtagaaa tttatattca ctgtgtttat ctaaaaaaat tgaggttttt


7801
gaaataattt ttgtaacatc actgtttgct tgccctcaag gtaccttttt ccttccaaag


7861
caggaaatta ccatggtggt tagcctttag tagcagaaac gacaggctta agaaagtggc


7921
ttccatagtc accatcctgt cacctcactg aattgcatcc tgtagatgta gatttttgtg


7981
ttaaaatgta taaatgtgtc tttagtgctt ttaagcaatg gtctcagcag aattttctaa


8041
atgtatctga cctgacgaaa ccaatttcta gcccccctta ggcttcccct ccggcagctt


8101
tacctgacta atggataaga cttggtgggt aacgcggttg aagtgctctt gcagtccagg


8161
gcctgcagaa ccctcgcagt cacgaaaagg tgctccttgc tagacagaaa cttgctgact


8221
tccagtattg ttatttttgt ctaaagttct gtaaatacaa gctttaatgt tatctttgag


8281
agatctatgt aaataatagt caagaacata gagactgtac aattctgtgt tatatatgtg


8341
cctagtgctc tgttggcact taataaattt taagtaacaa aactgatgat catatagtga


8401
aggcatattt ttcttccgac ttgagacagg atatgactat atattaatga gactcaataa


8461
accaagccac acatgaaaac ttgtctcatt actttatagc catgccatgt atgtttttta


8521
aactataaaa tgacaataaa actgactttt gaaatgagtg tttcggataa gtgacttctg


8581
tcctgatctt ataccataaa taaagtactg aagacgaaat atgaagctct tacccaaagg


8641
agtagctgct tagaaacaag agtgaagctt gaagatcagc cacacaggcc acctcacact


8701
ttgttcctgt ttatcttacg atacagtaag ggaaggcacc atttagagcc agcttgtgtt


8761
agttaaccac tctcatactg cccaactctt gactgaactc tggcactcaa atacttggag


8821
tgagcttcct tccaaggcca cagaacagag accaaccgaa ttaccagctg gttccatcat


8881
agctagtaaa ctttatctag caacaatttc cactccctgc attggtttga aaaaaaaaat


8941
gcaaagagac agtatcaatg tatgtaagtg gattcactaa taatacaacc acactttaag


9001
tattaaagtg gggtgagatg gcttggtct










SEQ ID NO: 12 Mouse ARID2 Amino Acid Sequence (NP_780460.3)








1
manstgkapp derrkglafl delrqfhhsr gspfkkipav ggkeldlhgl ytrvttlggf


61
akvseknqwg eiveefnfpr scsnaafalk qyylryleky ekvhhfgedd devppgnpkp


121
qlpigaipss ynyqqhsvsd ylrqsyglsm dfnspndynk lvlsllsglp nevdfainvc


181
tllsneskhv mqlekdpkii tlllanagvf ddtlgsfssv fgeewrektd rdtvkfwkdi


241
vddnevrdli sdrnkahedt pgewiweslf hpprklgind iegqrvlqia vilrnlsfee


301
snvkllaanr tclrflllsa hshfislrql gldtlgniaa ellldpvdfr tthlmfhtvt


361
kclmsrdrfl kmrgmeilgn lckaedngvl iceyvdqdsy reiichltlp dvllvtstle


421
vlymltemgd vactkiakve ksidvlvclv smdaqmfgpd alaavklieh pssshqvlse


481
irpqaieqvq tqthiasgpa sravvaqhaa pppgiveids ekfacqwlna hfevnpdcsv


541
sraemyseyl stcsklargg iltstgfykc lrcvfpnhtv krvedstssg qahihvigvk


601
rralplpiqm yyqqqpistp vvrvdavadl sptpspagip hgpqaagnhf qrtpvtnqss


661
nltarqmsfp vqgihtvaqt vsrippnpsv hthqqqnspv tviqnkapip cevvkatviq


721
nsvpqtavpv sisvggapaq nsvgqnhsag pqpvtvvnsq tllhhpsvmp qpsplhtvvp


781
gqvpsgtpvt viqqtvpqsr mfgrvqsipa ctstvsqgqq littspqpmh tssqqtaags


841
qpqdtviiap pqyvttsasn ivsatsvqnt qvatgqvvti agvpspqpsr vgfqniapkp


901
lpsqqvspsv vqqpiqqpqq paqqsvvivs qpaqqgqaya paihqivlan paalpagqtv


961
qltgqpnitp ssspspvppt nnqvptamss sstlqsqgpp ptvsqmlsvk rqqqqqhspa


1021
apaqqvqvqv qqpqqvqvqv qpqqpsagvg qpapnessli kqlllpkrgp stpggklilp


1081
apqipppnna rapspqvvyq vannqaagfg vqgqtpaqql lvgqqnvqlv qsamppaggv


1141
qtvpisnlqi lpgplisnsp atifqgtsgn qvtitvvpnt sfaratvsqg naaqliapag


1201
lsmsgaqasa glqvqtlpag qsacttaplp fkgdkiicqk eeeakeatgl hvherkievm


1261
enpscrrgtt ntsngdtses elqvgsllng rkysdsslpp snsgklqset sqcslisngp


1321
slelgengap gkqnsepvdm qdvkgdlkka lvngicdfdk gdgshlskni pnhktsnhvg


1381
ngeispvepq gtsgatqqdt akgdqlervs ngpvltlggs pstssmqeap svatpplsgt


1441
dlpngplass lnsdvpqqrp svvvsphsta pviqghqvia vphsgprvtp salssdarst


1501
ngtaecktvk rpaedndrdt vpgipnkvgv rivtisdpnn agcsatmvav pagadpstva


1561
kvaiesaaqq kqqhpptymq svapqntpmp pspavqvqgq psssqpspvs assqhadpvr


1621
kpgqntmclw qsckkwfqtp sqvfyhaate hggkdvypgq clwegcepfq rqrfsfithl


1681
qdkhcskdal laglkqdepg qvanqksstk qptvggtgsa praqkaiash psaalmalrr


1741
gsrnlvfrdf tdekegpitk hirltaalil knigkysecg rrllkrhenn lsvlaisnme


1801
asstlakcly elnftvqske qekdseml










SEQ ID NO: 13 Human BRD7 cDNA Sequence Variant 1 (NM_001173984 2. CDS:


from 161 to 2119)








1
gagaggggca tcgcgccgcc cggcgcgcgc cgcccccctg cctcgcggcg cggggtctcg


61
cgggccccgc tcccgccctc cgctcgcctg gcccggaccg gaagcggcgc cgcacggcct


121
gggcctggcg cggggggcgg gcaccggggc ccggtcggac atgggcaaga agcacaagaa


181
gcacaagtcg gacaaacacc tctacgagga gtatgtagag aagcccttga agctggtcct


241
caaagtagga gggaacgaag tcaccgaact ctccacgggc agctcggggc acgactccag


301
cctcttcgaa gacaaaaacg atcatgacaa acacaaggac agaaagcgga aaaagagaaa


361
gaaaggagag aagcagattc caggggaaga aaaggggaga aaacggagaa gagttaagga


421
ggataaaaag aagcgagatc gagaccgggt ggagaatgag gcagaaaaag atctccagtg


481
tcacgcccct gtgagattag acttgcctcc tgagaagcct ctcacaagct ctttagccaa


541
acaagaagaa gtagaacaga caccccttca agaagctttg aatcaactga tgagacaatt


601
gcagagaaaa gatccaagtg ctttcttttc atttcctgtg actgatttta ttgctcctgg


661
ctactccatg atcattaaac acccaatgga ttttagtacc atgaaagaaa agatcaagaa


721
caatgactat cagtccatag aagaactaaa ggataacttc aaactaatgt gtactaatgc


781
catgatttac aataaaccag agaccattta ttataaagct gcaaagaagc tgttgcactc


841
aggaatgaaa attcttagcc aggaaagaat tcagagcctg aagcagagca tagacttcat


901
ggctgacttg cagaaaactc gaaagcagaa agatggaaca gacacctcac agagtgggga


961
ggacggaggc tgctggcaga gagagagaga ggactctgga gatgccgaag cacacgccct


1021
caagagtccc agcaaagaaa ataaaaagaa agacaaagat atgcttgaag ataagtttaa


1081
aagcaataat ttagagagag agcaggagca gcttgaccgc atcgtgaagg aatctggagg


1141
aaagctgacc aggcggcttg tgaacagtca gtgcgaattt gaaagaagaa aaccagatgg


1201
aacaacgacg ttgggacttc tccatcctgt ggatcccatt gtaggagagc caggctactg


1261
ccctgtgaga ctgggaatga caactggaag acttcagtct ggagtgaata ctttgcaggg


1321
gttcaaagag gataaaagga acaaagtcac tccagtgtta tatttgaatt atgggcccta


1381
cagttcttat gcaccgcatt atgactccac atttgcaaat atcagcaagg atgattctga


1441
tttaatctat tcaacctatg gggaagactc tgatcttcca agtgatttca gcatccatga


1501
gtttttggcc acgtgccaag attatccgta tgtcatggca gatagtttac tggatgtttt


1561
aacaaaagga gggcattcca ggaccctaca agagatggag atgtcattgc ctgaagatga


1621
aggccatact aggacacttg acacagcaaa agaaatggag cagattacag aagtagagcc


1681
accagggcgt ttggactcca gtactcaaga caggctcata gcgctgaaag cagtaacaaa


1741
ttttggcgtt ccagttgaag tttttgactc tgaagaagct gaaatattcc agaagaaact


1801
tgatgagacc accagattgc tcagggaact ccaggaagcc cagaatgaac gtttgagcac


1861
cagaccccct ccgaacatga tctgtctctt gggtccctca tacagagaaa tgcatcttgc


1921
tgaacaagtg accaataatc ttaaagaact tgcacagcaa gtaactccag gtgatatcgt


1981
aagcacgtat ggagttcgaa aagcaatggg gatttccatt ccttcccccg tcatggaaaa


2041
caactttgtg gatttgacag aagacactga agaacctaaa aagacggatg ttgctgagtg


2101
tggacctggt ggaagttgag gctgcctggt atttgattat atattatgta catacttttt


2161
cattcttaac ttagaaatgc ttttcagaag atattaaata tttgtaaatt gtgtttttaa


2221
ttaaactttg gaacagcgaa tttggatgtt ccagaggttg gacttgtatt aggtaataaa


2281
gctggacctg ggactcgtga ggaaggaatg tgaaaaaaaa aaaaaaaaaa










SEQ ID NO: 14 Human BRD7 Amino Acid Sequence Isoform A (NP_001167455.1)








1
mgkkhkkhks dkhlyeeyve kplklvlkvg gnevtelstg ssghdsslfe dkndhdkhkd


61
rkrkkrkkge kqipgeekgr krrrvkedkk krdrdrvene aekdlqchap vrldlppekp


121
ltsslakqee veqtplqeal nqlmrqlqrk dpsaffsfpv tdfiapgysm iikhpmdfst


181
mkekiknndy qsieelkdnf klmctnamiy nkpetiyyka akkllhsgmk ilsqeriqsl


241
kqsidfmadl qktrkqkdgt dtsqsgedgg cwqreredsg daeahafksp skenkkkdkd


301
mledkfksnn lereqeqldr ivkesggklt rrlvnsqcef errkpdgttt lgllhpvdpi


361
vgepgycpvr lgmttgrlqs gvntlqgfke dkrnkvtpvl ylnygpyssy aphydstfan


421
iskddsdliy stygedsdlp sdfsihefla tcqdypyvma dslldvltkg ghsrtlqeme


481
mslpedeght rtldtakeme qiteveppgr ldsscqdrli alkavtnfgv pvevfdseea


541
eifqkkldet trllrelqea qnerlstrpp pnmicllgps yremhlaeqv tnnlkelaqq


601
vtpgdivsty gvrkamgisi pspvmennfv dltedteepk ktdvaecgpg gs










SEQ ID NO: 15 Human BRD7 cDNA Sequence Variant 2 (NM_013263.4. CDS:


from 161 to 2116)








1
gagaggggca tcgcgccgcc cggcgcgcgc cgcccccctg cctcgcggcg cggggtctcg


61
cgggccccgc tcccgccctc cgctcgcctg gcccggaccg gaagcggcgc cgcacggcct


121
gggcctggcg cggggggcgg gcaccggggc ccggtcggac atgggcaaga agcacaagaa


181
gcacaagtcg gacaaacacc tctacgagga gtatgtagag aagccttcga agctggtcct


241
caaagtagga gggaacgaag tcaccgaact ctccacgggc agctcggggc acgactccag


301
cctcttcgaa gacaaaaacg atcatgacaa acacaaggac agaaagcgga aaaagagaaa


361
gaaaggagag aagcagattc caggggaaga aaaggggaga aaacggagaa gagttaagga


421
ggataaaaag aagcgagatc gagaccgggt ggagaatgag gcagaaaaag atctccagtg


481
tcacgcccct gtgagattag acttgcctcc tgagaagcct ctcacaagct ctttagccaa


541
acaagaagaa gtagaacaga caccccttca agaagctttg aatcaactga tgagacaatt


601
gcagagaaaa gatccaagtg ctttcttttc atttcctgtg actgatttta ttgctcctgg


661
ctactccatg atcattaaac acccaatgga ttttagtacc atgaaagaaa agatcaagaa


721
caatgactat cagtccatag aagaactaaa ggataacttc aaactaatgt gtactaatgc


781
catgatttac aataaaccag agaccattta ttataaagct gcaaagaagc tgttgcactc


841
aggaatgaaa attcttagcc aggaaagaat tcagagcctg aagcagagca tagacttcat


901
ggctgacttg cagaaaactc gaaagcagaa agatggaaca gacacctcac agagtgggga


961
ggacggaggc tgctggcaga gagagagaga ggactctgga gatgccgaag cacacgcctt


1021
caagagtccc agcaaagaaa ataaaaagaa agacaaagat atgcttgaag ataagtttaa


1081
aagcaataat ttagagagag agcaggagca gcttgaccgc atcgtgaagg aatctggagg


1141
aaagctgacc aggcggcttg tgaacagtca gtgcgaactt gaaagaagaa aaccagatgg


1201
aacaacgacg ttgggacttc tccatcctgt ggatcccatt gtaggagagc caggctactg


1261
ccctgtgaga ctgggaatga caactggaag acttcagtct ggagtgaata ctttgcaggg


1321
gttcaaagag gataaaagga acaaagtcac tccagtgtta tatttgaatt atgggcccta


1381
cagttcttat gcaccgcatt atgactccac atttgcaaat atcagcaagg atgattctga


1441
tttaatctat tcaacctatg gggaagactc tgatcttcca agtgatttca gcatccatga


1501
gtttttggcc acgtgccaag attatccgta tgtcatggca gatagtttac tggatgtttt


1561
aacaaaagga gggcattcca ggaccctaca agagatggag atgtcattgc ctgaagatga


1621
aggccatact aggacacttg acacagcaaa agaaatggag attacagaag tagagccacc


1681
agggcgtttg gactccagta ctcaagacag gctcatagcg ctgaaagcag taacaaattt


1741
tggcgttcca gttgaagttt ttgactctga agaagctgaa atattccaga agaaacttga


1801
tgagaccacc agattgctca gggaactcca ggaagcccag aatgaacgtt tgagcaccag


1861
accccctccg aacatgatct gtctcttggg tcccccatac agagaaatgc atcttgctga


1921
acaagtgacc aataatctta aagaacttgc acagcaagta actccaggtg atatcgtaag


1981
cacgtatgga gttcgaaaag caatggggat ttccattcct tcccccgtca tggaaaacaa


2041
ctttgcggat ttgacagaag acactgaaga acctaaaaag acggatgttg ctgagtgtgg


2101
acctggtgga agttgaggct gcctggtatt tgattatata ttatgtacat actttttcat


2161
tcttaactta gaaatgcttt tcagaagata ttaaatattt gtaaattgtg ttttcaatta


2221
aactttggaa cagcgaattt ggatgttcca gaggttggac ttgtattagg taataaagct


2281
ggacctggga ctcgtgagga aggaatgtga aaaaaaaaaa aaaaaaa










SEQ ID NO: 16 Human BRD7 Amino Acid Sequence Isoform B (NP_037395.2)








1
mgkkhkkhks dkhlyeeyve kplklvlkvg gnevtelstg ssghdsslfe dkndhdkhkd


61
rkckkrkkge kqipgeekgr krrrvkedkk krdrdrvene aekdlqchap vrldlppekp


121
ltsslakqee veqtplqeal nqlmrqlqrk dpsaffsfpv tdfiapgysm iikhpmdfst


181
mkekiknndy qsieelkdnf klmctnamiy nkpetiyyka akkllhsgmk ilsqeriqsl


241
kqsidfmadl qktrkqkdgt dtsqsgedgg cwqreredsg daeahafksp skenkkkdkd


301
mledkfksnn lereqeqldr ivkesggklt rrlvnsqcef errkpdgttt lgllhpvdpi


361
vgepgycpvr lgmttgrlqs gvntlqgfke dkrnkvtpvl ylnygpyssy aphydstfan


421
iskddsdliy stygedsdlp sdfsihefla tcqdypyvma dslldvltkg ghsrtlqeme


481
mslpedeght rcldtakeme iteveppgrl dsstqdrlia lkavtnfgvp vevfdseeae


541
ifqkkldett rllrelqeaq nerlstrppp nmicllgpsy remhlaeqvt nnlkelaqqv


601
tpgdivstyg vrkamgisip spvmennfvd ltedteepkk tdvaecgpgg s










SEQ ID NO: 17 Mouse BRD7 cDNA Sequence (NM_012047.2. CDS: from 238 to


2193)








1
ggtttgccgg cctctcgccc tctcgccact ggtgtcgcgc ttcggtcgcg tcccgcgcgt


61
ggtttttttt ttttctcgtg agggacctcg cgccgccggg cgcgtgccgt ccccctgcct


121
cgcggcgcgg gctctcgcgg gccccgctcc cgccctccgc tcgcctggcc cggaccggaa


181
gcggcgccgc acggcctggg cctggcgcgg ggggcgggct ctggggcccg gtcggacatg


241
ggcaagaagc acaagaagca caagtcggac cgccacttct acgaggagta cgtggagaag


301
cccctgaagc tggtcctcaa agtcgggggg agcgaggtca ccgagctctc cacgggcagc


361
tccgggcacg actccagcct cttcgaagac agaagcgacc acgacaaaca caaggacaga


421
aaacggaaaa agaggaagaa aggcgagaag caggctccgg gggaagagaa ggggagaaaa


481
cggagaagag tcaaggagga taaaaagaag cgggatcgag accgtgcaga gaatgaggtg


541
gacagagatc tccagtgtca tgtccctata agattagact tacctcctga gaagcctctt


601
acaagctcgt tagccaaaca agaagaagta gaacagacac cccttcagga agctttgaat


661
cagctcatga gacaattgca aagaaaagac ccaagtgctt tcttttcatt tcctgtgacg


721
gattttattg cgcctggcta ctccatgatt attaaacacc caatggattt tagtaccatg


781
aaagaaaaga tcaagaataa cgactaccag tccatagaag aactaaagga taacttcaag


841
ctaatgtgta ctaatgcaat gatttacaat aagccagaga ccatttatta taaagctgca


901
aagaagctgt tgcactcagg gatgaaaatt ctcagtcagg agagaattca gagcctgaag


961
cagagtatag acttcatgtc agacttgcag aaaactcgga agcagaaaga acgaacagat


1021
gcctgtcaga gtggggagga cagcggctgc tggcagcgcg agagggaaga ctctggagat


1081
gctgaaacac aggccttcag aagccccgct aaggacaata aaaggaaaga caaagatgtg


1141
cttgaagaca aatggagaag cagcaactca gaaagggagc atgagcagat tgagcgcgtt


1201
gtccaggagt caggaggcaa gctaacacgg cggctggcaa acagtcagtg tgaatttgaa


1261
agaagaaaac cagatgggac aacaacactg gggcttctcc atcctgtgga tcccattgtg


1321
ggagagccag gctactgccc tgtgagattg gggatgacaa ctggaagact gcagtctgga


1381
gtgaacactc tgcaggggtt caaagaggat aaaaggaaca gagtaacccc agtattatac


1441
ttgaattatg gaccctacag ttcttatgcc ccacattatg actctacatt tgccaatatt


1501
agcaaagatg attctgattt aatctactca acatatgggg aagactctga ccttccaaac


1561
aatttcagca tctctgagtt tttggccaca tgccaagatt acccgtatgt tatggcagat


1621
agtttactgg atgttctaac aaaaggagga cattccagga gcctgcagga cttggacatg


1681
tcatctcctg aagatgaagg ccagaccaga gcattggaca cagcaaaaga agcagagatt


1741
acacaaatag agccaacagg gcgtttggag tccagcagtc aggacaggct cacagcactg


1801
caagctgtaa caacctttgg tgctccagct gaagtctttg actccgaaga ggctgaggtg


1861
ttccagagga agcttgatga gacgacaaga ttgctcaggg agctccagga ggcacagaat


1921
gagcgactga gcactaggcc tcctcccaat atgatctgtc tcctgggtcc ttcttacaga


1981
gaaatgtacc ttgctgaaca agtgaccaat aacctcaaag aactcacaca gcaagtgact


2041
ccaggtgatg ttgtaagcat acacggagtg cgaaaagcaa tggggatttc tgttccttcc


2101
cccatcgtgg gaaacagctt cgtagatttg acaggagagt gtgaagaacc taaggagacc


2161
agcactgctg agtgtgggcc tgacgcgagc tgaactagcc tggtatttga ttctattatg


2221
tacatagttt ttcattctga acttggaggt gcttttcaga agatattaac tatttgtaaa


2281
ttgtgtttta attaagcttt gggacagttc ctttcaatgt tccaaagatt ggctttgtat


2341
taggaaataa agctgaacct gggactgtga










SEQ ID NO: 18 Mouse BRD7 Amino Acid Sequence (NP_036177.1)








1
mgkkhkkhks drhfyeeyve kplklvlkvg gsevtelstg ssghdsslfe drsdhdkhkd


61
rkrkkrkkge kqapgeekgr krrrvkedkk krdrdraene vdrdlqchvp irldlppekp


121
ltsslakqee veqtplqeal nqlmrqlqrk dpsaffsfpv tdfiapgysm iikhpmdfst


181
mkekiknndy qsieelkdnf klmctnamiy nkpetiyyka akkllhsgmk ilsqeriqsl


241
kqsidfmsdl qktrkqkert dacqsgedsg cwqreredsg daetqafrsp akdnkrkdkd


301
vledkwrssn sereheqier vvqesggklt rrlansqcef errkpdgttt lgllhpvdpi


361
vgepgycpvr lgmttgrlqs gvntlqgfke dkrnrvtpvl ylnygpyssy aphydstfan


421
iskddsdliy stygedsdlp nnfsisefla tcqdypyvma dslldvltkg ghsrslqdld


481
msspedegqt raldtakeae itqieptgrl esssqdrlta lqavttfgap aevfdseeae


541
vfqrkldett rllrelqeaq nerlstrppp nmicllgpsy remylaeqvt nnlkeltqqv


601
tpgdvvsihg vrkamgisvp spivgnsfvd ltgeceepke tstaecgpda s










SEQ ID NO: 19 Human PHF10 cDNA Sequence Variant 1 (NM_018288.3, CDS:


from 80 to 1576)








1
ggcggcggcg gcagcggcgg cggcggccgg gacaaggcgg aggcgacggc ggcggcggcg


61
gcgcggggcg cccgggctga tggcggcggc ggccgggccc ggggctgcgc tgtccccgcg


121
gccgtgcgac agcgacccag ccacccccgg agcgcagtcc ccgaaggatg ataatgaaga


181
taattcaaat gatgggaccc agccatccaa aaggaggcga atgggctcag gagatagttc


241
taggagttgt gaaacttcaa gtcaagatct tggttttagt tactatccag cagaaaactt


301
gatagagtac aaatggccac ctgatgaaac aggagaatac tatatgcttc aagaacaagt


361
cagtgaatat ttgggtgtga cctcctttaa aaggaaatat ccagatttag agcgacgaga


421
tttgtctcac aaggagaaac tctacctgag agagctaaat gtcattactg aaactcagtg


481
cactctaggc ttaacagcat tgcgcagtga tgaagtgatt gatttaatga taaaagaata


541
tccagccaaa catgctgagt attctgttat tctacaagaa aaagaacgtc aacgaattac


601
agaccattat aaagagtatt cccaaatgca acaacagaat actcagaaag ttgaagccag


661
taaagtgcct gagtatatta agaaagctgc caaaaaagca gcagaattta atagcaacct


721
aaaccgggaa cgcatggaag aaagaagagc ttattttgac ttgcagacac atgttatcca


781
ggtacctcaa gggaagtaca aagttttgcc aacagagcga acaaaggtca gtccttaccc


841
agtggctctc atccccggac agttccagga atattataag aggtactcac cagatgagct


901
gcggtatctg ccattaaaca cagccctgta tgagccccct ctggatcctg agctccctgc


961
tctagacagt gatggtgatt cagatgatgg cgaagatggt cgaggtgatg agaaacggaa


1021
aaataaaggc acttcggaca gctcctctgg caatgtatct gaaggggaaa gccctcctga


1081
cagccaggag gactctttcc agggaagaca gaaatcaaaa gacaaagctg ccactccaag


1141
aaaagatggt cccaaacgtt ctgtactgtc caagtcagtt cctgggtaca agccaaaggt


1201
cattccaaat gctatatgtg gaatttgtct gaagggtaag gagtccaaca agaaaggaaa


1261
ggctgaatca cttatacact gctcccaatg tgagaatagt ggccatcctt cttgcctgga


1321
tacgacaatg gagcttgttt ctatgattaa gacctaccca tggcagcgta tggaatgtaa


1381
aacatgcatt atatgtggac aaccccacca tgaagaagaa atgatgttct gtgatatgtg


1441
tgacagaggt tatcatactt tttgtgtggg ccttggtgct attccatcag gtcgctggat


1501
ttgtgactgt tgtcagcggg cccccccaac acccaggaaa gtgggcagaa gggggaaaaa


1561
cagcaaagag ggataaaata gtttttgact ctaatactgt atatgcattt aagtggaata


1621
tttggtgcca tttacaacat tattttcatg ccaataaaag attttttttg caaaaaaaaa


1681
aaaaaaaaaa aa










SEQ ID NO: 20 Human PHF10 Amino Acid Sequence Isoform A (NP_060758.2)








1
maaaagpgaa lsprpcdsdp atpgaqspkd dnednsndgt qpskrrrmgs gdssrscets


61
sqdlgtsyyp aenlieykwp pdetgeyyml qeqvseylgv tsfkrkypdl errdlshkek


121
lylrelnvit ecqctlglta lrsdevidlm ikeypakhae ysvilqeker qritdhykey


181
sqmqqqntqk veaskvpeyi kkaakkaaef nsnlnrerme errayfdlqt hviqvpqgky


241
kvlptertkv ssypvalipg qfqeyykrys pdelrylpln talyeppldp elpaldsdgd


301
sddgedgrgd ekrknkgtsd sssgnvsege sppdsqedsf qgrqkskdka atprkdgpkr


361
svlsksvpgy kpkvipnaic giclkgkesn kkgkaeslih csqcensghp scldmtmelv


421
smiktypwqc mecktciicg qphheeemmf cdmcdrgyht fcvglgaips grwicdccqr


481
apptprkvgr rgknskeg










SEQ ID NO; 21 Human PHF10 cDNA Sequence Variant 2 (NM_133325.2. CDS:


From 80 to 1570)








1
ggcggcggcg gcagcggcgg cggcggccgg gacaaggcgg aggcgacggc ggcggcggcg


61
gcgcggggcg cccgggctga tggcggcggc ggccgggccc ggggctgcgc tgtccccgcg


121
gccgtgcgac agcgacccag ccacccccgg agcgcagtcc ccgaaggatg ataatgaaga


181
taattcaaat gatgggaccc agccatccaa aaggaggcga atgggctcag gagatagttc


241
taggagttgt gaaacttcaa gtcaagatct tggttttagt tactatccag cagaaaactt


301
gatagagtac aaatggccac ctgatgaaac aggagaatac tatatgcttc aagaacaagt


361
cagtgaatat ttgggtgtga cctcctttaa aaggaaatat ccagagcgac gagatttgtc


421
tcacaaggag aaactctacc tgagagagct aaatgtcatt actgaaactc agtgcactct


481
aggcttaaca gcattgcgca gtgatgaagt gattgattta atgataaaag aatatccagc


541
caaacatgct gagtattctg ttattctaca agaaaaagaa cgtcaacgaa ttacagacca


601
ttataaagag tattcccaaa tgcaacaaca gaatactcag aaagttgaag ccagtaaagt


661
gcctgagtat attaagaaag ctgccaaaaa agcagcagaa tttaatagca acttaaaccg


721
ggaacgcatg gaagaaagaa gagcttattt tgacttgcag acacatgtta tccaggtacc


781
tcaagggaag tacaaagttt tgccaacaga gcgaacaaag gtcagttctt acccagtggc


841
tctcatcccc ggacagttcc aggaatatta taagaggtac tcaccagatg agctgcggta


901
tctgccatta aacacagccc tgtatgagcc ccctctggat cctgagctcc ctgctctaga


961
cagtgatggt gattcagatg atggcgaaga tggtcgaggt gatgagaaac ggaaaaataa


1021
aggcacttcg gacagctccc ctggcaatgt atctgaaggg gaaagccccc ctgacagcca


1081
ggaggactct ttccagggaa gacagaaatc aaaagacaaa gctgccactc caagaaaaga


1141
tggtcccaaa cgttctgtac tgtccaagtc agttcctggg tacaagccaa aggtcattcc


1201
aaatgctata tgtggaattt gtctgaaggg taaggagtcc aacaagaaag gaaaggctga


1261
atcacttata cactgctccc aatgtgagaa tagtggccat ccttctcgcc tggatatgac


1321
aatggagctt gtttctatga ttaagaccta cccatggcag tgtatggaat gtaaaacatg


1381
cattatatgt ggacaacccc accatgaaga agaaatgatg ttctgtgata tgtgtgacag


1441
aggttatcat actttttgtg tgggccttgg tgctattcca tcaggtcgct ggatttgtga


1501
ctgttgtcag cgggcccccc caacacccag gaaagtgggc agaaggggga aaaacagcaa


1561
agagggataa aatagttttt gactctaata ctgtatatgc atttaagtgg aatatttggt


1621
gccatttaca acattatttt catgccaata aaagattttt tttgcaaaaa aaaaaaaaaa


1681
aaaaaa










SEQ ID NO: 22 Human PHF10 Amino Acid Sequence Isoform B (NP_579866.2)








1
maaaagpgaa lsprpcdsdp atpgaqspkd dnednsndgt qpskrrrmgs gdssrscets


61
sqdlgfsyyp aenlieykwp pdetgeyyml qeqvseylgv tsfkrkyper rdlshkekly


121
lrelnvitet qctlgltalr sdevidlmik eypakhaeys vilqekerqr itdhykeysq


181
mqqqntqkve askvpeyikk aakkaaefns nlnrermeer rayfdlqthv iqvpqgkykv


241
lptertkvss ypvalipgqg qeyykryspd elrylplnta lyeppldpel paldsdgdsd


301
dgedgrgdek rknkgtsdss sgnvsegesp pdsqedsfqg rqkskdkaat prkdgpkrsv


361
lsksvpgykp kvipnaicgi clkgkesnkk gkaeslihcs qcensghpsc ldmtmelvsm


421
iktypwqcme cktciicgqp hheeemmfcd mcdrgyhtfc vglgaipsgr wicdccqrap


481
ptprkvgrrg knskeg










SEQ ID NO: 23 Mouse PHF10 cDNA Sequence (NM_024250.4. CDS: from 67 to


1560)








1
gcggcggcgg ccgctgggac taggcgaagg cggcgacgac gacggaggcg cggggcgctt


61
gggctgatgg cagcggccgg gcccggggcg gcgctgtccc cggggcggtg cgacagcgac


121
ccggcctccc ccggagcgca gtccccaaag gatgataatg aagacaactc aaatgatggg


181
acccatccat gtaaaaggag gcgaatgggc tcaggagaca gctcaagaag ttgtgagact


241
tcaagtcaag atcttagctt cagttactac ccagcagaaa acttaatcga atacaaatgg


301
ccacctgatg aaacaggaga atactatatg cttcaggagc aagtcagtga atatctgggt


361
gtgacctcct tcaagcggaa atatccagat ttagagcgac gagatttatc tcacaaggag


421
aaactatacc tgagagaatt aaacgtcatc acggaaacac agtgcacact gggtttaaca


481
gcattgcgca gtgatgaagt gattgactta atgataaaag aatatccagc taaacacgct


541
gaatattcgg ttatcctaca agaaaaggaa cgtcagagaa ttacagatca ttataaagag


601
tattctcaaa tgcaacaaca gagtactcag aaagtcgaag ccagcaaagt acctgagtac


661
attaagaaag cagccaagaa ggcagctgag ttcaacagca acttaaaccg ggagcgcatg


721
gaagaaagaa gagcctattt tgacttacag acacatgtta tccaagtgcc tcaaggaaag


781
tacaaagtgt tgccgacaga ccgaacgaag gtcagttcct acccagtggc tctcatcccg


841
ggacagttcc aggagtatta taagaggtac tcaccagatg agcttcggta cttgccatta


901
aacacagccc tgtatgagcc gcccctggac ccagagctcc cggcactaga tagtgatgga


961
gactcagatg atggcgaaga tggcggaggg gatgagaagc ggaagaataa aggcacttcg


1021
gacagctcct caggcaatgt gtctgaagga gacagccccc ctgacagcca ggaggacacc


1081
ttccacggaa gacagaaatc aaaagacaaa atggccactc caagaaaaga cggctccaaa


1141
cgttctgtac tgtccaaatc agcccctggg tacaagccaa aggtcattcc aaatgctcta


1201
tgtggaattt gtctgaaggg taaggagtcc aacaagaaag gaaaggctga atcacttata


1261
cactgctccc agtgtgataa cagtggccac ccttcttgct tggatatgac catggagctt


1321
gtttctatga ttaagaccta cccatggcag tgtatggaat gtaagacatg cattatatgt


1381
ggacagcccc accatgaaga agaaatgatg ttctgtgatg tgtgtgacag aggttatcat


1441
actttttgtg tgggccttgg tgctattcct tcaggtcgct ggatttgtga ctgttgtcag


1501
cgagctcccc caacacccag gaaagtgggc agaaggggga aaaacagcaa agaggggtaa


1561
aataggcttt gaccctcatg tttgggatat ttggtgccaa tttatttaca acactttcat


1621
ttttacgcca ataaaaactt tttcgaaatt aacgatgacc ttaaa










SEQ ID NO: 24 Mouse PHF10 Amino Acid Sequence (NP_077212.3)








1
maaagpgaal spgrcdsdpa spgaqspkdd nednsndgth pckrrrmgsg dssrscetss


61
qdlsfsyypa enlieykwpp detgeyymlq eqvseylgvt sfkrkypdle rrdlshkekl


121
ylrelnvite tqctlgltal rsdevidlmi keypakhaey svilqekerq ritdhykeys


181
qmqqqstqkv easkvpeyik kaakkaaefn snlnrermee rrayfdlqrh viqvpqgkyk


241
vlptdrtkvs sypvalipgq fqeyykrysp delrylplnt alyeppldpe lpaldsdgds


301
ddgedgggde krknkgtsds ssgnvsegds ppdsqedtfh grqkskdkma tprkdgskrs


361
vlsksapgyk pkvipnalcg iclkgkesnk kgkaeslihc sqcdnsghps cldmtmelvs


421
miktypwqcm ecktciicgq phheeemmfc dvcdrgyhtf cvglgaipsg rwicdccqra


481
pptprkvgrr gknskeg










SEQ ID NO: 25 Human KDM6A cDNA Sequence








1
atgaaatcct gcggagtgtc gctcgctacc gccgccgctg ccgccgccgc tttcggtgat


61
gaggaaaaga aaatggcggc gggaaaagcg agcggcgaga gcgaggaggc gtcccccagc


121
ctgacagccg aggagaggga ggcgctcggc ggactggaca gccgcctctt tgggttcgtg


181
agatttcatg aagatggcgc caggacgaag gccctactgg gcaaggctgt tcgctgctat


241
gaatctctaa tcttaaaagc tgaaggaaaa gtggagtctg atttcttttg tcaattaggt


301
cacttcaacc tcttattgga agattatcca aaagcattat ctgcatacca gaggtactac


361
agtttacagt ctgactactg gaagaatgct gcctttttat atggtcttgg tttggtctac


421
ttccattata atgcatttca gtgggcaatt aaagcatttc aggaggtgct ttatgttgat


481
cccagctttt gtcgagccaa ggaaattcat ttacgacttg ggcttatgtt caaagtgaac


541
acagactatg agtctagttt aaagcatttt cagttagctt tggttgactg taatccctgc


601
actttgtcca atgctgaaat tcaatttcac attgcccact tatatgaaac ccagaggaaa


661
tatcattctg caaaagaagc ttatgaacaa cttttgcaga cagagaatct ttctgcacaa


721
gtaaaagcaa ctgtcttaca acagttaggt tggatgcatc acactgtaga tctcctggga


781
gataaagcca ccaaggaaag ctatgctatt cagtatctcc aaaagtcctt ggaagcagat


841
cctaattctg gccagtcctg gtatttcctc ggaaggtgct attcaagtat tgggaaagtt


901
caggatgcct ttatatctta caggcagtct actgataaat cagaagcaag tgcagataca


961
tggtgttcaa taggtgtgct atatcagcag caaaatcagc ccatggatgc tttacaggcc


1021
tatatttgtg ctgtacaatt ggaccatggc catgctgcag cctggatgga cctaggcact


1081
ctctatgaat cctgcaacca gcctcaggat gccattaaat gctacttaaa tgcaactaga


1141
agcaaaagtt gtagtaatac ctctgcactt gcagcacgaa ttaagtattt acaggctcag


1201
ttgtgtaacc ttccacaagg tagtctacag aataaaacta aattacttcc tagtattgag


1261
gaggcgtgga gcctaccaat tcccgcagag cttacctcca ggcagggtgc catgaacaca


1321
gcacagcaga atacttctga caattggagt ggtggacatg ctgtgtcaca tcctccagta


1381
cagcaacaag ctcattcatg gtgtttgaca ccacagaaat tacagcattt ggaacagctc


1441
cgcgcaaata gaaataattt aaatccagca cagaaactga tgctggaaca gctggaaagt


1501
cagtttgtct taatgcaaca acaccaaatg agaccaacag gagttgcaca ggtacgatgt


1561
actggaattc ctaatgggcc aacagctgac tcatcactgc ctacaaactc agtctctggc


1621
cagcagccac agcttgctct gaccagagtg cctagcgtct ctcagcctgg agtccgtcct


1681
gcctgccctg ggcagccttt ggccaatgga ccctttcctg caggccatgt tccctgtagc


1741
acatcaagaa cgctgggaag tacagacact attttgatag gcaataatca tataacagga


1801
agtggaagta atggaaacgt gccttacctg cagcgaaacg cactcactct acctcataac


1861
cgcacaaacc tgaccagcag cgcagaggag ccgtggaaaa accaactatc taactccact


1921
caggggcttc acaaaggtca gagttcacat tcggcaggtc ctaatggtga acgacctctc


1981
tcttccactg ggccttccca gcatctccag gcagctggct ctggtattca gaatcagaac


2041
ggacatccca ccctgcctag caattcagta acacaggggg ctgctctcaa tcacctctcc


2101
tctcacactg ctacctcagg tggacaacaa ggcattacct taaccaaaga gagcaagcct


2161
tcaggaaaca tattgacggt gcctgaaaca agcaggcaca ctggagagac acctaacagc


2221
actgccagtg tcgagggact tcctaatcat gtccatcaga tgacggcaga tgctgtttgc


2281
agtcctagcc atggagattc taagtcacca ggtttactaa gttcagacaa tcctcagctc


2341
tctgccttgt tgatgggaaa agccaataac aatgtgggta ctggaacctg tgacaaagtc


2401
aataacatcc acccagctgt tcatacaaag actgataact ctgttgcctc ttcaccatct


2461
tcagccattt caacagcaac accttctcca aaatccactg agcagacaac cacaaacagt


2521
gttaccagcc ttaacagccc tcacagtggg ctacacacaa ttaatggaga agggatggaa


2581
gaatctcaga gccccatgaa aacagatctg cttctggtta accacaaacc tagtccacag


2641
atcataccat caatgtctgt gtccatatac cccagctcag cagaagttct gaaggcatgc


2701
aggaatctag gtaaaaatgg cttatctaac agtagcattt tgttggataa atgtccacct


2761
ccaagaccac catcttcacc ataccctccc ttgccaaagg acaagttgaa tccacctaca


2821
cctagtattt acttggaaaa taaacgtgat gctttctttc ctccattaca tcaattttgt


2881
acaaatccga acaaccctgt tacagtaata cgtggccttg ctggagctct taagttagac


2941
ctgggacttt tctctactaa aactttggcg gaagctaaca atgaacatat ggtagaagtg


3001
aggacacagt tgttgcagcc agcagatgaa aactgggatc ccactggaac aaagaaaatc


3061
tggcattgtg aaagtaatag atctcatact acaattgcta aatatgcaca gtaccaggcc


3121
tcctcattcc aggaatcatt gagagaagaa aatgaaaaaa gaagtcatca taaagaccac


3181
tcagatagtg aatctacatc gtcagataat tctgggagga ggaggaaagg accctttaaa


3241
accataaagt ttgggaccaa tattgaccta tctgatgaca aaaagtggaa gttgcagcta


3301
catgagctga ctaaacttcc tgcttttgtg cgtgtcgtat cagcaggaaa tcttctaagc


3361
catgttggtc ataccatatt gggcatgaac acagttcaac tatacatgaa agttccaggg


3421
agcagaacac caggtcatca ggaaaataac aacttctgtt cagttaacat aaatattggc


3481
ccaggtgact gcgaatggtt tgttgttcct gaaggttact ggggtgttct gaatgacttc


3541
tgtgaaaaaa ataatttgaa tttcctaatg ggttcttggt ggcccaatct tgaagatctt


3601
tatgaagcaa atgttccagt gtataggttt attcagcgac ctggagattt ggtctggata


3661
aatgcaggca ctgttcattg ggttcaggct attggctggt gcaacaacat tgcttggaat


3721
gttggtccac ttacagcctg ccagtataaa ttggcagtgg aacggtacga atggaacaaa


3781
ttgcaaagtg tgaagtcaat agtacccatg gttcatcttt cctggaatat ggcacgaaat


3841
atcaaggtct cagatccaaa gctttctgaa atgattaagc attgtcttct aagaactctg


3901
aagcaatgtc agacattgag ggaagctctc actgctgcag gaaaagagat tatatggcat


3961
gggcggacaa aagaagaacc agctcattac tgtagcattc gtgaagtgga ggtttttgat


4021
ctgctttttg tcactaatga gagtaattca cgaaagacct acatagtaca ttgccaagat


4081
tgtgcacgaa aaacaagcgg aaacttggaa aactttgtgg tgctagaaca gtacaaaatg


4141
gaggacctga tgcaagtcta tgaccaattt acattagctc ctccattacc atccgcctca


4201
tcttga










SEQ ID NO: 26 Human KDM6A Amino Acid Sequence








1
mkscgvslat aaaaaaafgd eekkmaagka sgeseeasps ltaeerealg gldsrlfgfv


61
rfhedgartk allgkavrcy eslilkaegk vesdffcqlg hfnllledyp kalsayqryy


121
slqsdywkna aflyglglvy fhynafqwai kafqevlyvd psfcrakeih lrlglmfkvn


181
tdyesslkhf qlalvdcnpc tlsnaeiqfh iahlyetqrk yhsakeayeq llqtenlsaq


241
vkatvlqqlg wmhhtvdllg dkatkesyai qylqkslead pnsgqswyfl grcyssigkv


301
qdafisyrqs idkseasadt wcsigvlyqq qnqpmdalqa yicavqldhg haaawmdlgt


361
lyescnqpqd aikcylnatr skscsntsal aarikylqaq lcnlpqgslq nktkllpsie


421
eawslpipae ltsrqgamnt aqqntsdnws gghavshppv qqqahswclt pqklqhleql


481
ranrnnlnpa qklmleqles qfvlmqqhqm rptgvaqvrs tgipngptad sslptnsvsg


541
qqpqlaltrv psvsqpgvrp acpgqplang p£saghvpcs tsrtlgstdt ilignnhitg


601
sgsngnvpyl qrnaltlphn rtnltssaee pwknqlsnst qglhkgqssh sagpngerpl


661
sstgpsqhlq aagsgiqnqn ghptlpsnsv tqgaalnhls shtatsggqq gitltkeskp


721
sgniltvpet srhtgetpns tasveglpnh vhqmtadavc spshgdsksp gllssdnpql


781
sallmgkann nvgtgtcdkv nnihpavhtk tdnsvassps saistatpsp ksteqtttns


841
vtslnsphsg lhtingegme esqspmktdl llvnhkpspq iipsmsvsiy pssaevlkac


901
rnlgknglsn ssilldkcpp prppsspypp lpkdklnppt psiylenkrd affpplhqfc


961
tnpnnpvtvi rglagalkld lglfstktlv eannehmvev rtqllqpade nwdptgtkki


1021
whcesnrsht tiakyaqyqa ssfqeslree nekrshhkdh sdsestssdn sgrrrkgpfk


1081
tikfgtnidl sddkkwklql heltklpafv rvvsagnlls hvghtilgmn tvqlymkvpg


1141
srtpghqenn nfcsvninig pgdcewfvvp egywgvlndf ceknnlnflm gswwpnledl


1201
yeanvpvyrf iqrpgdlvwi nagtvhwvqa igwcnniawn vgpltacqyk laveryewnk


1261
lqsvksivpm vhlswnmarn ikvsdpklfe mikycllrtl kqcqtlreal iaagkeiiwh


1321
grtkeepahy csicevevfd llfvtnesns rktyivhcqd carktsgnle nfvvleqykm


1381
edlmqvydqf tlapplpsas s










SEQ ID NO: 27 Mouse KDM6A cDNA Sequence








1
atgaaatcct gcggagtgtc gctcgctacc gccgccgccg ccgccgccgc cgccgctttc


61
ggtgatgagg aaaagaaaat ggcggcggga aaagcgagcg gcgagagcga ggaggcgtcc


121
cccagcctga cagcggagga gagggaggcg ctcggcggac tggacagccg ccttttcggg


181
ttcgtgaggt ttcatgaaga tggcgccagg atgaaggccc tgctgggcaa ggctgttcgc


241
tgctacgaat ctctaatctt aaaagctgaa gggaaagtgg agtctgattt cttttgtcaa


301
ttaggtcact tcaacctctt attggaagat tatccaaaag cattatctgc ataccagagg


361
tactacagtt tacagtctga ttactggaag aatgctgcct ttttatatgg tcttggtttg


421
gtctacttcc attacaatgc atttcagtgg gctattaaag catttcagga ggtgctttat


481
gtcgatccca gcttttgtcg agccaaggaa attcatttac gacttgggct tatgttcaaa


541
gtgaacacag actatgagtc tagtttaaag cattttcagt tagctttggt tgactgtaat


601
ccctgcactt tgtccaatgc tgaaattcag tttcacattg cccacttata tgaaacccag


661
aggaagtatc attctgcaaa agaagcttat gagcaacttt tgcagacaga aaacctttct


721
gcacaagtaa aagcaactat tttacaacaa ttaggctgga tgcatcacac tgtggatctc


781
ctgggagata aggccaccaa ggaaagttat gctattcagt atctccagaa gtccttggaa


841
gcagatccaa attctggcca gtcctggtat ttccttggaa ggtgctattc aagtattggg


901
aaagttcagg atgcctttat atcttacagg caatctattg ataaatcaga agcaagtgca


961
gatacatggt gttcaatagg tgtgctctat caacagcaaa atcagcctat ggatgctttg


1021
caagcttata tttgtgctgt acaattggac cacggtcatg ctgcagcccg gatggatcta


1081
ggcactctct atgaatcctg caaccaacct caggatgcta tcaaatgcta tttaaatgca


1141
actagaagca aaaattgtag taatacctct ggacttgcag cacgaattaa gtatttacag


1201
gctcagttgt gtaaccttcc acaaggtagt ctacagaata aaactaaatt acttcctagt


1261
attgaggagg cacggagcct accaatcccc gcagagctta cccccaggca gggtgccatg


1321
aacacagcac agcagaatac tcccgataat tggagtggtg gcaatgcacc acctccagta


1381
gaacaacaaa ctcattcatg gtgtttgaca ccacagaaat tacagcactt ggaacagctc


1441
cgagcaaaca gaaataattt aaatccagca cagaaactaa tgctggaaca gctggaaagt


1501
cagtttgtct taatgcagca acaccaaatg agacaaacag gagttgcaca ggtacggcct


1561
actggaattc ttaatgggcc aacagttgac tcatcaccgc ctacaaactc agtttctggc


1621
cagcagccac agcttcctct gaccagaatg cctagtgtct ctcagcctgg agtccacact


1681
gcctgcccta ggcagacttt ggccaatgga cccttttctg caggccatgt tccctgtagc


1741
acatcaagaa cactgggaag tacagacact gttttgatag gcaataatca tgtaacagga


1801
agtggaagta atggaaacgt gccttacctg cagcgaaacg cacccactct acctcataac


1861
cgcacaaacc tgaccagcag cacagaggag ccgtggaaaa accaactatc taactccact


1921
caggggcttc acaaaggtcc gagttcacat ttggcaggtc ccaatggtga acgacctcta


1981
tcttccactg ggccttccca gcatctccag gcagctggct ctggtattca gaatcagaat


2041
ggacatccca ccctgcctag caattcagta acacaggggg ctgctctcaa tcacctctcc


2101
tctcacactg ctacctcagg tggacaacaa ggcattacct taaccaaaga gagcaagcct


2161
tcaggaaaca cattgacggt gcctgaaaca agcaggcaaa ctggagagac acctaacagc


2221
actgccagtg ttgagggact tcctaatcat gtccatcagg tgatggcaga tgctgtttgc


2281
agtcctagcc atggagattc taagtcacca ggtttactaa gttcagacaa tcctcagctc


2341
tctgccttgt tgatgggaaa agctaataac aatgtgggtc ctggaacctg tgacaaagtc


2401
aataacatcc acccaactgt ccatacaaag actgataatt ctgttgcctc ttcaccatct


2461
tcagccattt ccacagcaac accttctcct aagtccactg aacagacaac cacaaacagt


2521
gttaccagcc ttaacagccc tcacagtggg ctgcacacaa ttaatggaga aggaatggaa


2581
gaatctcaga gccccattaa aacagatctg cttctagtta gccacagacc tagtcctcag


2641
atcataccat caatgtctgt gtccatatat cccagctcag cagaagttct gaaagcttgc


2701
aggaatctag gtaaaaacgg cctgtctaat agtagcattc tgttggataa atgtccgcct


2761
ccaagaccac catcctcacc ataccctccc ttgccaaagg acaagttgaa tccacctaca


2821
cctagtattt atttggaaaa taaacgtgat gctttctttc ctccattaca tcaattttgt


2881
acaaacccaa acaaccctgt tacagtaata cgtggccttg ccggagctct taaattagac


2941
ttgggacttt tctctactaa aactttggtg gaagctaaca atgaacatat ggtagaagtg


3001
aggacacagt tgttacaacc agcagatgaa aattgggacc ctactggaac caagaaaatc


3061
tggcactgtg aaagtaatag atctcatact acaattgcta aatatgctca gtaccaggcc


3121
tcctcattcc aagaatcatt gagagaagaa aatgagaaaa gaagtcacca taaagaccac


3181
tcagacagtg aatctacatc atcagataat tctgggaaaa gaagaaaagg accctttaaa


3241
accattaagt ttgggaccaa cattgacctg tccgatgaca aaaagtggaa gttacagcta


3301
catgagctga ctaaacttcc tgccttcgtg agagttgtat ctgcaggaaa tcttttaagc


3361
cacgttggtc atactatact gggcatgaac acagttcaac tatacatgaa agttccagga


3421
agcagaacac caggtcatca agaaaataac aacttctgtt cagttaatat aaatattggc


3481
ccaggtgact gtgaatggtt tgttgttcct gaaggctact ggggtgtttt gaatgacttc


3541
tgtgaaaaaa ataatttgaa tttcttaatg ggttcttggt ggcccaacct tgaagatcta


3601
tatgaagcaa atgttccagt gtataggttt attcagcgac ctggagatct ggtctggata


3661
aatgctggca ctgttcattg ggttcaagct attggctggt gcaacaacat tgcttggaat


3721
gttggtccac ttacagcctg tcagtataag ttagcagcgg aacgttatga atggaacaag


3781
ttgcaaaatg taaagtcaat agtacccatg gttcatcttt cctggaatat ggcacgaaat


3841
atcaaggttt cagatccaaa gctttttgaa atgattaagt attgtcttct gagaacgctg


3901
aagcaatgtc agacattgag ggaagctcta attgctgcag gaaaagagat catatggcac


3961
gggcggacaa aagaagaacc agctcattat tgtagtattt gtgaggtgga ggtttttgat


4021
ctgctctttg tcactaatga gagcaattct cgaaaaacct acatagtaca ttgccaagat


4081
tgtgcacgaa aaacaagtgg gaatctggaa aattttgcgg tgctagaaca gtacaaaatg


4141
gaggatctga tgcaagtcta tgaccaattt acattagtaa gtgaaatcaa catgctcctc


4201
cattaccatc cgcctcatct tgatattgtt ccatggacat taaacatgag accttttctg


4261
ctattcagaa agtaa










SEQ ID NO: 28 Mouse KDM6A Amino Acid Seauence








1
mkscgvslat aaaaaaaaaf gdeekkmaag kasgeseeas psltaeerea lggldsrlfg


61
fvrfhedgar mkallgkavr cyeslilkae gkvesdffcq lghfnllled ypkalsayqr


121
yyslqsdywk naaflyglgl vyfhynafqw aikafqevly vdpsfcrake ihlrlglmfk


181
vntdyesslk hfqlalvdcn pctlsnaeiq fhiahlyetq rkyhsakeay eqllqtenls


241
aqvkatilqq lgwmhhtvdl lgdkatkesy aiqylqksle adpnsgqswy flgrcyssig


301
kvqdafisyr qsidkseasa dtwcsigvly qqqnqpmdal qayicavqld hghaaawmdl


361
gtlyescnqp qdaikcylna trskncsnts glaarikylq aqlcnlpqgs lqnktkllps


421
ieeawslpip aeltsrqgam ntaqqntsdn wsggnapppv eqqthswclt pqklqhleql


481
ranrnnlnpa qklmleqles qfvlmqqhqm rqtgvaqvrp tgilngptvd sslptnsvsg


541
qqpqlpltrm psvsqpgvht acprqtlang pfsaghvpcs tsrtlgstdt vlignnhvtg


601
sgsngnvpyl qrnaptlphn rtnltsstee pwknqlsnst qglhkgpssh lagpngerpl


661
sstgpsqhlq aagsgiqnqn ghptlpsnsv tqgaalnhls shtatsggqq gitltkeskp


721
sgntlcvpet srqtgetpns tasveglpnh vhqvmadavc spshgdsksp gllssdnpql


781
sallmgkann nvgpgtcdkv nnihptvhtk tdnsvassps saistatpsp ksteqtttns


841
vtslnsphsg lhtingegme esqspiktdl llvshrpspq iipsmsvsiy pssaevlkac


901
rnlgknglsn ssilldkcpp prppsspypp lpkdklnppt psiylenkrd affpplhqfc


961
tnpnnpvtvi rglagalkld lglfstktlv eannehmvev rtqllqpade nwdptgtkki


1021
whcesnrsht tiakyaqyqa ssfqeslree nekrshhkdh sdsestssdn sgkrrkgpfk


1081
tikfgtnidl sddkkwklql heltklpafv rvvsagnlls hvghtilgmn tvqlymkvpg


1141
srtpghqenn nfcsvninig pgdcewfvvp egywgvlndf ceknnlnflm gswwpnledl


1201
yeanvpvyrf iqrpgdlvwi nagtvhwvqa igwcnniawn vgpltacqyk laveryewnk


1261
lqnvksivpm vhlswnmarn ikvsdpklte mikycllrtl kqcqtlreal iaagkeiiwh


1321
grtkeepahy csicevevfd llfvtnesns rktyivhcqd carktsgnle nfvvleqykm


1381
edlmqvydqf tlvseinmll hyhpphldiv pwtlnmrptl lfrk










SEQ ID NO: 29 Human ARID1A cDNA Sequence Variant 1 (NM_006015.4. CDS:


From 374 to 7231)








1
cagaaagcgg agagtcacag cggggccagg ccctggggag cggagcctcc accgcccccc


61
tcattcccag gcaagggctt ggggggaatg agccgggaga gccgggtccc gagcctacag


121
agccgggagc agctgagccg ccggcgcctc ggccgccgcc gccgcctcct cctcctccgc


181
cgccgccagc ccggagcctg agccggcggg gcggggggga gaggagcgag cgcagcgcag


241
cagcggagcc ccgcgaggcc cgcccgggcg ggtggggagg gcagcccggg ggactgggcc


301
ccggggcggg gtgggagggg gggagaagac gaagacaggg ccgggtctct ccgcggacga


361
gacagcgggg atcatggccg cgcaggtcgc ccccgccgcc gccagcagcc tgggcaaccc


421
gccgccgccg ccgccctcgg agctgaagaa agccgagcag cagcagcggg aggaggcggg


481
gggcgaggcg gcggcggcgg cagcggccga gcgcggggaa atgaaggcag ccgccgggca


541
ggaaagcgag ggccccgccg tggggccgcc gcagccgctg ggaaaggagc tgcaggacgg


601
ggccgagagc aatgggggtg gcggcggcgg cggagccggc agcggcggcg ggcccggcgc


661
ggagccggac ctgaagaact cgaacgggaa cgcgggccct aggcccgccc tgaacaataa


721
cctcacggag ccgcccggcg gcggcggtgg cggcagcagc gatggggtgg gggcgcctcc


781
tcactcagcc gcggccgcct tgccgccccc agcctacggc ttcgggcaac cctacggccg


841
gagcccgtct gccgtcgccg ccgccgcggc cgccgtcttc caccaacaac atggcggaca


901
acaaagccct ggcctggcag cgctgcagag cggcggcggc gggggcctgg agccctacgc


961
ggggccccag cagaactctc acgaccacgg cttccccaac caccagtaca actcctacta


1021
ccccaaccgc agcgcctacc ccccgcccgc cccggcctac gcgctgagct ccccgagagg


1081
tggcactccg ggctccggcg cggcggcggc tgccggctcc aagccgcctc cctcctccag


1141
cgcctccgcc tcctcgtcgt cttcgtcctt cgctcagcag cgcttcgggg ccatgggggg


1201
aggcggcccc tccgcggccg gcgggggaac tccccagccc accgccaccc ccaccctcaa


1261
ccaactgctc acgtcgccca gctcggcccg gggctaccag ggctaccccg ggggcgacta


1321
cagtggcggg ccccaggacg ggggcgccgg caagggcccg gcggacatgg cctcgcagtg


1381
ttggggggct gcggcggcgg cagctgcggc ggcggccgcc tcgggagggg cccaacaaag


1441
gagccaccac gcgcccatga gccccgggag cagcggcggc ggggggcagc cgctcgcccg


1501
gacccctcag ccatccagtc caatggatca gatgggcaag atgagacctc agccatatgg


1561
cgggactaac ccatactcgc agcaacaggg acctccgcca ggaccgcagc aaggacatgg


1621
gtacccaggg cagccatacg ggtcccagac cccgcagcgg tacccgatga ccatgcaggg


1681
ccgggcgcag agtgccatgg gcggcctctc ttatacacag cagattcctc cttatggaca


1741
acaaggcccc agcgggtatg gtcaacaggg ccagactcca tattacaacc agcaaagtcc


1801
tcaccctcag cagcagcagc caccctactc ccagcaacca ccgtcccaga cccctcatgc


1861
ccaaccttcg tatcagcagc agccacagtc tcaaccacca cagctccagt cctctcagcc


1921
tccatactcc cagcagccat cccagcctcc acatcagcag tccccggctc catacccctc


1981
ccagcagtcg acgacacagc agcaccccca gagccagccc ccctactcac agccacaggc


2041
tcagtctcct taccagcagc agcaacctca gcagccagca ccctcgacgc tctcccagca


2101
ggctgcgtat cctcagcccc agtctcagca gtcccagcaa actgcctatt cccagcagcg


2161
cttccctcca ccgcaggagc tatctcaaga ttcatttggg tctcaggcat cctcagcccc


2221
ctcaatgacc tccagtaagg gagggcaaga agatatgaac ccgagccttc agtcaagacc


2281
ctccagcttg cctgatctat ctggttcaat agatgacctc cccatgggga cagaaggagc


2341
tctgagtcct ggagtgagca catcagggat ttccagcagc caaggagagc agagtaatcc


2401
agctcagtct cctttctctc ctcatacctc ccctcacctg cctggcatcc gaggcccttc


2461
cccgtcccct gttggctctc ccgccagtgt tgctcagtct cgctcaggac cactctcgcc


2521
tgctgcagtg ccaggcaacc agatgccacc tcggccaccc agtggccagt cggacagcat


2581
catgcatcct tccatgaacc aatcaagcat tgcccaagat cgaggttata tgcagaggaa


2641
cccccagatg ccccagtaca gttcccccca gcccggctca gccttatctc cgcgtcagcc


2701
ttccggagga cagatacaca caggcatggg ctcctaccag cagaactcca tggggagcta


2761
tggtccccag gggggtcagt atggcccaca aggtggctac cccaggcagc caaactataa


2821
tgccttgccc aatgccaact accccagtgc aggcatggcc ggaggcataa accccatggg


2881
tgccggaggt caaatgcatg gacagcctgg catcccacct tatggcacac tccctccagg


2941
gaggatgagt cacgcctcca tgggcaaccg gccttatggc cccaacatgg ccaatatgcc


3001
acctcaggtt gggtcaggga tgtgtccccc accagggggc atgaaccgga aaacccaaga


3061
aactgccgtc gccatgcatg ttgctgccaa ctctatccaa aacaggccgc caggctaccc


3121
caatatgaat caagggggca tgatgggaac tggacctcct tatggacaag ggattaatag


3181
tatggctggc acgatcaacc ctcagggacc cccatattcc atgggtggaa ccatggccaa


3241
caattctgca gggatggcag ccagcccaga gatgatgggc cttggggatg taaagttaac


3301
tccagccacc aaaatgaaca acaaggcaga tgggacaccc aagacagaat ccaaatccaa


3361
gaaatccagt tcttctacta caaccaatga gaagatcacc aagttgtatg agctgggtgg


3421
tgagcctgag aggaagatgt gggtggaccg ttatctggcc ttcactgagg agaaggccat


3481
gggcatgaca aatctgcctg ctgtgggtag gaaacctctg gacctctatc gcctctatgt


3541
gtctgtgaag gagattggtg gattgactca ggtcaacaag aacaaaaaat ggcgggaact


3601
tgcaaccaac ctcaatgtgg gcacatcaag cagtgctgcc agctccttga aaaagcagta


3661
tatccagtgt ctctatgcct ttgaatgcaa gattgaacgg ggagaagacc ctcccccaga


3721
catctttgca gctgctgatt ccaagaagtc ccagcccaag atccagcctc cctctcctgc


3781
gggatcagga tctatgcagg ggccccagac tccccagtca accagcagtt ccatggcaga


3841
aggaggagac ttaaagccac caactccagc atccacacca cacagtcaga tccccccatt


3901
gccaggcatg agcaggagca attcagttgg gatccaggat gcctttaatg atggaagtga


3961
ctccacattc cagaagcgga attccatgac tccaaaccct gggtatcagc ccagtatgaa


4021
tacctctgac atgatggggc gcatgtccta tgagccaaat aaggatcctt atggcagcat


4081
gaggaaagct ccagggagtg atcccttcat gtcctcaggg cagggcccca acggcgggat


4141
gggtgacccc tacagtcgcg ctgccggccc tgggctagga aatgtggcga tgggaccacg


4201
acagcactat ccctatggag gtccttatga cagagtgagg acggagcctg gaatagggcc


4261
tgagggaaac atgagcactg gggccccaca gccgaatctc atgccttcca acccagactc


4321
ggggatgtat tctcctagcc gctacccccc gcagcagcag cagcagcagc agcaacgaca


4381
tgattcctat ggcaatcagt tctccaccca aggcacccct tctggcagcc ccttccccag


4441
ccagcagact acaatgtatc aacagcaaca gcagaattac aagcggccaa tggatggcac


4501
atatggccct cctgccaagc ggcacgaagg ggagatgtac agcgtgccat acagcactgg


4561
gcaggggcag cctcagcagc agcagttgcc cccagcccag ccccagcctg ccagccagca


4621
acaagctgcc cagccttccc ctcagcaaga tgtatacaac cagtatggca atgcctatcc


4681
tgccactgcc acagctgcta ctgagcgccg accagcaggc ggcccccaga accaatttcc


4741
attccagttt ggccgagacc gtgtctctgc accccctggc accaatgccc agcaaaacat


4801
gccaccacaa atgatgggcg gccccataca ggcatcagct gaggttgctc agcaaggcac


4861
catgtggcag gggcgtaatg acatgaccta taattatgcc aacaggcaga gcacgggctc


4921
tgccccccag ggccccgcct atcatggcgt gaaccgaaca gacgaaatgc tgcacacaga


4981
tcagagggcc aaccacgaag gctcgtggcc ttcccatggc acacgccagc ccccatatgg


5041
tccctctgcc cctgtgcccc ccatgacaag gccccctcca tctaactacc agcccccacc


5101
aagcatgcag aatcacattc ctcaggtatc cagccctgct cccctgcccc ggccaatgga


5161
gaaccgcacc tctcctagca agtctccatt cctgcactct gggatgaaaa tgcagaaggc


5221
aggtccccca gtacctgcct cgcacatagc acctgcccct gtgcagcccc ccatgattcg


5281
gcgggatatc accttcccac ctggctctgt tgaagccaca cagcctgtgt tgaagcagag


5341
gaggcggctc acaatgaaag acattggaac cccggaggca tggcgggtaa tgacgtccct


5401
caagtctggt ctcctggcag agagcacatg ggcattagat accatcaaca tcctgctgta


5461
tgatgacaac agcatcatga ccttcaacct cagtcagctc ccagggttgc tagagctcct


5521
tgtagaatat ttccgacgat gcctgattga gatctttggc attttaaagg agtatgaggt


5581
gggtgaccca ggacagagaa cgctactgga tcctgggagg ttcagcaagg tgtctagtcc


5641
agctcccacg gagggtgggg aagaagaaga agaacttcta ggtcctaaac tagaagagga


5701
agaagaagag gaagtagttg aaaatgatga ggagatagcc ttttcaggca aggacaagcc


5761
agcttcagag aatagtgagg agaagctgat cagtaagttt gacaagcttc cagtaaagat


5821
cgtacagaag aatgatccat ttgtggtgga ctgctcagat aagcttgggc gtgtgcagga


5881
gtttgacagt ggcctgctgc actggcggat tggtgggggg gacaccactg agcatatcca


5941
gacccacttc gagagcaaga cagagctgct gccttcccgg cctcacgcac cctgcccacc


6001
agcccctcgg aagcatgtga caacagcaga gggtacacca gggacaacag accaggaggg


6061
gcccccacct gatggacctc cagaaaaacg gatcacagcc actatggatg acatgttgtc


6121
tactcggtct agcaccttga ccgaggatgg agctaagagt tcagaggcca tcaaggagag


6181
cagcaagttt ccatttggca ttagcccagc acagagccac cggaacatca agatcctaga


6241
ggacgaaccc cacagtaagg atgagacccc actgtgtacc cttctggact ggcaggattc


6301
tcttgccaag cgctgcgtct gtgtgtccaa taccattcga agcctgtcat ttgtgccagg


6361
caatgacttt gagatgtcca aacacccagg gctgctgctc atcctgggca agctgatcct


6421
gctgcaccac aagcacccag aacggaagca ggcaccacta acttatgaaa aggaggagga


6481
acaggaccaa ggggtgagct gcaacaaagt ggagtggtgg tgggactgct tggagatgct


6541
ccgggaaaac accttggtta cactcgccaa catctcgggg cagttggacc tatctccata


6601
ccccgagagc atttgcctgc ctgtcctgga cggactccta cactgggcag tttgcccttc


6661
agctgaagcc caggacccct tttccaccct gggccccaat gccgtccttt ccccgcagag


6721
actggtcttg gaaaccctca gcaaactcag catccaggac aacaatgtgg acctgattct


6781
ggccacaccc cccttcagcc gcctggagaa gttgtatagc actatggtgc gcttcctcag


6841
tgaccgaaag aacccggtgt gccgggagat ggctgtggta ctgctggcca acctggctca


6901
gggggacagc ctggcagctc gtgccattgc agtgcagaag ggcagtatcg gcaacctcct


6961
gggcttccta gaggacagcc ttgccgccac acagttccag cagagccagg ccagcctcct


7021
ccacatgcag aacccaccct ttgagccaac tagtgtggac atgatgcggc gggctgcccg


7081
cgcgctgctt gccttggcca aggtggacga gaaccactca gagtttactc tgtacgaatc


7141
acggctgttg gacatctcgg tatcaccgtt gatgaactca ttggcttcac aagtcatttg


7201
tgatgtactg tttttgattg gccagtcatg acagccgtgg gacacctccc ccccccgtgt


7261
gtgtgtgcgt gtgtggagaa cttagaaact gactgttgcc ctttatttat gcaaaaccac


7321
ctcagaatcc agtttaccct gtgctgtcca gcttctccct tgggaaaaag tctctcctgt


7381
ttctctctcc tccttccacc tcccctccct ccatcacctc acgcctttct gttccttgtc


7441
ctcaccttac tcccctcagg accctacccc accctctttg aaaagacaaa gctctgccta


7501
catagaagac tttttttatt ttaaccaaag ttactgttgt ttacagtgag tttggggaaa


7561
aaaaataaaa taaaaatggc tttcccagtc cttgcatcaa cgggatgcca catttcataa


7621
ctgtttttaa tggtaaaaaa aaaaaaaaaa aatacaaaaa aaaattctga aggacaaaaa


7681
aggtgactgc tgaactgtgt gtggtttatt gttgtacatt cacaaccttg caggagccaa


7741
gaagttcgca gttgtgaaca gaccctgttc actggagagg cctgtgcagt agagtgtaga


7801
ccctttcatg tactgtactg tacacctgat actgtaaaca tactgtaata ataatgtctc


7861
acatggaaac agaaaacgct gggtcagcag caagctgtag tttttaaaaa tgtttttagt


7921
taaacgttga ggagaaaaaa aaaaaaggct tttcccccaa agtatcatgt gtgaacctac


7981
aacaccctga cctctttctc tcctccttga ttgtatgaat aaccctgaga tcacctctta


8041
gaactggttt taacctttag ctgcagcggc tacgctgcca cgtgtgtata tatatgacgt


8101
tgtacattgc acataccctt ggatccccac agtttggtcc tcctcccagc taccccttta


8161
tagtatgacg agttaacaag ttggtgacct gcacaaagcg agacacagct atttaatctc


8221
ttgccagata tcgcccctct tggtgcgatg ctgtacaggt ctctgtaaaa agtccttgct


8281
gtctcagcag ccaatcaact tatagtttat ttttttctgg gtttttgttt tgttttgttt


8341
tctttctaat cgaggtgtga aaaagttcta ggttcagttg aagttctgat gaagaaacac


8401
aattgagatt ttttcagtga taaaatctgc atatttgtat ttcaacaatg tagctaaaac


8461
ttgatgtaaa ttcctccttt ttttcctttt ttggcttaat gaatatcatt tattcagtat


8521
gaaatcttta tactatatgt tccacgtgtt aagaataaat gtacattaaa tcttggtaag


8581
acttt










SEQ ID NO: 30 Human ARID1A Amino Acid Sequence isoform A (NP_006006.3)








1
maaqvapaaa sslgnppppp pselkkaeqq qreeaggeaa aaaaaergem kaaagqeseg


61
pavgppqplg kelqdgaesn gggggggags gggpgaepdl knsngnagpr palnnnltep


121
pggggggssd gvgapphsaa aalpppaygf gqpygrspsa vaaaaaavfh qqhggqqspg


181
laalqsgggg glepyagpqq nshdhgtpnh qynsyypnrs aypppapaya lssprggtpg


241
sgaaaaagsk pppsssasas sssssfaqqr fgamggggps aagggtpqpt atptlnqllt


301
spssargyqg ypggdysggp qdggagkgpa dmasqcwgaa aaaaaaaaas ggaqqrshha


361
pmspgssggg gqplartpqp sspmdqmgkm rpqpyggtnp ysqqqgppsg pqqghgypgq


421
pygsqtpqry pmtmqgraqs amgglsytqq ippygqqgps gygqqgqtpy ynqqsphpqq


481
qqppysqqpp sqtphaqpsy qqqpqsqppq lqssqppysq qpsqpphqqs papypsqqst


541
tqqhpqsqpp ysqpqaqspy qqqqpqqpap stlsqqaayp qpqsqqsqqt aysqqrfppp


601
qelsqdsfgs qassapsmts skggqedmnl slqsrpsslp dlsgsiddlp mgtegalspg


661
vstsgisssq geqsnpaqsp fsphtsphlp girgpspspv gspasvaqsr sgplspaavp


721
gnqmpprpps gqsdsimhps mnqssiaqdr gymqrnpqmp qysspqpgsa lsprqpsggq


781
ihrgmgsyqq nsmgsygpqg gqygpqggyp rqpnynalpn anypsagmag ginpmgaggq


841
mhgqpgippy gtlppgrmsh asmgnrpygp nmanmppqvg sgmcpppggm nrktqetava


901
mhvaansiqn rppgypnmnq ggmmgtgppy gqginsmagm inpqgppysm ggtmannsag


961
maaspemmgl gdvkltpatk mnnkadgtpk teskskksss stttnekitk lyelggeper


1021
kmwvdrylat teekamgmtn lpavgrkpld lyrlyvsvke iggltqvnkn kkwrelatnl


1081
nvgtsssaas slkkqyiqcl yafeckierg edpppdifaa adskksqpki qppspagsgs


1141
mqgpqtpqst sssmaeggdl kpptpastph sqipplpgms rsnsvgiqda fndgsdstfq


1201
krnsmtpnpg yqpsmntsdm mgrmsyepnk dpygsmrkap gsdpfmssgq gpnggmgdpy


1261
sraagpglgn vamgprqhyp yggpydrvrt epgigpegnm stgapqpnlm psnpdsgmys


1321
psryppqqqq qqqqrhdsyg nqfstqgtps gspfpsqqtt myqqqqqnyk rpmdgtygpp


1381
akrhegemys vpystgqgqp qqqqippaqp qpasqqqaaq pspqqdvynq ygnaypatat


1441
aaterrpagg pqnqtptqtg rdrvsappgt naqqnmppqm mggpiqasae vaqqgtmwqg


1501
rndmtynyan rqstgsapqg payhgvnrtd emlhtdqran hegswpshgc rqppygpsap


1561
vppmtrppps nyqpppsmqn hipqvsspap lprpmenrts pskspflhsg mkmqkagppv


1621
pashiapapv qppmirrdit fppgsveatq pvlkqrrrlt mkdigtpeaw rvmmslksgl


1681
laestwaldt inillyddns imtfnlsqlp gllellveyf rrclieftgi lkeyevgdpg


1741
qrtlldpgrf skvsspapme ggeeeeellg pkleeeeeee vvendeeiaf sgkdkpasen


1801
seekliskfd klpvkivqkn dpfvvdcsdk lgrvqefdsg llhwrigggd ttehiqthfe


1861
sktellpsrp hapcppapck hvttaegtpg ttdqegpppd gppekritat mddmlstrss


1921
tltedgakss eaikesskfp fgispaqshr nikiledeph skdetplctl ldwqdslakr


1981
cvcvsntirs lsfvpgndfe mskhpgllli lgklillhhk hperkqaplt yekeeeqdqg


2041
vscnkvewww dclemlrent lvtlanisgq ldlspypesi clpvldgllh wavcpsaeaq


2101
dpfstlgpna vlspqrlvle tlsklsiqdn nvdlilatpp fsrleklyst mvrflsdrkn


2161
pvcremavvl lanlaqgdsl aaraiavqkg signllgfle dslaatqfqq sqasllhmqn


2221
ppfeptsvdm mrraaralla lakvdenhse ftlyesrlld isvsplmnsl vsqvicdvlf


2281
ligqs










SEQ ID NO: 31 Human ARID1A cDNA Sequence Variant 2 (NM_139135.2. CDS:


from 374 to 6580)








1
cagaaagcgg agagtcacag cggggccagg ccctggggag cggagcctcc accgcccccc


61
tcattcccag gcaagggctt ggggggaatg agccgggaga gccgggtccc gagcctacag


121
agccgggagc agctgagccg ccggcgcctc ggccgccgcc gccgcctcct cctcctccgc


181
cgccgccagc ccggagcctg agccggcggg gcggggggga gaggagcgag cgcagcgcag


241
cagcggagcc ccgcgaggcc cgcccgggcg ggtggggagg gcagcccggg ggactgggcc


301
ccggggcggg gtgggagggg gggagaagac gaagacaggg ccgggtctct ccgcggacga


361
gacagcgggg atcatggccg cgcaggtcgc ccccgccgcc gccagcagcc tgggcaaccc


481
gggcgaggcg gcggcggcgg cagcggccga gcgcggggaa atgaaggcag ccgccgggca


541
ggaaagcgag ggccccgccg tggggccgcc gcagccgctg ggaaaggagc tgcaggacgg


601
ggccgagagc aatgggggtg gcggcggcgg cggagccggc agcggcggcg ggcccggcgc


661
ggagccggac ctgaagaact cgaacgggaa cgcgggccct aggcccgccc tgaacaataa


721
cctcacggag ccgcccggcg gcggcggtgg cggcagcagc gatggggtgg gggcgcctcc


781
tcactcagcc gcggccgcct tgccgccccc agcctacggc ttcgggcaac cctacggccg


841
gagcccgtct gccgtcgccg ccgccgcggc cgccgtcttc caccaacaac atggcggaca


901
acaaagccct ggcctggcag cgctgcagag cggcggcggc gggggcctgg agccctacgc


961
ggggccccag cagaactctc acgaccacgg cttccccaac caccagtaca actcctacta


1021
ccccaaccgc agcgcctacc ccccgcccgc cccggcctac gcgctgagct ccccgagagg


1081
tggcactccg ggctccggcg cggcggcggc tgccggctcc aagccgcctc cctcctccag


1141
cgcctccgcc tcctcgtcgt cttcgtcctt cgctcagcag cgcttcgggg ccatgggggg


1201
aggcggcccc tccgcggccg gcgggagaac tccccagccc accgccaccc ccaccctcaa


1261
ccaactgctc acgtcgccca gctcggcccg gggctaccag ggctaccccg ggggcgacta


1321
cagtggcggg ccccaggacg ggggcgccgg caagggcccg gcggacatgg cctcgcagtg


1381
ttggggggct gcggcggcgg cagctgcggc ggcggccgcc tcgggagggg cccaacaaag


1441
gagccaccac gcgcccatga gccccgggag cagcggcggc ggggggcagc cgctcgcccg


1501
gacccctcag ccatccagtc caatggatca gatgggcaag atgagacctc agccatatgg


1561
cgggactaac ccatactcgc agcaacaggg acctccgtca ggaccgcagc aaggacatgg


1621
gtacccaggg cagccatacg ggtcccagac cccgcagcgg tacccgacga ccatgcaggg


1681
ccgggcgcag agtgccatgg gcggcctctc ttatacacag cagattcctc cttatggaca


1741
acaaggcccc agcgggtatg gtcaacaggg ccagactcca tattacaacc agcaaagtcc


1801
tcaccctcag cagcagcagc caccctactc ccagcaacca ccgtcccaga cccctcatgc


1861
ccaaccttcg tatcagcagc agccacagtc tcaaccacca cagctccagt cctctcagcc


1921
tccatactcc cagcagccat cccagcctcc acatcagcag tccccggctc catacccctc


1981
ccagcagtcg acgacacagc agcaccccca gagccagccc ccctactcac agccacaggc


2041
tcagtctcct taccagcagc agcaacctca gcagccagca ccctcgacgc tctcccagca


2101
ggctgcgtat cctcagcccc agtcccagca gtcccagcaa actgcctatt cccagcagcg


2161
cttccctcca ccgcaggagc tatctcaaga ttcatttggg tctcaggcat cctcagcccc


2221
ctcaatgacc tccagtaagg gagggcaaga agatatgaac ctgagccttc agtcaagacc


2281
ctccagcttg cctgatctat ctggttcaat agatgacctc cccatgggga cagaaggagc


2341
tctgagtcct ggagtgagca catcagggat ttccagcagc caaggagagc agagtaatcc


2401
agctcagtct cctttctctc ctcacacctc ccctcacctg cctggcatcc gaggcccttc


2461
cccgtcccct gttggctctc ccgccagtgt tgctcagtct cgctcaggac cactctcgcc


2521
tgctgcagtg ccaggcaacc agatgccacc tcggccaccc agtggccagt cggacagcat


2581
catgcatcct tccatgaacc aatcaagcat tgcccaagat cgaqgttata tgcagaggaa


2641
cccccagatg ccccagtaca gttcccccca gcccggctca gccttatctc cgcgtcagcc


2701
ttccggagga cagatacaca caggcatggg ctcctaccag cagaactcca tggggagcta


2761
tggtccccag gggggtcagt atggcccaca aggtggccac cccaggcagc caaactataa


2821
tgccttgccc aatgccaact accccagtgc aggcatggct ggaggcataa accccatggg


2881
tgccggaggt caaacgcatg gacagcctgg catcccacct tatggcacac tccctccagg


2941
gaggatgagt cacgcctcca tgggcaaccg gccttatggc cctaacatgg ccaatatgcc


3001
acctcaggtt gggtcaggga tgtgtccccc accagggggc atgaaccgga aaacccaaga


3061
aactgctgcc gccatgcatg ttgctgccaa ctctatccaa aacaggccgc caggctaccc


3121
caatatgaat caagggggca tgatgggaac tggacctcct tatggacaag ggattaatag


3181
tatggctggc acgatcaacc ctcagggacc cccacattcc atgggtggaa ccatggccaa


3241
caattctgca gggatggcag ccagcccaga gatgatgggc cttggggatg taaagttaac


3301
tccagccacc aaaatgaaca acaaggcaga tgggacaccc aagacagaat ccaaatccaa


3361
gaaatccagt tcttctacta caaccaatga gaagatcacc aagttgtatg agctgggtgg


3421
tgagcctgag aggaagatgt gggtggaccg ttatctggcc ttcactgagg agaaggccat


3481
gggcatgaca aatctgcctg ctgtgggtag gaaacctctg gacctctatc gcctctatgt


3541
gtctgtgaag gagattggcg gattgactca ggtcaacaag aacaaaaaat ggcgggaact


3601
tgcaaccaac ctcaatgtgg gcacatcaag cagtgctgcc agctccttga aaaagcagta


3661
tatccagtgt ctctatgcct ttgaatgcaa gattgaacgg ggagaagacc ctcccccaga


3721
catctttgca gctgctgatt ccaagaagtc ccagcccaag atccagcctc cctctcctgc


3781
gggatcagga tctatgcagg ggccccagac tccccagcca accagcagtt ccatggcaga


3841
aggaggagac ttaaagccac caactccagc atccacacca cacagtcaga tccccccatt


3901
gccaggcatg agcaggagca attcagttgg gatccaggat gcccttaatg atggaagtga


3961
ctccacattc cagaagcgga attccatgac tccaaaccct gggtatcagc ccagtatgaa


4021
tacctctgac atgatggggc gcatgtccca tgagccaaat aaggatcctt atggcagcat


4081
gaggaaagct ccagggagtg atcccttcat gtcctcaggg cagggcccca acggcgggat


4141
gggtgacccc tacagtcgtg ctgccggccc tgggctagga aatgtggcga tgggaccacg


4201
acagcactat ccctatggag gtccttatga cagagtgagg acggagcctg gaatagggcc


4261
tgagggaaac atgagcactg gggccccaca gccgaatctc atgccttcca acccagactc


4321
ggggatgtat tctcctagcc gctacccccc gcagcagcag cagcagcagc agcaacgaca


4381
tgattcctat ggcaatcagt tctccaccca aggcacccct tctggcagcc ccttccccag


4441
ccagcagact acaatgtatc aacagcaaca gcaggtatcc agccctgctc ccctgccccg


4501
gccaatggag aaccgcacct ctcctagcaa gtctccattc ctgcactctg ggatgaaaat


4561
gcagaaggca ggtcccccag tacctgcctc gcacatagca cctgcccctg tgcagccccc


4621
catgattcgg cgggatatca ccttcccacc tggctctgtt gaagccacac agcctgtgtt


4681
gaagcagagg aggcggctca caatgaaaga cattggaacc ccggaggcat ggcgggtaat


4741
gatgtccctc aagtctggtc tcctggcaga gagcacatgg gcattagata ccatcaacat


4801
cctgctgtat gatgacaaca gcatcatgac cttcaacctc agtcagctcc cagggttgct


4861
agagctcctt gtagaatatt tccgacgatg cctgattgag atctttggca ttttaaagga


4921
gtatgaggtg ggtgacccag gacagagaac gctactggat cctgggaggt tcagcaaggt


4981
gtctagtcca gctcccatgg agggtgggga agaagaagaa gaacttctag gtcctaaact


5041
agaagaggaa gaagaagagg aagtagttga aaatgatgag gagatagcct tttcaggcaa


5101
ggacaagcca gcttcagaga atagtgagga gaagctgatc agtaagtttg acaagcttcc


5161
agtaaagatc gtacagaaga atgatccatt tgtggtggac tgctcagata agcttgggcg


5221
tgtgcaggag tttgacagtg gcctgctgca ctggcggatt ggtggggggg acaccactga


5281
gcatatccag acccacttcg agagcaagac agagctgctg ccctcccggc ctcacgcacc


5341
ctgcccacca gcccctcgga agcatgtgac aacagcagag ggtacaccag ggacaacaga


5401
ccaggagggg cccccacctg atggacctcc agaaaaacgg atcacagcca ctatggatga


5461
catgttgtct actcggtcta gcaccttgac cgaggatgga gctaagagtt cagaggccat


5521
caaggagagc agcaagtttc catttggcat tagcccagca cagagccacc ggaacatcaa


5581
gatcctagag gacgaacccc acagtaagga tgagacccca ctgtgtaccc ttctggactg


5641
gcaggattct cttgccaagc gctgcgtctg tgtgtccaat accattcgaa gcctgccatt


5701
tgtgccaggc aatgactttg agatgtccaa acacccaggg ctgctgctca tcctgggcaa


5761
gctgatcctg ctgcaccaca agcacccaga acggaagcag gcaccactaa cttatgaaaa


5821
ggaggaggaa caggaccaag gggtgagctg caacaaagtg gagtggtggt gggactgctt


5881
ggagatgctc cgggaaaaca ccttggttac actcgccaac atctcggggc agttggacct


5941
atctccatac cccgagagca tttgcctgcc tgtcctggac ggactcctac actgggcagt


6001
ttgcccttca gctgaagccc aggacccctt ttccaccctg ggccccaatg ccgtcctttc


6061
cccgcagaga ccggtcttgg aaaccctcag caaactcagc atccaggaca acaatgtgga


6121
cccgattctg gccacacccc ccttcagccg cctggagaag ttgtatagca ctatggtgcg


6181
cttcctcagt gaccgaaaga acccggtgtg ccgggagatg gctgtggtac tgctggccaa


6241
cctggctcag ggggacagcc tggcagctcg tgccattgca gcgcagaagg gcagtatcgg


6301
caacctcctg ggcttcctag aggacagcct tgccgccaca cagttccagc agagccaggc


6361
cagcctcctc cacatgcaga acccaccctt tgagccaact agtgtggaca tgatgcggcg


6421
ggctgcccgc gcgctgcttg ccttggccaa ggtggacgag aaccactcag agtttactct


6481
gtacgaatca cggctgttgg acatctcggt atcaccgttg atgaactcat tggtttcaca


6541
agtcatttgt gatgtactgt ttttgattgg ccagtcatga cagccgtggg acacctcccc


6601
cccccgtgtg tgtgcgcgtg tgcggagaac ttagaaactg actgttgccc tttatttatg


6661
caaaaccacc tcagaatcca gtttaccctg tgctgtccag cttctccctt gggaaaaagt


6721
ctctcctgtt tctctctcct ccttccacct ccctcccctc catcacctca cgcctttccg


6781
ttccttgtcc tcaccttact cccctcagga ccctacccca cctcttttga aaagacaaag


6841
ctctgcctac atagaagact ttttttattt taaccaaagt tactgttgtt tacagtgagt


6901
ttggggaaaa aaaacaaaat aaaaatggct ttcccagtcc ttgcatcaac gggatgccac


6961
atttcataac tgtttttaat ggtaaaaaaa aaaaaaaaaa atacaaaaaa aaattctgaa


7021
ggacaaaaaa ggtgactgct gaactgtgtg tggtttattg ttgcacattc acaatcttgc


7081
aggagccaag aagttcgcag ttgtgaacag accctgttca ctggagaggc ctgtgcagta


7141
gagtgtagac cctttcatgt actgtactgt acacctgata ccgtaaacat actgtaataa


7201
taatgtctca catggaaaca gaaaacgctg ggtcagcagc aagctgtagt ttttaaaaat


7261
gtttttagtt aaacgttgag gagaaaaaaa aaaaaggctt tccccccaaa gtatcatgtg


7321
tgaacctaca acaccctgac ctctttctct cctccttgat tgtatgaata accctgagat


7381
cacctcttag aactggtttt aacctttagc tgcagcggct acgctgccac gtgtgtatat


7441
atatgacgtt gtacattgca catacccttg gatccccaca gtttggtcct cctcccagct


7501
acccctttat agtatgacga gttaacaagt tggtgacctg cacaaagcga gacacagcta


7561
tttaatctct tgccagatat cgcccctctt ggtgcgatgc tgtacaggtc tctgtaaaaa


7621
gtccttgctg tctcagcagc caatcaactt atagtttatt tttttctggg tttttgtttt


7681
gttttgtttt ctttctaatc gaggtgtgaa aaagttctag gttcagttga agttctgacg


7741
aagaaacaca actgagattt tttcagtgat aaaatctgca tatttgtatt tcaacaatgt


7801
agctaaaact tgatgtaaat tcctcctttt tttccttttt tggcttaatg aatatcattt


7861
attcagtatg aaatctttat actatatgtt ccacgtgtta agaataaatg tacattaaat


7921
ctcggtaaga cttt










SEQ ID NO: 32 Human ARID1A Amino Acid Sequence isoform B (NP_624361.1)








1
maaqvapaaa sslgnppppp pselkkaeqq qreeaggeaa aaaaaergem kaaagqeseg


61
pavgppqplg kelqdgaesn gggggggags gggpgaepdl knsngnagpr palnnnltep


121
pggggggssd gvgapphsaa aalpppaygf gqpygrspsa vaaaaaavfh qqhggqqspg


181
laalqsgggg glepyagpqq nshdhgfpnh qynsyypnrs aypppapaya lssprggtpg


241
sgaaaaagsk pppsssasas sssssfaqqr fgamggggps aagggtpqpt atptlnqllt


301
spssargyqg ypggdysggp qdggagkgpa dmasqcwgaa aaaaaaaaas ggaqqrshha


361
pmspgssggg gqplartpqp sspmdqmgkm rpqpyggtnp ysqqqgppsg pqqghgypgq


421
pygsqtpqry pmtmqgraqs amgglsytqq ippygqqgps gygqqgqtpy ynqqsphpqq


481
qqppysqqpp sqtphaqpsy qqqpqsqppq lqssqppysq qpsqpphqqs papypsqqst


541
tqqhpqsqpp ysqpqaqspy qqqqpqqpap stlsqqaayp qpqsqqsqqt aysqqrfppp


601
qelsqdsfgs qassapsmts skggqedmnl slqsrpsslp dlsgsiddlp mgtegalspg


661
vstsgisssq geqsnpaqsp fsphtsphlp girgpspspv gspasvaqsr sgplspaavp


721
gnqmpprpps gqsdsimhps mnqssiaqdr gymqrnpqmp qysspqpgsa lsprqpsggq


781
ihtgmgsyqq nsmgsygpqg gqygpqggyp rqpnynalpn anypsagmag ginpmgaggq


841
mhgqpgippy gtlppgrmsh asmgnrpygp nmanmppqvg sgmcpppggm nrktqetava


901
mhvaansiqn rppgypnmnq ggmmgtgppy gqginsmagm inpqgppysm ggtmannsag


961
maaspemmgl gdvkltpatk mnnkadgtpk teskskksss stttnekitk lyelggeper


1021
kmwvdrylaf teekamgmtn lpavgrkpld lyrlyvsvke iggltqvnkn kkwrelatnl


1081
nvgtsssaas slkkqyiqcl yafeckierg edpppdifaa adskksqpki qppspagsgs


1141
mqgpqtpqst sssmaeggdl kpptpastph sqipplpgms rsnsvgiqda fndgsdsrfq


1201
krnsmtpnpg yqpsmntsdm mgrmsyepnk dpygsmrkap gsdpfmssgq gpnggmgdpy


1261
sraagpglgn vamgprqhyp yggpydrvrt epgigpegnm stgapqpnlm psnpdsgmys


1321
psryppqqqq qqqqrhdsyg nqfstqgtps gspfpsqqtt myqqqqqvss paplprpmen


1381
rtspskspfl hsgmkmqkag ppvpashiap apvqppmirr ditfppgsve atqpvlkqrr


1441
rltmkdigtp eawrvmmslk sgllaestwa ldtinillyd dnsimtfnls qlpgllellv


1501
eyfrrcliei fgilkeyevg dpgqrtlldp grfskvsspa pmeggeeeee llgpkleeee


1561
eeevvendee iafsgkdkpa senseeklis kfdklpvkiv qkndpfvvdc sdklgrvqef


1621
dsgllhwrig ggdttehiqt hfesktellp srphapcppa prkhvttaeg tpgttdqegp


1681
ppdgppekri tatmddmlst rsstltedga ksseaikess kfpfgispaq shrnikiled


1741
ephskdetpl ctlldwqdsl akrcvcvsnt irslsfvpgn dfemskhpgl llilgklill


1801
hhkhperkqa pltyekeeeq dqgvscnkve wwwdclemlr entlvtlani sgqldlspyp


1861
esiclpvldg llhwavcpsa eaqdpfstlg pnavlspqrl vletlsklsi qdnnvdlila


1921
tppfsrlekl yscmvrflsd rknpvcrema vvllanlaqg dslaaraiav qkgsignllg


1981
fledslaatq fqqsqasllh mqnppfepts vdmmrraara llalakvden hseftlyesr


2041
lldisvsplm nslvsqvicd vlfligqs










SEQ ID NO: 33 Mouse ARID1A cDNA Sequence (NM_001080819.1. CDS: from 1


to 6852)








1
atggccgcgc aggtcgcccc cgccgccgcc agcagcctgg gcaacccgcc gccgccgccc


61
tcggagctga agaaagccga gcagcaacag cgggaggagg cggggggcga ggcggcggcg


121
gcagcggccg agcgcgggga aatgaaggca gccgccgggc aggagagcga gggccccgcc


181
gtggggccgc cgcagccgct gggaaaggag ctgcaggacg gggccgagag caatgggggt


241
ggcggcggcg gcggagccgg cagcggcggc gggcccggcg cggagccgga cctgaagaac


301
tcgaacggga acgcgggccc taggcccgcc ctgaacaata acctcccgga gccgcccggc


361
ggcggcggcg gcggcggcag cagcagcagc gacggggtgg gggcgcctcc tcactcggcc


421
gcggccgccc tgccgccccc agcctacggc ttcgggcaag cctacggccg gagcccgtct


481
gccgtcgccg ccgcggcggc cgccgtcttc caccaacaac atggcggaca acaaagccct


541
ggcctggcag cgctgcagag cggcggcggc gggggcttgg agccctacgc cgggccccag


601
cagaactcgc acgaccacgg cttccccaac caccagtaca actcctacca ccccaaccgc


661
agcgcctacc ccccgcctcc ccaggcctac gcgctgagct ccccgagagg tggcactccg


721
ggctccggcg cggcggcggc cgccggctcc aagccgcctc cctcctccag cgcctctgcc


781
tcctcgtcgt cttcgtcctt cgcacagcag cgcttcgggg ccatgggggg aggcggcccc


841
tcagcggccg gcgggggaac tccccagccc accgccaccc ccacccccaa ccaactgctc


901
acgtcgccca gctcggcccg tggctaccag ggctaccccg ggggcgacta cggcggcggg


961
ccccaggacg ggggcgcggg caaaggcccg gcggacatgg cctcgcagtg ctggggggct


1021
gcggcggcgg cggcggcggc ggcagcggcc gtctcgggag gggcccaaca aaggagccac


1081
cacgcgccca tgagccccgg gagcagcggc ggcggggggc agccgctcgc ccggacccct


1141
cagtcatcca gtccaatgga tcagatggga aagatgagac ctcagccgta tggtgggact


1201
aacccatact cgcaacaaca gggacctcct tcaggaccgc aacaaggaca tgggtaccca


1261
gggcagccat atgggtccca gactccacag cggtacccca tgaccatgca gggccgggct


1321
cagagtgcca tgggcagcct ctcttatgca cagcagattc caccttatgg ccagcaaggc


1381
cccagtgcgt atggccagca gggccagact ccatactata accagcaaag tcctcatccc


1441
cagcagcagc caccctacgc ccagcaacca ccatcccaga cccctcatgc ccagccttcg


1501
tatcagcagc agccgcagac tcagcaacca cagcttcagt cctctcagcc tccatattcc


1561
cagcagccat cccagcctcc acatcagcag tccccaactc catatccctc ccagcagtcc


1621
accacacaac agcatcccca gagccagccc ccctactcac aaccacaggc acagtctccc


1681
taccagcagc agcaacctca gcagccagca tcctcgtcgc tctcccagca ggctgcatat


1741
cctcagcccc agcctcagca gtcccagcaa actgcctatt cccagcagcg cttccctcca


1801
ccacaggagc tttctcaaga ttcatttggg tctcaggcat cctcagcccc ctcaatgacc


1861
tccagtaagg gagggcaaga agatatgaac ctgagtcttc agtcaaggcc ctccagcttg


1921
cctgatctgt ctggttcaat cgatgatctc cccatgggga cagaaggagc tctgagtcct


1981
ggcgtgagca catcagggat ttccagcagc caaggagagc agagcaatcc agctcagtct


2041
cccttttctc ctcacacctc ccctcacctg cctggcatcc gaggcccgtc cccgtcccct


2101
gttggctctc ctgccagcgt cgcgcagtct cgctcaggac cactctcgcc tgctgcagtg


2161
ccaggcaacc agatgccacc tcggccaccc agtggccagt cagacagcat catgcaccct


2221
tccatgaacc aatcaagcat tgcccaagat cgaggttata tgcagaggaa cccccagatg


2281
ccccagtaca cttcccctca gcctggctcg gccttatccc cacgtcagcc gtctggagga


2341
cagatgcact cgggcgtggg ctcctaccag cagaactcca tggggagcta cggcccccag


2401
ggcagtcagt atggcccaca aggaggctat cctaggcagc ctaactataa tgccttgccc


2461
aacgccaact accccaatgc aggcatggcc ggaagtatga accctatggg tgccggaggt


2521
cagatgcatg ggcagcctgg aatcccacct tacggcacac tccctccagg gagaatggct


2581
catgcgtcta tgggcaacag gccctatggc cctaatatgg ccaatatgcc acctcaggtt


2641
gggtcaggga tgtgtcctcc accaggggga atgaacagga aaactcaaga gtctgctgtt


2701
gccatgcatg ttgctgccaa ctctatccaa aacaggccac caggctaccc aaatatgaat


2761
caagggggca tgatgggaac tggacctccc tatggacagg ggatcaatag tatggctggc


2821
atgatcaacc ctcagggacc cccatatcct atgggtggaa ccatggccaa caattcagca


2881
gggatggcag ccagcccaga gatgatgggc cttggggatg ttaagttaac tcccgccaca


2941
aaaatgaaca acaaggcaga tggaacaccc aagacagaat ccaaatctaa gaaatccagt


3001
tcttctacca ccaccaatga gaagatcacc aaattgtatg agttgggtgg tgagcccgag


3061
aggaagatgt gggtggaccg gtacctggcc ttcacagagg agaaggccat gggcatgaca


3121
aatctgcctg ctgtggggag gaagcctctg gacctctatc gcctctatgt gtctgtgaag


3181
gagattggtg ggttgactca ggtcaacaag aacaaaaaat ggcgggaact tgcaaccaac


3241
ctcaatgtgg gtacatcaag cagtgctgcc agctcactga aaaagcagta tatccaatgt


3301
ctctatgcct ttgagtgcaa gatcgagcgt ggagaagacc ctccccccga tatcttcgca


3361
gctgctgact ccaagaagtc ccaacccaag atccagcccc cctctcctgc gggatcaggg


3421
tctatgcagg ggccacaaac tcctcagtca accagcagtt ctatggcaga aggaggagac


3481
ctgaagccac caactccagc atccacacca catagtcaaa ttcccccctt accaggcatg


3541
agcaggagca actcagtcgg aatccaggat gcctttcctg atggaagtga ccccacattc


3601
cagaagcgga attccatgac tccaaaccct gggtaccagc ccagtatgaa tacctctgac


3661
atgatggggc gcatgtccta tgagccaaat aaggatcctt atggcagcat gaggaaagcg


3721
ccaggaagtg atcccttcat gtcctcaggg cagggcccca atggcgggat gggtgatccc


3781
tacagccgtg ctgctggccc tgggctggga agtgtggcga tgggaccacg gcagcactat


3841
ccctatggag gtccttacga cagagtgagg acggagcctg gaatcgggcc tgaaggaaat


3901
atgggcactg gagcccctca gccaaatctc atgccttcca ccccagattc ggggatgtat


3961
tctcctagcc gctacccccc gcagcagcag cagcaacagc agcaacaaca tgattcctat


4021
ggcaatcaat tctctaccca aggcacccct tccagcagcc ccttccccag ccagcagacc


4081
acaatgtatc agcagcagca gcagaattat aagaggccaa tggatggcac atatggcccc


4141
cctgccaagc ggcatgaagg ggagatgtac agtgtgccgt acagcgctgg gcaaggccag


4201
cctcaacagc agcagttgcc tgcagctcag tcccagcctg ccagccagcc acaagctgcc


4261
cagccttccc ctcagcagga cgtgtacaac cagtacagca atgcctaccc tgcctccgcc


4321
accgctgcta ctgatcgccg accagcaggc ggcccccaga accaatttcc attccagttt


4381
ggccgagacc gagtctctgc acctcctggt tccagtgccc agcagaacat gccaccacaa


4441
atgatgggtg gccccataca ggcatcagct gaggttgctc agcagggcac catgtggcag


4501
gggcgaaatg acatgaccta caattatgcc aacaggcaga acacaggctc tgccacccag


4561
ggccctgcgt atcatggtgt gaaccgaaca gatgaaatgc tccacacaga tcagagggcc


4621
aaccatgaag gcccatggcc ttcccatggc acacgccagc ctccgtatgg tccttcagcc


4681
cctgttcccc ccatgacaag gccccctcca tctaactacc agcccccacc aagcatgccg


4741
aatcacattc ctcaggtatc cagccccgct cccctccccc ggcccatgga gaaccgtact


4801
tctcctagca agtctccatt cctgcactct gggatgaaaa tgcaaaaggc gggtccaccg


4861
gtgcctgctt cgcacatagc gcctacccct gtgcagccgc ctatgattcg gcgggatatc


4921
accttcccac ctggctctgt agaggccact cagcctgtgt tgaagcagag aaggcggctc


4981
acaatgaaag acattggaac cccggaggca tggcgggtaa tgatgtccct caagtccggg


5041
ctcctggcag agagcacgtg ggcgttagac accattaaca ttctactgta tgatgacaac


5101
agcattatga ccttcaacct cagccagctc ccaggcttgc tagagctcct tgtggaatat


5161
ttccgtagat gcctaattga aatctttggc attttaaagg agtatgaggt aggggaccca


5221
ggacagagaa cattactaga ccctgggaga ttcaccaagg tgtatagtcc agcccataca


5281
gaggaagaag aggaagaaca ccttgatcct aaactggagg aggaagagga agaaggggtt


5341
ggaaatgatg aggagatggc ctttttgggc aaggacaagc catcttcaga gaataatgag


5401
gagaagctag tcagtaagtt tgacaagctt ccggtaaaga tcgtgcagag gaatgaccca


5461
tttgtggtgg actgctcaga taagcttggg cgcgtgcagg agtttgacag tggcctgcta


5521
cactggcgga ttggtggtgg ggataccact gagcatatcc agacccactt tgagagcaag


5581
atagagctgc tgccttcccg gccttatgtg ccctgcccaa cgccccctcg gaaacacctc


5641
acaacagtag agggcacacc agggacaacg gagcaggagg gccccccgcc cgatggcctt


5701
ccagagaaaa ggatcacagc caccatggat gacatgttgt ctacccggtc tagcacattg


5761
actgatgagg gggcaaagag tgcagaggcc accaaggaaa gcagcaagtt tccatttggc


5821
attagcccag cacagagcca ccggaacatc aaaattttag aggatgaacc ccatagtaag


5881
gatgagaccc cactgtgtac ccttctggac tggcaggatt cccttgctaa gcgctgtgtc


5941
tgtgtctcca ataccatccg gagcctgtcg tttgtgccag gcaacgactt tgagatgtcc


6001
aaacacccag ggctgctgct tatcctgggc aagctgatcc tgctgcacca caagcaccca


6061
gagcggaagc aggcaccact aacttatgag aaggaggagg aacaggacca aggggtgagc


6121
tgtgacaaag tggagtggtg gtgggactgc ttggagatgc tccgagaaaa cacgctggtc


6181
accctcgcca acatctcggg gcaattggac ctatccccat atcctgagag catctgcctg


6241
cctgtcctgg acggactcct acactgggca gtttgccctt cagctgaagc ccaggacccc


6301
ttctcaaccc taggccccaa tgccgtcctc tccccccaga gattggtctt ggaaaccctc


6361
agcaaactca gcatccagga caacaatgtg gacctgatcc tggccactcc cccttttagc


6421
cgcctggaga agttgtatag taccatggtg cgcttcctca gtgaccgaaa gaacccagtg


6481
tgccgggaga tggccgtggt actgctggca aatctggccc agggggacag cctggcagcc


6541
cgggccattg cagtgcagaa gggcagcatc ggcaacctcc tgggtttcct ggaggacagc


6601
cttgctgcca cacagttcca gcagagccag gcaagcctcc tgcatatgca gaatccaccc


6661
tttgaaccaa ctagtgtgga catgatgcgg cgggctgccc gagcactgct tgccctggcc


6721
aaggtggatg agaaccactc agagttcact ctgtatgagt cacggctgtt ggacatctcc


6781
gtgtcaccac tgatgaactc attggtttca caagtcattt gtgatgtact gtttttgatt


6841
ggccagtcat gacagccgtg ggacacctcc cctccccgtg tgtgtgtgag tgtgtggaga


6901
acttagaaac tgactgttgc cctttattta tgcaaaacca cctcagaatc cagtttaccc


6961
tgtgctgtcc agcttctccc ttgggaaagc ctctcctgtt ctctctcctc cccaccctca


7021
ctccctcaca cctttctgtt ccccatcctc acctgcttcc ctcaggaccc caccctattt


7081
gaaaagacaa agctctgcct acatagaaga cttttttatt ttaaccaaag ttactgttgt


7141
ttacagtgag tttggggaaa aaaatggctt tcccagtcct tgcatcaacg ggatgccaca


7201
tttcataact gtttttaatg gttaaaaaaa aaaaaaaaaa aaggaaaaaa aatacaaaaa


7261
aaccctgaag gacaaaggtg actgctgagc tgtgtggttt gtcgctgtcc attcacaatc


7321
tcgcaggagc cgagaagttc gcagttgcga gcagaccctg ttcactggag aggcctgtgc


7381
agtagagtgt agatcctttc atgtactgta ctgtacacct gatactgtaa acatactgta


7441
ataataatgt ctcacatgga aacgagagaa gacgctgggt cagcagcaag ctgtagtttt


7501
taaaaatgtt tttagttaaa tgttgaggag aaaaaaaatg gctttccccc caaagtatcc


7561
tgtgtgaacc tacaacgccc tgacctcttt ctctcctcct tgattgtatg aatagccctg


7621
agatcacctc ttagacctgg ttttaacctt tagctgcagc ggctgcgctg ccacgtgtgt


7681
atatatatga tgttgtacat tgcacatacc cttgaatctc cacagtttgg tccccttccc


7741
agctacccct ttatagtatg gcgagttaac aagttggtga cctgcacaaa gcgagacaca


7801
gctatttaat ctcttgccag acattgcccc tcttggtgca gtgctctaca ggtctctgta


7861
aaaagccctt gctgtctcag cagccaatca acttacagtt tatttttttc tgggtttttg


7921
ttttgttttg tttcatttct aatcgaggtg tgaaaaagtt ctaggttcag ttgaagttcc


7981
tgatgaagaa acacaattga gattttttca gtgataaaat ctgcatattt gtatttcaac


8041
aatgtagcta aaaacttgat gtaaattcct cctttttttt ccttttttgg cttaatgaat


8101
atcatttatt cagtatgaaa tctttatact atatgttcca cgtgttaaga ataaatgtac


8161
attaaatctt ggtaa










SEQ ID NO: 34 Mouse ARID1A Amino Acid Sequence (NP_001074288.1)








1
maaqvapaaa sslgnppppp selkkaeqqq reeaggeaaa aaaergemka aagqesegpa


61
vgppqplgke lqdgaesngg gggggagsgg gpgaepdlkn sngnagprpa lnnnlpeppg


121
ggggggssss dgvgapphsa aaalpppayg fgqaygrsps avaaaaaavf hqqhggqqsp


181
glaalqsggg gglepyagpq qnshdhgfpn hqynsyypnr sayppppqay alssprggtp


241
gsgaaaaags kpppsssasa ssssssfaqq rfgamggggp saagggtpqp tatptlnqll


301
tspssargyq gypggdyggg pqdggagkgp admasqcwga aaaaaaaaaa vsggaqqrsh


361
hapmspgssg gggqplartp qssspmdqmg kmrpqpyggt npysqqqgpp sgpqqghgyp


421
gqpygsqtpq rypmtmqgra qsamgslsya qqippygqqg psaygqqgqt pyynqqsphp


481
qqqppyaqqp psqtphaqps yqqqpqtqqp qlqssqppys qqpsqpphqq sptpypsqqs


541
ttqqhpqsqp pysqpqaqsp yqqqqpqqpa ssslsqqaay pqpqpqqsqq taysqqrfpp


601
pqelsqdsfg sqassapsmt sskggqedmn lslqsrpssl pdlsgsiddl pmgtegalsp


661
gvstsgisss qgeqsnpaqs pfsphtsphl pgirgpspsp vgspasvaqs rsgplspaav


721
pgnqmpprpp sgqsdsimhp smnqssiaqd rgymqrnpqm pqytspqpgs alsprqpsgg


781
qmhsgvgsyq qnsmgsygpq gsqygpqggy prqpnynalp nanypnagma gsmnpmgagg


841
qmhgqpgipp ygtlppgrma hasmgnrpyg pnmanmppqv gsgmcpppgg mnrktqesav


901
amhvaansiq nrppgypnmn qggmmgtgpp ygqginsmag minpqgppyp mggtmannsa


961
gmaaspemmg lgdvkltpat kmnnkadgtp kteskskkss sstttnekit klyelggepe


1021
rkmwvdryla fteekamgmt nlpavgrkpl dlyrlyvsvk eiggltqvnk nkkwrelatn


1081
lnvgtsssaa sslkkqyiqc lyafeckier gedpppdifa aadskksqpk iqppspagsg


1141
smqgpqtpqs tsssmaeggd lkpptpasrp hsqipplpgm srsnsvgiqd afpdgsdptf


1201
qkrnsmtpnp gyqpsmntsd mmgrmsyepn kdpygsmrka pgsdpfmssg qgpnggmgdp


1261
ysraagpglg svamgprqhy pyggpydrvr tepgigpegn mgtgapqpnl mpstpdsgmy


1321
spsryppqqq qqqqqqhdsy gnqfstqgtp ssspfpsqqt tmyqqqqqny krpmdgtygp


1381
pakrhegemy svpysagqgq pqqqqlpaaq sqpasqpqaa qpspqqdvyn qysnaypasa


1441
taatdrrpag gpqnqfpfqf grdrvsappg ssaqqnmppq mmggpiqasa evaqqgtmwq


1501
grndmtynya nrqntgsatq gpayhgvnrt demlhtdqra nhegpwpshg trqppygpsa


1561
pvppmtrppp snyqpppsmp nhipqvsspa plprpmenrt spskspflhs gmkmqkagpp


1621
vpashiaptp vqppmirrdi tfppgsveat qpvlkqrrrl tmkdigtpea wrvmmslksg


1681
llaestwald tinillyddn simtfnlsql pgllellvey frrclieifg ilkeyevgdp


1741
gqrtlldpgr ftkvyspaht eeeeeehldp kleeeeeegv gndeemaflg kdkpssenne


1801
eklvskfdkl pvkivqrndp Iwdcsdklg rvqefcdsgll hwrigggdtt ehiqthfesk


1861
iellpsrpyv pcptpprkhl ttvegtpgtt eqegpppdgl pekritatmd dmlstrsstl


1921
tdegaksaea tkesskfpfg ispaqshrni kiledephsk detplctlld wqdslakrcv


1981
cvsntirsls fvpgndfems khpglllilg klillhhkhp erkqapltye keeeqdqgvs


2041
cdkvewwwdc lemlrentlv tlanisgqld lspypesicl pvldgllhwa vcpsaeaqdp


2101
fstlgpnavl spqrlvletl sklsiqdnnv dlilatppfs rleklystmv rflsdrknpv


2161
cremavvlla nlaqgdslaa raiavqkgsi gnllgfleds laatqfqqsq asllhmqnpp


2221
feptsvdmmr raarallala kvdenhseft lyesrlldis vsplmnslvs qvicdvlfli


2281
gqs










SEQ ID NO: 35 Human ARID1B cDNA Sequence Variant (NM_017519.2, CDS:


from 1 to 6711)








1
atggcccata acgcgggcgc cgcggccgcc gccggcaccc acagcgccaa gagcggcggc


61
tccgaggcgg ctctcaagga gggtggaagc gccgccgcgc tgtcctcctc ctcctcctcc


121
tccgcggcgg cagcggcggc atcctcttcc tcctcgtcgg gcccgggctc ggccatggag


181
acggggctgc tccccaacca caaactgaaa accgttggcg aagcccccgc cgcgccgccc


241
caccagcagc accaccacca ccaccatgcc caccaccacc accaccatgc ccaccacctc


301
caccaccacc acgcactaca gcagcagcta aaccagttcc agcagcagca gcagcagcag


361
caacagcagc agcagcagca gcagcaacag caacatccca tttccaacaa caacagcttg


421
ggcggcgcgg gcggcggcgc gcctcagccc ggccccgaca tggagcagcc gcaacatgga


481
ggcgccaagg acagtgctgc gggcggccag gccgaccccc cgggcccgcc gctgctgagc


541
aagccgggcg acgaggacga cgcgccgccc aagatggggg agccggcggg cggccgctac


601
gagcacccgg gcttgggcgc cctgggcacg cagcagccgc cggtcgccgt gcccgggggc


661
ggcggcggcc cggcggccgt cccggagttt aataattact atggcagcgc tgcccctgcg


721
agcggcggcc ccggcggccg cgctgggcct tgctttgatc aacatggcgg acaacaaagc


781
cccgggatgg ggatgatgca ctccgcctcc gccgccgccg ccggggcccc cggcagcatg


841
gaccccctgc agaactccca cgaagggtac cccaacagcc agtgcaacca ttatccgggc


901
tacagccggc ccggcgcggg cggcggcggc ggcggcggcg gcggaggagg aggaggcagc


961
ggaggaggag gaggaggagg aggagcagga gcaggaggag caggagcggg agctgtggcg


1021
gcggcggccg cggcggcggc ggcagcagca ggaggcggcg gcggcggcgg ctatgggggc


1081
tcgtccgcgg ggtacggggt gctgagctcc ccccggcagc agggcggcgg catgatgacg


1141
ggccccgggg gcggcggggc cgcgagcctc agcaaggcgg ccgccggctc ggcggcgggg


1201
ggcttccagc gcttcgccgg ccagaaccag cacccgtcgg gggccacccc gaccctcaat


1261
cagctgctca cctcgcccag ccccatgatg cggagctacg gcggcagcta ccccgagtac


1321
agcagcccca gcgcgccgcc gccgccgccg tcgcagcccc agtcccaggc ggcggcggcg


1381
ggggcggcgg cgggcggcca gcaggcggcc gcgggcatgg gcttgggcaa ggacatgggc


1441
gcccagtacg ccgctgccag cccggcctgg gcggccgcgc aacaaaggag tcacccggcg


1501
atgagccccg gcacccccgg accgaccatg ggcagatccc agggcagccc aatggatcca


1561
atggtgatga agagacctca gttgtatggc atgggcagta accctcattc tcagcctcag


1621
cagagcagtc cgtacccagg aggttcctat ggccctccag gcccacagcg gtatccaatt


1681
ggcatccagg gtcggactcc cggggccatg gccggaatgc agtaccctca gcagcagatg


1741
ccacctcagt atggacagca aggtgtgagt ggttactgcc agcagggcca acagccatat


1801
tacagccagc agccgcagcc cccgcacctc ccaccccagg cgcagtatct gccgtcccag


1861
tcccagcaga ggtaccagcc gcagcaggac atgtctcagg aaggctatgg aactagatct


1921
caacctcctc tggcccccgg aaaacctaac catgaagact tgaacttaat acagcaagaa


1981
agaccatcaa gtttaccaga tctgtctggc tccattgatg acctccccac gggaacggaa


2041
gcaactttga gctcagcagt cagtgcatcc gggtccacga gcagccaagg ggatcagagc


2101
aacccggcgc agtcgccttt ccccccacat gcgtcccctc atctctccag catcccgggg


2161
ggcccatctc cctctcctgt tggctctcct gtaggaagca accagtctcg atctggccca


2221
atctctcctg caagtatccc aggtagtcag atgcctccgc agccacccgg gagccagtca


2281
gaatccagtt cccatcccgc cttgagccag tcaccaatgc cacaggaaag aggttttatg


2341
gcaggcacac aaagaaaccc tcagatggcc cagtatggac ctcaacagac aggaccatcc


2401
atgtcgcctc atccttctcc tgggggccag acgcatgctg gaatcagtag ctttcagcag


2461
agtaactcaa gtgggactta cggtccacag atgagccagt atggaccaca aggtaactac


2521
tccagacccc cagcgtatag tggggtgccc agtgcaagct acagcggccc agggcccggt


2581
atgggtatca gtgccaacaa ccagatgcat ggacaagggc caagccagcc atgtggtgct


2641
gtgcccctgg gacgaatgcc atcagctggg atgcagaaca gaccatttcc tggaaatatg


2701
agcagcatga cccccagttc tcctggcatg tctcagcagg gagggccagg aatggggccg


2761
ccaatgccaa ctgtgaaccg taaggcacag gaggcagccg cagcagtgat gcaggctgct


2821
gcgaactcag cacaaagcag gcaaggcagt ttccccggca tgaaccagag tggacttatg


2881
gcttccagct ctccctacag ccagcccatg aacaacagct ctagcctgat gaacacgcag


2941
gcgccgccct acagcatggc gcccgccatg gtgaacagct cggcagcatc tgtgggtctt


3001
gcagatatga tgtctcctgg tgaatccaaa ctgcccctgc ctctcaaagc agacggcaaa


3061
gaagaaggca ctccacagcc cgagagcaag tcaaagaagt ccagctcctc caccactact


3121
ggggagaaga tcacgaaggt gtacgagctg gggaatgagc cagagagaaa gctctgggtc


3181
gaccgatacc tcaccttcat ggaagagaga ggctctcctg tctcaagtct gcctgccgtg


3241
ggcaagaagc ccctggacct gttccgactc tacgtctgcg tcaaagagat cgggggtttg


3301
gcccaggtta ataaaaacaa gaagtggcgt gagctggcaa ccaacctaaa cgttggcacc


3361
tcaagcagtg cagcgagctc cctgaaaaag cagtatattc agtacctgtt tgcctttgag


3421
tgcaagatcg aacgtgggga ggagcccccg ccggaagtct tcagcaccgg ggacaccaaa


3481
aagcagccca agctccagcc gccatctcct gctaactcgg gatccttgca aggcccacag


3541
accccccagt caactggcag caattccatg gcagaggttc caggtgacct gaagccacct


3601
accccagcct ccacccctca cggccagatg actccaatgc aaggtggaag aagcagtaca


3661
atcagtgtgc acgacccatt ctcagatgtg agtgattcat ccttcccgaa acggaactcc


3721
atgactccaa acgcccccta ccagcagggc atgagcatgc ccgatgtgat gggcaggatg


3781
ccctatgagc ccaacaagga cccctttggg ggaatgagaa aagtgcctgg aagcagcgag


3841
ccctttatga cgcaaggaca gatgcccaac agcagcatgc aggacatgta caaccaaagt


3901
ccctccggag caatgtctaa cctgggcatg gggcagcgcc agcagtttcc ctatggagcc


3961
agttacgacc gaaggcatga accttatggg cagcagtatc caggccaagg ccctccctcg


4021
ggacagccgc cgtatggagg gcaccagccc ggcctgtacc cacagcagcc gaattacaaa


4081
cgccatatgg acggcatgta cgggccccca gccaagcgcc acgagggcga catgtacaac


4141
atgcagtaca gcagccagca gcaggagatg tacaaccagt atggaggctc ctactcgggc


4201
ccggaccgca ggcccatcca gggccagtac ccgtatccct acagcaggga gaggatgcag


4261
ggcccggggc agatccagac acacggaatc ccgcctcaga tgatgggcgg cccgctgcag


4321
tcgtcctcca gtgaggggcc tcagcagaat atgtgggcag cacgcaatga tatgccttat


4381
ccctaccaga acaggcaggg ccctggcggc cctacacagg cgccccctta cccaggcatg


4441
aaccgcacag acgatatgat ggtacccgat cagaggataa atcatgagag ccagtggcct


4501
tctcacgtca gccagcgtca gccttatatg tcgtcctcag cctccatgca gcccatcaca


4561
cgcccaccac agccgtccta ccagacgcca ccgtcactgc caaatcacat ctccagggcg


4621
cccagcccag cgtccttcca gcgctccctg gagaaccgca tgcctccaag caagtctcct


4681
tttctgccgt ctatgaagat gcagaaggtc atgcccacgg tccccacatc ccaggtcacc


4741
gggccaccac cccaaccacc cccaatcaga agggagatca cctttcctcc tggctcagta


4801
gaagcatcac aaccagtctt gaaacaaagg cgaaagatta cctccaaaga tatcgttact


4861
cctgaggcgt ggcgtgtgat gatgcccctc aaatcaggtc ttttggctga gagtacgtgg


4921
gctttggaca ctattaatat tcttctgtat gatgacagca ctgttgctac tttcaatctc


4981
tcccagttgt ctggatttcc cgaactttta gtcgagtact ttagaaaatg cctgattgac


5041
atttttggaa ttcttatgga atatgaagtg ggagacccca gccaaaaagc acttgatcac


5101
aacgcagcaa ggaaggatga cagccagtcc ttggcagacg attctgggaa agaggaggaa


5161
gatgctgaat gtattgatga cgacgaggaa gacgaggagg atgaggagga agacagcgag


5221
aagacagaaa gcgatgaaaa gagcagcatc gctctgactg ccccggacgc cgctgcagac


5281
ccaaaggaga agcccaagca agccagtaag ttcgacaagc tgccaataaa gatagtcaaa


5341
aagaacaacc tgtttgttgt tgaccgatct gacaagttgg ggcgtgtgca ggagttcaat


5401
agtggccttc tgcactggca gctcggcggg ggtgacacca ccgagcacat tcagactcac


5461
tttgagagca agatggaaat tcctcctcgc aggcgcccac ctcccccctt aagctccgca


5521
ggtagaaaga aagagcaaga aggcaaaggc gactctgaag agcagcaaga gaaaagcatc


5581
atagcaacca tcgatgacgt cctctctgct cggccagggg cattgcctga agacgcaaac


5641
cctgggcccc agaccgaaag cagtaagttt ccctttggta tccagcaagc caaaagtcac


5701
cggaacatca agctgctgga ggacgagccc aggagccgag acgagactcc tctgtgtacc


5761
atcgcgcact ggcaggactc gctggctaag cgatgcatct gtgtgtccaa tattgtccgt


5821
agcttgtcat tcgtgcctgg caatgatgcc gaaatgtcca aacatccagg cctggtgctg


5881
accctgggga agctgattct tcttcaccac gagcatccag agagaaagcg agcaccgcag


5941
acctatgaga aagaggagga tgaggacaag ggggtggcct gcagcaaaga tgagtggtgg


6001
tgggactgcc tcgaggtcct gagggataac acgttggtca cgctggccaa catttccggg


6061
cagctagact tgtctgctta cacggaaagc atctgcttgc caattttgga tggcttgctg


6121
cactggatgg tgtgcccgtc tgcagaggca caagatccct ttccaactgt gggacccaac


6181
tcggtcctgt cgcctcagag acttgtgctg gagaccctct gtaaactcag tatccaggac


6241
aataatgtgg acctgatctt ggccactcct ccatttagtc gtcaggagaa attctatgct


6301
acattagtta ggtacgttgg ggatcgcaaa aacccagtct gtcgagaaat gtccatggcg


6361
cttttatcga accttgccca aggggacgca ctagcagcaa gggccatagc tgtgcagaaa


6421
ggaagcattg gaaacttgat aagcttccta gaggatgggg tcacgatggc ccagtaccag


6481
cagagccagc acaacctcat gcacatgcag cccccgcccc tggaaccacc tagcgtagac


6541
atgatgtgca gggcggccaa ggctttgcta gccatggcca gagtggacga aaaccgctcg


6601
gaattccttt tgcacgaggg ccggttgctg gatatctcga tatcagctgt cctgaactct


6661
ctggttgcat ctgtcatctg tgatgtactg tttcagattg ggcagttatg acataagtga


6721
gaaggcaagc atgtgtgagt gaagattaga gggtcacata taactggctg ttttctgttc


6781
ttgtttatcc agcgtaggaa gaaggaaaag aaaatctttg ctcctctgcc ccattcacta


6841
tttaccaatt gggaattaaa gaaataatta atttgaacag tcatgaaatt aatatttgct


6901
gtctgtgtgt ataagtacat cctttggggt tttttttttc tctctttttt aaccaaagtt


6961
gctgtctagt gcattcaaag gccacttttt gttcttcaca gatcttttta atgttctttc


7021
ccatgttgta ttgcattttt gggggaagca aattgacttt aaagaaaaaa gttgtggcaa


7081
aagatgctaa gatgcgaaaa tttcaccaca ctgagtcaaa aaggtgaaaa attatccatt


7141
tcctatgcgt tttactcctc agagaatgaa aaaaactgca tcccatcacc caaagttctg


7201
tgcaatagaa atttctacag atacaggtat aggggctcaa ggaggtatgt cggtcagtag


7261
tcaaaactat gaaatgatac tggtttctcc acaggaatat ggttccatta ggctgggagc


7321
aaaaacaatg ttttttaaga ttgagaatac atacctgaca acgatccgga aactgctcct


7381
caccactccc gtcatgcctg ctgtcggcgt ttgaccttcc acgtgacagt tcttcacaat


7441
tcctttcatc attttttaaa tatttttttt actgcctatg ggctgtgatg tatatagaag


7501
ttgtacatta aacataccct catttttttc ttttcttttt tttttttttt tttagtacaa


7561
agttttagtt tctttttcat gatgtggtaa ctacgaagtg atggtagatt taaataattt


7621
tttattttta ttttatatat tttttcatta gggccacatc tccaaaaaaa gaaagaaaaa


7681
atacaaaaaa caaaaacaaa aaaaaaagag ggtaatgtac aagtttctgt atgtataaag


7741
tcatgctcga tttcaggaga gcagctgatc acaatttgct tcatgaatca aggtgtggaa


7801
atggttatat atggattgat ttagaaaatg gttaccagta cagtcaaaaa agagaaaatg


7861
aaaaaaatac aactaaaagg aagaaacaca acttcaaaga tttttcagtg atgagaatcc


7921
acatttgtat ttcaagataa tgtagtttaa aaaaaaaaaa aagaaaaaaa cttgatgtaa


7981
attcctcctt ttcctctggc ttaatgaata tcatttattc agtataaaat ctttatatgt


8041
tccacatgtt aagaataaat gtacattaaa tcttgttaag cactgtgatg ggtgttcttg


8101
aatactgttc tagtttcctt aaagtggttt cctagtaatc aagttattta caagaaatag


8161
gggaatgcag cagtgtattc acattataaa accctacatt tggaagagac ctttaggggt


8221
tacctacttt agagtgggga gcaacagttt gattttctca aattacttag ctaattagtc


8281
tttcttcgaa gcaattaact ctaacgacat tgaggtatga tcattttcag tatttatggg


8341
aggtggctgc tgacccactt gaggtgagat ctcagaagct taactggcct gaaaatgtaa


8401
cattctgcct tttactaact ccatcttagt ttaatcaaag ttcaatctat tccttgtttc


8461
ttctgtgtgc ctcagagcta ttttgcattt agtttactcc accgtgtata atatttatac


8521
tgtgcaatgt taaaaaagaa tctgttatat tgtatgtggt gtacatagtg caaagtgatg


8581
atttctatct cagggcatat tatggtcctc atattccttc ctacctggtg cacagtagct


8641
ttttaatact agtcacttct aatttaaact ttctcttcct gggtcattga ctgttactgt


8701
gtaataatcg atttctttga aactgctgca taattatgct gttagtggac ctctacctct


8761
tctcttccct ctcccaatca cagtatactc agaatcccca gcccctcgca tacattgtgt


8821
cggttcacat tactcacagt aatatatgga agagttagac aagaacatgc agttacagtc


8881
attgtgagac gtgactctcc agtgtcacga ggaaaaaaat catcttttct gcaaacagtc


8941
tctcatctgt caactcccac attactgagt caaacagtct tcttacataa caatgcaacc


9001
aaatatatgt tgaattaaag acccatttat aattctgctt taaacacatc tgcttgctaa


9061
gaacagattt cagtgctcca agcttcaaat atggagattt gtaagaggga attcaatatt


9121
attctaattt ctctcttaca gagtacaaat aaaaggtgta tacaaactcc gaacatatcc


9181
agtattccaa ttcctttgtc aatcagaaga gtaaaataat taacaaaaga ctgttgttat


9241
ggtttgcatt gtaaccgata cgcagagtct gaccgttggg caacaagttt ttctatcctg


9301
atgcgcaaca cagtctctag agactaatcc aggaagactt tagcctcctt tccatattct


9361
cacccccgaa tcaagattta cagaagccca cgaagaattt acagcctgct tgagatcatc


9421
ttgcctataa actgagttat tgctttgtcc taaaaattag tcggtttttt tttttctatg


9481
aggcttttca gaaatttaca ggatgcccag actttacatg tgtaccaaaa aaaaaaaaaa


9541
gataaaaaat aaaggtgcaa agaaagttta gtattttgga atggtgctat aaagttgaaa


9601
aaaaaaaaa










SEQ ID NO: 36 Human ARID1B Amino Acid Sequence isoform A (NP_059989.2)








1
mahnagaaaa agthsaksgg seaalkeggs aaalssssss saaaaaasss sssgpgsame


61
tgllpnhklk tvgeapaapp hqqhhhhhha hhhhhhahhl hhhhalqqql nqfqqqqqqq


121
qqqqqqqqqq qhpisnnnsl ggagggapqp gpdmeqpqhg gakdsaaggq adppgpplls


181
kpgdeddapp kmgepaggry ehpglgalgt qqppvavpgg gggpaavpef nnyygsaapa


241
sggpggragp cfdqhggqqs pgmgmmhsas aaaagapgsm dplqnshegy pnsqcnhypg


301
ysrpgagggg gggggggggs ggggggggag aggagagava aaaaaaaaaa gggggggygg


361
ssagygvlss prqqgggmmm gpggggaasl skaaagsaag gfqrfagqnq hpsgatptln


421
qlltspspmm rsyggsypey sspsappppp sqpqsqaaaa gaaaggqqaa agmglgkdmg


481
aqyaaaspaw aaaqqrshpa mspgtpgptm grsqgspmdp mvmkrpqlyg mgsnphsqpq


541
qsspypggsy gppgpqrypi giqgrtpgam agmqypqqqm ppqygqqgvs gycqqgqqpy


601
ysqqpqpphl ppqaqylpsq sqqryqpqqd msqegygtrs qpplapgkpn hedlnliqqe


661
rpsslpdlsg siddlptgte atlssavsas gstssqgdqs npaqspfsph asphlssipg


721
gpspspvgsp vgsnqsrsgp ispasipgsq mppqppgsqs essshpalsq spmpqergfm


781
agtqrnpqma qygpqqtgps msphpspggq mhagissfqq snssgtygpq msqygpqgny


841
srppaysgvp sasysgpgpg mgisannqmh gqgpsqpcga vplgrmpsag mqnrptpgnm


901
ssmtpsspgm sqqggpgmgp pmptvnrkaq eaaaavmqaa ansaqsrqgs fpgmnqsglm


961
assspysqpm nnssslmntq appysmapam vnssaasvgl admmspgesk lplplkadgk


1021
eegtpqpesk skkssssttt gekitkvyel gneperklwv dryltfmeer gspvsslpav


1081
gkkpldlfrl yvcvkeiggl aqvnknkkwr elatnlnvgt sssaasslkk qyiqylfafe


1141
ckiergeepp pevfstgdtk kqpklqppsp ansgslqgpq tpqstgsnsm aevpgdlkpp


1201
tpastphgqm tpmqggrsst isvhdpfsdv sdssfpkrns mtpnapyqqg msmpdvmgrm


1261
pyepnkdpfg gmrkvpgsse pfmtqgqmpn ssmqdmynqs psgamsnlgm gqrqqfpyga


1321
sydrrhepyg qqypgqgpps gqppygghqp glypqqpnyk rhmdgmygpp akrhegdmyn


1381
mqyssqqqem ynqyggsysg pdrrpiqgqy pypysrermq gpgqiqthgi ppqmmggplq


1441
ssssegpqqn mwaarndmpy pyqnrqgpgg ptqappypgm nrtddmmvpd qrinhesqwp


1501
shvsqrqpym sssasmqpit rppqpsyqtp pslpnhisra pspasfqrsl enrmspsksp


1561
flpsmkmqkv mpsvptsqvt gpppqpppir reitfppgsv easqpvlkqr rkitskdivt


1621
peawrvmmsl ksgllaestw aldtinilly ddstvatfnl sqlsgflell veyfrkclid


1681
ifgilmeyev gdpsqkaldh naarkddsqs laddsgkeee daecidddee deedeeedse


1741
ktesdekssi altapdaaad pkekpkqask fdklpikivk knnlfvvdrs dklgrvqefn


1801
sgllhwqlgg gdttehiqth feskmeippr rrpppplssa grkkeqegkg dseeqqeksi


1861
iatiddvlsa rpgalpedan pgpqtesskf pfgiqqaksh rniklledep rsrdetplct


1921
iahwqdslak rcicvsnivr slsfvpgnda emskhpglvl ilgklillhh ehperkrapq


1981
tyekeededk gvacskdeww wdclevlrdn tlvtlanisg qldlsaytes iclpildgll


2041
hwmvcpsaea qdpfptvgpn svlspqrlvl etlcklsiqd nnvdlilarp pfsrqekfya


2101
tlvryvgdrk npvcremsma llsnlaqgda laaraiavqk gsignlisfl edgvtmaqyq


2161
qsqhnlmhmq pppleppsvd mmcraakall amarvdenrs efllhegrll disisavlns


2221
lvasvicdvl fqigql










SEQ ID NO: 37 Human ARID1B cDNA Sequence Variant 2 (NM_020732.3. CDS:


from 1 to 6750)








1
atggcccata acgcgggcgc cgcggccgcc gccggcaccc acagcgccaa gagcggcggc


61
tccgaggcgg ctctcaagga gggtggaagc gccgccgcgc tgtcctcctc ctcctcctcc


121
tccgcggcgg cagcggcggc atcctcttcc tcctcgtcgg gcccgggctc ggccatggag


181
acggggctgc tccccaacca caaactgaaa accgttggcg aagcccccgc cgcgccgccc


241
caccagcagc accaccacca ccaccatgcc caccaccacc accaccatgc ccaccacccc


301
caccaccacc acgcactaca gcagcagcta aaccagttcc agcagcagca gcagcagcag


361
caacagcagc agcagcagca gcagcaacag caacatccca tttccaacaa caacagcttg


421
ggcggcgcgg gcggcggcgc gcctcagccc ggccccgaca tggagcagcc gcaacatgga


481
ggcgccaagg acagtgctgc gggcggccag gccgaccccc cgggcccgcc gccgctgagc


541
aagccgggcg acgaggacga cgcgccgccc aagatggggg agccggcggg cggccgctac


601
gagcacccgg gcttgggcgc cctgggcacg cagcagccgc cggtcgccgt gcccgggggc


661
ggcggcggcc cggcggccgt cccggagttt aataactact atggcagcgc tgcccctgcg


721
agcggcggcc ccggcggccg cgctgggcct tgctttgatc aacatggcgg acaacaaagc


781
cccgggatgg ggatgatgca ctccgcctcc gccgccgccg ccggggcccc cggcagcatg


841
gaccccctgc agaactccca cgaagggtac cccaacagcc agtgcaacca ttatccgggc


901
tacagccggc ccggcgcggg cggcggcggc ggcggcggcg gcggaggagg aggaggcagc


961
ggaggaggag gaggaggagg aggagcagga gcaggaggag caggagcggg agctgtggcg


1021
gcggcggccg cggcggcggc ggcagcagca ggaggcggcg gcggcggcgg ctatgggggc


1081
tcgtccgcgg ggtacggggt gctgagctcc ccccggcagc agggcggcgg catgatgatg


1141
ggccccgggg gcggcggggc cgcgagcctc agcaaggcgg ccgccggctc ggcggcgggg


1201
ggcttccagc gcttcgccgg ccagaaccag cacccgtcgg gggccacccc gaccctcaat


1261
cagctgctca cctcgcccag ccccatgatg cggagctacg gcggcagcta ccccgagtac


1321
agcagcccca gcgcgccgcc gccgccgccg tcgcagcccc agtcccaggc ggcggcggcg


1381
ggggcggcgg cgggcggcca gcaggcggcc gcgggcatgg gcttgggcaa ggacatgggc


1441
gcccagtacg ccgctgccag cccggcctgg gcggccgcgc aacaaaggag tcacccggcg


1501
atgagccccg gcacccccgg accgaccatg ggcagatccc agggcagccc aatggatcca


1561
acggtgatga agagacctca gttgtatggc atgggcagta accctcattc tcagcctcag


1621
cagagcagtc cgtacccagg aggttcctat ggccctccag gcccacagcg gtatccaatt


1681
ggcatccagg gtcggactcc cggggccatg gccggaatgc agtaccctca gcagcaggac


1741
tctggagatg ccacatggaa agaaacattc tggttgatgc cacctcagta tggacagcaa


1801
ggtgtgagtg gttactgcca gcagggccaa cagccatatt acagccagca gccgcagccc


1861
ccgcacctcc caccccaggc gcagtatctg ccgtcccagt cccagcagag gtaccagccg


1921
cagcaggaca tgtctcagga aggctatgga actagatctc aacctcctct ggcccccgga


1981
aaacctaacc atgaagactt gaacttaata cagcaagaaa gaccatcaag tttaccagat


2041
ccgtctggct ccattgatga cctccccacg ggaacggaag caactttgag ctcagcagtc


2101
agtgcatccg ggtccacgag cagccaaggg gatcagagca acccggcgca gtcgcctttc


2161
tccccacatg cgtcccctca tctctccagc atcccggggg gcccatctcc ctctcctgtt


2221
ggctctcctg taggaagcaa ccagtctcga tctggcccaa tctctcctgc aagtatccca


2281
ggtagtcaga tgcctccgca gccacccggg agccagtcag aatccagttc ccatcccgcc


2341
ttgagccagt caccaatgcc acaggaaaga ggttttatgg caggcacaca aagaaaccct


2401
cagatggctc agtatggacc tcaacagaca ggaccatcca tgtcgcctca tccttctcct


2461
gggggccaga tgcatgctgg aatcagtagc tttcagcaga gtaactcaag tgggacttac


2521
ggtccacaga tgagccagta tggaccacaa ggtaactact ccagaccccc agcgtatagt


2581
ggggtgccca gtgcaagcta cagcggccca gggcccggta tgggtatcag tgccaacaac


2641
cagatgcatg gacaagggcc aagccagcca tgtggtgctg tgcccctggg acgaatgcca


2701
tcagctggga tgcagaacag accatttcct ggaaatatga gcagcatgac ccccagttct


2761
cctggcatgt ctcagcaggg agggccagga atggggccgc caatgccaac tgtgaaccgt


2821
aaggcacagg aggcagccgc agcagtgatg caggctgctg cgaactcagc acaaagcagg


2881
caaggcagtt tccccggcat gaaccagagt ggacttatgg cttccagctc tccctacagc


2941
cagcccatga acaacagctc tagcctgatg aacacgcagg cgccgcccta cagcatggcg


3001
cccgccatgg tgaacagctc ggcagcatct gtgggtcttg cagatatgat gtctcctggt


3061
gaatccaaac tgcccctgcc tctcaaagca gacggcaaag aagaaggcac tccacagccc


3121
gagagcaagt caaagaagtc cagctcctcc accactactg gggagaagat cacgaaggtg


3181
tacgagctgg ggaatgagcc agagagaaag ctctgggtcg accgatacct caccttcatg


3241
gaagagagag gctctcctgt ctcaagtctg cctgccgtgg gcaagaagcc cctggacctg


3301
ttccgactct acgtctgcgt caaagagatc gggggtttgg cccaggttaa taaaaacaag


3361
aagtggcgtg agctggcaac caacctaaac gttggcacct caagcagtgc agcgagctcc


3421
ctgaaaaagc agtatattca gtacctgttt gcctttgagt gcaagatcga acgtggggag


3481
gagcccccgc cggaagtctt cagcaccggg gacaccaaaa agcagcccaa gctccagccg


3541
ccatctcctg ctaactcggg atccttgcaa ggcccacaga ccccccagtc aactggcagc


3601
aattccatgg cagaggttcc aggtgacctg aagccaccta ccccagcctc cacccctcac


3661
ggccagatga ctccaatgca aggtggaaga agcagtacaa tcagtgtgca cgacccattc


3721
tcagatgtga gtgattcatc cttcccgaaa cggaactcca tgactccaaa cgccccctac


3781
cagcagggca tgagcatgcc cgatgtgatg ggcaggatgc cctatgagcc caacaaggac


3841
ccctttgggg gaatgagaaa agtgcctgga agcagcgagc cctttatgac gcaaggacag


3901
atgcccaaca gcagcatgca ggacatgtac aaccaaagtc cctccggagc aatgtctaac


3961
ctgggcatgg ggcagcgcca gcagtttccc tatggagcca gttacgaccg aaggcatgaa


4021
ccttatgggc agcagtatcc aggccaaggc cctccctcgg gacagccgcc gtatggaggg


4081
caccagcccg gcctgtaccc acagcagccg aattacaaac gccatatgga cggcatgtac


4141
gggcccccag ccaagcgcca cgagggcgac atgtacaaca tgcagtacag cagccagcag


4201
caggagatgt acaaccagta tggaggctcc tactcgggcc cggaccgcag gcccatccag


4261
ggccagtacc cgtatcccta cagcagggag aggatgcagg gcccggggca gatccagaca


4321
cacggaatcc cgcctcagat gatgggcggc ccgctgcagt cgtcctccag tgaggggcct


4381
cagcagaata tgtgggcagc acgcaatgat atgccttatc cctaccagaa caggcagggc


4441
cctggcggcc ctacacaggc gcccccttac ccaggcatga accgcacaga cgatatgatg


4501
gtacccgatc agaggataaa tcatgagagc cagtggcctt ctcacgtcag ccagcgtcag


4561
ccttatatgt cgtcctcagc ctccatgcag cccatcacac gcccaccaca gccgtcctac


4621
cagacgccac cgtcactgcc aaatcacacc tccagggcgc ccagcccagc gtccttccag


4681
cgctccccgg agaaccgcat gtctccaagc aagtctcctt ttctgccgtc tatgaagatg


4741
cagaaggtca tgcccacggt ccccacatcc caggtcaccg ggccaccacc ccaaccaccc


4801
ccaatcagaa gggagatcac ctttcctcct ggctcagtag aagcatcaca accagtcttg


4861
aaacaaaggc gaaagattac ctccaaagat atcgttactc ctgaggcgtg gcgtgtgatg


4921
atgtccctta aatcaggtct tttggctgag agtacgtggg ctttggacac tactaatatt


4981
cttctgtatg atgacagcac tgttgctact ttcaatctct cccagttgtc tggatttctc


5041
gaacttttag tcgagtactt tagaaaatgc ctgattgaca tttttggaat tcttatggaa


5101
tatgaagtgg gagaccccag ccaaaaagca cttgatcaca acgcagcaag gaaggatgac


5161
agccagtcct tggcagacga ttctgggaaa gaggaggaag atgctgaatg tattgatgac


5221
gacgaggaag acgaggagga tgaggaggaa gacagcgaga agacagaaag cgatgaaaag


5281
agcagcatcg ctctgactgc cccggacgcc gctgcagacc caaaggagaa gcccaagcaa


5341
gccagtaagt tcgacaagct gccaataaag atagtcaaaa agaacaacct gtttgttgtt


5401
gaccgatctg acaagttggg gcgtgtgcag gagttcaata gtggccttct gcactggcag


5461
ctcggcgggg gtgacaccac cgagcacatt cagactcact ttgagagcaa gatggaaatt


5521
cctcctcgca ggcgcccacc tcccccctta agctccgcag gtagaaagaa agagcaagaa


5581
ggcaaaggcg actctgaaga gcagcaagag aaaagcatca tagcaaccat cgatgacgtc


5641
ctctctgctc ggccaggggc attgcctgaa gacgcaaacc ctgggcccca gaccgaaagc


5701
agtaagtttc cctttggtat ccagcaagcc aaaagtcacc ggaacatcaa gctgctggag


5761
gacgagccca ggagccgaga cgagactcct ctgtgtacca tcgcgcactg gcaggactcg


5821
ctggctaagc gatgcatctg tgtgtccaat attgtccgta gcttgtcatt cgtgcctggc


5881
aatgatgccg aaatgtccaa acatccaggc ctggtgctga tcctggggaa gctgattctt


5941
cttcaccacg agcatccaga gagaaagcga gcaccgcaga cctatgagaa agaggaggat


6001
gaggacaagg gggtggcctg cagcaaagat gagtggtggt gggactgcct cgaggtcttg


6061
agggataaca cgttggtcac gttggccaac atttccgggc agctagactt gtctgcttac


6121
acggaaagca tctgcttgcc aattttggat ggcttgctgc actggatggt gtgcccgtct


6181
gcagaggcac aagatccctt tccaactgtg ggacccaact cggtcctgtc gcctcagaga


6241
cttgtgctgg agaccctctg taaactcagt atccaggaca ataatgtgga cctgatcttg


6301
gccactcctc catttagtcg tcaggagaaa ttctatgcta cattagttag gtacgttggg


6361
gatcgcaaaa acccagtctg tcgagaaatg tccatggcgc ttttatcgaa ccttgcccaa


6421
ggggacgcac tagcagcaag ggccatagct gtgcagaaag gaagcattgg aaacttgata


6481
agcttcctag aggatggggt cacgatggcc cagtaccagc agagccagca caacctcatg


6541
cacatgcagc ccccgcccct ggaaccacct agcgtagaca tgatgtgcag ggcggccaag


6601
gctttgctag ccatggccag agtggacgaa aaccgctcgg aattcctttt gcacgagggc


6661
cggttgctgg acatctcgat atcagctgcc ctgaactctc tggttgcatc tgtcatctgt


6721
gacgtactgt ttcagattgg gcagttatga cataagtgag aaggcaagca tgtgtgagtg


6781
aagattagag ggtcacatat aactggctgt tttccgttct tgtttatcca gcgtaggaag


6841
aaggaaaaga aaatctttgc tcctctgccc cattcactat ttaccaattg ggaattaaag


6901
aaataattaa tttgaacagt tatgaaatta atatttgctg tctgtgtgta taagtacatc


6961
ctttggggtt ttttttttct ctttttttta accaaagttg ctgtctagtg cattcaaagg


7021
tcactttttg ttcttcacag atctttttaa tgttctttcc catgttgtat tgcatttttg


7081
ggggaagcaa attgacttta aagaaaaaag ttgtggcaaa agatgctaag atgcgaaaat


7141
ttcaccacac tgagtcaaaa aggtgaaaaa ttatccattt cctatgcgtt ttactcctca


7201
gagaatgaaa aaaactgcat cccatcaccc aaagttctgt gcaatagaaa tttctacaga


7261
tacaggtata ggggctcaag gaggtatgtc ggtcagtagt caaaactatg aaatgatact


7321
ggtttctcca caggaatatg gttccattag gctgggagca aaaacaatgt tttttaagat


7381
tgagaataca tacctgacaa cgatccggaa actgctcctc accactcccg tcatgcctgc


7441
tgtcggcgtt tgaccttcca cgtgacagtt cttcacaatt cctttcatca ttttttaaat


7501
atttttttta ctgcctatgg gctgtgatgt atatagaagt tgtacattaa acataccctc


7561
atctttttct tttctttttt ttttttttct ttagtacaaa gttttagttt ctttttcatg


7621
atgtggtaac tacgaagtga tggtagattt aaataatttt ttatttttat tttatatatt


7681
ttttcattag ggccatatct ccaaaaaaag aaagaaaaaa tacaaaaaac aaaaacaaaa


7741
aaaaaagagg gtaatgtaca agtttctgta tgtataaagt catgctcgat ttcaggagag


7801
cagctgatca caatttgctt catgaatcaa ggtgtggaaa tggttatata tggattgatt


7861
tagaaaatgg ttaccagtac agtcaaaaaa gagaaaatga aaaaaataca actaaaagga


7921
agaaacacaa cttcaaagat ttttcagtga tgagaatcca catttgtatt tcaagataat


7981
gtagtttaaa aaaaaaaaaa agaaaaaaac ttgatgtaaa ttcctccttt tcctctggct


8041
taatgaatat catttattca gtataaaatc tttatatgtt ccacatgtta agaataaatg


8101
tacattaaat cttgttaagc actgtgatgg gtgttcttga acactgttct agtttcctta


8161
aagtggtttc ctagtaatca agttatttac aagaaatagg ggaatgcagc agtgtattca


8221
cattataaaa ccctacattt ggaagagacc tttaggggtt acctacttta gagtggggag


8281
caacagtttg attttctcaa attacttagc taattagcct tcctttgaag caattaactc


8341
taacgacatt gaggtatgat cattttcagt atttatggga ggtggctgct gacccacttg


8401
aggtgagatc tcagaagctt aactggcccg aaaatgtaac attctgcctt ttactaactc


8461
catcttagtt taatcaaagt tcaatctatt ccctgtttct tctgtgtgcc tcagagttat


8521
tttgcattta gtttactcca ccgtgtataa tatttatact gtgcaatgtt aaaaaagaat


8581
ctgttatatt gtatgtggtg tacatagtgc aaagtgatga tttctatttc agggcatatt


8641
atggttctca tactccttcc tacctggtgc acagtagctt tttaatacta gtcacttcca


8701
atttaaactt tctcttcctg ggtcattgac tgttactgtg taataatcga tttctttgaa


8761
actgctgcat aattatgctg ttagtggacc tctacctctt ctcttccctc tcccaatcac


8821
agtatactca gaatccccag cccctcgcat acattgtgtc ggttcacatt actcacagta


8881
atatatggaa gagttagaca agaacatgca gttacagtca ttgtgagacg tgactctcca


8941
gtgtcacgag gaaaaaaatc atcttttctg caaacagtct ctcatctgtc aactcccaca


9001
ttactgagtc aaacagtctt cttacataac aatgcaacca aatatatgtt gaattaaaga


9061
cccatttata attctgcttt aaatacatct gcttgctaag aacagatttc agtgctccaa


9121
gcttcaaata tggagatttg taagagggaa ttcaacacta ttctaatttc tctcttacag


9181
agtacaaata aaaggtgtat acaaactccg aacatatcca gtattccaat ccctttgtca


9241
atcagaagag taaaataatt aacaaaagac tgttgttatg gtttgcattg taaccgatac


9301
gcagagtctg accgttgggc aacaagtttt tctatcctga tgcgcaacac agtctctaga


9361
gactaatcca ggaagacttt agcctccttt ccatattctc acccccgaat caagatttac


9421
agaagcccac gaagaattta cagcccgcct gagatcatct tgcctataaa ctgagttatt


9481
gctttgtcct aaaaattagt cggttttttt ttttctatga ggcttttcag aaatttacag


9541
gatgcccaga ctttacatgt gtaccaaaaa aaaaaaaaag ataaaaaata aaggtgcaaa


9601
gaaagtttag tattttggaa tggtgctata aagttgaaaa aaaaaaaa










SEQ ID NO: 38 Human ARID1B Amino Acid Sequence isoform B (NP_065783.3)








1
mahnagaaaa agthsaksgg seaalkeggs aaalssssss saaaaaasss sssgpgsame


61
tgllpnhklk tvgeapaapp hqqhhhhhha hhhhhhahhl hhhhalqqql nqfqqqqqqq


121
qqqqqqqqqq qhpisnnnsl ggagggapqp gpdmeqpqhg gakdsaaggq adppgpplls


181
kpgdeddapp kmgepaggry ehpglgalgt qqppvavpgg gggpaavpef nnyygsaapa


241
sggpggragp cfdqhggqqs pgmgmmhsas aaaagapgsm dplqnshegy pnsqcnhypg


301
ysrpgagggg gggggggggs ggggggggag aggagagava aaaaaaaaaa gggggggygg


361
ssagygvlss prqqgggmmm gpggggaasl skaaagsaag gfqrfagqnq hpsgatptln


421
qlltspspmm rsyggsypey sspsappppp sqpqsqaaaa gaaaggqqaa agmglgkdmg


481
aqyaaaspaw aaaqqrshpa mspgtpgprm grsqgspmdp mvmkrpqlyg mgsnphsqpq


541
qsspypggsy gppgpqrypi giqgrcpgam agmqypqqqd sgdatwketf wlmppqygqq


601
gvsgycqqgq qpyysqqpqp phlppqaqyl psqsqqryqp qqdmsqegyg trsqpplapg


661
kpnhedlnli qqerpsslpd lsgsiddlpt gteatlssav sasgstssqg dqsnpaqspf


721
sphasphlss ipggpspspv gspvgsnqsr sgpispasip gsqmppqppg sqsessshpa


781
lsqspmpqer gfmagtqrnp qmaqygpqqt gpsmsphpsp ggqmhagiss fqqsnssgty


841
gpqmsqygpq gnysrppays gvpsasysgp gpgmgisann qmhgqgpsqp cgavplgrmp


901
sagmqnrpfp gnmssmtpss pgmsqqggpg mgppmptvnr kaqeaaaavm qaaansaqsr


961
qgsfpgmnqs glmassspys qpmnnssslm ntqappysma pamvnssaas vgladmmspg


1021
esklplplka dgkeegtpqp eskskkssss tttgekitkv yelgneperk lwvdryltfm


1081
eergspvssl pavgkkpldl frlyvcvkei gglaqvnknk kwrelatnln vgtsssaass


1141
lkkqyiqylf afeckierge epppevfstg dtkkqpklqp pspansgslq gpqtpqstgs


1201
nsmaevpgdl kpptpastph gqmtpmqggr sstisvhdpf sdvsdssfpk rnsmtpnapy


1261
qqgmsmpdvm grmpyepnkd pfggmrkvpg ssepfmtqgq mpnssmqdmy nqspsgamsn


1321
lgmgqrqqfp ygasydrrhe pygqqypgqg ppsgqppygg hqpglypqqp nykrhmdgmy


1381
gppakrhegd mynmqyssqq qemynqyggs ysgpdrrpiq gqypypysre rmqgpgqiqt


1441
hgippqmmgg plqssssegp qqnmwaarnd mpypyqnrqg pggptqappy pgmnrtddmm


1501
vpdqrinhes qwpshvsqrq pymsssasmq pitrppqpsy qtppslpnhi srapspasfq


1561
rslenrmsps kspflpsmkm qkvmptvpts qvtgpppqpp pirceitfpp gsveasqpvl


1621
kqrrkitskd ivtpeawrvm mslksgllae stwaldtini llyddstvat fnlsqlsgfl


1681
ellveyfrkc lidifgilme yevgdpsqka ldhnaarkdd sqsladdsgk eeedaecidd


1741
deedeedeee dsektesdek ssialrapta aadpkekpkq askfdklpik ivkknnlfvv


1801
drsdklgrvq efnsgllhwq lgggdttehi qthfeskmei pprrrppppl ssagrkkeqe


1861
gkgdseeqqe ksiiatiddv lsarpgalpe danpgpqtes skfpfgiqqa kshrniklle


1921
deprsrdetp lctiahwqds lakrcicvsn ivrslsfvpg ndaemskhpg lvlilgklil


1981
lhhehperkr apqtyekeed edkgvacskd ewwwdclevl rdnclvtlan isgqldlsay


2041
tesiclpild gllhwmvcps aeaqdpfptv gpnsvlspqr lvletlckls iqdnnvdlil


2101
atppfsrqek fyatlvryvg drknpvcrem smallsnlaq gdalaaraia vqkgsignli


2161
sfledgvtma qyqqsqhnlm hmqppplepp svdmmcraak allamarvde nrsefllheg


2221
rlldisisav lnslvasvic dvlfqigql










SEQ ID NO: 39 Human ARID1B cDNA Sequence Variant 3 (NM_001346813.1,


CDS: from 76 to 6945)








1
gggggcggcg gcgacggcgg cggcggcctg aacagtgtgc accaccaccc cctgctcccc


61
cgtcacgaac tcaacatggc ccataacgcg ggcgccgcgg ccgccgccgg cacccacagc


121
gccaagagcg gcggctccga ggcggctctc aaggagggtg gaagcgccgc cgcgctgtcc


181
tcctcctcct cctcctccgc ggcggcagcg gcggcatcct cttcctcctc gtcgggcccg


241
ggctcggcca tggagacggg gctgctcccc aaccacaaac tgaaaaccgt tggcgaagcc


301
cccgccgcgc cgccccacca gcagcaccac caccaccacc atgcccacca ccaccaccac


361
catgcccacc acctccacca ccaccacgca ctacagcagc agctaaacca gttccagcag


421
cagcagcagc agcagcaaca gcagcagcag cagcagcagc aacagcaaca tcccatttcc


481
aacaacaaca gcttgggcgg cgcgggcggc ggcgcgcctc agcccggccc cgacatggag


541
cagccgcaac atggaggcgc caaggacagt gctgcgggcg gccaggccga ccccccgggc


601
ccgccgctgc tgagcaagcc gggcgacgag gacgacgcgc cgcccaagat gggggagccg


661
gcgggcggcc gctacgagca cccgggcttg ggcgccctgg gcacgcagca gccgccggtc


721
gccgtgcccg ggggcggcgg cggcccggcg gccgtcccgg agtttaataa ttactatggc


781
agcgctgccc ctgcgagcgg cggccccggc ggccgcgctg ggccttgctt tgatcaacat


841
ggcggacaac aaagccccgg gatggggatg atgcactccg cctccgccgc cgccgccggg


901
gcccccggca gcatggaccc cctgcagaac tcccacgaag ggtaccccaa cagccagtgc


961
aaccattatc cgggctacag ccggcccggc gcgggcggcg gcggcggcgg cggcggcgga


1021
ggaggaggag gcagcggagg aggaggagga ggaggaggag caggagcagg aggagcagga


1081
gcgggagctg tggcggcggc ggccgcggcg gcggcggcag cagcaggagg cggcggcggc


1141
ggcggctatg ggggctcgtc cgcggggtac ggggtgctga gctccccccg gcagcagggc


1201
ggcggcatga tgatgggccc cgggggcggc ggggccgcga gcctcagcaa ggcggccgcc


1261
ggctcggcgg cggggggctt ccagcgcttc gccggccaga accagcaccc gtcgggggcc


1321
accccgaccc tcaatcagct gctcacctcg cccagcccca tgatgcggag ctacggcggc


1381
agctaccccg agtacagcag ccccagcgcg ccgccgccgc cgccgtcgca gccccagtcc


1441
caggcggcgg cggcgggggc ggcggcgggc ggccagcagg cggccgcggg catgggcttg


1501
ggcaaggaca tgggcgccca gtacgccgct gccagcccgg cctgggcggc cgcgcaacaa


1561
aggagtcacc cggcgatgag ccccggcacc cccggaccga ccatgggcag atcccagggc


1621
agcccaatgg atccaatggt gatgaagaga cctcagttgt atggcatggg cagtaaccct


1681
cattctcagc ctcagcagag cagtccgtac ccaggaggtt cctatggccc tccaggccca


1741
cagcggtatc caattggcat ccagggtcgg actcccgggg ccatggccgg aatgcagtac


1801
ccccagcagc agatgccacc tcagtatgga cagcaaggtg tgagtggtta ctgccagcag


1861
ggccaacagc catattacag ccagcagccg cagcccccgc acctcccacc ccaggcgcag


1921
tatccgccgt cccagtccca gcagaggtac cagccgcagc aggacatgtc tcaggaaggc


1981
tatggaacta gatctcaacc tcctctggcc cccggaaaac ctaaccatga agacttgaac


2041
ttaatacagc aagaaagacc atcaagttta ccagatctgt ctggctccat tgatgacctc


2101
cccacgggaa cggaagcaac tttgagctca gcagtcagtg catccgggtc cacgagcagc


2161
caaggggatc agagcaaccc ggcgcagtcg cctttctccc cacatgcgtc ccctcatctc


2221
tccagcatcc cggggggccc atctccctct cctgttggct ctcctgtagg aagcaaccag


2281
tctcgatctg gcccaatctc tcctgcaagt atcccaggta gtcagatgcc tccgcagcca


2341
cccgggagcc agtcagaatc cagttcccat cccgccttga gccagtcacc aatgccacag


2401
gaaagaggtt ttatggcagg cacacaaaga aaccctcaga tggctcagta tggacctcaa


2461
cagacaggac catccatgtc gcctcatcct tctcctgggg gccagatgca tgctggaacc


2521
agtagctttc agcagagtaa ctcaagtggg acttacggtc cacagatgag ccagtatgga


2581
ccacaaggta actactccag acccccagcg tacagtgggg tgcccagtgc aagctacagc


2641
ggcccagggc ccggtatggg tatcagtgcc aacaaccaga tgcatggaca agggccaagc


2701
cagccatgtg gtgctgtgcc cctgggacga atgccatcag ctgggatgca gaacagacca


2761
tttcctggaa atatgagcag catgaccccc agttctcctg gcatgtctca gcagggaggg


2821
ccaggaatgg ggccgccaat gccaactgtg aaccgtaagg cacaggaggc agccgcagca


2881
gtgatgcagg ctgctgcgaa ctcagcacaa agcaggcaag gcagtttccc cggcatgaac


2941
cagagtggac tcatggcttc cagctctccc tacagccagc ccatgaacaa cagctctagc


3001
ctgatgaaca cgcaggcgcc gccctacagc atggcgcccg ccatggtgaa cagctcggca


3061
gcatctgcgg gtcttgcaga tatgatgtct cctggtgaat ccaaactgcc cctgcctctc


3121
aaagcagacg gcaaagaaga aggcactcca cagcccgaga gcaagtcaaa ggatagctac


3181
agctctcagg gtatttctca gcccccaacc ccaggcaacc tgccagcccc ttccccaatg


3241
tcccccagct ctgctagcat ctcctcattt catggagatg aaagtgatag cattagcagc


3301
ccaggctggc caaagactcc atcaagccct aagtccagct cctccaccac tactggggag


3361
aagatcacga aggtgtacga gctggggaat gagccagaga gaaagctctg ggtcgaccga


3421
tacctcacct tcacggaaga gagaggctct cccgtctcaa gtctgcctgc cgtgggcaag


3481
aagcccctgg acctgttccg actctacgtc tgcgtcaaag agatcggggg tttggcccag


3541
gttaataaaa acaagaagtg gcgtgagctg gcaaccaacc taaacgttgg cacctcaagc


3601
agtgcagcga gccccctgaa aaagcagtat atccagtacc tgtttgcctt tgagtgcaag


3661
atcgaacgtg gggaggagcc cccgccggaa gtcttcagca ccggggacac caaaaagcag


3721
cccaagctcc agccgccatc tcctgctaac tcgggatcct tgcaaggccc acagaccccc


3781
cagtcaactg gcagcaattc catggcagag gtcccaggtg acctgaagcc acctacccca


3841
gcctccaccc ctcacggcca gatgactcca atgcaaggtg gaagaagcag tacaatcagt


3901
gtgcacgacc cattctcaga tgtgagtgat tcatccttcc cgaaacggaa ctccatgact


3961
ccaaacgccc cctaccagca gggcatgagc atgcccgatg tgatgggcag gatgccctat


4021
gagcccaaca aggacccctt tgggggaatg agaaaagtgc ctggaagcag cgagcccttt


4081
atgacgcaag gacagatgcc caacagcagc atgcaggaca tgtacaacca aagtcccccc


4141
ggagcaatgt ctaacctggg catggggcag cgccagcagt ttccctatgg agccagttac


4201
gaccgaaggc atgaacctta tgggcagcag tatccaggcc aaggccctcc ctcgggacag


4261
ccgccgtatg gagggcacca gcccggcctg tacccacagc agccgaatta caaacgccat


4321
atggacggca tgtacgggcc cccagccaag cgccacgagg gcgacatgta caacatgcag


4381
tacagcagcc agcagcagga gatgtacaac cagtatggag gctcctactc gggcccggac


4441
cgcaggccca tccagggcca gtacccgtat ccctacagca gggagaggat gcagggcccg


4501
gggcagatcc agacacacgg aatcccgcct cagatgatgg gcggcccgct gcagtcgtcc


4561
tccagtgagg ggcctcagca gaatatgtgg gcagcacgca atgatatgcc ttatccctac


4621
cagaacaggc agggccctgg cggccctaca caggcgcccc cttacccagg catgaaccgc


4681
acagacgata tgatggtacc cgatcagagg acaaatcatg agagccagtg gccttctcac


4741
gtcagccagc gtcagcctta tatgtcgtcc tcagcctcca tgcagcccat cacacgccca


4801
ccacagccgt cctaccagac gccaccgtca ctgccaaatc acacctccag ggcgcccagc


4861
ccagcgtcct tccagcgctc cctggagaac cgcatgtctc caagcaagtc tccttttctg


4921
ccgtctatga agatgcagaa ggtcatgccc acggtcccca catcccaggt caccgggcca


4981
ccaccccaac cacccccaat cagaagggag atcacctttc ctcctggctc agtagaagca


5041
tcacaaccag tcetgaaaca aaggcgaaag attacctcca aagataccgt tactcctgag


5101
gcgtggcgtg tgatgatgtc ccttaaatca ggtcttttgg ctgagagtac gtgggctttg


5161
gacactacta atattctccc gcacgatgac agcactgttg ctactttcaa tctctcccag


5221
tcgcctggac ttctcgaacc cttagtcgag tactctagaa aacgcctgac tgacattcct


5281
ggaattctta tggaatatga agtgggagac cccagccaaa aagcacttga tcacaacgca


5341
gcaaggaagg acgacagcca gtcctcggca gacgattctg ggaaagagga ggaagatgct


5401
gaatgtattg atgacgacga ggaagacgag gaggacgagg aggaagacag cgagaagaca


5461
gaaagcgatg aaaagagcag catcgctctg actgccccgg acgccgctgc agacccaaag


5521
gagaagccca agcaagccag taagttcgac aagctgccaa taaagacagt caaaaagaac


5581
aacctgtttg tcgttgaccg atctgacaag ttggggcgtg tgcaggagtt caatagtggc


5641
cttctgcact ggcagctcgg cgggggtgac accaccgagc acattcagac tcactttgag


5701
agcaagatgg aaatcccccc ccgcaggcgc ccaccccccc cctcaagctc cgcaggcaga


5761
aagaaagagc aagaaggcaa aggcgactct gaagagcagc aagagaaaag caccatagca


5821
accatcgatg acgtcctctc tgctcggcca ggggcattgc ctgaagacgc aaaccctggg


5881
ccccagaccg aaagcagtaa gtttcccttt ggtatccagc aagccaaaag tcaccggaac


5941
accaagctgc tggaggacga gcccaggagc cgagacgaga ctcctctgtg taccatcgcg


6001
cactggcagg actcgctggc taagcgatgc atctgtgtgt ccaatattgt ccgtagcttg


6061
tcactcgtgc ccggcaacga cgccgaaacg tccaaacatc caggcccggt gctgatcctg


6121
gggaagctga ttcttcttca ccacgagcat ccagagagaa agcgagcacc gcagacctat


6181
gagaaagagg aggatgagga caagggggtg gcctgcagca aagatgagtg gtggtgggac


6241
cgcctcgagg tcttgaggga taacacgttg gtcacgttgg ccaacatttc cgggcagcta


6301
gacttgtctg cttacacgga aagcatctgc ttgccaattt tggatggctt gctgcactgg


6361
atggtgtgcc cgtctgcaga ggcacaagat ccctttccaa ctgtgggacc caactcggcc


6421
ctgtcgcctc agagacttgt gctggagacc ctctgtaaac tcagtatcca ggacaataat


6481
gtggacctga tcttggccac tcctccattt agtcgtcagg agaaattcta tgctacatta


6541
gttaggtacg ttggggaccg caaaaaccca gtctgccgag aaatgtccat ggcgctttta


6601
tcgaacctcg cccaagggga cgcactagca gcaagggcca tagctgtgca gaaaggaagc


6661
actggaaacc cgacaagctt cctagaggat ggggccacga tggcccagca ccagcagagc


6721
cagcacaacc tcatgcacat gcagcccccg cccctggaac cacctagcgt agacatgacg


6781
tgcagggcgg ccaaggcttt gctagccatg gccagagtgg acgaaaaccg ctcggaattc


6841
cctttgcacg agggccggct gctggatacc tcgatatcag ctgccccgaa ctctctggtC


6901
gcatctgtca tctgtgatgc actgtctcag attgggcagt tatgacataa gtgagaaggc


6961
aagcatgtgt gagcgaagac tagagggcca catacaactg gccgttttct gttctcgttt


7021
atccagcgta ggaagaagga aaagaaaacc tttgcCcctc tgccccattc actatttacc


7081
aattgggaat taaagaaata attaatttga acagttatga aattaatatt tgctgtctgt


7141
gtgtacaagt acatcctttg gggtttttct tttccctctt ttttaaccaa agttgctgtc


7201
tag-gcattc aaaggtcacc ttttgttctt cacagatctt tttaatgttc ttccccatgt


7261
cgtattgcat ttttggggga agcaaattga ctttaaagaa aaaagttgtg gcaaaagacg


7321
ctaagacgcg aaaatttcac cacactgagt caaaaaggtg aaaaactatc cacttcctat


7381
gcgtttcact cctcagagaa tgaaaaaaac tgcatcccat cacccaaagt tctgtgcaat


7441
agaaatttct acagatacag gtataggggc tcaaggaggt atgtcggtca gtagtcaaaa


7501
ccatgaaatg acactggctc ctccacagga atatggttcc actaggctgg gagcaaaaac


7561
aatgtttttt aagattgaga atacatacct gacaacgatc cggaaactgc tcctcaccac


7621
ccccgtcacg cctgctgtcg gcgtttgacc ttccacgcga cagctcctca caatcccttc


7681
catcattttt taaatatttt ttttactgcc tatgggctgt gatgtatata gaagttgtac


7741
attaaacata ccctcatttc tttcttttct ttcttcttcc ttcttttagt acaaagttcc


7801
agtttctttt tcatgatgtg gtaactacga agtgatggta gatttaaata attttttatt


7861
tctactctat atattttttc actagggcca tatctccaaa aaaagaaaga aaaaatacaa


7921
aaaacaaaaa caaaaaaaaa agagggtaat gtacaagctt ctgcacgtat aaagccatgc


7981
tcgatttcag gagagcagct gatcacaatt tgcttcatga atcaaggtgt ggaaatggtt


8041
ata~atggat tgatttagaa aatggttacc agtacagtca aaaaagagaa aacgaaaaaa


8101
atacaactaa aaggaagaaa cacaacttca aagatttttc agtgatgaga atccacactt


8161
gtatttcaag ataatgtagt ttaaaaaaaa aaaaaagaaa aaaacttgat gtaaattcct


8221
cctcttcctc tggcttaatg aataccattt attcagtata aaatctttat atgttccaca


8281
tgttaagaat aaatgtacat taaatcttgt taagcactgt gatgggtgtt cttgaatact


8341
gttctagttt ccttaaagtg gtttcctagt aatcaagtta tttacaagaa ataggggaat


8401
gcagcagtgt attcacatta taaaacccta catttggaag agacctttag gggttaccta


8461
ctttagagtg gggagcaaca gtttgatttt ctcaaattac ttagctaatt agtctttctt


8521
tgaagcaatt aactctaacg acattgaggt atgatcattt tcagtattta tgggaggtgg


8581
ctgctgaccc acttgaggtg agatctcaga agcttaactg gcctgaaaat gtaacattct


8641
gccttttact aactccatct tagtttaatc aaagttcaat ctattccttg tttcttctgt


8701
gtgcctcaga gttattttgc atttagttta ctccaccgtg tataatattt atactgtgca


8761
atgttaaaaa agaatctgtc atattgtatg tggtgtacat agtgcaaagt gatgatttct


8821
atttcagggc acattatggt tctcacattc cttcctacct ggtgcacagt agctttttaa


8881
tactagtcac ttctaattta aactttctct tcctgggtca ttgactgtta ctgtgtaata


8941
atcgatttct ttgaaactgc tgcataatta tgctgttagt ggacctctac ctcttctctt


9001
ccctctccca atcacagtat actcagaatc cccagcccct cgcatacatt gtgtcggttc


9061
acattactca cagtaatata tggaagagtt agacaagaac atgcagttac agtcattgtg


9121
agacgtgact ctccagtgtc acgaggaaaa aaatcatctt ttctgcaaac agtctctcat


9181
ctgtcaactc ccacattact gagtcaaaca gtcttcttac ataacaatgc aaccaaatat


9241
atgttgaatt aaagacccat ttataattct gctttaaata catctgcttg ctaagaacag


9301
atttcagtgc tccaagcttc aaatatggag atttgtaaga gggaattcaa tattattcta


9361
atttctctct tacagagtac aaataaaagg tgtatacaaa ctccgaacat atccagtatt


9421
ccaattcctt tgtcaaycag aagagtaaaa taattaacaa aagactgttg ttatggtttg


9481
cattgtaacc gatacgcaga gtctgaccgt tgggcaacaa gtttttctat cctgatgcgc


9541
aacacagtct ctagagacta atccaggaag actttagcct cctttccata ttctcacccc


9601
cgaatcaaga tttacagaag cccacgaaga atttacagcc tgcttgagat catcttgcct


9661
ataaactgag ttattgcttt gtcctaaaaa ttagtcggtt tttttttttc tatgaggctt


9721
ttcagaaatt tacaggatgc ccagacttta catgtgtacc aaaaaaaaaa aaaagataaa


9781
aaataaaggt gcaaagaaag tttagtattt tggaatggtg ctataaagtt gaa










SEQ ID NO: 40 Human ARID1B Amino Acid Sequence isoform C


(NP_001333742.1)








1
mahnagaaaa agthsaksgg seaalkeggs aaalssssss saaaaaasss sssgpgsame


61
tgllpnhklk tvgeapaapp hqqhhhhhha hhhhhhahhl hhhhalqqql nqfqqqqqqq


121
qqqqqqqqqq qhpisnnnsl ggagggapqp gpdmeqpqhg gakdsaaggq adppgpplls


181
kpgdeddapp kmgepaggry ehpglgalgt qqppvavpgg gggpaavpef nnyygsaapa


241
sggpggragp cfdqhggqqs pgmgmmhsas aaaagapgsm dplqnshegy pnsqcnhypg


301
ysrpgagggg gggggggggs ggggggggag aggagagava aaaaaaaaaa gggggggygg


361
ssagygvlss prqqgggmmm gpggggaasl skaaagsaag gfqrfagqnq hpsgatptln


421
qlltspspmm rsyggsypey sspsappppp sqpqsqaaaa gaaaggqqaa agmglgkdmg


481
aqyaaaspaw aaaqqrshpa mspgtpgpcm grsqgspmdp mvmkrpqlyg mgsnphsqpq


541
qsspypggsy gppgpqrypi giqgrtpgam agmqypqqqm ppqygqqgvs gycqqgqqpy


601
ysqqpqpphl ppqaqylpsq sqqryqpqqd msqegygtrs qpplapgkpn hedlnliqqe


661
rpsslpdlsg siddlptgte atlssavsas gstssqqdqs npaqspfsph asphlssipg


721
gpspspvgsp vgsnqsrsgp ispasipgsq mppqppgsqs essshpalsq spmpqergfm


781
agtqrnpqma qygpqqtgps msphpspggq mhagissfqq snssgtygpq msqygpqgny


841
srppaysgvp sasysgpgpg mgisannqmh gqgpsqpcga vplgrmpsag mqnrpfpgnm


901
ssmtpsspgm sqqggpgmgp pmptvnrkaq eaaaavmqaa ansaqsrqgs fpgmnqsglm


961
assspysqpm nnssslnmtq appysmapam vnssaasvgl admmspgesk lplplkadgk


1021
eegtpqpesk skdsyssqgi sqpptpgnlp vpspmspssa sissfhgdes dsisspgwpk


1081
tpsspkssss tttgekitkv yelgneperk lwvdrylrfm eergspvssl pavgkkpldl


1141
frlyvcvkei gglaqvnknk kwrelatnln vgtsssaass lkkqyiqylf afeckierge


1201
epppevfstg dtkkqpklqp pspansgslq gpqtpqscgs nsmaevpgdl kpptpastph


1261
gqmtpmqggr sstisvhdpl sdvsdssfpk rnsmtpnapy qqgmsmpdvm grmpyepnkd


1321
pfggmrkvpg ssepfmtqgq mpnssmqdmy nqspsgamsn lgmgqrqqfp ygasydrrhe


1381
pygqqypgqg ppsgqppygg hqpglypqqp nykrhmdgmy gppakrhegd mynmqyssqq


1441
qemynqyqqs ysqpdrrpiq qqypypysre rmqqpqqiqt hgippqmmgg plqsssseqp


1501
qqnmwaarnd mpypyqnrqg pggptqappy pgmnrtddmm vpdqrinhes qwpshvsqrq


1561
pymsssasmq pitrppqpsy qtppslpnhi srapspasfq rslenrmsps kspflpsmkm


1621
qkvmptvpts qvtgpppqpp pirreitfpp gsveasqpvl kqrrkitskd ivtpeawrvm


1681
mslksgllae stwaldtini llyddstvat fnlsqlsgfl ellveyfrkc lidifgilme


1741
yevgdpsqka ldhnaarkdd sqsladdsgk eeedaecidd deedeedeee dsektesdek


1801
ssialtapda aadpkekpkq askfdklpik ivkknnlfvv drsdklgrvq efnsgllhwq


1861
lgggdttehi qthfeskmei pprrrppppl ssagrkkeqe gkgdseeqqe ksiiatiddv


1921
lsarpgalpe danpgpqtes skfptgiqqa kshrniklle deprsrdetp lctiahwqds


1981
lakrcicvsn ivrslsfvpg ndaemskhpg lvlilgklil lhhehperkr apqtyekeed


2041
edkgvacskd ewwwdclevl rdntlvtlan isgqldlsay tesiclpild gllhwmvcps


2101
aeaqdpfptv gpnsvlspqr lvletlckls iqdnnvdlil atppfsrqek fyatlvryvg


2161
drknpvcrem smallsnlaq gdalaaraia vqkgsignli stledgvtma qyqqsqhnlm


2221
hmqppplepp svdmmcraak allamarvde nrsefllheg rlldisisav lnslvasvic


2281
dvlfqigql










SEQ ID NO: 41 Mouse ARID1B cDNA Sequence (NM_001085355.1, CDS: from 22


to 6756)








1
tcggcgggcc ccggctcgac catggagacc gggctgctcc ccaaccacaa actgaaagcc


61
gttggcgagg cccccgctgc accgccccat cagcagcacc accaccacca tgcccaccac


121
caccaccacc accatgccca ccacctccac cacctccacc accaccacgc actacagcag


181
cagctaaacc agttccagca gccgcagccg ccgcagccac agcagcagca gccgccgcca


241
ccgccgcagc agcagcatcc cactgccaac aacagcctgg gcggtgcggg cggcggcgcg


301
cctcagcccg gcccggacat ggagcagccg caacatggag gcgccaagga cagtgtcgcg


361
ggcaatcagg ctgacccgca gggccagcct ctgctgagca aaccgggcga cgaggacgac


421
gcgccgccca agatggggga gccggcgggc agccgctatg agcacccggg cctgggcgcg


481
cagcagcagc ccgcgccggt cgccgtgccc gggggcggcg gcggcccagc ggccgtctcg


541
gagtttaata attactatgg cagcgctgcc cctgctagcg gcggccccgg cggccgcgct


601
gggccttgct ttgatcaaca tggcggacaa caaagccccg ggatggggat gatgcactcc


661
gcctctgccg ccgccggggc ccccagcagc atggaccccc tgcagaactc ccacgaaggg


721
taccccaaca gccagtacaa ccattatccg ggctacagcc ggcccggcgc gggcggcggc


781
ggcggcggcg gcggaggagg aggaggcagc ggaggaggtg gaggaggagg aggagcagga


841
ggagcaggag gagcagcggc agcggcagca ggagccggag ctgtggcggc ggcggccgcg


901
gcggcggcgg cagcagcagc agcagcagga ggaggcggtg gcggcggcta tgggagctcg


961
tcctcggggt acggggtgct gagctccccg cggcagcagg gcggcggcat gatgatgggc


1021
cccgggggcg gcggggccgc gagcctcagc aaggcggccg ccggcgcggc ggcggcggcg


1081
gggggcttcc agcgcttcgc cggccagaac cagcacccgt cgggggctac accgaccctc


1141
aaccagctgc tcacctcacc cagccccatg atgaggagct acggcggtag ctaccccgac


1201
tacagcagct ccagcgcgcc gccgccgccg tcgcagcccc agtcccaggc ggcggcgggg


1261
gcggcggcgg gtggccagca ggcggccgcg ggcatgggct tgggcaagga cctaggcgcc


1321
cagtacgccg ctgccagccc ggcctgggcg gccgcgcaac aaaggagtca cccggcgatg


1381
agccccggca cccccggacc gaccatgggc agatcccagg gcagcccgat ggacccaatg


1441
gtgatgaaga gacctcagtt gtatgggatg ggtactcacc cccactccca gccacagcag


1501
agcagcccat acccaggagg ctcctacggt cccccaggtg cacagcggta tccccttggc


1561
atgcagggcc gggctccagg ggccctggga ggcttgcagt acccgcagca gcagatgcca


1621
ccgcagtacg gacagcaagc tgtgagtggc tactgccagc aaggccagca gccatactac


1681
aaccagcagc cgcagccctc gcacctcccg ccccaggcac agtacctgca gccggcggcg


1741
gcgcagtccc agcagaggta ccagccacag caggacatgt ctcaagaagg ctatggaact


1801
agatctcagc ctcctctggc ccctggaaaa tccaaccatg aagacttgaa tttaattcaa


1861
caggaaagac catcgagtct accagacctg tctggctcca tcgatgacct ccccacggga


1921
acagaagcaa ctctgagctc agcagtcagt gcatccgggt ctacaagcag ccagggagat


1981
cagagcaacc cagcgcagtc tcctttctcc ccacatgcat cacctcacct ctccagcatc


2041
cctggagggc cgtcaccttc tcctgttggc tctcctgtgg gaagcaacca atcgaggtct


2101
ggtccgatct cccctgcgag tattccaggt agccagatgc ctccgcaacc acctggaagc


2161
cagtcagaat ccagttccca tcctgccttg agccagtcac caatgccaca ggaaagaggt


2221
tttatgacag gcactcagag aaaccctcag atgtctcagt acggacctca gcagacagga


2281
ccatccatgt cgcctcaccc accccctggg ggccagatgc atcctgggat cagtaacttt


2341
cagcagagta actcaagtgg cacgtacggc ccacagatga gccagtatgg accccaaggc


2401
aactactcca gaaccccaac atatagcggg gtacccagtg caagctacag cggcccaggg


2461
cccggtatgg gcatcaatgc caacaaccag atgcatggac aagggccagc ccagccatgt


2521
ggtgctatgc ccctgggacg aatgccttca gctgggatgc agaacagacc atttcctgga


2581
accatgagca gcgtcacccc cagttctcct ggcatgtctc aacagggagg gccaggaatg


2641
ggcccaccaa tgcccactgt gaaccggaag gcccaggaag ctgccgcagc tgtgatgcag


2701
gctgctgcaa actcagcaca aagcaggcaa ggcagttttc ctggcatgaa ccagagtggc


2761
ctggtggcct ccagctctcc ctacagccag tccatgaaca acaactccag cctgatgagc


2821
acccaggccc agccctacag catgacgccc acaatggtga acagctccac agcatctatg


2881
ggtcttgcag atatgatgtc tcccagtgag tccaaattgt ctgtgcctct taaagcagat


2941
ggtaaagaag aaggcgtgtc ccagcctgag agcaagtcaa aggacagcta tggctctcag


3001
ggcatttccc agcctccaac cccaggcaac ctgcctgtcc cttccccaat gtctcccagc


3061
tctgccagca tctcctcctt tcatggagat gagagtgaca gcattagcag cccaggctgg


3121
cccaagacac catcaagccc taagtccagc tcttcctcca ccactgggga gaagatcacg


3181
aaggtctatg agctggggaa tgagccggag aggaagctgt gggtcgaccg ttacctaacg


3241
ttcatggaag agaggggctc cccggtgtcc agtctgccag cagtgggcaa gaagcccctg


3301
gacctgttcc gactgtatgt ctgcgtcaag gagattggag gtttggcgca ggttaataaa


3361
aacaagaagt ggcgtgagct ggcaaccaac ctgaacgttg gcacttccag cagcgcagcc


3421
agctctctga aaaagcagta tattcagtac ctgttcgcct ttgagtgcaa aactgagcgc


3481
ggggaggagc ccccacctga agtcttcagc accggggatt cgaagaagca gccaaagctc


3541
cagccgccat ctcctgctaa ctcaggatcc ttacaaggcc cacagactcc acagtcaact


3601
gggagcaatt cgatggcaga ggttccaggt gacctgaagc caccaacccc agcctctacc


3661
cctcatggac agatgactcc catgcaaagc ggaagaagca gtacagtcag tgtgcatgac


3721
ccgttctcag acgtgagtga ctcagcgtac ccaaaacgga actccatgac tccaaacgcc


3781
ccataccagc agggcatggg catgccagac atgatgggca ggatgcccta tgaacccaac


3841
aaggaccctt tcagtggaat gagaaaagtg cctggaagta gtgagccctt tatgacacaa


3901
ggacaggtgc ccaacagcgg catgcaggac atgtacaacc agagcccctc aggggccatg


3961
tccaatctgg gcatgggaca gcggcagcag tttccctatg gaaccagtta tgaccgaagg


4021
catgaggctt acggacagca gtacccaggc caaggccctc ccacaggaca gccaccgtat


4081
ggaggacacc agcctggcct gtacccacag cagccgaatt acaaacgtca tatggatggc


4141
atgtacgggc ctccagccaa gcggcacgag ggagacatgt acaacatgca gtatggcagc


4201
cagcagcagg agatgtataa ccagtatgga ggctcctact ctggcccgga cagaaggccc


4261
atccagggac aatatcccta cccctacaac agagaaagga tgcagggccc aggccagatg


4321
cagccacacg gaatcccacc tcagatgatg gggggcccca tgcagtcatc ctccagcgag


4381
gggcctcagc agaacatgtg ggctacacgc aacgatatgc cttatcccta ccagagcagg


4441
caaggcccgg gcggccctgc acaggccccc ccttacccag gcatgaaccg cacagatgat


4501
atgatggtac ctgagcagag gatcaatcac gagagccagt ggccttctca cgtcagccag


4561
cgccagcctt acatgtcatc ttcggcctcc atgcagccca tcacgcgccc acctcagtca


4621
tcctaccaga cgccgccgtc actgccaaac cacatctcca gggcacccag ccccgcctcc


4681
ttccagcgct ccctggagag tcgcatgtct ccaagcaagt ctcccttcct gcccaccatg


4741
aagatgcaga aggtcatgcc cacagtcccc acatcccagg tcaccgggcc ccccccacag


4801
cctccaccaa tcagaaggga gattaccttt cctcctggct ccgtagaagc atcacagcca


4861
atcctgaaac aaaggcgaaa gattacctca aaagatattg ttactcccga ggcgtggcgt


4921
gtgatgatgt cccttaaatc gggtctgttg gctgagagca cgtgggctct ggacaccacc


4981
aatattctcc tctatgatga cagcaccgtc gccaccttca atctttccca gctgtctgga


5041
ttcctggaac tattagtaga gtactttcga aaatgcctaa ttgacatttt cggaattctt


5101
atggaatatg aagtgggtga ccccagccaa aaggctcttg atcaccgttc agggaagaaa


5161
gatgacagcc agtccctgga agatgattct gggaaggaag acgatgatgc tgagtgtctt


5221
gtggaagagg aggaggagga agaggaggag gaggaagaca gtgaaaagat agagtcagag


5281
gggaagagca gccctgccct agctgctcca gatgcctccg tggaccccaa ggagacgcca


5341
aagcaggcca gtaagtttga caagctgccc ataaagattg tcaaaaagaa caagctgttt


5401
gtggtggacc ggtccgacaa gctgggccga gtgcaggagt tcagcagcgg gctcctccac


5461
tggcagctgg gtggtggcga cactaccgag cacatccaga ctcacttcga gagcaagatg


5521
gagatccctc ctcgcaggcg tccacctccg cctctaagct ccacgggtaa gaagaaagag


5581
ctggaaggca aaggtgattc tgaagagcag ccagagaaaa gtatcatagc caccatcgat


5641
gacgtcttgt ctgcccggcc aggggctctg cctgaagaca ccaacccagg accccagacc


5701
gacagcggca agtttccctt tggaatccag caggccaaaa gccaccggaa catcaggctc


5761
ctggaagacg agcccaggag ccgagacgag acgccgctgt gcaccatcgc gcactggcag


5821
gactcactgg ccaagcgctg catctgtgtg tcgaacatcg tgcggagctt gtctttcgtg


5881
cctggcaacg acgcagagat gtccaaacac ccgggcttgg tgctgatcct gggaaagctg


5941
attctgctgc atcacgagca tccggagaga aagcgggcgc cacagaccta tgagaaggag


6001
gaggacgagg acaagggggt ggcctgcagc aaagatgagt ggtggtggga ctgcctcgag


6061
gtcttgcggg ataacaccct ggtcacgttg gcgaacattt ccgggcagct agacttgtct


6121
gcttacacag agagcatctg cttgccgatc ctggacggct tgctacactg gatggtgtgc


6181
ccgtccgcag aggctcagga cccctttccc actgtggggc ccaactcagt cctgtcgccg


6241
cagagacttg tgctggagac cctgtgtaaa ctcagtatcc aggacaacaa cgtggacctg


6301
atcttggcca cgcctccatt tagtcgtcag gagaaatttt atgctacatt agttaggtac


6361
gttggggatc gcaaaaatcc agtctgtcga gaaatgtcca tggcgctttt atcgaacctt


6421
gcccaggggg acacactggc ggcgagggca atagctgtgc agaaaggaag cattggtaac


6481
ttgataagct tcctagagga cggggtgacg atggcgcagt accagcagag ccagcataac


6541
cttatgcaca tgcagccccc acctctggaa ccccctagtg tagacatgat gtgccgggcg


6601
gccaaagctc tgctggccat ggccagagtg gacgagaacc gctcggagtt ccttttgcac


6661
gagggtcggt tgctggatat ctcaatatca gctgtcctga actctctggt tgcatctgtc


6721
atctgcgatg tactgtttca gattgggcag ttatgacatc cgtgaaggca cacatgtgtg


6781
agtgaacatt agagggtcac atataactgg ctgttttctg ttctcgttta tccagtgtaa


6841
gaagaaggaa aagaaaaatc tttgctcctc tgccccgttt actatttacc aattgggaat


6901
taaatcatta atttgaacag ttataaaatt aatatttgct gtctgtgtgt ataagtacat


6961
cctctggcgg ttttctgttt cttttttttt taaccaaagt tgccgtctag tgcattcaaa


7021
ggtcacaatt tttgtttgtt tgtttgtttg tttgtttttt cataattttt ttcatgttgt


7081
attgcagtct ttgggaagtg aattgacttt ataaagaaaa acgttttggc aaaaagtgct


7141
aagatagaaa aatgtcacca cactgggtca aaaacgtgaa aggaaaaatt gattcttaaa


7201
ttgatttcct atgaatttta ttcttcacag aatgataaaa gctaaactgc accccgtcac


7261
ccaaagctct gtgcaataga aacttctaga gatatagtgt aggggctgaa ggaggtatgg


7321
cagcagtagt cagggtcaat gatactgctt tctccaccgg aaagtggtta cgttaggcct


7381
cgagcaaaaa acagcgctct cagataggtg caaaaatcca ctcctagcag ccaacagcag


7441
gatcgcttcc tcaccacgac cgccatgtct gctgtggctc agcctccacg ggacaaagct


7501
tcaagatttc tttcatcatt tttttaaata ttttttttac tgcctatggg ctgtgatgta


7561
tatagaagtt gtacattaaa cataccctca tttttttctt cttttctttt tttctttttt


7621
tctttttctt tttttttttt tttagtacaa agtttttagt ttctttttca tgatgtggta


7681
actacgaagt gatggtagat ttaaataatt ttttattttt attttatata ttttttcatt


7741
aggaccatat ctccaaaaaa caagaaaaag aaacaaaaaa tacaaaaaat aaaaacaaac


7801
aaaaaaagag ggtaatgtac aagtttctgt atgtataaag tcatgctctg ttgggagagc


7861
ggctgatccc agtttgcttc atgaatcaaa gtgtggaaat ggttgcatac agattgattt


7921
agaaaatgga caccagtaca tacaaaaaaa gaaaaaagaa agaaaaccaa ctaaatggaa


7981
gaaacacaac ttcaaagatt tttctgtgac aagaatccac atttgtattt caagataatg


8041
tagtttaaga aaagaaaaaa aagaaaaaaa aagaaaaaaa cttgatgtaa attcctcctt


8101
ttcctctggc ttaatgaata tcatttattc agtataaaat ctttatatgt cccacatgtt


8161
aagaataaat gtacattaaa tcttgttacg cactgtgatg ggtgttcttg aatgctgttc


8221
tagtttgcct agcatggttg ccatagtaac caagttattt acaggaaata gggaagatgt


8281
aacaactgct tcctggtaat gatgcccaaa ggccagaagg gactttcagg gtttcctact


8341
tgagagtggg agcaacaatt tgattttctc agattgttta gctaactagg tcttctttga


8401
agcaattaac tctggtgaca ttgagaagtg gtaattccct catggatggg tggtggctgc


8461
caacccactg tgacatgggg ccctgcaagc taactggcct gaaaccacga ccttctgcct


8521
ctcactactg atttaaccca agtctgcacc cgtcatgttt cttctgtgtg cctccaagtt


8581
actctgcgtt agtttgctcc agcgtgtata atatttatat tgtgcaatgt taaagagaac


8641
gtgtcatatt gtatgccgtg tgtatagtgc caagtgatga ttctgtttca gagcatacct


8701
tccttcctgc ccagtccctg gctctctaat accccaccct gatggaaagt gcttcttcct


8761
gggtaattga ctgttactgt gtaacgctca gtctcattga aacttacata accatgctgc


8821
tggtgcccct tcctacccta cctctctcag cactcttcag ttgacacttc ccacacctgt


8881
cactgtggcc caccttgctc acgctgacat ctggaagagt tagacaggag cacacactta


8941
caacactagg agatgttatt ctggtgtcac gagaaagaaa ttggtttttc ctgcaaacag


9001
tcccatcacc aagcagcccc cacatcaggt cagcaaaaag atctgtgttg aatcaaaact


9061
ccatttataa ttctactaga tgggaataca tctgcttaca aaggacagat tttagtgttc


9121
tgtgatgaaa atatggagag tgcaagagag agttcaatgg aatcctaatc ttgctcttgc


9181
agacaatgaa tgaaaggtat agacaggctc agttccctgt cagaagagtg gtctcaaaga


9241
caagtggctg tatagcagcc aggcccagaa cagcctcgca gcacacacta acaccaagcg


9301
ggtgtctgag ctctcctagg aagccttgtg cctgccctcc ctccattcac ccagatccga


9361
ctcctggaag cccacgaaag agtcaccctt tgcttcacat ttcctgacga taccgagttg


9421
ctgctctgtc ctaaaaatat tagttctttt ccagggcttt cagaaatttg caggatgccc


9481
atactctaaa tgtgtaccaa aaagagagag aaataaaggt gcgaagaaag tttagtattt


9541
tggaatggtg cgataaaatg gaatctgttg gtttttaatg taacataaga tactattggc


9601
tggcactggc taaaaaaaat atctaagtgt tggagttgga tgcacaatca acttttactt


9661
agctattcaa agagtactta tgttttccaa gttaaaacag acttgttttt gacaggggcc


9721
gtgggtggtc ttatacaatg ccagctccta actgcagctt ctgagaactg gatatcgttt


9781
gccctgagag ctgcccgtct ccaactatgt gctgctgctg ccctgtgtgc tcagcccaca


9841
aggatgtgga gactggatag acaacccctt gcttcttgct gggttgtgct gagttctttg


9901
cagtccagtc aagtgcccag agctaccagc ctacgtccct catgcatcca agagaaatga


9961
tcttgactat catgatcaaa acagctgtag taatatttct agtaaatatt tctgatgact


10021
ctgtgtaatc tcctacaaca ggacactatt cattaacttg acagagacat gtgggcatgt


10081
ggtcctgctt tagtttaaca gacaagtcaa ccagttctca ttacttagga agagtgaggc


10141
tatgtctgtt acaatcccaa tgtggtgctt gcccttatcc aaagacagtc cgggggccct


10201
gtctgcctga actatgtctc gctccctctt gggcttccca ctgggatgtg aaaagataac


10261
caatggctcc caggttccca gtgcccccca aaccagtaat caggtctggg actacagaac


10321
ccgcaaaatc atacacaggc tgtttcaaag ccagtactct ctttatactc ctgcttcctc


10381
cagcccccat ttcacacccc acccaaatca caaggtcctc tgaagtctca gaactccaaa


10441
ttaacgttgg gatttacgat gtgaatgctg aggagaaaat tgggagttgg tgggagatca


10501
ccaaattgtc aaaactatga aactcatctg tcttcccaaa tctgacctca gggacttggg


10561
gggttcactc tggcttctgc cacagtattt tctggggaac caaaggcctc gggaatagag


10621
aaacaggttg ccggatatcc tggaagtcta agccatactg accagtttgt cttgagtgtt


10681
ttctttgtga gcctggaact gtccccggac ccctttcttt taaacatggt tcaggacttt


10741
aaaaaaaagc actgtatttt ttttatgtaa gccaagatgc cctccctagc agagatagcg


10801
ttgaactgtc tctagttctg tagcctgaga gacttaaatc gtttaacttc agtgtctttg


10861
tccactctgt tgaactgcta aggattctat tgaatgtgtt ctttgcggct ttggaggagt


10921
tgctgggtgt gtaagtcctg catccctttg cctggtatgt gtatattatt cctttgcctg


10981
gctgtgtatc gttcttcagt gtaagtacac ccacactctg tattcctttg cctgctcccc


11041
gcccccccac acacacacat cctgcatagt tttaaaataa ggcctgagag actgtttcta


11101
tttcctgtca tagctggtga cttttaacag ttgaggcgaa tggcctgtca cttgcctggg


11161
ttcccgtcag gggtgatcca tggaactcct cagtggaaca gaatttagga cagaagatcc


11221
caccttcctt ccaggcctgg ggagaatcag actgtgagat aaaccatgat gctgcccaat


11281
cccactgccc caccttgctt ttaaaataaa gtgcctccta acgtc










SEQ ID NO: 42 Mouse ARID1B Amino Acid Sequence (NP_001078824.1)








1
metgllpnhk lkavgeapaa pphqqhhhhh ahhhhhhhah hlhhlhhhha lqqqlnqfqq


61
pqppqpqqqq pppppqqqhp tannslggag ggapqpgpdm eqpqhggakd svagnqadpq


121
gqpllskpgd eddappkmge pagstyehpg lgaqqqpapv avpgggggpa avsefnnyyg


181
saapasggpg gragpcfdqh ggqqspgmgm mhsasaaaga pssmdplqns hegypnsqyn


241
hypgysrpga gggggggggg ggsggggggg gaggaggaaa aaagagavaa aaaaaaaaaa


301
aagggggggy gssssgygvl ssprqqgggm mmgpggggaa slskaaagaa aaaggfqrfa


361
gqnqhpsgat ptlnqlltsp spmmrsyggs ypdyssssap pppsqpqsqa aagaaaggqq


421
aaagmglgkd lgaqyaaasp awaaaqqrsh pamspgtpgp tmgrsqgspm dpmvmkrpql


481
ygmgthphsq pqqsspypgg sygppgaqry plgmqgrapg algglqypqq qmppqygqqa


541
vsgycqqgqq pyynqqpqps hlppqaqylq paaaqsqqry qpqqdmsqeg ygtrsqppla


601
pgksnhedln liqqerpssl pdlsgsiddl ptgteatlss avsasgstss qgdqsnpaqs


661
pfsphasphl ssipggpsps pvgspvgsnq srsgpispas ipgsqmppqp pgsqsesssh


721
palsqspmpq ergfmtgtqr npqmsqygpq qtgpsmsphp spggqmhpgi snfqqsnssg


781
tygpqmsqyg pqgnysrtpt ysgvpsasys gpgpgmgina nnqmhgqgpa qpcgamplgr


841
mpsagmqnrp fpgtmssvtp sspgmsqqgg pgmgppmptv nrkaqeaaaa vmqaaansaq


901
srqgsfpgmn qsglvasssp ysqsmnnnss lmstqaqpys mtptmvnsst asmgladmms


961
psesklsvpl kadgkeegvs qpeskskdsy gsqgisqppt pgnlpvpspm spssasissf


1021
hgdesdsiss pgwpktpssp ksssssttge kitkvyelgn eperklwvdr yltfmeergs


1081
pvsslpavgk kpldlfrlyv cvkeigglaq vnknkkwrel acnlnvgtss saasslkkqy


1141
iqylfafeck tergeepppe vfstgdskkq pklqppspan sgslqgpqtp qstgsnsmae


1201
vpgdlkpptp astphgqmtp mqsgrsstvs vhdpfsdvsd saypkrnsmt pnapyqqgmg


1261
mpdmmgrmpy epnkdpfsgm rkvpgssepf mtqgqvpnsg mqdmynqsps gamsnlgmgq


1321
rqqfpygtsy drrheaygqq ypgqgpptgq ppygghqpgl ypqqpnykrh mdgmygppak


1381
rhegdmynmq ygsqqqemyn qyggsysgpd rrpiqgqypy pynrermqgp gqmqphgipp


1441
qmmggpmqss ssegpqqnmw atrndmpypy qsrqgpggpa qappypgmnr tddnmvpeqr


1501
inhesqwpsh vsqrqpymss sasmqpitrp pqssyqtpps lpnhisraps pasfqrsles


1561
rmspskspfl ptmkmqkvmp tvptsqvtgp ppqpppirre itfppgsvea sqpilkqrrk


1621
itskdivtpe awrvmmslks gllaestwal dtinillydd stvatfnlsq lsgflellve


1681
yfrkclidif gilmeyevgd psqkaldhrs gkkddsqsle ddsgkeddda eclveeeeee


1741
eeeeedseki esegksspal aapdasvdpk etpkqaskfd klpikivkkn klfvvdrsdk


1801
lgrvqefssg llhwqlgggd ttehiqthfe skmeipprrr pppplsstgk kkelegkgds


1861
eeqpeksiia tiddvlsarp galpedtnpg pqcdsgkfpf giqqakshrn irlledeprs


1921
rdetplctia hwqdslakrc icvsnivrsl sfvpgndaem skhpglvlil gklillhheh


1981
perkrapqty ekeededkgv acskdewwwd clevlrdntl vtlanisgql dlsaytesic


2041
lpildgllhw mvcpsaeaqd pfptvgpnsv lspqrlvlet lcklsiqdnn vdlilatppf


2101
srqektyatl vryvgdrknp vcremsmall snlaqgdtla araiavqkgs ignlisfled


2161
gvtmaqyqqs qhnlmhmqpp pleppsvdmm craakallam arvdencsef llhegrlldi


2221
sisavlnslv asvicdvlfq igql










SEQ ID NO: 43 Human CRB1 cDNA Sequence Variant 1 (NM_201253.2. CDS:


from 210 to 4430)








1
cctcccgtgt aagtgatgct aagaagcaca aactgcactt tgaatctaag cccctgtatt


61
ttccgtgaag gagctgcaag tagggtggga cagagatggc acctgggggc tctgaggcac


121
ccgctcctct ctgagacaga cagggatcag gagccggact gggaccagac caccagcaac


181
acaccagagg atgttctcta aataagacca tggcacttaa gaacattaac taccttctca


241
tcttctacct cagtttctca ctgcttatct acataaaaaa ttccttttgc aataaaaaca


301
acaccaggtg cctctcaaat tcttgccaaa acaattctac atgcaaagat ttttcaaaag


361
acaatgattg ttcttgttca gacacagcca ataatttgga caaagactgt gacaacatga


421
aagacccttg cttccccaat ccctgtcaag gaagtgccac ttgtgtgaac accccaggag


481
aaaggagctt tctgtgcaaa tgtcctcctg ggtacagtgg gacaatctgt gaaactacca


541
ttggttcctg tggcaagaac tcctgccaac atggaggtat ttgccatcag gaccctattt


601
atcctgtctg catctgccct gctggatatg ctggaagatt ctgtgagata gatcacgatg


661
agtgtgcttc cagcccttgc caaaatgggg ccgtgtgcca ggatggaatt gatggttact


721
cctgcctctg tgtcccagga tatcaaggca gacactgcga cttggaagtg gatgaatgtg


781
cttcagatcc ctgcaagaac gaggctacat gcctcaatga aataggaaga tatacttgta


841
tctgtcccca caattattct ggtgtaaact gtgaattgga aattgacgaa tgttggtccc


901
agccttgttt aaatggtgca acttgtcagg atgctctggg ggcctatttc tgcgactgtg


961
cccctggatt cctgggggat cactgtgaac tcaacactga tgagtgtgcc agtcaacctt


1021
gtctccatgg agggctgtgt gtggatggag aaaacagata tagctgtaac tgcacgggta


1081
gtggattcac agggacacac tgtgagacct tgatgcccct ttgttggtca aaaccttgtc


1141
acaataatgc tacatgtgag gacagtgttg acaattacac ttgtcactgc tggcctggat


1201
acacaggtgc ccagtgtgag atcgacctca atgaatgcaa tagtaacccc tgccagtcca


1261
atggggaatg tgtggagctg tcctcagaga aacaatatgg acgcatcact ggactgcctt


1321
cttctttcag ctaccatgaa gcctcaggtt atgtctgtat ctgtcagcct ggattcacag


1381
gaatccactg cgaagaagac gtcaatgaat gttcttcaaa cccttgccaa aatggtggta


1441
cttgtgagaa cttgcctggg aattatactt gccattgccc atttgataac ctttctagaa


1501
ctttttatgg aggaagggac tgttctgata ttctcctggg ctgtacccat cagcaatgtc


1561
taaataatgg aacatgcatc cctcacttcc aagatggcca gcatggattc agctgcctgt


1621
gtccatctgg ctacaccggg tccctgtgtg aaatcgcaac cacactttca tttgagggcg


1681
atggcttcct gtgggtcaaa agtggctcag tgacaaccaa gggctcagtt tgtaacatag


1741
ccctcaggtt tcagactgtt cagccaatgg ctcttctact tttccgaagc aacagggatg


1801
tgtttgtgaa gctggagctg ctaagtggct acattcactt atcaattcag gtcaataatc


1861
agtcaaaggt gcttctgttc atttcccaca acaccagcga tggagagtgg catttcgtgg


1921
aggtaatatt tgcagaggct gtgaccctta ccttaatcga cgactcctgt aaggagaaat


1981
gcatcgcgaa agctcctact ccacttgaaa gtgatcaatc aatatgtgct tttcagaact


2041
cctttttggg tggtttacca gtgggaatga ccagcaatgg tgttgctctg cttaacttct


2101
ataatatgcc atccacacct tcgtttgtag gctgtctcca agacattaaa attgattgga


2161
atcacattac cctggagaac atctcgtctg gctcatcatt aaatgtcaag gcaggctgtg


2221
tgagaaagga ttggtgtgaa agccaacctt gtcaaagcag aggacgctgc atcaacttgt


2281
ggccgagtta ccagtgtgac tgccacaggc cctatgaagg ccccaactgt ctgagagagt


2341
atgtggcagg cagatttggc caggatgact ccactggtta tgtcatcttt actcttgatg


2401
agagctatgg agacaccatc agcctctcca tgtttgtccg aacgcttcaa ccatcaggct


2461
tacttctagc tttggaaaac agcacttatc aatatatccg tgtctggcta gagcgcggca


2521
gactagcaat gctgactcca aactccccca aattagtagt aaaatttgtt cttaatgatg


2581
gaaatgtcca cttgatatct ttgaaaatca agccatataa aattgaactg tatcagtctt


2641
cacaaaacct aggatttatt tctgcttcta cgtggaaaat cgaaaaggga gatgtcatct


2701
acattggtgg cctacctgac aagcaagaga ctgaacttaa tggtggattc ttcaaaggct


2761
gtatccaaga tgtaagacta aacaaccaaa atctggaatt ctttccaaat ccaacaaaca


2821
atgcatctct caatccagtt cttgtcaatg taacccaagg ctgtgctgga gacaacagct


2881
gcaagtccaa cccctgtcac aatggaggtg tttgccattc ccggtgggat gacttctcct


2941
gttcctgtcc tgccctcaca agtgggaaag cctgtgagga ggttcagtgg tgtggattca


3001
gcccgtgtcc tcacggagcc cagtgccagc cggtgcttca aggatttgaa tgtattgcaa


3061
atgctgtttt taatggacaa agcggtcaaa tattattcag aagcaatggg aatattacca


3121
gagaactcac caatatcaca tttggtttca gaacaaggga tgcaaatgta ataatattgc


3181
atgcagaaaa agagcctgaa tttcttaaca ttagcattca agattccaga ttattctttc


3241
aattgcaaag tggcaacagc ttttatatgc taagtctgac aagtttgcag tcagtgaatg


3301
atggcacatg gcacgaagtg accctttcca tgacagaccc actgtcccag acctccaggt


3361
ggcaaatgga agtggacaac gaaacacctt ttgtgaccag cacaattgct actggaagcc


3421
tcaacttttt gaaggataat acagatattt atgtgggaga cagagctatt gacaatataa


3481
agggcctgca agggtgtcta agtacaatag aaatcggagg catttatctc tcttactttg


3541
aaaatgttca tggtttcatt aataaacctc aggaagagca atttctcaaa atctctacca


3601
attcagtggt cactggctgt ttgcagttaa atgtctgcaa ctccaacccc tgtttgcatg


3661
gaggaaactg tgaagacatc tatagctctt atcattgctc ctgtcccttg ggatggtcag


3721
ggaaacactg tgaactcaac atcgatgaat gcttttcaaa cccctgtatc catggcaact


3781
gctctgacag agttgcagcc taccactgca catgtgagcc tggatacact ggtgtgaact


3841
gtgaagtgga tatagacaac tgccagagtc accagtgtgc aaatggagcc acctgcatta


3901
gtcatactaa tggctattct tgcctctgtt ttggaaattt tacaggaaaa ttttgcagac


3961
agagcagatt accctcaaca gtctgtggga atgagaagac aaatctcact tgctacaatg


4021
gaggcaactg cacagagttc cagactgaat taaaatgtat gtgccggcca ggttttactg


4081
gagaatggtg tgaaaaggac attgatgagt gtgcctctga tccgtgtgtc aatggaggtc


4141
tgtgccagga cttactcaac aaattccagt gcctctgtga tgttgccttt gctggcgagc


4201
gctgcgaggt ggacttggca gatgacttga tctccgacat tttcaccact attggctcag


4261
tgactgtcgc cttgttactg atcctcttgc tggccattgt tgcttctgtt gtcacctcca


4321
acaaaagggc aactcaggga acctacagcc ccagccgtca ggagaaggag ggctcccgag


4381
tggaaatgtg gaacttgatg ccaccccctg caatggagag actgatttag gagcattgtg


4441
tcccttcgag atggggatcc acacactgtg aatgtgatga ctgtacttca ggtatctctg


4501
acatacctga caatgttaat ctgcaactgg gattacactg gaactacagg aatgattcct


4561
ttgaccacct taaaaacttt cacagtggtt ccgctcgaca ccactgtttt attatattat


4621
atcagccaat tgcaaaaaaa gtctgtgcca gtaatttcag ccttataatt agcaaaaaca


4681
tcttccagag aataaagtct tctgtggctt tagtggccat cactgaaact ctttcctctt


4741
ttcaacctgg gaacaaattt tagttttcat tttaggtttc tgtactttct gtagtttctg


4801
tgtaaactgc catatgttta catggaaact acaggaaaaa attggctaca tttctcactt


4861
ctcctatcat gtggtcaaag ttattgttgt ataccagcga tgggatgtat acttttgtcc


4921
ttcattcatg gattcagaga aagctctggg aacgacttat ggtccaaaaa agtgacccaa


4981
tggcaacaaa taaaaattga aatgcaaaaa aaaaaaaaaa aaaa










SEQ ID NO: 44 Human CRB1 Amino Acid Sequence Isoform A (NP_957705.1)








1
malkninyll ifylsfslli yiknsfcnkn ntrclsnscq nnstckdfsk dndcscsdta


61
nnldkdcdnm kdpcfsnpcq gsatcvntpg ersflckcpp gysgticett igscgknscq


121
hggichqdpi ypvcicpagy agrfceidhd ecasspcqng avcqdgidgy scfcvpgyqg


181
rhcdlevdec asdpckneat clneigrytc icphnysgvn celeidecws qpclngatcq


241
dalgayfcdc apgflgdhce lntdecasqp clhgglcvdg enryscnctg sgftgthcet


301
lmplcwskpc hnnatcedsv dnytchcwpg ytgaqceidl necnsnpcqs ngecvelsse


361
kqygritglp ssfsyheasg yvcicqpgft gihceedvne cssnpcqngg tcenlpgnyt


421
chcpfdnlsr tfyggrdcsd illgcthqqc lnngtciphf qdgqhgfscl cpsgytgslc


481
eiattlsteg dgflwvksgs vttkgsvcni alrfqtvqpm alllfrsntd vfvklellsg


541
yihlsiqvnn qskvllfish ntsdgewhfv evifaeavtl tliddsckek ciakaptple


601
sdqsicafqn sflgglpvgm tsngvallnf ynmpstpsfv gclqdikidw nhitleniss


661
gsslnvkagc vrkdwcesqp cqsrgrcinl wlsyqcdchr pyegpnclre yvagrfgqdd


721
stgyviftld esygdtisls mfvrtlqpsg lllalensty qyirvwlerg rlamltpnsp


781
klvvkfvlnd gnvhlislki kpykielyqs sqnlgfisas twkiekgdvi yigglpdkqe


841
telnggffkg ciqdvrlnnq nleffpnptn naslnpvlvn vtqgcagdns cksnpchngg


901
vchsrwddfs cscpaltsgk aceevqwcgf spcphgaqcq pvlqgfecia navfngqsgq


961
ilfrsngnit reltnitfgf rtrdanviil haekepefln isiqdsrlff qlqsgnstym


1021
lsltslqsvn dgtwhevtls mtdplsqtsr wqmevdnetp fvtstiatgs lnflkdntdi


1081
yvgdraidni kglqgclsti eiggiylsyf envhgfinkp qeeqflkist nsvvtgclql


1141
nvcnsnpclh ggncediyss yhcscplgws gkhcelnide cfsnpcihgn csdrvaayhc


1201
tcepgytgvn cevdidncqs hqcangatci shtngysclc fgnftgkfcr qsrlpstvcg


1261
nektnltcyn ggnctefqte lkcmcrpgft gewcekdide casdpcvngg lcqdllnkfq


1321
clcdvafage rcevdladdl isdifttigs vtvalllill laivasvvts nkratqgtys


1381
psrqekegsr vemwnlmppp amerli










SEQ ID NO: 45 Human CRB1 cDNA Sequence Variant 2 (NM_001193640.1, CDS;


from 210 to 4094)








1
cctcccgtgt aagtgatgct aagaagcaca aactgcattt tgaatctaag tccctgtatt


61
ttctgtgaag gagctgtaag tagggtggga cagagatggc acctgggggt tctgaggcac


121
ccgctcctct ctgagacaga cagggatcag gagccggact gggaccagac caccagcaac


181
acaccagagg atgttctcta aataagacca tggcacttaa gaacattaac taccttctca


241
tcttctacct cagtttctca ctgcttatct acataaaaaa ttccttttgc aataaaaaca


301
acaccaggtg cctctcaaat tcttgccaaa acaattctac atgcaaagat ttttcaaaag


361
acaatgattg ttcttgttca gacacagcca ataatttgga caaagactgt gacaacatga


421
aagacccttg cttctccaat ccctgtcaag gaagtgccac ttgtgtgaac accccaggag


481
aaaggagctt tctgtgcaaa tgtcctcctg ggtacagtgg gacaatctgt gaaactacca


541
ttggttcctg tggcaagaac tcctgccaac atggaggtat ttgccatcag gaccctattt


601
atcctgtctg catctgccct gctggatatg ctggaagatt ctgtgagata gatcacgatg


661
agtgtgcttc cagcccttgc caaaatgggg ccgtgtgcca ggatggaatt gatggttact


721
cctgcttctg tgtcccagga tatcaaggca gacactgcga cttggaagtg gatgaatgtg


781
cttcagatcc ctgcaagaac gaggctacat gcctcaatga aataggaaga tatacttgta


841
tctgtcccca caattattct ggatacacag gtgcccagtg tgagatcgac ctcaatgaat


901
gcaatagtaa cccctgccag tccaatgggg aatgtgtgga gctgtcctca gagaaacaat


961
atggacgcat cactggactg ccttcttctt tcagctacca tgaagcctca ggttatgtct


1021
gtatctgtca gcctggattc acaggaatcc actgcgaaga agacgtcaat gaatgttctt


1081
caaacccttg ccaaaatggt ggtacttgtg agaacttgcc tgggaattat acttgccatt


1141
gcccatttga taacctttct agaacttttt atggaggaag ggactgttct gatattctcc


1201
tgggctgtac ccatcagcaa tgtctaaaca atggaacatg catccctcac ttccaagatg


1261
gccagcatgg attcagctgc ctgtgtccat ctggctacac cgggtccctg tgtgaaatcg


1321
caaccacact ttcatttgag ggcgatggct tcctgtgggt caaaagtggc tcagtgacaa


1381
ccaagggctc agtttgtaac atagccctca ggtttcagac tgttcagcca atggctcttc


1441
tacttttccg aagcaacagg gatgtgtttg tgaagctgga gctgctaagt ggctacattc


1501
acttatcaat tcaggtcaat aatcagtcaa aggtgcttct gttcatttcc cacaacacca


1561
gcgatggaga gtggcatttc gtggaggtaa tatttgcaga ggctgtgacc cttaccttaa


1621
tcgacgactc ctgtaaggag aaatgcatcg cgaaagctcc tactccactt gaaagtgatc


1681
aatcaatatg tgcttttcag aactcctttt tgggtggttt accagtggga atgaccagca


1741
atggtgttgc tctgcttaac ttccataata tgccatccac accttcgttt gtaggctgtc


1801
tccaagacat taaaattgat tggaatcaca ttaccctgga gaacatctcg tctggctcat


1861
cattaaatgt caaggcaggc tgtgtgagaa aggattggtg tgaaagccaa ccttgtcaaa


1921
gcagaggacg ctgcatcaac ttgtggctga gttaccagtg tgactgccac aggccctatg


1981
aaggccccaa ctgtctgaga gagtatgtgg caggcagatt tggccaggat gactccactg


2041
gttatgtcat ctttactctt gatgagagct atggagacac catcagcctc tccatgtttg


2101
tccgaacgct tcaaccatca ggcttacttc tagctttgga aaacagcact tatcaatata


2161
tccgtgtctg gctagagcgc ggcagactag caatgctgac tccaaactct cccaaattag


2221
tagtaaaatt tgttcttaat gatggaaatg tccacttgat atctttgaaa atcaagccat


2281
ataaaattga actgtatcag tcttcacaaa acctaggatt tatttctgct tctacgtgga


2341
aaatcgaaaa gggagatgtc atctacattg gtggcctacc tgacaagcaa gagactgaac


2401
ttaatggtgg attcttcaaa ggctgtatcc aagatgtaag actaaacaac caaaatctgg


2461
aattctttcc aaatccaaca aacaatgcat ctctcaatcc agttcttgtc aatgtaaccc


2521
aaggctgtgc tggagacaac agctgcaagt ccaacccctg tcacaatgga ggtgtttgcc


2581
attcccggtg ggatgacttc tcctgttcct gtcctgccct cacaagtggg aaagcctgtg


2641
aggaggttca gtggtgtgga ttcagcccgt gtcctcacgg agcccagtgc cagccggtgc


2701
tccaaggatt tgaatgtatt gcaaatgctg tttttaatgg acaaagcggt caaatattat


2761
tcagaagcaa tgggaatatt accagagaac tcaccaatat cacatttggt ttcagaacaa


2821
gggatgcaaa tgtaataata ttgcatgcag aaaaagagcc tgaatttctt aatattagca


2881
ttcaagattc cagattattc tttcaattgc aaagtggcaa cagcttttat atgctaagcc


2941
tgacaagttt gcagtcagtg aatgatggca catggcacga agtgaccctt tccatgacag


3001
acccactgtc ccagacctcc aggtggcaaa tggaagtgga caacgaaaca ccttttgtga


3061
ccagcacaat tgctactgga agcctcaact ttttgaagga taatacagat atttatgtgg


3121
gagacagagc tattgacaat ataaagggcc tgcaagggtg tctaagtaca atagaaatcg


3181
gaggcattta tctctcttac tttgaaaatg ttcatggttt cattaataaa cctcaggaag


3241
agcaatttct caaaatctct accaattcag tggtcactgg ctgtttgcag ttaaatgtct


3301
gcaactccaa cccctgtttg catggaggaa accgtgaaga catctatagc tcttatcatt


3361
gctcccgtcc cttgggatgg tcagggaaac actgtgaact caacatcgat gaatgctttt


3421
caaacccctg tatccatggc aactgctctg acagagttgc agcctaccac tgcacatgtg


3481
agcctggata cactggtgtg aactgtgaag tggatataga caactgccag agtcaccagt


3541
gtgcaaatgg agccacctgc attagtcata ctaatggcta ttcttgcctc tgttttggaa


3601
attttacagg aaaattttgc agacagagca gattaccctc aacagtctgt gggaatgaga


3661
agacaaatct cacttgctac aatggaggca actgcacaga gttccagact gaattaaaat


3721
gtatgtgccg gccaggtttt actggagaat ggtgtgaaaa ggacattgat gagtgtgcct


3781
ctgatccgtg tgtcaatgga ggtctgtgcc aggacttact caacaaattc cagtgcctct


3841
gtgatgttgc ctttgctggc gagcgctgcg aggtggactt ggcagatgac ttgatctccg


3901
acattttcac cactattggc tcagtgactg tcgccttgtt actgatcctc ttgccggcca


3961
tcgttgcttc tgttgtcacc tccaacaaaa gggcaactca gggaacctac agccccagcc


4021
gtcaggagaa ggagggctcc cgagtggaaa tgtggaactt gatgccaccc cctgcaatgg


4081
agagactgat ttaggagcat tgtgtccctt cgagatgggg atccacacac tgtgaatgtg


4141
atgactgtac ttcaggtatc tctgacatac ctgacaatgt taatctgcaa ctgggattac


4201
actggaacta caggaatgat tcctttgacc accttaaaaa ctttcacagt ggttccgctc


4261
gacaccattg ttttattata ttataccagc caattgcaaa aaaagtctgt gccagtaatt


4321
tcagccttat aattagcaaa aacatcttcc agagaataaa gtcttctgtg gctttagtgg


4381
ctatcactga aactctttcc tcttttcaac ctgggaacaa attttagttt tcattttagg


4441
ttcctgtact ttctgtagtt tctgtgtaaa ctgccatatg tttacatgga aactacagga


4501
aaaaattggc tacatttctc acttctccta tcatgtggtc aaagttattg ttgtatacca


4561
gcgatgggat gtatactttt gtccttcatt catggattca gagaaagctc tgggaatgac


4621
ttatggtcca aaaaagtgac ccaatggcaa caaataaaaa ttgaaatgca aaaaaaaaaa


4681
aaaaaaaa










SEQ ID NO: 46 Human CRB1 Amino Acid Sequence Isoform B (NP_0011X0569.1)








1
malkninyll ifylsfslli yiknsfcnkn ntrclsnscq nnstckdfsk dndcscsdta


61
nnldkdcdnm kdpcfsnpcq gsatcvntpg ersflckcpp gysgticett igscgknscq


121
hggichqdpi ypvcicpagy agrfceidhd ecasspcqng avcqdgidgy scfcvpgyqg


181
rhcdlevdec asdpckneat clneigrytc icphnysgyt gaqceidlne cnsnpcqsng


241
ecvelssekq ygritglpss fsyheasgyv cicqpgftgi hceedvnecs snpcqnggtc


301
enlpgnytch cpfdnlsrtf yggrdcsdil lgcthqqcln ngtciphfqd gqhgfsclcp


361
sgytgslcei attlsfegdg flwvksgsvt tkgsvcnial rfqtvqpmal llfrsnrdvf


421
vklellsgyi hlsiqvnnqs kvllfishnt sdgewhfvev ifaeavtltl iddsckekci


481
akaptplesd qsicafqnsf lgglpvgmts ngvallnfyn mpstpsfvgc lqdikidwnh


541
itlenissgs slnvkagcvr kdwcesqpcq srgrcinlwl syqcdchrpy egpnclreyv


601
agrfgqddst gyviftldes ygdtislsmf vrtlqpsgll lalenstyqy irvwlergrl


661
amltpnspkl vvkfvlndgn vhlislkikp ykielyqssq nlgfisastw kiekgdviyi


721
gglpdkqete lnggffkgci qdvrlnnqnl effpnptnna slnpvlvnvt qgcagdnsck


781
snpchnggvc hsrwddfscs cpaltsgkac eevqwcgfsp cphgaqcqpv lqgfeciana


841
vfngqsgqil frsngnitre ltnitfgfrt rdanviilha ekepeflnis iqdsrlffql


901
qsgnsfymls ltslqsvndg twhevtlsmt dplsqtsrwq mevdnetpfv tstiatgsln


961
flkdntdiyv gdraidnikg lqgclstiei ggiylsyfen vhgfinkpqe eqflkistns


1021
vvtgclqlnv cnsnpclhgg ncediyssyh cscplgwsgk hcelnidecf snpcihgncs


1081
drvaayhctc epgytgvnce vdidncqshq cangatcish tngysclcfg nftgkfcrqs


1141
ripstvcgne ktnltcyngg ncrefqtelk cmcrpgftge wcekdideca sdpcvngglc


1201
qdllnkfqcl cdvafagerc evdladdlis difttigsvt valllillla ivasvvtsnk


1261
ratqgtysps rqekegsrve mwnlmpppam erli










SEQ ID NO: 47 Human CRB1 cDNA Sequence Variant 3 (NM_001257965.1, CDS:


from 340 to 4488)








1
atgtgcgcgc acgccgcttt acgcatgctc cttaagttcc ccgtactccc tcggagaccc


61
tagctacacg ccgaatccgt tactccgggt tttcgcagtg gctcggtggc ctaccccgat


121
cgaaacctag tctggaactg aacctacaat atctctgagg gaggacacat ctatgactag


181
cagtggcatg tgctcaggaa agattccttt tgcaataaaa acaacaccag gtgcctctca


241
aattcttgcc aaaacaattc tacatgcaaa gatttttcaa aagacaatga ttgttcttgt


301
tcagacacag ccaataattt ggacaaagac tgtgacaaca tgaaagaccc ttgcttctcc


361
aatccctgtc aaggaagtgc cacttgtgtg aacaccccag gagaaaggag ctttctgtgc


421
aaatgtcctc ctgggtacag tgggacaatc tgtgaaacta ccattggttc ctgtggcaag


481
aactcctgcc aacatggagg tatttgccat caggacccta tttatcctgt ctgcatctgc


541
cctgctggat atgtcggaag attctgtgag atagatcacg atgagtgtgc ttccagccct


601
tgccaaaatg gggccgtgtg ccaggatgga atcgatggtt actcctgctt ctgtgtccca


661
ggatatcaag gcagacactg cgacttggaa gtggacgaat gtgcttcaga tccctgcaag


721
aacgaggcta catgcctcaa tgaaatagga agatatactt gtatctgtcc ccacaattat


781
tctggtgtaa actgtgaatt ggaaattgac gaatgttggt cccagccttg tttaaatggt


841
gcaacttgtc aggacgctct gggggcctat ttctgcgacc gtgcccctgg attcctgggg


901
gatcactgtg aactcaacac tgatgagtgt gccagtcaac cttgtctcca tggagggctg


961
tgtgtggatg gagaaaacag atatagctgt aactgcacgg gtagtggatt cacagggaca


1021
cactgtgaga ccttgatgcc tctttgttgg tcaaaacctt gtcacaataa tgctacatgt


1081
gaggacagtg ttgacaatta cacttgtcac tgctggcctg gatacacagg tgcccagtgt


1141
gagatcgacc tcaatgaatg caatagtaac ccctgccagt ccaatgggga atgtgtggag


1201
ctgtcctcag agaaacaata tggacgcatc actggactgc cttcttcttt cagctaccat


1261
gaagcctcag gttatgtctg tatctgtcag cctggattca caggaatcca ctgcgaagaa


1321
gacgtcaatg aatgttcttc aaacccttgc caaaatggtg gtacttgtga gaacttgcct


1381
gggaattata cttgccattg cccatttgat aacctttcta gaacttttta tggaggaagg


1441
gactgttctg atattctcct gggctgtacc catcagcaat gtctaaataa tggaacatgc


1501
atccctcact tccaagatgg ccagcatgga ttcagctgcc tgtgtccatc tggctacacc


1561
gggtccctgt gtgaaatcgc aaccacactt tcatttgagg gcgatggctt cctgtgggtc


1621
aaaagtggct cagtgacaac caagggctca gtttgtaaca tagccctcag gtttcagact


1681
gttcagccaa tggctcttct acttttccga agcaacaggg atgtgtttgt gaagctggag


1741
ctgctaagtg gctacattca cttatcaatt caggtcaata atcagtcaaa ggtgcttctg


1801
ttcatttccc acaacaccag cgatggagag tggcatttcg tggaggtaat atttgcagag


1861
gctgtgaccc ttaccttaat cgacgactcc tgtaaggaga aatgcatcgc gaaagctcct


1921
actccacttg aaagtgatca atcaatatgt gcttttcaga actccttttt gggtggttta


1981
ccagtgggaa tgaccagcaa tggtgttgct ctgcttaact tctataatat gccatccaca


2041
ccttcgtttg taggctgtct ccaagacatt aaaattgatt ggaatcacat taccctggag


2101
aacatctcgt ctggctcatc attaaatgtc aaggcaggct gtgtgagaaa ggattggtgt


2161
gaaagccaac cttgtcaaag cagaggacgc tgcatcaact tgtggctgag ttaccagtgt


2221
gactgccaca ggccctatga aggccccaac tgtctgagag agtatgtggc aggcagattt


2281
ggccaggatg actccactgg ttatgtcatc tttactcttg atgagagcta tggagacacc


2341
atcagcctct ccatgtttgt ccgaacgctt caaccatcag gcttacttct agctttggaa


2401
aacagcactt atcaatatat ccgtgtctgg ctagagcgcg gcagactagc aatgctgact


2461
ccaaactctc ccaaattagt agtaaaattt gttcttaatg atggaaatgt ccacttgata


2521
tctttgaaaa tcaagccata taaaattgaa ctgtatcagt cttcacaaaa cctaggattt


2581
atttctgctt ctacgtggaa aatcgaaaag ggagatgtca tctacattgg tggcctacct


2641
gacaagcaag agaccgaact taatggtgga ttcttcaaag gctgtatcca agatgtaaga


2701
ctaaacaacc aaaatctgga attctttcca aatccaacaa acaatgcatc tctcaatcca


2761
gttcttgtca atgtaaccca aggctgtgct ggagacaaca gctgcaagag gcagaccaat


2821
gtgggaaggg cactcactga gttgggatcc agaggaccta agtaccaagt ttcactgttt


2881
cgcttctgtg taggatcttg ggcaactgga aacaccttct ttttatcatc tataaaacca


2941
ggatccaacc cctgtcacaa tggaggtgtt tgccattccc ggtgggatga cttctcctgt


3001
tcctgtcctg ccctcacaag tgggaaagcc tgtgaggagg ttcagtggtg tggattcagc


3061
ccgtgtcctc acggagccca gtgccagccg gtgcttcaag gatttgaatg tattgcaaat


3121
gctgttttta atggacaaag cggtcaaata ttattcagaa gcaatgggaa tattaccaga


3181
gaactcacca atatcacatt tggtttcaga acaagggatg caaatgtaat aatattgcat


3241
gcagaaaaag agcctgaatt tcttaatatt agcattcaag attccagatt attctttcaa


3301
ttgcaaagtg gcaacagctt ttatatgcta agtctgacaa gtttgcagtc agtgaatgat


3361
ggcacatggc acgaagtgac cctttccatg acagacccac tgtcccagac ctccaggtgg


3421
caaatggaag tggacaacga aacacctttt gtgaccagca caattgctac tggaagcctc


3481
aactttttga aggataatac agatatttat gtgggagaca gagctattga caatataaag


3541
ggcctgcaag ggtgtctaag tacaatagaa atcggaggca tttatctctc ttactttgaa


3601
aatgttcacg gtttcattaa taaacctcag gaagagcaat ttctcaaaat ctctaccaat


3661
tcagtggtca ctggctgttt gcagttaaat gtctgcaact ccaacccctg tttgcatgga


3721
ggaaactgtg aagacatcta tagctcttat cattgctcct gtcccttggg atggtcaggg


3781
aaacactgtg aactcaacat cgatgaatgc ttttcaaacc cctgtatcca tggcaactgc


3841
tctgacagag ttgcagccta ccactgcaca tgtgagcctg gatacactgg tgtgaactgt


3901
gaagtggata tagacaactg ccagagtcac cagtgtgcaa acggagccac ctgcattagt


3961
catactaatg gctattcttg cctctgtttt ggaaatttta caggaaaatt ttgcagacag


4021
agcagattac cctcaacagt ctgtgggaat gagaagacaa atctcacttg ctacaatgga


4081
ggcaactgca cagagttcca gactgaatta aaatgtatgt gccggccagg ttttactgga


4141
gaatggtgtg aaaaggacat tgatgagtgt gcctctgatc cgtgtgtcaa tggaggtctg


4201
tgccaggact tactcaacaa attccagtgc ctctgtgatg ttgcctttgc tggcgagcgc


4261
tgcgaggtgg acttggcaga tgacttgatc tccgacattt tcaccactat tggctcagtg


4321
actgtcgcct tgttactgat cctcttgctg gccattgttg cttctgttgt cacctccaac


4381
aaaagggcaa ctcagggaac ctacagcccc agccgtcagg agaaggaggg ctcccgagtg


4441
gaaatgtgga acttgatgcc accccctgca atggagagac tgatttagga gcattgtgtc


4501
ccttcgagat ggggatccac acactgtgaa tgtgatgact gtacttcagg tatctctgac


4561
atacctgaca atgttaatct gcaactggga ttacactgga actacaggaa tgattccttt


4621
gaccacctta aaaactttca cagtggttcc gctcgacacc attgttttat tatattatat


4681
cagccaattg caaaaaaagt ctgtgccagt aatttcagcc ttataattag caaaaacatc


4741
ttccagagaa taaagtcctc tgtggcttta gtggctatca ctgaaactct ttcctctttt


4801
caacctggga acaaatttta gttttcattt taggtttctg tactttctgt agtttctgtg


4861
taaactgcca tatgtttaca tggaaactac aggaaaaaat tggctacatt tctcacttct


4921
cctatcatgt ggtcaaagtt attgttgtat accagcgatg ggatgtatac ttttgtcctt


4981
cattcatgga ttcagagaaa gctctgggaa tgacttatgg tccaaaaaag tgacccaatg


5041
gcaacaaata aaaattgaaa tgcaaaaaaa aaaaaaaaaa aa










SEQ ID NO: 48 Human CRB1 Amino Acid Sequence Isoform C (NP_001244894.1)








1
mkdpcfsnpc qgsatcvntp gersflckcp pgysgticet tigscgknsc qhggichqdp


61
iypvcicpag yagrfceidh decasspcqn gavcqdgidg yscfcvpgyq grhcdlevde


121
casdpcknea tclneigryt cicphnysgv nceleidecw sqpclngatc qdalgaytcd


181
capgflgdhc elntdecasq pclhgglcvd genryscnct gsgftgthce tlmplcwskp


241
chnnatceds vdnytchcwp gytgaqceid lnecnsnpcq sngecvelss ekqygritgl


301
pssfsyheas gyvcicqpgf tgihceedvn ecssnpcqng gtcenlpgny tchcpfdnls


361
rtfyggrdcs dillgcthqq clnngtciph fqdgqhgfcs lcpsgytgsl ceiattlste


421
gdgflwvksg svttkgsvcn ialrfqtvqp malllfrsnr dvfvklells gyihlsiqvn


481
nqskvllfis hntsdgewhf vevifaeavt ltliddscke kciakaptpl esdqsicafq


541
nsflgglpvg mtsngvalln fynmpstpsf vgclqdikid wnhitlenis sgsslnvkag


601
cvrkdwcesq pcqsrgrcin lwlsyqcdch rpyegpnclr eyvagrfgqd dstgyviftl


661
desygdtisl smfvrtlqps glllalenst yqyirvwler grlamltpns pklvvkfvln


721
dgnvhlislk ikpykielyq ssqnlgfisa stwkiekgdv iyigglpdkq etelnggffk


781
gciqdvrlnn qnletfpnpt nnaslnpvlv nvtqgcagdn sckrqtnvgr altelgsrgp


841
kyqvslfrfc vgswatgntf flssikpgsn pchnggvchs rwddlscscp altsgkacee


901
vqwcgfspcp hgaqcqpvlq gfecianavf ngqsgqilfr sngnitrelt nitfgfrtrd


961
anviilhaek epeflnisiq dsrlffqlqs gnsfymlslt slqsvndgtw hevtlsmtdp


1021
lsqtsrwqme vdnetpfvts tiatgslnfl kdntdiyvgd raidnikglq gclstieigg


1081
iylsyfenvh gfinkpqeeq flkistnsvv tgclqlnvcn snpclhggnc ediyssyhcs


1141
cplgwsgkhc elnidecfsn pcihgncsdr vaayhctcep gytgvncevd idncqshqca


1201
ngatcishtn gysclcfgnf tgkfcrqsrl pstvcgnekt nltcynggnc tefqtelkcm


1261
crpgftgewc ekdidecasd pcvngglcqd llnkfqclcd vafagercev dladdlisdi


1321
fttigsvtva lllilllaiv asvvtsnkra tqgtyspsrq ekegsrvemw nlmpppamer


1381
li










SEQ ID NO: 49 Human CRB1 cDNA Sequence Variant 4 (NM_001257966.1., CDS:


from 210 to 2822)








1
cctcccgtgt aagtgatgct aagaagcaca aactgcattt tgaatctaag tccctgtatt


61
ttctgtgaag gagctgtaag tagggtggga cagagatggc acctgggggt tctgaggcac


21
ccgctcctct ctgagacaga cagggatcag gagccggact gggaccagac caccagcaac


181
acaccagagg atgttctcta aataagacca tggcacttaa gaacattaac taccttctca


241
tcttctacct cagtttctca ctgcttatct acataaaaaa ttccttttgc aataaaaaca


301
acaccaggtg cccctcaaat tcttgccaaa acaattctac acgcaaagat ttttcaaaag


361
acaatgattg ttcttgttca gacacagcca ataatttgga caaagactgt gacaacatga


421
aagacccttg cttctccaat ccctgtcaag gaagtgccac ttgtgtgaac accccaggag


481
aaaggagctt tctgtgcaaa tgtcctcctg ggtacagtgg gacaatctgt gaaactacca


541
ttggttcctg tggcaagaac tcctgccaac atggaggtat ttgccatcag gaccctattt


601
atcctgtctg catctgccct gctggatatg ctggaagatt ctgtgagata gatcacgatg


661
agtgtgcttc cagcccttgc caaaatgggg ccgtgtgcca ggatggaatt gatggttact


721
cctgcttctg tgtcccagga tatcaaggca gacactgcga cttggaagtg gatgaatgtg


781
cttcagatcc ctgcaagaac gaggctacat gcctcaatga aataggaaga tatacttgta


841
tctgtcccca caattattct ggtgtaaact gtgaattgga aattgacgaa tgttggtccc


901
agccttgttt aaatggtgca acttgtcagg atgctctggg ggcctatttc tgcgactgtg


961
cccctggatt cctgggggat cactgtgaac tcaacactga tgagtgtgcc agtcaacctt


1021
gtctccatgg agggctgtgt gtggatggag aaaacagata tagctgtaac tgcacgggta


1081
gtggattcac agggacacac tgtgagacct tgatgcctct ttgttggtca aaaccttgtc


1141
acaataatgc tacatgtgag gacagtgttg acaattacac ttgtcactgc tggcctggat


1201
acacaggtgc ccagtgtgag atcgacctca atgaatgcaa tagtaacccc tgccagtcca


1261
atggggaatg tgtggagctg tcctcagaga aacaatatgg acgcatcact ggactgcctt


1321
cttctttcag ctaccatgaa gcctcaggtt atgtctgtat ccgtcagcct ggattcacag


1381
gaatccactg cgaagaagac gtcaatgaat gttcttcaaa cccttgccaa aatggtggta


1441
cttgtgagaa cttgcctggg aattatactt gccattgccc atttgataac ctttctagaa


1501
ctttttatgg aggaagggac tgttctgata ttctcctggg ctgtacccat cagcaatgtc


1561
taaataatgg aacatgcatc cctcacttcc aagatggcca gcatggattc agctgcctgt


1621
gtccatctgg ctacaccggg tccctgtgtg aaatcgcaac cacactttca tttgagggcg


1681
atggcttcct gtgggtcaaa agtggctcag tgacaaccaa gggcccagtt tgtaacatag


1741
ccctcaggtt tcagactgtt cagccaatgg ctctcttact tttccgaagc aacagggatg


1801
tgtttgtgaa gctggagctg ctaagtggct acattcactt accaattcag gtcaataatc


1861
agtcaaaggt gcttctgttc atttcccaca acaccagcga tggagagtgg catttcgtgg


1921
aggtaatatt tgcagaggct gtgaccctta ccttaatcga cgactcctgt aaggagaaat


1981
gcatcgcgaa agctcctact ccacttgaaa gtgatcaatc aatatgtgct tttcagaact


2041
cctttttggg tggtttacca gtgggaatga ccagcaatgg tgttgctctg cttaacttct


2101
ataatatgcc atccacacct tcgtttgtag gctgtctcca agacattaaa attgattgga


2161
atcacattac cctggagaac atctcgtctg gctcatcatt aaatgtcaag gcaggctgtg


2221
tgagaaagga ttggtgtgaa agccaacctt gtcaaagcag aggacgctgc atcaacttgt


2281
ggctgagtta ccagtgtgac tgccacaggc cctacgaagg ccccaactgt ctgagaggaa


2341
aattttgcag acagagcaga ttaccctcaa cagtctgtgg gaatgagaag acaaatctca


2401
cttgctacaa tggaggcaac tgcacagagt tccagactga attaaaatgt atgtgccggc


2461
caggttttac tggagaatgg tgtgaaaagg acattgatga gtgtgcctct gatccgtgtg


2521
tcaatggagg tctgtgccag gacttactca acaaattcca gtgcctctgt gatgttgcct


2581
ttgctggcga gcgctgcgag gtggacttgg cagatgactt gatctccgac attttcacca


2641
ctattggctc agtgactgtc gccttgttac tgatcctctt gctggccatt gttgcttctg


2701
ttgtcacctc caacaaaagg gcaactcagg gaacctacag ccccagccgt caggagaagg


2761
agggctcccg agtggaaatg tggaacttga tgccaccccc tgcaatggag agactgattt


2821
aggagcattg tgtcccttcg agatggggat ccacacactg tgaatgtgat gactgtactt


2881
caggtatctc tgacatacct gacaatgtta atctgcaact gggattacac tggaactaca


2941
ggaatgattc ctttgaccac cttaaaaact ttcacagtgg ttccgctcga caccattgtt


3001
ttattatatt atatcagcca attgcaaaaa aagtctgtgc cagtaatttc agccttataa


3061
ttagcaaaaa catcttccag agaataaagt cttctgtggc tttagtggct atcactgaaa


3121
ctctttcctc ttttcaacct gggaacaaat tttagttttc attttaggtt tctgtacttt


3181
ctgtagtttc tgtgtaaact gccatatgtt tacatggaaa ctacaggaaa aaattggcta


3241
catttctcac ttctcctatc atgtggtcaa agttattgtt gtataccagc gatgggatgt


3301
atacttttgt ccttcattca tggattcaga gaaagctctg ggaacgactt atggtccaaa


3361
aaagtgaccc aatggcaaca aataaaaatt gaaatgcaaa aaaaaaaaaa aaaaaa










SEQ ID NO: 50 Human CRD1 Amino Acid Sequence Isoform D (NP_001244895.1)








1
malkninyll ifylsfslli yiknsfcnkn ntrclsnscq nnstckdfsk dndcscsdta


61
nnldkdcdnm kdpcfsnpcq gsatcvnrpg ersflckcpp gysgticett igscgknscq


121
hggichqdpi ypvcicpagy agrfceidhd ecasspcqng avcqdgidgy scfcvpgyqg


181
rhcdlevdec asdpckneat clneigrytc icphnysgvn celeidecws qpclngatcq


241
dalgayfcdc apgflgdhce lntdecasqp clhgglcvdg enryscnctg sgftgthcet


301
lmplcwskpc hnnatcedsv dnytchcwpg ytgaqceidl necnsnpcqs ngecvelsse


361
kqygritglp ssfsyheasg yvcicqpgft gihceedvne cssnpcqngg tcenlpgnyt


421
chcpfdnlsr tfyggrdcsd illgcthqqc lnngtciphf qdgqhgfscl cpsgytgslc


481
eiattlsfeg dgflwvksgs vttkgsvcni alrfqtvqpm alllfrsnrd vfvklellsg


S41
yihlsiqvnn qskvllfish ntsdgewhfv evifaeavtl tliddsckek ciakaptple


601
sdqsicafqn sflgglpvgm tsngvallnf ynmpscpsfv gclqdikidw nhitleniss


661
gsslnvkagc vrkdwcesqp cqsrgrcinl wlsyqcdchr pyegpnclrg kfcrqsrlps


721
tvcgnektnl tcynggncte fqtelkcmcr pgftgewcek didecasdpc vngglcqdll


781
nkfqclcdva fagercevdl addlisdift tigsvtvall lilllaivas vvtsnkratq


841
gtyspsrqek egsrvemwnl mpppamerli










SEQ ID NO: 51 Mouse CRB1 cDNA Sequence (NM_133239.2, CDS: from 167 to


4384)








1
gaagtgcttt ctgattctct gtctgtggag gagccctggg aggggtggga cagagatggc


61
atcctggctc tctgaggcac ctgctcttct ctgaaccaca caggagtcaa gagccaaaca


121
gggatagctt cagcagcact tcagagggtg ttctctaagt aagaacatga agctcaagag


181
aactgcctac cttctcttcc tgtacctcag ctcctcactg ctcatctgca taaagaattc


241
attttgcaat aaaaacaata ccaggtgcct ttcaggtcct tgccaaaaca attctacgcg


301
caagcatttt ccacaagaca acaattgttg cttagacaca gccaataatt tggacaaaga


361
ctgtgaagat ctgaaagacc cttgcttctc gagtccctgc caaggaattg ccacttgtgt


421
gaaaatccca ggggaaggga acttcccgtg tcagtgtcct cctgggtaca gcgggctgaa


481
ctgtgaaact gccaccaatt cctgtggagg gaacctctgc caacatggag gcacctgccg


541
taaagaccct gagcaccctg tctgtatctg ccctcctgga tatgctggaa ggttctgtga


601
gactgatcac aatgagtgtg cttctagccc ttgccacaat ggggctatgt gccaggatgg


661
aatcaatggc tactcctgct tctgtgtgcc tggataccaa ggcaggcatt gtgacttgga


721
agtggatgaa tgtgtttctg atccctgcaa gaatgaggct gtgtgcctca atgagatagg


781
aagatacact tgtgtctgcc ctcaagagtt ttctggcgtg aactgtgagt tggaaattga


841
tgaatgcaga tcccagcctt gtctccacgg tgccacatgt caggacgctc cagggggcta


901
ctcctgtgac tgtgcacctg gattccttgg agagcactgt gaactcagcg ttaatgaatg


961
tgaaagtcag ccgtgtctcc atggaggtct atgtgtggat ggaagaaaca gttaccactg


1021
tgactgcaca ggtagtggat tcacagggat gcactgtgag tccttgattc ctctttgttg


1081
gtcaaagcct tgtcacaacg acgcgacatg tgaagatact gttgacagct atatttgtca


1141
ctgccggcct ggatacacag gtgccctgtg tgagacagac ataaatgaat gcagtagcaa


1201
cccctgccaa ttttgggggg aatgtgtcga gctgtcctca gagggtctat atggaaacac


1261
tgctggcctg ccttcctcct tcagctatgt tggagcctcg ggctatgtgt gtatctgtca


1321
gcctggattc acaggaattc actgtgaaga agacgttgat gaatgtttac tgcacccttg


1381
cctaaatggt ggtacttgtg agaacctgcc tgggaattat gcctgtcact gtccctttga


1441
tgacacttct aggacatttt atggaggaga aaactgctca gaaattctcc tgggctgcac


1501
tcatcaccag tgtctgaaca atggaaaatg tatccctcat tcccaaaatg gccagcatgg


1561
attcacttgc cagtgtcttt ctggctatgc ggggcccctg tgtgaaactg tcaccacact


1621
ttcatttggg agcaatggct tcctatgggt cacaagtggc tcccatacag gcatagggcc


1681
agaatgtaac atatccttga ggtttcacac tgttcaacca aacgcacttc tcctcatccg


1741
aggcaacaag gacgtgtcta tgaagctgga gttgctgaat ggttgtgttc acttatcaat


1801
tgaagtctgg aatcagttaa aggtgctcct gtctatttct cacaacacca gtgatggaga


1861
atggcatttc gtggaggtaa caatcgcaga aactccaacc cttgccctag ttggcggctc


1921
ctgcaaggag aagtgcacca ccaagtcttc tgttccagtt gagaatcatc aatcaatatg


1981
tgctttgcag gactcttttt tgggtggctt accaatgggg acagccaaca acagtgtgtc


2041
tgtgcttaac atctataatg tgccgtccac accttccttt gtaggctgtc tccaagacat


2101
tagatttgat ttgaatcaca ttactctgga gaacgtttca tctggcctgt catcaaatgt


2161
taaagcaggc tgcctgggaa aggactggtg tgaaagtcaa ccctgtcaaa acagaggacg


2221
ctgcatcaac ttgtggcagg gttatcagtg tgaatgtgac aggccctata caggctccaa


2281
ctgcctgaaa gagtatgtag cgggaagatt tggccaagat gactccacag gatatgcggc


2341
ctttagtgtt aatgataatt atggacagaa cttcagtctt tcaatgtttg tccgaacacg


2401
tcaacccctg ggcttacttc tggctttgga aaatagtact taccagtatg tcagtgtctg


2461
gctagagcac ggcagcctag cactgcagac tccaggctct cccaagttca tggtaaactt


2521
ttttctcagt gatggaaatg ttcacttaat atctttgaga atcaaaccaa atgaaattga


2581
actgtatcag tcttcacaaa acctaggatt catttctgtt cctacatgga caattcgaag


2641
aggagacgtc atcttcattg gtggcttacc tgacagagag aagactgaag tttatggtgg


2701
cttcttcaaa ggctgtgttc aagatgtcag attaaacagc cagactctgg aattctttcc


2761
caattcaaca aacaatgcat acgatgaccc aattcttgtc aatgtgactc aaggctgtcc


2821
cggagacaac acatgtaagt ccaacccctg tcataatgga ggtgtctgcc actccctgtg


2881
ggatgacttc tcctgctccc gccctacaaa cacagcgggg agagcctgcg agcaagttca


2941
gtggtgtcaa ctcagcccat gtcctcccac tgcagagtgc cagctgctcc ctcaagggtt


3001
tgaatgtatc gcaaacgctg ttttcagcgg attaagcaga gaaatactct tcagaagcaa


3061
tgggaacatt accagagaac tcaccaatat cacatttgct ttcagaacac atgatacaaa


3121
tgtgatgata ttgcatgcag aaaaagaacc agagtttctt aatattagca ttcaagatgc


3181
cagattattc tttcaattgc gaagtggcaa cagcttttat acgctgcacc tgatgggttc


3241
ccaattggtg aatgatggca catggcacca agtgactttc tccatgatag acccagtggc


3301
ccagacctcc cggtggcaaa tggaggtgaa cgaccagaca ccctttgtga taagtgaagt


3361
tgctactgga agcctgaact ttttgaagga caatacagac atctatgtgg gtgaccaatc


3421
tgttgacaat ccgaaaggcc tgcagggctg tctgagcaca atagagattg gaggcatata


3481
tctttcttac tttgaaaatc tacatggttt ccctggtaag cctcaggaag agcaatttct


3541
caaagtttct acaaatatgg tacttactgg ctgtttgcca tcaaatgcct gccactccag


3601
cccctgtttg catggaggaa actgtgaaga cagctacagt tcttatcggt gtgcctgtct


3661
ctcgggatgg tcagggacac actgtgaaat caacattgat gagtgctttt ctagcccctg


3721
tatccatggc aactgctctg atggagttgc agcctaccac tgcaggtgtg agcctggata


3781
caccggtgtg aactgtgagg tggatgtaga caattgcaag agtcatcagt gtgcaaatgg


3841
ggccacctgt gttcctgaag ctcatggcta ctcttgtctc tgctttggaa attttaccgg


3901
gagattttgc agacacagca gattaccctc aacagtctgt gggaatgaga agagaaactt


3961
cacttgctac aatggaggca gctgctccat gttccaggag gactggcaat gtatgtgctg


4021
gccaggtttc actggagagt ggtgtgaaga ggacatcaac gagtgtgcct ccgatccctg


4081
catcaatgga ggactgtgca gggacttggt caacaggttc ctatgcatct gtgatgtggc


4141
cttcgctggc gagcgctgtg agctggacct ggctgatgac aggctcctgg gcattttcac


4201
cgctgttggc tccggaactt tggccctgtt cttcatcctc ttgcttgctg gggttgcttc


4261
tcttattgcc tccaacaaaa gggcgactca aggaacctac agccccagcg gtcaggagaa


4321
ggctggccct cgagtggaaa tgtggatcag gatgccgccc ccggcactgg aaaggctcat


4381
ctaggagact gctgctcttc tcaggacaga gaagaacatg atgagtaccg ggtcgtgcct


4441
gagtgaagat ggctttacat cactagagat acatacagct gggactgtgg gaaggacctt


4501
cctgtggagt cactgagtag ttatgtcatc cattcacaga agagtgtccc tgtgtttgcc


4561
tgtcagcctc agaattagca aaacatctag cagacagaga acacagtatt tcagaagaac


4621
tccagaggct gccccttaaa ctctttactg gttgatccac ataaaatgct tagtagccaa


4681
gtgccattaa ttatacagag cc










SEQ ID NO: 52 Mouse CRB1 Amino Acid Sequence (NP_573502.2)








1
mklkrtayll flylssslli ciknsfcnkn ntrclsgpcq nnstckhfpq dnnccldtan


61
nldkdcedlk dpcfsspcqg iatcvkipge gnflcqcppg ysglncetat nscggnlcqh


121
ggtcrkdpeh pvcicppgya grfcetdhne casspchnga mcqdgingys cfcvpgyqgr


181
hcdlevdecv sdpckneavc lneigrytcv cpqetsgvnc eleidecrsq pclhgatcqd


241
apggyscdca pgflgehcel svnecesqpc lhgglcvdgr nsyhcdctgs gftgmhcesl


301
iplcwskpch ndatcedtvd syichcrpgy tgalcetdin ecssnpcqfw gecvelsseg


361
lygntaglps sfsyvgasgy vcicqpgftg ihceedvdec llhpclnggt cenlpgnyac


421
hcptddtsrt fyggencsei llgcthhqcl nngkciphfq ngqhgftcqc lsgyagplce


481
tvttlsfgsn gflwvtsgsh tgigpecnis lrfhtvqpna lllirgnkdv smklellngc


541
vhlsievwnq lkvllsishn tsdgewhfve vtiaetltia lvggsckekc ttkssvpven


601
hqsicalqds flgglpmgta nnsvsvlniy nvpstpsfvg clqdirfdln hitlenvssg


661
lssnvkagcl gkdwcesqpc qnrgrcinlw qgyqcecdrp ytgsnclkey vagrfgqdds


721
tgyaafsvnd nygqnfslsm fvrtrqplgl llalenstyq yvsvwlehgs lalqtpgspk


781
fmvnfflsdg nvhlislrik pneielyqss qnlgfisvpt wtirrgdvif igglpdrekt


841
evyggffkgc vqdvrlnsqt leffpnstnn ayddpilvnv tqgcpgdntc ksnpchnggv


901
chslwddfsc scptntagra ceqvqwcqls pcpptaecql lpqgfecian avfsglsrei


961
lfrsngnitr eltnitfafr thdtnvmilh aekepeflni siqdarlffq lrsgnsfytl


1021
hlmgsqlvnd gtwhqvtfsm idpvaqtsrw qmevndqtpf visevatgsl nflkdntdiy


1081
vgdqsvdnpk glqgclstie iggiylsyfe nlhgfpgkpq eeqflkvstn mvltgclpsn


1141
achsspclhg gncedsyssy rcaclsgwsg thceinidec fsspcihgnc sdgvaayhcr


1201
cepgytgvnc evdvdncksh qcangatcvp eahgysclcf gnftgrfcrh srlpstvcgn


1261
ekrnftcyng gscsmfqedw qcmcwpgftg ewceedinec asdpcinggl crdlvnrflc


1321
icdvafager celdladdrl lgiftavgsg tlalffilll agvasliasn kratqgtysp


1381
sgqekagprv emwirmpppa lerli










SEQ ID NO: 53 Human BRG1 cDNA Sequence Variant 1 (NM_001128849.1, CDS:


from 75 to 5114)








1
ggcgggggag gcgccgggaa gtcgacggcg ccggcggctc ctgcaggagg ccactgtctg


61
cagctcccgt gaagatgtcc actccagacc cacccctggg cggaactcct cggccaggtc


121
cttccccggg ccctggccct tcccctggag ccatgctggg ccctagcccg ggtccctcgc


181
cgggctccgc ccacagcatg atggggccca gcccagggcc gccctcagca ggacacccca


241
tccccaccca ggggcctgga gggtaccctc aggacaacat gcaccagatg cacaagccca


301
tggagtccat gcatgagaag ggcatgtcgg acgacccgcg ctacaaccag atgaaaggaa


361
tggggatgcg gtcagggggc catgctggga tggggccccc gcccagcccc atggaccagc


421
actcccaagg ttacccctcg cccctgggtg gctctgagca tgcctctagt ccagttccag


481
ccagtggccc gtctccgggg ccccagatgt ctcccgggcc aggaggtgcc ccgctggatg


541
gtgctgaccc ccaggccttg gggcagcaga accggggccc aaccccattt aaccagaacc


601
agctgcacca gctcagagct cagatcatgg cctacaagat gctggccagg gggcagcccc


661
tccccgacca cctgcagatg gcggtgcagg gcaagcggcc gatgcccggg atgcagcagc


721
agatgccaac gctacctcca ccctcggtgt ccgcaacagg acccggccct ggccctggcc


781
ctggccccgg cccgggtccc ggcccggcac ctccaaatta cagcaggcct catggtatgg


841
gagggcccaa catgcctccc ccaggaccct cgggcgtgcc ccccgggatg ccaggccagc


901
ctcctggagg gcctcccaag ccctggcctg aaggacccat ggcgaatgct gctgccccca


961
cgagcacccc tcagaagctg attcccccgc agccaacggg ccgcccttcc cccgcgcccc


1021
ctgccgtccc acccgccgcc tcgcccgtga tgccaccgca gacccagtcc cccgggcagc


1081
cggcccagcc cgcgcccatg gtgccactgc accagaagca gagccgcatc acccccatcc


1141
agaagccgcg gggcctcgac cctgtggaga tcctgcagga gcgcgagtac aggctgcagg


1201
ctcgcatcgc acaccgaatt caggaacttg aaaaccttcc cgggtccctg gccggggatt


1261
tgcgaaccaa agcgaccatt gagctcaagg ccctcaggct gctgaacttc cagaggcagc


1321
tgcgccagga ggtggtggtg tgcatgcgga gggacacagc gctggagaca gccctcaatg


1381
ctaaggccta caagcgcagc aagcgccagt ccctgcgcga ggcccgcacc actgagaagc


1441
tggagaagca gcagaagatc gagcaggagc gcaagcgccg gcagaagcac caggaatacc


1501
tcaatagcat tctccagcat gccaaggatt tcaaggaata tcacagatcc gtcacaggca


1561
aaatccagaa gctgaccaag gcagtggcca cgtaccatgc caacacggag cgggagcaga


1621
agaaagagaa cgagcggatc gagaaggagc gcatgcggag gctcatggct gaagatgagg


1681
aggggtaccg caagctcatc gaccagaaga aggacaagcg cctggcctac ctcttgcagc


1741
agacagacga gcacgtggct aacctcacgg agctggtgcg gcagcacaag gctgcccagg


1801
tcgccaagga gaaaaagaag aaaaagaaaa agaagaaggc agaaaatgca gaaggacaga


1861
cgcctgccat tgggccggat ggcgagcctc tggacgagac cagccagatg agcgacctcc


1921
cggtgaaggt gatccacgtg gagagtggga agatcctcac aggcacagat gcccccaaag


1981
ccgggcagct ggaggcctgg ctcgagatga acccggggta tgaagtagct ccgaggtctg


2041
atagtgaaga aagtggctca gaagaagagg aagaggagga ggaggaagag cagccgcagg


2101
cagcacagcc tcccaccctg cccgtggagg agaagaagaa gattccagat ccagacagcg


2161
atgacgtctc tgaggtggac gcgcggcaca tcattgagaa tgccaagcaa gatgtcgatg


2221
atgaatatgg cgtgtcccag gcccttgcac gtggcctgca gtcctactat gccgtggccc


2281
atgctgtcac tgagagagtg gacaagcagt cagcgcttat ggtcaatggt gtcctcaaac


2341
agtaccagat caaaggtttg gagtggctgg tgtccctgta caacaacaac ctgaacggca


2401
tcctggccga cgagatgggc ctggggaaga ccatccagac catcgcgctc atcacgtacc


2461
tcatggagca caaacgcatc aatgggccct tcctcatcat cgtgcctctc tcaacgctgt


2521
ccaactgggc gtacgagttt gacaagtggg ccccctccgt ggtgaaggtg tcttacaagg


2581
gatccccagc agcaagacgg gcctttgtcc cccagctccg gagtgggaag ttcaacgtct


2641
tgctgacgac gtacgagtac atcatcaaag acaagcacat cctcgccaag atccgttgga


2701
agtacatgat tgtggacgaa ggtcaccgca tgaagaacca ccactgcaag ctgacgcagg


2761
tgctcaacac gcactatgtg gcaccccgcc gcctgctgct gacgggcaca ccgctgcaga


2821
acaagcttcc cgagctctgg gcgctgctca acttcctgct gcccaccatc ttcaagagct


2881
gcagcacctt cgagcagtgg tttaacgcac cctttgccat gaccggggaa aaggtggacc


2941
tgaatgagga ggaaaccatt ctcatcatcc ggcgtctcca caaagtgctg cggcccttct


3001
tgctccgacg actcaagaag gaagtcgagg cccagttgcc cgaaaaggtg gagtacgtca


3061
tcaagtgcga catgtctgcg ctgcagcgag tgctctaccg ccacatgcag gccaagggcg


3121
tgctgctgac tgatggctcc gagaaggaca agaagggcaa aggcggcacc aagaccctga


3181
tgaacaccat catgcagctg cggaagatct gcaaccaccc ctacatgttc cagcacatcg


3241
aggagtcctt ttccgagcac ttggggttca ctggcggcat tgtccaaggg ctggacctgt


3301
accgagcctc gggtaaattt gagcttcttg atagaattct tcccaaactc cgagcaacca


3361
accacaaagt gctgctgttc tgccaaatga cctccctcat gaccatcatg gaagattact


3421
ttgcgtatcg cggctttaaa tacctcaggc ttgatggaac cacgaaggcg gaggaccggg


3481
gcatgctgct gaaaaccttc aacgagcccg gctctgagta cttcatcttc ctgctcagca


3541
cccgggctgg ggggctcggc ctgaacctcc agtcggcaga cactgtgatc atttttgaca


3601
gcgactggaa tcctcaccag gacctgcaag cgcaggaccg agcccaccgc atcgggcagc


3661
agaacgaggt gcgtgtgctc cgcctctgca ccgtcaacag cgtggaggag aagatcctag


3721
ctgcagccaa gtacaagctc aacgtggacc agaaggtgat ccaggccggc atgttcgacc


3781
agaagtcctc cagccatgag cggcgcgcct tcctgcaggc catcctggag cacgaggagc


3841
aggatgagag cagacactgc agcacgggca gcggcagtgc cagcttcgcc cacactgccc


3901
ctccgccagc gggcgtcaac cccgacttgg aggagccacc tctaaaggag gaagacgagg


3961
tgcccgacga cgagaccgtc aaccagatga tcgcccggca cgaggaggag tttgatctgt


4021
tcatgcgcat ggacctggac cgcaggcgcg aggaggcccg caaccccaag cggaagccgc


4081
gcctcatgga ggaggacgag ctcccctcgt ggatcatcaa ggacgacgcg gaggtggagc


4141
ggctgacctg tgaggaggag gaggagaaga tgttcggccg tggctcccgc caccgcaagg


4201
aggtggacta cagcgactca ctgacggaga agcagtggct caagaaaatt acaggaaaag


4261
atatccatga cacagccagc agtgtggcac gtgggctaca attccagcgt ggccttcagt


4321
tctgcacacg tgcgtcaaag gccatcgagg agggcacgct ggaggagatc gaagaggagg


4381
tccggcagaa gaaatcatca cggaagcgca agcgagacag cgacgccggc tcctccaccc


4441
cgaccaccag cacccgcagc cgcgacaagg acgacgagag caagaagcag aagaagcgcg


4501
ggcggccgcc tgccgagaaa ctctccccta acccacccaa cctcaccaag aagatgaaga


4561
agattgtgga tgccgtgatc aagtacaagg acagcagcag tggacgtcag ctcagcgagg


4621
tcttcatcca gctgccctcg cgaaaggagc tgcccgagta ctacgagctc atccgcaagc


4681
ccgtggactt caagaagata aaggagcgca ttcgcaacca caagtaccgc agcctcaacg


4741
acctagagaa ggacgtcatg ctcctgtgcc agaacgcaca gaccttcaac ctggagggct


4801
ccctgatcta tgaagactcc atcgtcttgc agtcggtctt caccagcgtg cggcagaaaa


4861
tcgagaagga ggatgacagt gaaggcgagg agagtgagga ggaggaagag ggcgaggagg


4921
aaggctccga atccgaatct cggtccgtca aagtgaagat caagcttggc cggaaggaga


4981
aggcacagga ccggctgaag ggcggccggc ggcggccgag ccgagggtcc cgagccaagc


5041
cggtcgtgag tgacgatgac agtgaggagg aacaagagga ggaccgctca ggaagtggca


5101
gcgaagaaga ctgagccccg acattccagt ctcgaccccg agcccctcgt tccagagctg


5161
agatggcata ggccttagca gtaacgggta gcagcagatg tagcttcaga cttggagtaa


5221
aactgtataa acaaaagaat cttccatatt tatacagcag agaagctgta ggactgtttg


5281
tgactggccc tgccctggca tcagtagcat ctgtaacagc attaactgtc ttaaagagag


5341
agagagagaa tcccgaattg gggaacacac gatacctgtt tttcttttcc gttgctggca


5401
gtactgttgc gccgcagttt ggagtcactg tagttaagtg tggatgcatg tgcgtcaccg


5461
tccactcctc ctactgtatt ttattggaca ggtcagactc gccgggggcc cggcgagggt


5521
atgtcagtgt cactggatgt caaacagtaa taaattaaac caacaacaaa acgcacagcc


5581
aaaaaaaaa










SEQ ID NO: 54 Human BRG1 Amino Acid Sequence Isoform A (NP_001122321.1,


CDS: from 75 to 5114)








1
mstpdpplgg tprpgpspgp gpspgamlgp spgpspgsah smmgpspgpp saghpiptqg


61
pggypqdnmh qmhkpmesmh ekgmsddpry nqmkgmgmrs gghagmgppp spmdqhsqgy


121
psplggseha sspvpasgps sgpqmssgpg gapldgadpq algqqnrgpt pfnqnqlhql


181
raqimaykml argqplpdhl qmavqgkrpm pgmqqqmptl pppsvsatgp gpgpgpgpgp


241
gpgpappnys rphgmggpnm pppgpsgvpp gmpgqppggp pkpwpegpma naaaptstpq


301
klippqptgr pspappavpp aaspvmppqt qspgqpaqpa pmvplhqkqs ritpiqkprg


361
ldpveilqer eyrlqariah riqelenlpg slagdlrtka tielkalrll nfqrqlrqev


421
vvcmrrdtal etalnakayk rskrqslrea riteklekqq kieqerkrrq khqeylnsil


481
qhakdfkeyh rsvtgkiqkl tkavatyhan tereqkkene riekermrrl maedeegyrk


541
lidqkkdkrl ayllqqtdey vanltelvrq hkaaqvakek kkkkkkkkae naegqtpaig


601
pdgepldets qmsdlpvkvi hvesgkiltg tdapkagqle awlenmpgye vaprsdsees


661
gseeeeeeee eeqpqaaqpp tlpveekkki pdpdsddvse vdarhiiena kqdvddeygv


721
sqalarglqs yyavahavte rvdkqsalmv ngvlkqyqik glewlvslyn nnlngilade


781
mglgktiqti alitylmehk ringpfliiv plstlsnway efdkwapsvv kvsykgspaa


841
rrafvpqlrs gkfnvlltty eyiikdkhil akirwkymiv deghrmknhh ckltqvlnth


901
yvaprrlllt gtplqnklpe lwallnfllp tifkscstfe qwfnapgamt gekvdlneee


961
tiliirrlhk vlrpfllrrl kkeveaqlpe kveyvikcdm salqrvlyrh mqakgvlltd


1021
gsekdkkgkg gtktlmntim qlrkicnhpy mfqhieesfs ehlgftggiv qgldlyrasg


1081
kfelldrilp klratnhkvl lfcqmtslmt imedyfayrg fkylrldgtt kaedrgmllk


1141
tfnepgseyf ifllstragg lglnlqsadt viifdsdwnp hqdlqaqdra hrigqqnevr


1201
vlrlctvnsv eekilaaaky klnvdqkviq agmtdqksss herraflqai leheeqdesr


1261
hcstgsgsas fahtapppag vnpdleeppl keedevpdde tvnqmiarhe eefdlfmrmd


1321
ldrrreearn pkrkprlmee delpswiikd daeverltce eeeekmfgrg srhrkevdys


1381
dsltekqwlk kitgkdihdt assvarglqf qrglqfctra skaieegtle eieeevrqkk


1441
ssckrkrdsd agsstpttst rsrdkddesk kqkkrgrppa eklspnppnl tkkmkkivda


1501
vikykdsssg rqlsevfiql psrkelpeyy elirkpvdfk kikerirnhk yrslndlekd


1561
vmllcqnaqt fnlegsliye dsivlqsvft svrqkieked dsegeeseee eegeeegses


1621
esrsvkvkik lgrkekaqdr lkggrrrpsr gsrakpvvsd ddseeeqeed rsgsgseed










SEQ ID NO: 55 Human BRG1 cDNA Sequence Variant 2 (NM_001128844.1, CDS:


from 361 to 5304)








1
ggagaggccg ccgcggtgct gagggggagg ggagccggcg agcgcgcgcg cagcgggggc


61
gcgggtggcg cgcgtgtgtg tgaagggggg gcggtggccg aggcgggcgg gcgcgcgcgc


121
gaggcttccc ctcgtttggc ggcggcggcg gcttctttgt ttcgtgaaga gaagcgagac


181
gcccattctg cccccggccc cgcgcggagg ggcgggggag gcgccgggaa gtcgacggcg


241
ccggcggctc ctgcgtctcg cccttttgcc caggctagag tgcagtggtg cggtcatggt


301
tcactgcagc ctcaacctcc tggactcagc aggaggccac tgtctgcagc tcccgtgaag


361
atgtccactc cagacccacc cctgggcgga actcctcggc caggtccttc cccgggccct


421
ggcccttccc ctggagccat gctgggccct agcccgggtc cctcgccggg ctccgcccac


481
agcatgatgg ggcccagccc agggccgccc tcagcaggac accccatccc cacccagggg


541
cctggagggt accctcagga caacatgcac cagatgcaca agcccatgga gtccatgcat


601
gagaagggca tgtcggacga cccgcgctac aaccagatga aaggaatggg gatgcggtca


661
gggggccatg ctgggatggg gcccccgccc agccccatgg accagcactc ccaaggttac


721
ccctcgcccc tgggtggctc cgagcatgcc tctagtccag ttccagccag tggcccgtct


781
tcggggcccc agatgtcttc cgggccagga ggtgccccgc tggatggtgc tgacccccag


841
gccttggggc agcagaaccg gggcccaacc ccatttaacc agaaccagct gcaccagctc


901
agagctcaga tcatggccta caagatgctg gccagggggc agcccctccc cgaccacctg


961
cagatggcgg tgcagggcaa gcggccgatg cccgggatgc agcagcagat gccaacgcta


1021
cctccaccct cggtgtccgc aacaggaccc ggccctggcc ccggccctgg ccccggcccg


1081
ggtcccggcc cggcacctcc aaattacagc aggcctcatg gtatgggagg gcccaacatg


1141
cctcccccag gaccctcggg cgtgcccccc gggatgccag gccagcctcc tggagggcct


1201
cccaagccct ggcctgaagg acccatggcg aatgctgctg cccccacgag cacccctcag


1261
aagctgattc ccccgcagcc aacgggccgc ccttcccccg cgccccctgc cgtcccaccc


1321
gccgcctcgc ccgtgatgcc accgcagacc cagtcccccg ggcagccggc ccagcccgcg


1381
cccatggtgc cactgcacca gaagcagagc cgcatcaccc ccatccagaa gccgcggggc


1441
ctcgaccctg tggagatcct gcaggagcgc gagtacaggc tgcaggctcg catcgcacac


1501
cgaattcagg aacttgaaaa ccttcccggg tccctggccg gggatttgcg aaccaaagcg


1561
accattgagc tcaaggccct caggctgctg aacttccaga ggcagctgcg ccaggaggtg


1621
gtggtgtgca tgcggaggga cacagcgctg gagacagccc tcaatgctaa ggcctacaag


1681
cgcagcaagc gccagtccct gcgcgaggcc cgcatcactg agaagctgga gaagcagcag


1741
aagatcgagc aggagcgcaa gcgccggcag aagcaccagg aatacctcaa tagcattctc


1801
cagcatgcca aggatttcaa ggaatatcac agatccgtca caggcaaaat ccagaagctg


1861
accaaggcag tggccacgta ccatgccaac acggagcggg agcagaagaa agagaacgag


1921
cggatcgaga aggagcgcat gcggaggctc atggctgaag atgaggaggg gtaccgcaag


1981
ctcatcgacc agaagaagga caagcgcctg gcctacctct tgcagcagac agacgagtac


2041
gtggctaacc tcacggagct ggtgcggcag cacaaggctg cccaggtcgc caaggagaaa


2101
aagaagaaaa agaaaaagaa gaaggcagaa aatgcagaag gacagacgcc tgccattggg


2161
ccggatggcg agcctctgga cgagaccagc cagatgagcg acctcccggt gaaggtgatc


2221
cacgtggaga gtgggaagat cctcacaggc acagatgccc ccaaagccgg gcagctggag


2281
gcctggctcg agatgaaccc ggggtatgaa gtagctccga ggtctgatag tgaagaaagt


2341
ggctcagaag aagaggaaga ggaggaggag gaagagcagc cgcaggcagc acagcctccc


2401
accctgcccg tggaggagaa gaagaagatt ccagatccag acagcgatga cgtctctgag


2461
gtggacgcgc ggcacatcat tgagaatgcc aagcaagatg tcgatgatga atatggcgtg


2521
tcccaggccc ttgcacgtgg cctgcagtcc tactatgccg tggcccatgc tgtcactgag


2581
agagtggaca agcagtcagc gcttatggtc aatggtgtcc tcaaacagta ccagatcaaa


2641
ggtttggagt ggctggtgtc cctgtacaac aacaacctga acggcatcct ggccgacgag


2701
atgggcctgg ggaagaccat ccagaccatc gcgctcatca cgtacctcat ggagcacaaa


2761
cgcatcaatg ggcccttcct catcatcgtg cctctctcaa cgctgtccaa ctgggcgtac


2821
gagtttgaca agtgggcccc ctccgtggtg aaggtgtctt acaagggatc cccagcagca


2881
agacgggcct ttgtccccca gctccggagt gggaagttca acgtcttgct gacgacgtac


2941
gagtacatca tcaaagacaa gcacatcctc gccaagatcc gttggaagta catgattgtg


3001
gacgaaggtc accgcatgaa gaaccaccac tgcaagctga cgcaggtgct caacacgcac


3061
tatgtggcac cccgccgcct gctgctgacg ggcacaccgc tgcagaacaa gcttcccgag


3121
ctctgggcgc tgctcaactt cctgctgccc accatcttca agagctgcag caccttcgag


3181
cagtggttta acgcaccctt tgccatgacc ggggaaaagg tggacctgaa tgaggaggaa


3241
accattctca tcatccggcg tctccacaaa gtgctgcggc ccttcttgct ccgacgactc


3301
aagaaggaag tcgaggccca gttgcccgaa aaggtggagt acgtcatcaa gtgcgacatg


3361
tctgcgctgc agcgagtgct ctaccgccac atgcaggcca agggcgtgct gctgactgat


3421
ggctccgaga aggacaagaa gggcaaaggc ggcaccaaga ccctgatgaa caccatcatg


3481
cagctgcgga agatctgcaa ccacccctac acgttccagc acatcgagga gtccttttcc


3541
gagcacttgg ggttcactgg cggcattgtc caagggctgg acctgtaccg agcctcgggt


3601
aaatttgagc ttcttgacag aattcttccc aaactccgag caaccaacca caaagtgctg


3661
ctgttctgcc aaatgacctc cctcatgacc atcatggaag attactttgc gtatcgcggc


3721
tttaaatacc tcaggcttga tggaaccacg aaggcggagg accggggcat gctgctgaaa


3781
accttcaacg agcccggctc tgagtacttc atcttcctgc tcagcacccg ggctgggggg


3841
ctcggcctga acctccagtc ggcagacact gtgatcattt ttgacagcga ctggaatcct


3901
caccaggacc tgcaagcgca ggaccgagcc caccgcatcg ggcagcagaa cgaggtgcgt


3961
gtgctccgcc tctgcaccgt caacagcgtg gaggagaaga tcctagctgc agccaagtac


4021
aagctcaacg tggaccagaa ggtgatccag gccggcatgt tcgaccagaa gtcctccagc


4081
catgagcggc gcgccttcct gcaggccatc ctggagcacg aggagcagga tgagagcaga


4141
cactgcagca cgggcagcgg cagtgccagc ttcgcccaca ctgcccctcc gccagcgggc


4201
gtcaaccccg acctggagga gccacctcta aaggaggaag acgaggtgcc cgacgacgag


4261
accgtcaacc agatgatcgc ccggcacgag gaggagtttg atctgttcat gcgcatggac


4321
ctggaccgca ggcgcgagga ggcccgcaac cccaagcgga agccgcgcct catggaggag


4381
gacgagctcc cctcgtggat catcaaggac gacgcggagg tggagcggct gacctgtgag


4441
gaggaggagg agaagatgtt cggccgtggc tcccgccacc gcaaggaggt ggactacagc


4501
gactcactga cggagaagca gtggctcaag gccatcgagg agggcacgct ggaggagatc


4561
gaagaggagg tccggcagaa gaaatcatca cggaagcgca agcgagacag cgacgccggc


4621
tcctccaccc cgaccaccag cacccgcagc cgcgacaagg acgacgagag caagaagcag


4681
aagaagcgcg ggcggccgcc tgccgagaaa ctctccccta acccacccaa cctcaccaag


4741
aagatgaaga agattgtgga tgccgtgatc aagtacaagg acagcagcag tggacgtcag


4801
ctcagcgagg tcttcatcca gctgccctcg cgaaaggagc tgcccgagta ctacgagctc


4861
atccgcaagc ccgtggactt caagaagata aaggagcgca ttcgcaacca caagtaccgc


4921
agcctcaacg acctagagaa ggacgtcatg ctcctgtgcc agaacgcaca gaccttcaac


4981
ctggagggct ccctgatcta tgaagactcc atcgtcttgc agtcggtctt caccagcgtg


5041
cggcagaaaa tcgagaagga ggatgacagt gaaggcgagg agagtgagga ggaggaagag


5101
ggcgaggagg aaggctccga atccgaatct cggtccgtca aagtgaagat caagcttggc


5161
cggaaggaga aggcacagga ccggctgaag ggcggccggc ggcggccgag ccgagggtcc


5221
cgagccaagc cggtcgtgag tgacgatgac agtgaggagg aacaagagga ggaccgctca


5281
ggaagtggca gcgaagaaga ctgagccccg acattccagt ctcgaccccg agcccctcgt


5341
tccagagctg agatggcata ggccttagca gtaacgggta gcagcagatg tagtttcaga


5401
cttggagtaa aactgtataa acaaaagaat cttccatatt tatacagcag agaagctgta


5461
ggactgtttg tgactggccc tgtcctggca tcagtagcat ctgtaacagc attaactgtc


5521
ttaaagagag agagagagaa ttccgaattg gggaacacac gatacctgtt tttcttttcc


5581
gttgctggca gtactgttgc gccgcagttt ggagtcactg tagttaagtg tggatgcatg


5641
tgcgtcaccg tccactcctc ctactgtatt ttattggaca ggtcagactc gccgggggcc


5701
cggcgagggt atgtcagtgt cactggatgt caaacagtaa taaattaaac caacaacaaa


5761
acgcacagcc aaaaaaaaa










SEQ ID NO: 56 Human BRG1 Amino Acid Sequence Isoform B (NP_001122316.1)








1
mstpdpplgg tprpgpspgp gpspgamlgp spgpspgsah smmgpspgpp saghpiptqg


61
pggypqdnmh qmhkpmesmh ekgmsddpry nqmkgmgmrs gghagmgppp spmdqhsqgy


121
psplggseha sspvpasgps sgpqmssgpg gapldgadpq algqqnrgpt pfnqnqlhql


181
raqimaykml argqplpdhl qmavqgkrpm pgmqqqmptl pppsvsatgp gpgpgpgpgp


241
gpgpappnys rphgmggpnm pppgpsgvpp gmpgqppggp pkpwpegpma naaaptstpq


301
klippqptgr pspappavpp aaspvmppqt qspgqpaqpa pmvplhqkqs ritpiqkprg


361
ldpveilqer eyrlqariah riqelenlpg slagdlrtka tielkalrll nfqrqlrqev


421
vvcmrrdtal etalnakayk rskrqslrea riteklekqq kieqerkrrq khqeylnsil


481
qhakdfkeyh rsvtgkiqkl tkavatyhan tereqkkene riekermrrl maedeegyrk


541
lidqkkdkrl ayllqqtdey vanltelvrq hkaaqvakek kkkkkkkkae naegqtpaig


601
pdgepldets qmsdlpvkvi hvesgkiltg tdapkagqle awlemnpgye vaprsdsees


661
gseeeeeeee eeqpqaaqpp tlpveekkki pdpdsddvse vdarhiiena kqdvddeygv


721
sqalarglqs yyavahavte rvdkqsalmv ngvlkqyqik glewlvslyn nnlngilade


781
mglgktiqti alitylmehk ringpfliiv plstlsnway etdkwapsvv kvsykgspaa


841
rrafvpqlrs gkfnvlltty eyiikdkhil akirwkymiv deghrmknhh ckltqvlnth


901
yvaprrlllt gtplqnklpe lwallnfllp tifkscstfe qwfnapfamt gekvdlneee


961
tiliirrlhk vlrpfllrrl kkeveaqlpe kveyvikcdm salqrvlyrh mqakgvlltd


1021
gsekdkkgkg gtktlmncim qlrkicnhpy mfqhieesfs ehlgftggiv qgldlyrasg


1081
kfelldrilp klratnhkvl lfcqmtslmt imedyfayrg fkylrldgtt kaedrgmllk


1141
tfnepgseyf ifllstragg lglnlqsadt viifdsdwnp hqdlqaqdra hrigqqnevr


1201
vlrlctvnsv eekilaaaky klnvdqkviq agmfdqksss herraflqai leheeqdesr


1261
hcstgsgsas fahtapppag vnpdleeppl keedevpdde tvnqmiarhe eefdlfmrmd


1321
ldrrreearn pkrkprlmee delpswiikd daeverltce eeeekmfgrg srhrkevdys


1381
dsltekqwlk aieegtleei eeevrqkkss rkrkrdsdag sstpttstrs rdkddeskkq


1441
kkrgrppaek lspnppnltk kmkkivdavi kykdsssgrq lsevfiqlps rkelpeyyel


1501
irkpvdfkki kerirnhkyr slndlekdvm llcqnaqtfn legsliyeds ivlqsvftsv


1561
rqkiekedds egeeseeeee geeegseses rsvkvkiklg rkekaqdrlk ggrrrpsrgs


1621
rakpvvsddd seeeqeedrs gsgseed










SEQ ID NO: 57 Human BRG1 cDNA Sequence Variant 3 (NM_003072.3, CDS:


from 285 to 5228)








1
ggagaggccg ccgcggtgct gagggggagg ggagccggcg agcgcgcgcg cagcgggggc


61
gcgggcggcg cgcgtgtgtg tgaagggggg gcggtggccg aggcgggcgg gcgcgcgcgc


121
gaggcttccc ctcgtttggc ggcggcggcg gcttccttgt ttcgtgaaga gaagcgagac


181
gcccattctg cccccggccc cgcgcggagg ggcgggggag gcgccgggaa gtcgacggcg


241
ccggcggctc ctgcaggagg ccactgtctg cagctcccgt gaagatgtcc actccagacc


301
cacccctggg cggaactcct cggccaggtc cttccccggg ccctggccct tcccctggag


361
ccatgctggg ccctagcccg ggtccctcgc cgggctccgc ccacagcatg atggggccca


421
gcccagggcc gccctcagca ggacacccca tccccaccca ggggcctgga gggtaccctc


481
aggacaacat gcaccagatg cacaagccca tggagtccat gcatgagaag ggcatgtcgg


541
acgacccgcg ctacaaccag atgaaaggaa tggggatgcg gtcagggggc catgctggga


601
tggggccccc gcccagcccc atggaccagc actcccaagg ttacccctcg cccctgggtg


661
gctctgagca tgcctctagc ccagttccag ccagtggccc gccttcgggg ccccagatgt


721
cttccgggcc aggaggtgcc ccgctggatg gtgctgaccc ccaggccttg gggcagcaga


781
accggggccc aaccccattt aaccagaacc agctgcacca gctcagagct cagatcatgg


841
cctacaagat gctggccagg gggcagcccc tccccgacca cctgcagatg gcggtgcagg


901
gcaagcggcc gatgcccggg atgcagcagc agatgccaac gctacctcca ccctcggtgt


961
ccgcaacagg acccggccct ggccctggcc ctggccccgg cccgggtccc ggcccggcac


1021
ctccaaatta cagcaggcct catggtatgg gagggcccaa catgcctccc ccaggaccct


1081
cgggcgtgcc ccccgggatg ccaggccagc ctcctggagg gcctcccaag ccctggcctg


1141
aaggacccat ggcgaatgct gctgccccca cgagcacccc tcagaagctg attcccccgc


1201
agccaacggg ccgcccttcc cccgcgcccc ctgccgtccc acccgccgcc tcgcccgtga


1261
tgccaccgca gacccagtcc cccgggcagc cggcccagcc cgcgcccatg gtgccactgc


1321
accagaagca gagccgcatc acccccatcc agaagccgcg gggcctcgac cctgtggaga


1381
tcctgcagga gcgcgagtac aggctgcagg ctcgcatcgc acaccgaatt caggaacttg


1441
aaaaccttcc cgggtccctg gccggggatt tgcgaaccaa agcgaccatt gagctcaagg


1501
ccctcaggct gctgaacttc cagaggcagc tgcgccagga ggtggtggtg tgcatgcgga


1561
gggacacagc gctggagaca gccctcaatg ctaaggccta caagcgcagc aagcgccagt


1621
ccctgcgcga ggcccgcatc actgagaagc tggagaagca gcagaagatc gagcaggagc


1681
gcaagcgccg gcagaagcac caggaatacc tcaatagcat tctccagcat gccaaggatt


1741
tcaaggaata tcacagatcc gtcacaggca aaatccagaa gctgaccaag gcagtggcca


1801
cgtaccatgc caacacggag cgggagcaga agaaagagaa cgagcggatc gagaaggagc


1861
gcatgcggag gctcatggct gaagatgagg aggggtaccg caagctcatc gaccagaaga


1921
aggacaagcg cctggcctac ctcttgcagc agacagacga gtacgtggct aacctcacgg


1981
agctggtgcg gcagcacaag gctgcccagg tcgccaagga gaaaaagaag aaaaagaaaa


2041
agaagaaggc agaaaatgca gaaggacaga cgcctgccat tgggccggat ggcgagcctc


2101
tggacgagac cagccagatg agcgacctcc cggtgaaggt gatccacgtg gagagtggga


2161
agatcctcac aggcacagat gcccccaaag ccgggcagct ggaggcctgg ctcgagatga


2221
acccggggta tgaagtagct ccgaggtctg atagtgaaga aagtggctca gaagaagagg


2281
aagaggagga ggaggaagag cagccgcagg cagcacagcc tcccaccctg cccgtggagg


2341
agaagaagaa gattccagat ccagacagcg atgacgtctc tgaggtggac gcgcggcaca


2401
tcattgagaa tgccaagcaa gatgtcgatg atgaatatgg cgtgtcccag gcccttgcac


2461
gtggcctgca gtcctactat gccgtggccc atgctgtcac tgagagagtg gacaagcagt


2521
cagcgcttat ggtcaatggt gtcctcaaac agtaccagat caaaggtttg gagtggctgg


2581
tgtccctgta caacaacaac ctgaacggca tcctggccga cgagatgggc ctggggaaga


2641
ccatccagac catcgcgctc atcacgtacc tcatggagca caaacgcatc aatgggccct


2701
tcctcatcat cgtgcctctc tcaacgctgt ccaactgggc gtacgagttt gacaagtggg


2761
ccccctccgt ggtgaaggtg tcttacaagg gatccccagc agcaagacgg gcctttgtcc


2821
cccagctccg gagtgggaag ttcaacgtct tgctgacgac gtacgagtac atcatcaaag


2881
acaagcacat cctcgccaag atccgttgga agtacatgat tgtggacgaa ggtcaccgca


2941
tgaagaacca ccactgcaag ctgacgcagg tgctcaacac gcactatgtg gcaccccgcc


3001
gcctgctgct gacgggcaca ccgctgcaga acaagcttcc cgagctctgg gcgctgctca


3061
acttcctgct gcccaccatc ttcaagagct gcagcacctt cgagcagtgg tttaacgcac


3121
cctttgccat gaccggggaa aaggtggacc tgaatgagga ggaaaccatt ctcatcatcc


3181
ggcgtctcca caaagtgctg cggcccttct tgctccgacg actcaagaag gaagtcgagg


3241
cccagttgcc cgaaaaggtg gagtacgtca tcaagtgcga catgtccgcg ctgcagcgag


3301
tgctctaccg ccacatgcag gccaagggcg tgctgctgac tgatggctcc gagaaggaca


3361
agaagggcaa aggcggcacc aagaccctga tgaacaccat catgcagctg cggaagatct


3421
gcaaccaccc ctacatgttc cagcacatcg aggagtcctt ttccgagcac ttggggttca


3481
ctggcggcat tgtccaaggg ctggacctgt accgagcctc gggtaaattt gagcttcttg


3541
atagaattct tcccaaactc cgagcaacca accacaaagt gctgctgttc tgccaaatga


3601
cctccctcat gaccatcatg gaagattact ttgcgtatcg cggctttaaa tacctcaggc


3661
ttgatggaac cacgaaggcg gaggaccggg gcatgctgct gaaaaccttc aacgagcccg


3721
gctctgagta cttcatcttc ctgctcagca cccgggctgg ggggctcggc ctgaacctcc


3781
agtcggcaga cactgtgatc atttttgaca gcgactggaa tcctcaccag gacctgcaag


3841
cgcaggaccg agcccaccgc atcgggcagc agaacgaggt gcgtgcgctc cgcctctgca


3901
ccgtcaacag cgtggaggag aagatcctag ctgcagccaa gtacaagctc aacgtggacc


3961
agaaggtgat ccaggccggc atgttcgacc agaagtcctc cagccatgag cggcgcgcct


4021
tcctgcaggc catcctggag cacgaggagc aggatgagag cagacactgc agcacgggca


4081
gcggcagtgc cagcttcgcc cacactgccc ctccgccagc gggcgtcaac cccgacttgg


4141
aggagccacc tctaaaggag gaagacgagg tgcccgacga cgagaccgtc aaccagatga


4201
tcgcccggca cgaggaggag tttgatctgt tcatgcgcat ggacctggac cgcaggcgcg


4261
aggaggcccg caaccccaag cggaagccgc gcctcatgga ggaggacgag ctcccctcgt


4321
ggatcatcaa ggacgacgcg gaggtggagc ggctgacctg tgaggaggag gaggagaaga


4381
tgttcggccg tggctcccgc caccgcaagg aggtggacta cagcgactca ctgacggaga


4441
agcagtggct caaggccatc gaggagggca cgctggagga gatcgaagag gaggtccggc


4501
agaagaaatc atcacggaag cgcaagcgag acagcgacgc cggctcctcc accccgacca


4561
ccagcacccg cagccgcgac aaggacgacg agagcaagaa gcagaagaag cgcgggcggc


4621
cgcctgccga gaaactctcc cctaacccac ccaacctcac caagaagacg aagaagattg


4681
tggatgccgt gatcaagtac aaggacagca gcagtggacg tcagctcagc gaggtcttca


4741
tccagctgcc ctcgcgaaag gagctgcccg agtactacga gctcatccgc aagcccgtgg


4801
acttcaagaa gataaaggag cgcattcgca accacaagta ccgcagcctc aacgacctag


4861
agaaggacgt catgctcctg tgccagaacg cacagacctt caacctggag ggctccctga


4921
tctatgaaga ctccatcgtc ttgcagtcgg tcttcaccag cgtgcggcag aaaatcgaga


4981
aggaggatga cagtgaaggc gaggagagtg aggaggagga agagggcgag gaggaaggct


5041
ccgaatccga atctcggtcc gtcaaagtga agatcaagct tggccggaag gagaaggcac


5101
aggaccggct gaagggcggc cggcggcggc cgagccgagg gtcccgagcc aagccggtcg


5161
tgagtgacga tgacagtgag gaggaacaag aggaggaccg ctcaggaagt ggcagcgaag


5221
aagactgagc cccgacattc cagtctcgac cccgagcccc tcgttccaga gctgagatgg


5281
cataggcctt agcagtaacg ggtagcagca gatgtagttt cagacttgga gtaaaactgt


5341
ataaacaaaa gaatcttcca tatttataca gcagagaagc tgtaggactg tttgtgactg


5401
gccctgtcct ggcatcagta gcatctgtaa cagcattaac tgtcttaaag agagagagag


5461
agaattccga attggggaac acacgatacc tgtttttctt ttccgttgct ggcagtactg


5521
ttgcgccgca gtttggagtc actgtagtta agtgtggatg catgtgcgtc accgtccact


5581
cctcctactg tactttattg gacaggtcag actcgccggg ggcccggcga gggtatgtca


5641
gtgtcactgg atgtcaaaca gtaataaact aaaccaacaa caaaacgcac agccaaaaaa


5701
aaa










SEQ ID NO: 58 Human BRG1 cDNA Sequence Variant 4 (NM_001128845.1, CDS:


from 1 to 4854)








1
atgtccactc cagacccacc cctgggcgga actcctcggc caggtccttc cccgggccct


61
ggcccttccc ctggagccat gctgggccct agcccgggtc cctcgccggg ctccgcccac


121
agcatgatgg ggcccagccc agggccgccc tcagcaggac accccatccc cacccagggg


181
cctggagggt accctcagga caacatgcac cagatgcaca agcccatgga gtccatgcat


241
gagaagggca tgccggacga cccgcgctac aaccagatga aaggaatggg gatgcggtca


301
gggggccatg ctgggatggg gcccccgccc agccccatgg accagcactc ccaaggttac


361
ccctcgcccc tgggtggctc tgagcatgcc tctagtccag tcccagccag tggcccgtct


421
tcggggcccc agatgtcttc cgggccagga ggtgccccgc tggatggtgc tgacccccag


481
gccttggggc agcagaaccg gggcccaacc ccatttaacc agaaccagct gcaccagctc


541
agagctcaga tcatggccta caagatgctg gccagggggc agcccctccc cgaccacctg


601
cagatggcgg tgcagggcaa gcggccgatg cccgggatgc agcagcagat gccaacgcta


661
cctccaccct cggtgtccgc aacaggaccc ggccctggcc ctggccctgg ccccggcccg


721
ggtcccggcc cggcacctcc aaattacagc aggcctcatg gtatgggagg gcccaacatg


781
cctcccccag gaccctcggg cgtgcccccc gggatgccag gccagcctcc tggagggcct


841
cccaagccct ggcctgaagg acccatggcg aatgctgctg cccccacgag cacccctcag


901
aagctgattc ccccgcagcc aacgggccgc ccttcccccg cgccccctgc cgtcccaccc


961
gccgcctcgc ccgtgatgcc accgcagacc cagtcccccg ggcagccggc ccagcccgcg


1021
cccatggtgc cactgcacca gaagcagagc cgcatcaccc ccatccagaa gccgcggggc


1081
ctcgaccctg tggagatcct gcaggagcgc gagtacaggc tgcaggctcg catcgcacac


1141
cgaattcagg aacttgaaaa ccttcccggg tccctggccg gggatttgcg aaccaaagcg


1201
accattgagc tcaaggccct caggctgctg aacttccaga ggcagctgcg ccaggaggtg


1261
gtggtgtgca tgcggaggga cacagcgctg gagacagccc tcaatgctaa ggcctacaag


1321
cgcagcaagc gccagtccct gcgcgaggcc cgcatcactg agaagctgga gaagcagcag


1381
aagatcgagc aggagcgcaa gcgccggcag aagcaccagg aatacctcaa tagcattctc


1441
cagcatgcca aggatttcaa ggaatatcac agatccgtca caggcaaaat ccagaagctg


1501
accaaggcag tggccacgta ccatgccaac acggagcggg agcagaagaa agagaacgag


1561
cggatcgaga aggagcgcat gcggaggctc atggctgaag atgaggaggg gtaccgcaag


1621
ctcatcgacc agaagaagga caagcgcctg gcctacctct tgcagcagac agacgagtac


1681
gtggctaacc tcacggagct ggtgcggcag cacaaggctg cccaggtcgc caaggagaaa


1741
aagaagaaaa agaaaaagaa gaaggcagaa aatgcagaag gacagacgcc tgccattggg


1801
ccggatggcg agcctctgga cgagaccagc cagatgagcg accccccggt gaaggtgatc


1861
cacgtggaga gtgggaagat cctcacaggc acagatgccc ccaaagccgg gcagctggag


1921
gcctggctcg agatgaaccc ggggtatgaa gtagctccga ggtctgatag tgaagaaagt


1981
ggctcagaag aagaggaaga ggaggaggag gaagagcagc cgcaggcagc acagcctccc


2041
accctgcccg tggaggagaa gaagaagatt ccagatccag acagcgatga cgtctctgag


2101
gtggacgcgc ggcacatcat tgagaatgcc aagcaagatg tcgatgatga atatggcgtg


2161
tcccaggccc ttgcacgtgg cctgcagtcc tactatgccg tggcccatgc tgtcactgag


2221
agagtggaca agcagtcagc gcttatggtc aatggtgtcc tcaaacagta ccagatcaaa


2281
ggtttggagt ggctggtgtc cctgtacaac aacaacctga acggcatcct ggccgacgag


2341
atgggcctgg ggaagaccat ccagaccatc gcgctcatca cgtacctcat ggagcacaaa


2401
cgcatcaatg ggcccttcct catcatcgtg cctctctcaa cgctgtccaa ctgggcgtac


2461
gagtttgaca agtgggcccc ctccgtggtg aaggtgtctt acaagggatc cccagcagca


2521
agacgggcct ttgtccccca gctccggagt gggaagttca acgtcttgct gacgacgtac


2581
gagtacatca tcaaagacaa gcacatcctc gccaagatcc gttggaagta catgattgtg


2641
gacgaaggtc accgcatgaa gaaccaccac tgcaagctga cgcaggtgct caacacgcac


2701
tatgtggcac cccgccgcct gctgctgacg ggcacaccgc tgcagaacaa gcttcccgag


2761
ctctgggcgc tgctcaactt cctgctgccc accatcttca agagctgcag caccttcgag


2821
cagtggttta acgcaccctt tgccatgacc ggggaaaagg tggacctgaa tgaggaggaa


2881
accattctca tcatccggcg tctccacaaa gtgctgcggc ccttcttgct ccgacgactc


2941
aagaaggaag tcgaggccca gttgcccgaa aaggtggagt acgtcatcaa gtgcgacatg


3001
tctgcgctgc agcgagtgct ctaccgccac atgcaggcca agggcgtgct gctgactgac


3061
ggctccgaga aggacaagaa gggcaaaggc ggcaccaaga ccctgatgaa caccatcatg


3121
cagctgcgga agatctgcaa ccacccctac atgttccagc acatcgagga gtccttttcc


3181
gagcacttgg ggttcactgg cggcattgtc caagggctgg acctgtaccg agcctcgggt


3241
aaatttgagc ttctcgatag aattcttccc aaactccgag caaccaacca caaagtgctg


3301
ctgttctgcc aaatgacctc cctcatgacc atcatggaag attactttgc gtatcgcggc


3361
tttaaatacc tcaggcttga tggaaccacg aaggcggagg accggggcat gctgctgaaa


3421
accttcaacg agcccggctc tgagtacttc atcttcctgc tcagcacccg ggctgggggg


3481
ctcggcctga acctccagtc ggcagacact gtgatcattt ttgacagcga ctggaatcct


3541
caccaggacc tgcaagcgca ggaccgagcc caccgcatcg ggcagcagaa cgaggtgcgt


3601
gtgctccgcc tctgcaccgt caacagcgtg gaggagaaga tcctagctgc agccaagtac


3661
aagctcaacg tggaccagaa ggtgatccag gccggcatgt tcgaccagaa gtcctccagc


3721
catgagcggc gcgccttcct gcaggccatc ctggagcacg aggagcagga tgaggaggaa


3781
gacgaggtgc ccgacgacga gaccgtcaac cagatgatcg cccggcacga ggaggagttt


3841
gatctgttca tgcgcatgga cctggaccgc aggcgcgagg aggcccgcaa ccccaagcgg


3901
aagccgcgcc tcatggagga ggacgagctc ccctcgtgga tcatcaagga cgacgcggag


3961
gtggagcggc tgacctgtga ggaggaggag gagaagatgt tcggccgtgg ctcccgccac


4021
cgcaaggagg tggactacag cgactcactg acggagaagc agtggctcaa gaccctgaag


4081
gccatcgagg agggcacgct ggaggagatc gaagaggagg tccggcagaa gaaatcatca


4141
cggaagcgca agcgagacag cgacgccggc tcctccaccc cgaccaccag cacccgcagc


4201
cgcgacaagg acgacgagag caagaagcag aagaagcgcg ggcggccgcc tgccgagaaa


4261
ctctccccta acccacccaa cctcaccaag aagatgaaga agattgtgga tgccgtgatc


4321
aagtacaagg acagcagcag tggacgtcag ctcagcgagg tcttcatcca gctgccctcg


4381
cgaaaggagc tgcccgagta ctacgagctc atccgcaagc ccgtggactt caagaagata


4441
aaggagcgca ttcgcaacca caagtaccgc agcctcaacg acctagagaa ggacgtcatg


4501
ctcctgtgcc agaacgcaca gaccttcaac ctggagggct ccctgatcta tgaagactcc


4561
atcgtcttgc agtcggtctt caccagcgtg cggcagaaaa tcgagaagga ggatgacagt


4621
gaaggcgagg agagtgagga ggaggaagag ggcgaggagg aaggctccga atccgaatct


4681
cggtccgtca aagtgaagat caagcttggc cggaaggaga aggcacagga ccggctgaag


4741
ggcggccggc ggcggccgag ccgagggtcc cgagccaagc cggtcgtgag tgacgatgac


4801
agtgaggagg aacaagagga ggaccgctca ggaagtggca gcgaagaaga ctgagccccg


4861
acattccagt cccgaccccg agcccctcgt tccagagctg agatggcata ggccttagca


4921
gtaacgggta gcagcagatg tagtttcaga cttggagtaa aactgtataa acaaaagaat


4981
cttccatatt tatacagcag agaagctgta ggactgtttg tgactggccc tgtcctggca


5041
tcagtagcat ctgtaacagc attaactgtc ttaaagagag agagagagaa ttccgaattg


5101
gggaacacac gatacctgtt tttcttttcc gttgctggca gtactgttgc gccgcagttt


5161
ggagtcactg tagttaagtg tggatgcatg tgcgtcaccg tccactcctc ctactgtatt


5221
ttattggaca ggtcagactc gccgggggcc cggcgagggt acgtcagtgt cactggatgt


5281
caaacagtaa taaattaaac caacaacaaa acgcacagcc aaaaaaaaa










SEQ ID NO: 59 Human BRG1 Amino Acid Sequence Isoform C (NP_001122317.1)








1
mstpdpplgg tprpgpspgp gpspgamlgp spgpspgsah smmgpspgpp saghpiptqg


61
pggypqdnmh qmhkpmesmh ekgmsddpry nqmkgmgmrs gghagmgppp spmdqhsqgy


121
psplggseha sspvpasgps sgpqmssgpg gapldgadpq algqqnrgpt pfnqnqlhql


181
raqimaykml argqplpdhl qmavqgkrpm pgmqqqmptl pppsvsatgp gpgpgpgpgp


241
gpgpappnys rphgmggpnm pppgpsgvpp gmpgqppggp pkpwpegpma naaaptstpq


301
klippqptgr pspappavpp aaspvmppqt qspgqpaqpa pmvplhqkqs ritpiqkprg


361
ldpveilqer eyrlqariah riqelenlpg slagdlrcka tielkalrll nfqrqlrqev


421
vvcmrrdtal etalnakayk rskrqslrea riteklekqq kieqerkrrq khqeylnsil


481
qhakdfkeyh rsvtgkiqkl tkavatyhan tereqkkene riekermrrl maedeegyrk


541
lidqkkdkrl ayllqqtdey vanltelvrq hkaaqvakek kkkkkkkkae naegqtpaig


601
pdgepldets qmsdlpvkvi hvesgkiltg tdapkagqle awlemnpgye vaprsdsees


661
gseeeeeeee eeqpqaaqpp tlpveekkki pdpdsddvse vdarhiiena kqdvddeygv


721
sqalarglqs yyavahavte rvdkqsalmv ngvlkqyqik glewlvslyn nnlngilade


781
mglgktiqti alitylmehk ringpfliiv plstlsnway efdkwapsvv kvsykgspaa


841
rrafvpqlrs gkfnvlltty eyiikdkhil akirwkymiv deghrmknhh ckltqvlnth


901
yvaprrlllt gtplqnklpe lwallnfllp tifkscstfe qwfnapfamt gekvdlneee


961
tiliirrlhk vlrpfllrrl kkeveaqlpe kveyvikcdm salqrvlyrh mqakgvlltd


1021
gsekdkkgkg gtktlmntim qlrkicnhpy mfqhieesfs ehlgftggiv qgldlyrasg


1081
kfelldrilp klratnhkvl lfcqmtslmt imedyfayrg fkylrldgtt kaedrgmllk


1141
tfnepgseyf ifllstragg lglnlqsadt viifdsdwnp hqdlqaqdra hrigqqnevr


1201
vlrlctvnsv eekilaaaky klnvdqkviq agmfdqksss herraflqai leheeqdeee


1261
devpddetvn qmiarheeef dlfmrmdldr rreearnpkr kprlmeedel pswiikddae


1321
verltceeee ekmfgrgsrh rkevdysdsl tekqwlktlk aieegtleei eeevrqkkss


1381
rkrkrdsdag sstpttstrs rdkddeskkq kkrgrppaek lspnppnltk kmkkivdavi


1441
kykdsssgrq lsevfiqlps rkelpeyyel irkpvdfkki kerirnhkyr slndlekdvm


1501
llcqnaqtfn legsliyeds ivlqsvftsv rqkiekedds egeeseeeee geeegseses


1561
rsvkvkiklg rkekaqdrlk ggrrrpsrgs rakpvvsddd seeeqeedrs gsgseed










SEQ ID NO: 60 Human BRG1 cDNA Sequence Variant 5 (NM_001128846.1, CDS:


From 1 to 4851)








1
atgtccactc cagacccacc cctgggcgga actcctcggc caggtccttc cccgggccct


61
ggcccttccc ctggagccat gctgggccct agcccgggtc cctcgccggg ctccgcccac


121
agcatgatgg ggcccagccc agggccgccc tcagcaggac accccatccc cacccagggg


181
cctggagggt accctcagga caacatgcac cagatgcaca agcccatgga gtccatgcat


241
gagaagggca tgtcggacga cccgcgctac aaccagatga aaggaatggg gatgcggtca


301
gggggccatg ctgggatggg gcccccgccc agccccatgg accagcactc ccaaggttac


361
ccctcgcccc tgggtggctc tgagcatgcc tctagtccag ttccagccag tggcccgtct


421
tcggggcccc agatgtcttc cgggccagga ggtgccccgc tggatggtgc tgacccccag


481
gccttggggc agcagaaccg gggcccaacc ccatttaacc agaaccagct gcaccagctc


541
agagctcaga tcatggccta caagatgctg gccagggggc agcccctccc cgaccacctg


601
cagatggcgg tgcagggcaa gcggccgatg cccgggatgc agcagcagat gccaacgcta


661
cctccaccct cggtgtccgc aacaggaccc ggccctggcc ctggccctgg ccccggcccg


721
ggtcccggcc cggcacctcc aaattacagc aggcctcatg gtatgggagg gcccaacatg


781
cctcccccag gaccctcggg cgtgcccccc gggatgccag gccagcctcc tggagggcct


841
cccaagccct ggcctgaagg acccatggcg aatgctgctg cccccacgag cacccctcag


901
aagctgattc ccccgcagcc aacgggccgc ccttcccccg cgcccccCgc cgtcccaccc


961
gccgcctcgc ccgtgatgcc accgcagacc cagtcccccg ggcagccggc ccagcccgcg


1021
cccatggtgc cactgcacca gaagcagagc cgcatcaccc ccatccagaa gccgcggggc


1081
ctcgaccctg tggagatcct gcaggagcgc gagtacaggc tgcaggctcg catcgcacac


1141
cgaattcagg aacttgaaaa ccttcccggg tccctggccg gggatttgcg aaccaaagcg


1201
accattgagc tcaaggccct caggctgctg aacttccaga ggcagctgcg ccaggaggtg


1261
gtggtgtgca tgcggaggga cacagcgctg gagacagccc tcaatgctaa ggcctacaag


1321
cgcagcaagc gccagtccct gcgcgaggcc cgcatcactg agaagctgga gaagcagcag


1381
aagatcgagc aggagcgcaa gcgccggcag aagcaccagg aatacctcaa tagcattctc


1441
cagcatgcca aggatttcaa ggaatatcac agatccgtca caggcaaaat ccagaagctg


1501
accaaggcag tggccacgta ccatgccaac acggagcggg agcagaagaa agagaacgag


1561
cggatcgaga aggagcgcat gcggaggctc atggctgaag atgaggaggg gtaccgcaag


1621
ctcactgacc agaagaagga caagcgcccg gcctacctct tgcagcagac agacgagtac


1681
gtggctaacc tcacggagct ggtgcggcag cacaaggctg cccaggtcgc caaggagaaa


1741
aagaagaaaa agaaaaagaa gaaggcagaa aatgcagaag gacagacgcc tgccattggg


1801
ccggatggcg agcctctgga cgagaccagc cagatgagcg acctcccggt gaaggtgatc


1861
cacgtggaga gtgggaagat cctcacaggc acagatgccc ccaaagccgg gcagctggag


1921
gcctggctcg agatgaaccc ggggtatgaa gtagctccga ggtctgatag tgaagaaagt


1981
ggctcagaag aagaggaaga ggaggaggag gaagagcagc cgcaggcagc acagcctccc


2041
accctgcccg tggaggagaa gaagaagatt ccagatccag acagcgatga cgtctctgag


2101
gtggacgcgc ggcacatcat tgagaatgcc aagcaagatg tcgatgatga atatggcgtg


2161
tcccaggccc ttgcacgctg cctgcagtcc tactacgccg tggcccatgc tgtcactgag


2221
agagtggaca agcagtcagc gcttatggtc aatggtgtcc tcaaacagta ccagatcaaa


2281
ggtttggagt ggctggtgtc cctgtacaac aacaacctga acggcatcct ggccgacgag


2341
atgggcctgg ggaagaccat ccagaccatc gcgctcatca cgtacctcat ggagcacaaa


2401
cgcatcaatg ggcccttcct catcatcgtg cctctctcaa cgctgtccaa ctgggcgtac


2461
gagtttgaca agtgggcccc ctccgtggtg aaggtgtctt acaagggatc cccagcagca


2521
agacgggcct tcgtccccca gctccggagt gggaagttca acgtcttgct gacgacgtac


2581
gagtacatca tcaaagacaa gcacatcctc gccaagatcc gttggaagta catgattgtg


2641
gacgaaggtc accgcatgaa gaaccaccac tgcaagctga cgcaggtgct caacacgcac


2701
tatgtggcac cccgccgcct gctgctgacg ggcacaccgc tgcagaacaa gcttcccgag


2761
ctctgggcgc tgctcaactt cctgctgccc accatcttca agagctgcag caccttcgag


2821
cagtggttta acgcaccctt tgccatgacc ggggaaaagg tggacctgaa tgaggaggaa


2881
accattctca tcatccggcg tctccacaaa gtgctgcggc ccttcttgct ccgacgactc


2941
aagaaggaag tcgaggccca gttgcccgaa aaggtggagt acgtcaccaa gtgcgacatg


3001
tctgcgctgc agcgagtgct ctaccgccac atgcaggcca agggcgtgct gctgactgat


3061
ggctccgaga aggacaagaa gggcaaaggc ggcaccaaga ccctgatgaa caccatcatg


3121
cagctgcgga agatctgcaa ccacccctac atgttccagc acatcgagga gtccttttcc


3181
gagcacttgg ggttcactgg cggcattgtc caagggctgg acctgtaccg agcctcgggt


3241
aaatttgagc ttcttgatag aattcttccc aaactccgag caaccaacca caaagtgctg


3301
ccgttctgcc aaatgacctc cctcatgacc atcatggaag attactttgc gtatcgcggc


3361
tttaaatacc tcaggcttga tggaaccacg aaggcggagg accggggcat gctgctgaaa


3421
accttcaacg agcccggctc tgagcacttc atctccctgc tcagcacccg ggctgggggg


3481
ctcggcctga acctccagtc ggcagacact gtgatcattt ttgacagcga ctggaatcct


3541
caccaggacc tgcaagcgca ggaccgagcc caccgcatcg ggcagcagaa cgaggtgcgt


3601
gtgctccgcc tctgcaccgt caacagcgtg gaggagaaga tcctagctgc agccaagtac


3661
aagctcaacg tggaccagaa ggtgatccag gccggcatgt tcgaccagaa gtcctccagc


3721
catgagcggc gcgccttcct gcaggccatc ctggagcacg aggagcagga tgaggaggaa


3781
gacgaggtgc ccgacgacga gaccgtcaac cagatgatcg cccggcacga ggaggagttt


3841
gatctgttca tgcgcatgga cctggaccgc aggcgcgagg aggcccgcaa ccccaagcgg


3901
aagccgcgcc tcatggagga ggacgagctc ccctcgtgga tcatcaagga cgacgcggag


3961
gtggagcggc tgacctgtga ggaggaggag gagaagatgt tcggccgtgg ctcccgccac


4021
cgcaaggagg tggactacag cgactcactg acggagaagc agtggcccaa gaccctgaag


4081
gccatcgagg agggcacgct ggaggagatc gaagaggagg tccggcagaa gaaatcatca


4141
cggaagcgca agcgagacag cgacgccggc tcctccaccc cgaccaccag cacccgcagc


4201
cgcgacaagg acgacgagag caagaagcag aagaagcgcg ggcggccgcc tgccgagaaa


4261
ctctccccta acccacccaa cctcaccaag aagatgaaga agattgtgga tgccgtgatc


4321
aagtacaagg acagcagtgg acgtcagctc agcgaggtct tcatccagct gccctcgcga


4381
aaggagctgc ccgagtacta cgagctcatc cgcaagcccg tggacttcaa gaagataaag


4441
gagcgcattc gcaaccacaa gtaccgcagc ctcaacgacc tagagaagga cgtcatgctc


4501
ctgtgccaga acgcacagac cttcaacctg gagggctccc tgatctatga agactccatc


4561
gtcttgcagt cggtcttcac cagcgtgcgg cagaaaatcg agaaggagga tgacagtgaa


4621
ggcgaggaga gtgaggagga ggaagagggc gaggaggaag gctccgaatc cgaatctcgg


4681
tccgtcaaag tgaagatcaa gcttggccgg aaggagaagg cacaggaccg gctgaagggc


4741
ggccggcggc ggccgagccg agggtcccga gccaagccgg tcgtgagtga cgatgacagt


4801
gaggaggaac aagaggagga ccgctcagga agtggcagcg aagaagactg agccccgaca


4861
ttccagtctc gaccccgagc ccctcgttcc agagctgaga tggcataggc cttagcagta


4921
acgggtagca gcagatgtag tttcagactt ggagtaaaac tgtataaaca aaagaatctt


4981
ccatatttat acagcagaga agctgtagga ctgtttgtga ctggccctgt cctggcatca


5041
gcagcatctg taacagcatt aactgtctta aagagagaga gagagaattc cgaattgggg


5101
aacacacgat acctgttttt cttttccgtt gctggcagta ctgttgcgcc gcagtttgga


5161
gtcactgtag ttaagtgtgg atgcatgtgc gtcaccgtcc actcctccta ctgtatttta


5221
ttggacaggt cagactcgcc gggggcccgg cgagggtatg tcagtgtcac tggatgtcaa


5281
acagtaataa attaaaccaa caacaaaacg cacagccaaa aaaaaa










SEQ ID NO: 61 Human BRG1 Amino Acid Sequence Isoform D (NP_001122318.1)








1
mstpdpplgg tprpgpspgp gpspgamlgp spgpspgsah smmgpspgpp saghpiptqg


61
pggypqdnmh qmhkpmesmh ekgmsddpry nqmkgmgmrs gghagmgppp spmdqhsqgy


121
psplggseha sspvpasgps sgpqmssgpg gapldgadpq algqqnrgpt pfnqnqlhql


181
raqimaykml argqplpdhl qmavqgkrpm pgmqqqmptl pppsvsatgp gpgpgpgpgp


241
gpgpappnys rphgmggpnm pppgpsgvpp gmpgqppggp pkpwpegpma naaaptstpq


301
klippqptgr pspappavpp aaspvmppqt qspgqpaqpa pmvplhqkqs ritpiqkprg


361
ldpveilqer eyrlqariah riqelenlpg slagdlrtka tielkalrll nfqrqlrqev


421
vvcmrrdtal etalnakayk rskrqslrea riteklekqq kieqerkrrq khqeylnsil


481
qhakdfkeyh rsvtgkiqkl tkavatyhan tereqkkene riekermrrl maedeegyrk


541
lidqkkdkrl ayllqqtdey vanltelvrq hkaaqvakek kkkkkkkkae naegqtpaig


601
pdgepldets qmsdlpvkvi hvesgkiltg tdapkagqle awlemnpgye vaprsdsees


661
gseeeeeeee eeqpqaaqpp tlpveekkki pdpdsddvse vdarhiiena kqdvddeygv


721
sqalarglqs yyavahavte rvdkqsalmv ngvlkqyqik glewlvslyn nnlngilade


781
mglgktiqti alitylmehk ringpfliiv plstlsnway efdkwapsvv kvsykgspaa


841
rrafvpqlrs gkfnvlltty eyiikdkhil akirwkymiv deghrmknhh ckltqvlnch


901
yvaprrlllt gtplqnklpe lwallnfllp tifkscstfe qwfnapfamt gekvdlneee


961
tiliirrlhk vlrpfllrrl kkeveaqlpe kveyvikcdm salqrvlyrh mqakgvlltd


1021
gsekdkkgkg gtktlmntim qlrkicnhpy mfqhieesfs ehlgftggiv qgldlyrasg


1081
kfelldrilp klratnhkvl ltcqmtslmt imedytayrg fkylrldgtt kaedrgmllk


1141
tfnepgseyf ifllstragg lglnlqsadt viifdsdwnp hqdlqaqdra hrigqqnevr


1201
vlrlctvnsv eekilaaaky klnvdqkviq agmfdqksss herraflqai leheeqdeee


1261
devpddetvn qmiarheeef dlfmrmdldr rreearnpkr kprlmeedel pswiikddae


1321
verltceeee ekmfgrgsrh rkevdysdsl tekqwlktlk aieegtleei eeevrqkkss


1381
rkrkrdsdag sstpttstrs rdkddeskkq kkrgrppaek lspnppnltk kmkkivdavi


1441
kykdssgrql sevfiqlpsr kelpeyyeli rkpvdfkkik erirnhkyrs lndlekdvml


1501
lcqnaqtfnl egsliyedsi vlqsvftsvr qkiekeddse geeseeeeeg eeegsesesr


1561
svkvkiklgr kekaqdrlkg grrrpsrgsr akpvvsddds eeeqeedrsg sgseed










SEQ ID NO: 62 Human BRG1 cDNA Sequence Variant 6 (NM_001128847.1, CDS:


from 1 to 4845)








1
atgtccactc cagacccacc cctgggcgga actcctcggc caggtccttc cccgggccct


61
ggcccttccc ctggagccat gctgggccct agcccgggtc cctcgccggg ctccgcccac


121
agcatgatgg ggcccagccc agggccgccc tcagcaggac accccatccc cacccagggg


181
cctggagggt accctcagga caacatgcac cagatgcaca agcccatgga gtccatgcat


241
gagaagggca tgtcggacga cccgcgctac aaccagatga aaggaatggg gatgcggtca


301
gggggccatg ctgggatggg gcccccgccc agccccatgg accagcactc ccaaggttac


361
ccctcgcccc tgggtggctc tgagcatgcc tctagtccag tcccagccag tggcccgtct


421
tcggggcccc agatgtcttc cgggccagga ggtgccccgc tggatggtgc tgacccccag


481
gccttggggc agcagaaccg gggcccaacc ccatttaacc agaaccagct gcaccagctc


541
agagctcaga tcatggccta caagatgctg gccagggggc agcccctccc cgaccacctg


601
cagatggcgg tgcagggcaa gcggccgatg cccgggatgc agcagcagat gccaacgcta


661
cctccaccct cggtgtccgc aacaggaccc ggccctggcc ctggccctgg ccccggcccg


721
ggtcccggcc cggcacctcc aaattacagc aggcctcatg gtatgggagg gcccaacatg


781
cctcccccag gaccctcggg cgtgcccccc gggatgccag gccagcctcc tggagggcct


841
cccaagccct ggcctgaagg acccatggcg aatgctgctg cccccacgag cacccctcag


901
aagctgattc ccccgcagcc aacgggccgc ccttcccccg cgccccctgc cgtcccaccc


961
gccgcctcgc ccgtgatgcc accgcagacc cagtcccccg ggcagccggc ccagcccgcg


1021
cccatggtgc cactgcacca gaagcagagc cgcatcaccc ccatccagaa gccgcggggc


1081
ctcgaccctg tggagatcct gcaggagcgc gagtacaggc tgcaggctcg catcgcacac


1141
cgaattcagg aacttgaaaa ccttcccggg tccctggccg gggatttgcg aaccaaagcg


1201
accattgagc tcaaggccct caggctgctg aacttccaga ggcagctgcg ccaggaggtg


1261
gtggtgtgca tgcggaggga cacagcgctg gagacagccc tcaatgctaa ggcctacaag


1321
cgcagcaagc gccagtccct gcgcgaggcc cgcatcactg agaagctgga gaagcagcag


1381
aagatcgagc aggagcgcaa gcgccggcag aagcaccagg aatacctcaa tagcattctc


1441
cagcatgcca aggatttcaa ggaatatcac agatccgtca caggcaaaat ccagaagctg


1501
accaaggcag tggccacgta ccatgccaac acggagcggg agcagaagaa agagaacgag


1561
cggatcgaga aggagcgcat gcggaggctc atggctgaag atgaggaggg gtaccgcaag


1621
ctcatcgacc agaagaagga caagcgcctg gcctacctct tgcagcagac agacgagtac


1681
gtggctaacc tcacggagct ggtgcggcag cacaaggctg cccaggtcgc caaggagaaa


1741
aagaagaaaa agaaaaagaa gaaggcagaa aatgcagaag gacagacgcc tgccattggg


1801
ccggatggcg agcctctgga cgagaccagc cagatgagcg acctcccggt gaaggtgatc


1861
cacgtggaga gtgggaagat cctcacaggc acagatgccc ccaaagccgg gcagctggag


1921
gcctggctcg agatgaaccc ggggtatgaa gtagctccga ggtctgatag tgaagaaagt


1981
ggctcagaag aagaggaaga ggaggaggag gaagagcagc cgcaggcagc acagcctccc


2041
accctgcccg tggaggagaa gaagaagact ccagatccag acagcgatga cgtctctgag


2101
gtggacgcgc ggcacatcat tgagaatgcc aagcaagatg tcgatgatga atatggcgtg


2161
tcccaggccc ttgcacgtgg cctgcagtcc tactatgccg tggcccatgc tgtcactgag


2221
agagtggaca agcagtcagc gcttatggtc aatggtgtcc tcaaacagta ccagatcaaa


2281
ggtttggagt ggctggtgtc cctgtacaac aacaacctga acggcatcct ggccgacgag


2341
atgggcctgg ggaagaccat ccagaccatc gcgctcatca cgtacctcat ggagcacaaa


2401
cgcatcaatg ggcccttcct catcatcgtg cctctctcaa cgctgtccaa ctgggcgtac


2461
gagtttgaca agtgggcccc ctccgtggtg aaggtgtctt acaagggatc cccagcagca


2521
agacgggcct ttgtccccca gctccggagt gggaagttca acgtcttgct gacgacgtac


2581
gagtacatca tcaaagacaa gcacatcctc gccaagatcc gttggaagta catgattgtg


2641
gacgaaggtc accgcatgaa gaaccaccac tgcaagctga cgcaggtgct caacacgcac


2701
tatgtggcac cccgccgcct gccgctgacg ggcacaccgc tgcagaacaa gcttcccgag


2761
ctctgggcgc tgctcaactt cctgctgccc accatcttca agagctgcag caccttcgag


2821
cagtggttta acgcaccctt tgccatgacc ggggaaaagg tggacctgaa tgaggaggaa


2881
accattctca tcatccggcg tctccacaaa gtgctgcggc ccttcctgct ccgacgactc


2941
aagaaggaag tcgaggccca gttgcccgaa aaggtggagt acgtcatcaa gtgcgacatg


3001
tctgcgctgc agcgagtgct ctaccgccac atgcaggcca agggcgtgct gctgactgat


3061
ggctccgaga aggacaagaa gggcaaaggc ggcaccaaga ccctgatgaa caccatcatg


3121
cagctgcgga agatctgcaa ccacccctac atgttccagc acatcgagga gtccttttcc


3181
gagcacttgg ggttcactgg cggcattgtc caagggctgg acctgtaccg agcctcgggt


3241
aaatttgagc ttcttgatag aattcttccc aaactccgag caaccaacca caaagtgctg


3301
ctgttctgcc aaatgacctc cctcatgacc atcatggaag attactttgc gtatcgcggc


3361
tttaaatacc tcaggcttga tggaaccacg aaggcggagg accggggcat gctgctgaaa


3421
accttcaacg agcccggctc tgagtacttc atcttcctgc tcagcacccg ggctgggggg


3481
ctcggcctga acctccagtc ggcagacact gtgatcattt ttgacagcga ctggaatcct


3541
caccaggacc tgcaagcgca ggaccgagcc caccgcatcg ggcagcagaa cgaggtgcgt


3601
gtgctccgcc tctgcaccgt caacagcgtg gaggagaaga tcctagctgc agccaagtac


3661
aagctcaacg tggaccagaa ggtgatccag gccggcatgt tcgaccagaa gtcctccagc


3721
catgagcggc gcgccttcct gcaggccatc ctggagcacg aggagcagga tgaggaggaa


3781
gacgaggtgc ccgacgacga gaccgtcaac cagatgatcg cccggcacga ggaggagttt


3841
gatctgttca tgcgcatgga cctggaccgc aggcgcgagg aggcccgcaa ccccaagcgg


3901
aagccgcgcc tcatggagga ggacgagctc ccctcgtgga tcatcaagga cgacgcggag


3961
gtggagcggc tgacctgtga ggaggaggag gagaagatgt tcggccgtgg ctcccgccac


4021
cgcaaggagg tggactacag cgactcaccg acggagaagc agtggctcaa ggccatcgag


4081
gagggcacgc tggaggagat cgaagaggag gtccggcaga agaaatcatc acggaagcgc


4141
aagcgagaca gcgacgccgg ctcctccacc ccgaccacca gcacccgcag ccgcgacaag


4201
gacgacgaga gcaagaagca gaagaagcgc gggcggccgc ctgccgagaa actctcccct


4261
aacccaccca acctcaccaa gaagatgaag aagattgtgg atgccgtgat caagtacaag


4321
gacagcagca gtggacgtca gctcagcgag gtcttcaccc agctgccctc gcgaaaggag


4381
ctgcccgagt actacgagct catccgcaag cccgtggact tcaagaagat aaaggagcgc


4441
attcgcaacc acaagtaccg cagcctcaac gacctagaga aggacgtcat gctcctgtgc


4501
cagaacgcac agaccttcaa cctggagggc tccctgatct atgaagactc catcgtcttg


4561
cagtcggtct tcaccagcgt gcggcagaaa atcgagaagg aggatgacag tgaaggcgag


4621
gagagtgagg aggaggaaga gggcgaggag gaaggctccg aatccgaatc tcggtccgtc


4681
aaagtgaaga tcaagcttgg ccggaaggag aaggcacagg accggctgaa gggcggccgg


4741
cggcggccga gccgagggtc ccgagccaag ccggtcgtga gtgacgatga cagtgaggag


4801
gaacaagagg aggaccgctc aggaagtggc agcgaagaag actgagcccc gacattccag


4861
tctcgacccc gagcccctcg ttccagagct gagatggcat aggccttagc agtaacgggt


4921
agcagcagat gtagtttcag acttggagta aaactgtata aacaaaagaa tcttccatat


4981
ttatacagca gagaagctgt aggactgttt gtgactggcc ctgtcctggc atcagtagca


5041
tctgtaacag cattaactgt cttaaagaga gagagagaga attccgaatt ggggaacaca


5101
cgatacctgt ttttcttttc cgttgctggc agtactgttg cgccgcagtt tggagtcact


5161
gtagttaagt gtggatgcat gtgcgtcacc gtccactcct cctactgtat tttattggac


5221
aggtcagact cgccgggggc ccggcgaggg tatgtcagtg tcactggatg tcaaacagta


5281
ataaattaaa ccaacaacaa aacgcacagc caaaaaaaaa










SEQ ID NO: 63 Human BRG1 Amino Acid Sequence Isoform E (NP_001122319.1)








1
mstpdpplgg tprpgpspgp gpspgamlgp spgpspgsah smmgpspgpp saghpiptqg


61
pggypqdnmh qmhkpmesmh ekgmsddpry nqmkgmgmrs gghagmgppp spmdqhsqgy


121
psplggseha sspvpasgps sgpqmssgpg gapldgadpq algqqnrgpt pfnqnqlhql


181
raqimaykml argqplpdhl qmavqgkrpm pgmqqqmptl pppsvsatgp gpgpgpgpgp


241
gpgpappnys rphgmggpnm pppgpsgvpp gmpgqppggp pkpwpegpma naaaptstpq


301
klippqptgr pspappavpp aaspvmppqt qspgqpaqpa pmvplhqkqs ritpiqkprg


361
ldpveilqer eyrlqariah riqelenlpg slagdlrtka tielkalrll nfqrqlrqev


421
vvcmrrdtal etalnakayk rskrqslrea riteklekqq kieqerkrrq khqeylnsil


481
qhakdfkeyh rsvtgkiqkl tkavatyhan tereqkkene riekermrrl maedeegyrk


541
lidqkkdkrl ayllqqtdey vanltelvrq hkaaqvakek kkkkkkkkae naegqtpaig


601
pdgepldets qmsdlpvkvi hvesgkiltg tdapkagqle awlemnpgye vaprsdsees


661
gseeeeeeee eeqpqaaqpp tlpveekkki pdpdsddvse vdarhiiena kqdvddeygv


721
sqalarglqs yyavahavte rvdkqsalmv ngvlkqyqik glewlvslyn nnlngilade


781
mglgktiqti alitylmehk ringpfliiv plstlsnway efdkwapsvv kvsykgspaa


041
rratvpqlrs gkfnvlltty eyiikdkhil akitwkymiv deghrmknhh ckltqvlnth


901
yvaprrlllt gtplqnklpe lwallnfllp tifkscstfe qwfnapfamt gekvdlneee


961
tiliirrlhk vlrpfllrrl kkeveaqlpe kveyvikcdm salqrvlyrh mqakgvlltd


1021
gsekdkkgkg gtktlmntim qlrkicnhpy mtqhieesfs ehlgftggiv qgldlyrasg


1081
kfelldrilp klratnhkvl lfcqmtslmt imedyfayrg fkylrldgtt kaedrgmllk


1141
tfnepgseyf ifllstragg lglnlqsadt viifdsdwnp hqdlqaqdra hrigqqnevr


1201
vlrlctvnsv eekilaaaky klnvdqkviq agmfdqksss herraflqai leheeqdeee


1261
devpddetvn qmiarheeef dlfmrmdldr rreearnpkr kprlmeedel pswiikddae


1321
verltceeee ekmfgrgsrh rkevdysdsl tekqwlkaie egtleeieee vrqkkssrkr


1381
krdsdagsst pttstrsrdk ddeskkqkkr grppaeklsp nppnltkkmk kivdavikyk


1441
dsssgrqlse vfiqlpsrke lpeyyelirk pvdfkkiker irnhkyrsln dlekdvmllc


1501
qnaqtfnleg sliyedsivl qsvftsvrqk iekeddsege eseeeeegee egsesesrsv


1561
kvkiklgrke kaqdrlkggr rrpsrgsrak pvvsdddsee eqeedrsgsg seed










SEQ ID NO: 64 Human BRG1 cDNA Sequence Variant 7 (NM_001128848.1, CDS:


from 1 to 4842)








1
atgtccactc cagacccacc cctgggcgga actcctcggc caggtccttc cccgggccct


61
ggcccttccc ctggagccat gctgggccct agcccgggtc cctcgccggg ctccgcccac


121
agcatgatgg ggcccagccc agggccgccc tcagcaggac accccatccc cacccagggg


181
cctggagggt accctcagga caacatgcac cagatgcaca agcccatgga gtccatgcat


241
gagaagggca tgtcggacga cccgcgctac aaccagatga aaggaatggg gatgcggtca


301
gggggccatg ctgggatggg gcccccgccc agccccatgg accagcactc ccaaggttac


361
ccctcgcccc tgggtggctc tgagcatgcc tctagtccag ttccagccag tggcccgtct


421
tcggggcccc agatgtcttc cgggccagga ggtgccccgc tggatggtgc tgacccccag


481
gccttggggc agcagaaccg gggcccaacc ccatttaacc agaaccagct gcaccagctc


541
agagctcaga tcatggccta caagatgctg gccagggggc agcccctccc cgaccacctg


601
cagatggcgg tgcagggcaa gcggccgatg cccgggatgc agcagcagat gccaacgcta


661
cctccaccct cggtgtccgc aacaggaccc ggccctggcc ctggccctgg ccccggcccg


721
ggtcccggcc cggcaccccc aaattacagc aggcctcatg gcatgggagg gcccaacatg


781
cctcccccag gaccctcggg cgtgcccccc gggatgccag gccagcctcc tggagggcct


841
cccaagccct ggcctgaagg acccatggcg aatgctgctg cccccacgag cacccctcag


901
aagctgattc ccccgcagcc aacgggccgc ccttcccccg cgccccctgc cgtcccaccc


961
gccgcctcgc ccgtgatgcc accgcagacc cagtcccccg ggcagccggc ccagcccgcg


1021
cccatggtgc cactgcacca gaagcagagc cgcatcaccc ccatccagaa gccgcggggc


1081
ctcgaccctg tggagatcct gcaggagcgc gagtacaggc tgcaggctcg catcgcacac


1141
cgaattcagg aacttgaaaa ccttcccggg tccctggccg gggatttgcg aaccaaagcg


1201
accattgagc tcaaggccct caggctgctg aacttccaga ggcagctgcg ccaggaggtg


1261
gtggtgtgca tgcggaggga cacagcgctg gagacagccc tcaatgctaa ggcctacaag


1321
cgcagcaagc gccagtccct gcgcgaggcc cgcatcactg agaagctgga gaagcagcag


1381
aagatcgagc aggagcgcaa gcgccggcag aagcaccagg aatacctcaa cagcattctc


1441
cagcatgcca aggatttcaa ggaatatcac agatccgtca caggcaaaat ccagaagctg


1501
accaaggcag tggccacgca ccatgccaac acggagcggg agcagaagaa agagaacgag


1561
cggatcgaga aggagcgcat gcggaggctc atggctgaag atgaggaggg gtaccgcaag


1621
ctcatcgacc agaagaagga caagcgcctg gcctacctcc tgcagcagac agacgagtac


1681
gtggctaacc tcacggagct ggtgcggcag cacaaggctg cccaggtcgc caaggagaaa


1741
aagaagaaaa agaaaaagaa gaaggcagaa aacgcagaag gacagacgcc tgccattggg


1801
ccggatggcg agcctctgga cgagaccagc cagatgagcg acctcccggt gaaggtgatc


1861
cacgtggaga gtgggaagat cctcacaggc acagatgccc ccaaagccgg gcagctggag


1921
gcctggctcg agatgaaccc ggggtatgaa gtagctccga ggtctgatag tgaagaaagt


1981
ggctcagaag aagaggaaga ggaggaggag gaagagcagc cgcaggcagc acagcctccc


2041
accctgcccg tggaggagaa gaagaagatt ccagatccag acagcgatga cgtctctgag


2101
gtggacgcgc ggcacatcat tgagaatgcc aagcaagatg tcgatgatga atatggcgtg


2161
tcccaggccc ttgcacgtgg cctgcagtcc tactatgccg tggcccatgc tgtcactgag


2221
agagtggaca agcagtcagc gcttatggtc aatggtgtcc tcaaacagta ccagatcaaa


2281
ggtttggagt ggctggtgtc cctgtacaac aacaacctga acggcatcct ggccgacgag


2341
atgggcctgg ggaagaccat ccagaccatc gcgctcatca cgtacctcat ggagcacaaa


2401
cgcatcaatg ggcccttcct catcatcgtg cctctctcaa cgctgtccaa ctgggcgtac


2461
gagtttgaca agtgggcccc ctccgtggtg aaggtgtctt acaagggatc cccagcagca


2521
agacgggcct ttgtccccca gctccggagt gggaagttca acgtcttgct gacgacgtac


2581
gagtacatca tcaaagacaa gcacatcctc gccaagatcc gttggaagta catgattgtg


2641
gacgaaggtc accgcatgaa gaaccaccac tgcaagctga cgcaggtgct caacacgcac


2701
tatgtggcac cccgccgcct gctgctgacg ggcacaccgc tgcagaacaa gcttcccgag


2761
ctctgggcgc tgctcaactc cctgctgccc accatcttca agagctgcag caccttcgag


2821
cagtggttta acgcaccctt tgccatgacc ggggaaaagg tggacctgaa tgaggaggaa


2881
accattctca tcatccggcg tctccacaaa gtgctgcggc ccttcttgct ccgacgactc


2941
aagaaggaag tcgaggccca gttgcccgaa aaggtggagt acgtcatcaa gtgcgacatg


3001
tctgcgctgc agcgagtgct ctaccgccac atgcaggcca agggcgtgct gctgactgat


3061
ggctccgaga aggacaagaa gggcaaaggc ggcaccaaga ccctgatgaa caccatcatg


3121
cagctgcgga agatctgcaa ccacccctac atgttccagc acatcgagga gtccttttcc


3181
gagcacttgg ggttcactgg cggcattgtc caagggctgg acctgtaccg agcctcgggt


3241
aaatttgagc ttcttgacag aattcttccc aaactccgag caaccaacca caaagtgctg


3301
ctgttctgcc aaatgacctc cctcatgacc atcatggaag attactttgc gtatcgcggc


3361
tttaaatacc tcaggcttga tggaaccacg aaggcggagg accggggcat gctgctgaaa


3421
accttcaacg agcccggctc tgagtacttc atcttcctgc tcagcacccg ggctgggggg


3481
ctcggcctga acctccagtc ggcagacact gcgatcattt tcgacagcga ctggaatcct


3541
caccaggacc tgcaagcgca ggaccgagcc caccgcatcg ggcagcagaa cgaggtgcgt


3601
gtgctccgcc tctgcaccgt caacagcgtg gaggagaaga tcctagctgc agccaagtac


3661
aagctcaacg tggaccagaa ggtgatccag gccggcatgt tcgaccagaa gtcctccagc


3721
catgagcggc gcgccttcct gcaggccatc ctggagcacg aggagcagga tgaggaggaa


3781
gacgaggtgc ccgacgacga gaccgtcaac cagatgatcg cccggcacga ggaggagttt


3841
gatctgttca tgcgcatgga cctggaccgc aggcgcgagg aggcccgcaa ccccaagcgg


3901
aagccgcgcc tcatggagga ggacgagctc ccctcgtgga tcatcaagga cgacgcggag


3961
gtggagcggc tgacctgtga ggaggaggag gagaagatgt tcggccgtgg ctcccgccac


4021
cgcaaggagg tggactacag cgactcactg acggagaagc agtggctcaa ggccatcgag


4081
gagggcacgc tggaggagat cgaagaggag gtccggcaga agaaatcatc acggaagcgc


4141
aagcgagaca gcgacgccgg ctcctccacc ccgaccacca gcacccgcag ccgcgacaag


4201
gacgacgaga gcaagaagca gaagaagcgc gggcggccgc ctgccgagaa actctcccct


4261
aacccaccca acctcaccaa gaagatgaag aagattgtgg atgccgtgat caagtacaag


4321
gacagcagtg gacgtcagct cagcgaggtc ttcatccagc tgccctcgcg aaaggagctg


4381
cccgagtact acgagctcat ccgcaagccc gtggacttca agaagataaa ggagcgcatt


4441
cgcaaccaca agtaccgcag cctcaacgac ctagagaagg acgtcatgct cctgtgccag


4501
aacgcacaga ccttcaacct ggagggctcc ctgatctatg aagactccat cgtcttgcag


4561
tcggtcttca ccagcgtgcg gcagaaaatc gagaaggagg atgacagtga aggcgaggag


4621
agtgaggagg aggaagaggg cgaggaggaa ggctccgaat ccgaatctcg gtccgtcaaa


4681
gtgaagatca agcttggccg gaaggagaag gcacaggacc ggctgaaggg cggccggcgg


4741
cggccgagcc gagggtcccg agccaagccg gtcgtgagtg acgatgacag tgaggaggaa


4801
caagaggagg accgctcagg aagtggcagc gaagaagact gagccccgac attccagtct


4861
cgaccccgag cccctcgttc cagagctgag atggcatagg ccttagcagt aacgggtagc


4921
agcagatgta gtttcagact tggagtaaaa ctgtataaac aaaagaatct tccatattta


4981
tacagcagag aagctgtagg actgtttgtg actggccctg tcccggcatc agtagcatct


5041
gtaacagcat taactgtctt aaagagagag agagagaatt ccgaattggg gaacacacga


5101
tacctgtttt tcttttccgt tgctggcagc actgttgcgc cgcagtttgg agtcactgta


5161
gttaagtgtg gatgcatgtg cgtcaccgtc cactcctcct actgtatttt attggacagg


5221
tcagactcgc cgggggcccg gcgagggtat gtcagcgtca ctggatgtca aacagtaata


5281
aattaaacca acaacaaaac gcacagccaa aaaaaaa










SEQ ID NO: 65 Human BRG1 Amino Acid Sequence Isoform F (NP_001122320.1)








1
mstpdpplgg tprpgpspgp gpspgamlgp spgpspgsah smmgpspgpp saghpiptqg


61
pggypqdnmh qmhkpmesmh ekgmsddpry nqmkgmgmrs gghagmgppp spmdqhsqgy


121
psplggseha sspvpasgps sgpqmssgpg gapldgadpq algqqnrgpt pfnqnqlhql


181
raqimaykml argqplpdhl qmavqgkrpm pgmqqqmptl pppsvsatgp gpgpgpgpgp


241
gpgpappnys rphgmggpnm pppgpsgvpp gmpgqppggp pkpwpegpma naaapcstpq


301
klippqptgr pspappavpp aaspvmppqt qspgqpaqpa pmvplhqkqs ritpiqkprg


361
ldpveilqer eyrlqariah riqelenlpg slagdlrtka tielkalrll nfqrqlrqev


421
vvcmrrdtal etalnakayk rskrqslrea riteklekqq kieqerkrrq khqeylnsil


481
qhakdfkeyh rsvtgkiqkl tkavatyhan tereqkkene riekermrrl maedeegyrk


541
lidqkkdkrl ayllqqtdey vanltelvrq hkaaqvakek kkkkkkkkae naegqtpaig


601
pdgepldets qmsdlpvkvi hvesgkiltg tdapkagqle awlemnpgye vaprsdsees


661
gseeeeeeee eeqpqaaqpp tlpveekkki pdpdsddvse vdarhiiena kqdvddeygv


721
sqalarglqs yyavahavte rvdkqsalmv ngvlkqyqik glewlvslyn nnlngilade


781
mglgktiqti alitylmehk ringpfliiv plstlsnway efdkwapsvv kvsykgspaa


841
rrafvpqlrs gkfnvlltty eyiikdkhil akirwkymiv deghrmknhh ckltqvlnth


901
yvaprrlllt gtplqnklpe lwallnfllp tifkscstfe qwfnapfamt gekvdlneee


961
tiliirrlhk vlrpfllrrl kkeveaqlpe kveyvikcdn salqrvlyrh mqakgvlltd


1021
gsekdkkgkg grktlmntim qlrkicnhpy mfqhieesfs ehlgftggiv qgldlyrasg


1081
kfelldrilp klratnhkvl lfcqmtslmt imedyfayrg fkylrldgtt kaedrgmllk


1141
tfnepgseyf ifllstragg lglnlqsadt viifdsdwnp hqdlqaqdra hrigqqnevr


1201
vlrlctvnsv eekilaaaky klnvdqkviq agmfdqksss herraflqai leheeqdeee


1261
devpddetvn qmiarheeef dlfmrmdldr rreearnpkr kprlmeedel pswiikddae


1321
verltceeee ekmfgrgsrh rkevdysdsl tekqwlkale egtleeieee vrqkkssrkr


1381
krdsdagsst pttstrsrdk ddeskkqkkr grppaeklsp nppnltkkmk kivdavikyk


1441
dssgrqlsev fiqlpsrkel peyyelirkp vdfkkikeri rnhkyrslnd lekdvmlleq


1501
naqtfnlegs liyedsivlq svftsvrqki ekeddsegee seeeeegeee gsesesrsvk


1561
vkiklgrkek aqdrlkggrr rpsrgsrakp vvsdddseee qeedrsgsgs eed










SEQ ID NO: 66 Mouse BRG1 cDNA Sequence Variant 1 (NM_001174078.1, CDS:


from 261 to 5114)








1
ggcaagtgga gcgggtagac agggaggcgg gggcgcgcgg cgggcgcgtg cggtgggggg


61
gggtggcctg gcgaagccca gcgggcgcgc gcgcgaggct ttcccactcg cttggcagcg


121
gcggagacgg cttctttgtt tcctgaggag aagcgagacg cccactctgt ccccgacccc


181
tcgtggaggg ttgggggcgg cgccaggaag gttacggcgc cgttacctcc aggagaccag


241
tgcctgtagc tccagtaaag atgtctactc cagacccacc cttgggtggg actcctcggc


301
ctggtccttc cccaggccct ggtccttcac ctggtgcaat gctgggtcct agccctggcc


361
cctcaccagg ttctgcccac agcatgatgg ggccaagccc aggacctcct tcagcaggac


421
atcccatgcc cacccagggg cctggagggt acccccagga caacatgcat cagatgcaca


481
agcctatgga gtccatgcac gagaagggca tgcctgatga cccacgatac aaccagatga


541
aagggatggg catgcggtca ggggcccaca caggcatggc acctccacct agtcccatgg


601
accagcattc tcaaggttac ccctcacccc tcggcggctc tgaacatgcc tccagtcctg


661
tcccagccag tggcccatct tcaggccccc agatgtcctc tgggccagga ggggccccac


721
tagatggttc tgatccccag gccttgggac agcaaaacag aggcccaacc ccatttaacc


781
agaaccagct gcatcaactc agagctcaga taatggccta caagatgttg gccaggggcc


841
agccattgcc cgaccacctg cagatggccg tgcaaggcaa gcggccgatg cctggaatgc


901
agcaacagat gccaacacta cctccaccct cagtgtccgc cacaggaccc ggacctggac


961
ccggccctgg ccctggccct ggcccaggac cagcccctcc aaattacagt agaccccatg


1021
gtatgggagg gcccaacatg ccccccccag gaccctcagg tgtgcccccc gggatgcctg


1081
gtcagccgcc tggagggcct cccaagccat ggcctgaagg acccatggcc aatgctgctg


1141
cccccacaag caccccacag aagctgattc ctccgcaacc aacaggccgt ccttcacctg


1201
cacctcctgc tgtcccgcct gctgcctcac ctgtaatgcc accacaaaca cagtccccag


1261
ggcagccagc ccagcctgct ccattggtgc cactgcacca gaagcagagc cgaatcaccc


1321
ccatccagaa gccccgaggc cttgaccctg tggagatcct acaagagcgg gagtacaggc


1381
ttcaggctcg aatcgcacac agaattcagg aacttgaaaa cctccctggg tccctggctg


1441
gggaccttcg aaccaaagca accatcgaac tcaaggccct taggttgctg aacttccaga


1501
ggcagctgcg ccaggaggtg gcggtgtgca tgcgaagaga cacagccctg gagacagccc


1561
tcaatgccaa ggcctacaag cgcagcaaac gtcagtcact acgggaggcc cgcatcactg


1621
agaagttgga gaagcagcag aagattgaac aggagcgcaa gcgccgccag aagcaccagg


1681
agtacctcaa cagcattctg cagcatgcca aggacttcag ggagtatcac agatcagtca


1741
caggcaaact ccagaaactc accaaggctg tggccaccta ccatgccaac actgagcggg


1801
agcagaagaa agaaaatgag cgcattgaga aggagcgaat gcggaggctt atggctgaag


1861
atgaggaggg ctaccgcaaa ctcattgacc agaagaagga caagcgcctg gcctaccttc


1921
tgcagcagac agatgagtat gtggccaacc tcacagagct ggtgcggcag cacaaagctg


1981
cccaggttgc caaggagaag aagaagaaaa agaaaaagaa gaaggcagaa aatgctgaag


2041
gacagacacc tgctattgga ccagatggtg agcctctgga tgagaccagc cagatgagtg


2101
acctccctgt gaaggtgatc cacgtggaga gtggcaagat cctcactggc acagatgccc


2161
caaaagccgg gcagctggaa gcctggcttg aaatgaaccc agggtatgaa gtagccccca


2221
ggtcagacag tgaagaaagt ggctctgaag aggaggagga ggaggaggaa gaggagcagc


2281
ctcagcccgc acagccccct acactgcctg tggaagaaaa gaagaagatt ccagacccag


2341
acagcgatga tgtctctgag gtggacgccc gacacattat tgagaacgcc aagcaagatg


2401
tggacgatga gtacggtgtg tcccaggccc ttgctcgtgg cctgcagtct tactatgctg


2461
tggcccatgc agtcacagag agagtagata agcagtccgc cctcatggtc aacggtgtcc


2521
tcaaacagta ccagatcaag ggtttggagt ggctggtgtc cctgtacaac aacaacctga


2581
atggcatcct ggctgatgag atggggctgg ggaagaccat ccagaccatc gcgctcatca


2641
catacctcat ggagcacaag cgcatcaacg ggcctttcct catcatcgtg cctctctcga


2701
cactgtcaaa ctgggcgtat gaatttgaca agtgggcccc ctctgtggtg aaggtttctt


2761
acaagggctc tccagctgca aggcgagctt ttgccccaca gcttcgcagt gggaagttca


2821
acgtcttact gaccacctat gaatatatca tcaaagacaa gcatatccta gccaagatcc


2881
gctggaagta catgattgtg gatgaaggcc accgcatgaa aaaccaccac tgcaagttga


2941
cgcaggtcct taacacacac tacgtggccc ctcggcgcct gcttcttaca ggcacaccac


3001
tgcagaacaa gctaccggag ctctgggccc tgcttaactt cctgctcccc actatcttca


3061
agagctgcag caccttcgaa cagtggttca atgcaccctt tgccatgact ggagaaaagg


3121
tggacctgaa tgaagaggag actatcctca ttattcgtcg cctacacaaa gttctgcggc


3181
ccttcctgct gcggcggctc aagaaggaag ttgaagccca gctccctgag aaggtagagt


3241
atgtcatcaa atgcgacatg tcagccctgc agcgtgtgct gtaccgtcac atgcaggcca


3301
aaggtgtgct gctgactgac ggctccgaga aggacaagaa gggcaaaggt ggcaccaaga


3361
cactgatgaa cactattatg caactgcgta agatctgcaa ccacccccac atgttccagc


3421
acatcgagga gtccttttct gagcacttgg ggttcaccgg cggcatcgtg caaggattgg


3481
acctttaccg tgcctcaggg aaatttgaac ttcttgacag aattctaccc aaactccgtg


3541
caacgaacca taaagtgctc ctcttttgcc aaatgacctc cctcatgacc atcatggaag


3601
actactttgc ataccgtggc ttcaaatacc tcaggcttga tggaaccaca aaagcagaag


3661
accggggcat gctgttgaaa acctttaatg aacctggctc tgagcatttc attttcctgc


3721
tcagtacccg tgctgggggg ctgggcctga atctgcagtc agctgacact gtgatcatct


3781
ttgacagtga ctggaatccc caccaggacc tgcaagcaca ggatcgagcc catcgcattg


3841
gacagcagaa tgaggtgcgt gttcttcgcc tgtgcacggt caacagtgtg gaagagaaga


3901
tactggctgc tgccaaatac aaactcaatg tggatcagaa ggtgatccag gcaggcatgt


3961
tcgaccagaa gtcgtccagc catgagaggc gtgccttcct gcaggccatc ctggagcacg


4021
aggagcagga tgaggaggaa gatgaggtgc ctgatgatga gaccgtcaac cagatgattg


4081
cccggcacga agaagagttt gacctcttca tgcgcatgga cttggaccgc cggcgtgaag


4141
aagcccgcaa ccccaagcgg aagccacgcc tgatggaaga ggatgagctc ccatcctgga


4201
tcatcaagga tgatgccgag gtggagcggc tgacatgtga agaggaagag gagaagatgt


4261
tcggccgtgg tcctcgccac cgcaaggagg tagactacag cgacccactg acagagaagc


4321
agtggctcaa gaccctgaag gctatcgagg agggcacgct ggaggagatc gaagaggagg


4381
tccggcagaa gaaatcttca cgtaagcgta agcgagacag cgaggccggc tcctccaccc


4441
cgaccaccag cacccgcagc cgtgacaagg atgaggagag caagaagcag aagaaacgtg


4501
ggcggccacc tgctgagaag ctgtccccaa acccacctaa cctcaccaag aagatgaaga


4561
agatcgtgga tgctgtgatc aagtacaaag acagcagcag tggacgtcag ctcagcgagg


4621
tgttcatcca gctcccctct cgcaaggagc ttcctgagta ctatgagctc atccgaaagc


4681
ctgtggactt caagaagatc aaggaacgca tccgaaacca caagtaccgc agcctcaatg


4741
acctggagaa ggatgtgatg ctgctgtgcc agaacgctca gacgttcaac ctcgagggtt


4801
ccctgatcta tgaggactcc atcgtcctgc agtctgtctt caccagcgta cggcagaaga


4861
ttgagaagga ggacgacagt gaaggcgagg aaagcgagga ggaggaggag ggcgaggagg


4921
aaggctccga gtctgagtcc cgctccgtca aggtgaagat caagctgggc cgcaaggaga


4981
aggcccagga ccgactcaag gggggccgcc ggcggccaag ccggggatcc cgggccaagc


5041
cggttgtgag tgacgatgac agtgaggagg agcaggagga ggaccgctca ggaagtggca


5101
gtgaggaaga ctgaaccaga cattcctgag tcctgacccc gaggcgctcg tcccagccaa


5161
gatggagtag cccttagcag tgatgggtag caccagatgt agtttcgaac ttggagaact


5221
gtacacatgc aatcttccac atttttaggc agagaagtat aggcctgtct gtcggccctg


5281
gcctggcctc gagtctctac cagcattaac tgtctagaga ggggacctcc tgggagcacc


5341
atccacctcc ccaggcccca gtcactgtag ctcagtggat gcatgcgcgt gccggccgct


5401
ccttgtactg taccttactg gacagggcca gctctccagg aggctcacag gcccagcggg


5461
tatgtcagtg tcactggagt cagacagtaa taaattaaag caatgacaag ccaccactgg


5521
ctccctggac tccttgctgt cagcagtggc tccggggcca cagagaagaa agaaagacct


5581
ttaggaactg ggtctaactt atgggcaaag tacttgcctt gccaggtgta tgggttttgc


5641
attcccatca cccacacacc ctaaacaagc caagtcagtg agcttcaagt tagagcctcc


5701
acctcaatgt gtacgtggaa agcaatcaaa gatgatgcct agcatccacc tctggccctc


5761
atgtgcagat gtacacacac tgaattacat acacgggaca cacacatcca cacggaggca


5821
gtccatgact tgcactgggg agatggtacc ataggcgaaa gtgccacagg cacagggcca


5881
ggctaattta gtcctgcagt cctgtgctct taagatgaag gcacaaagag gaaccccagg


5941
cgctccaact agcatgccag gcagtgacaa gaccctgctt caaatgaatc agagcccaca


6001
ttcagtattg ccctcttacc cgatgcgatg cccatgccct cacatatgaa tgcgtatata


6061
tacatacata cgtaaaataa ttctttttta aattatagac atttttgtgt gaatgttttg


6121
cctgaatgtg tgtgtgtgtg tgtgtgtgtg tgtgtgtgtg tgtgtgtgtg tatcaagtac


6181
attcctagag cctacagagg tcaagggagg gcattggatc tggaactgga gtcacatgag


6241
gctgtgagca actgcgtggg ttcctgggcc tttgcaacag cagttagtac tcttcaccac


6301
tgagccattt ctccaatctc aaaaagaagc attcttttaa atgaagactg aaataaataa


6361
gtaggacttg cccttg










SEQ ID NO: 67 Mouse BRG1 Amino Acid Sequence Isoform A (NP_001167549.1)








1
mstpdpplgg tprpgpspgp gpspgamlgp spgpspgsah smmgpspgpp saghpmptqg


61
pggypqdnmh qmhkpmesmh ekgmpddpry nqmkgmgmrs gahtgmappp spmdqhsqgy


121
psplggseha sspvpasgps sgpqmssgpg gapldgsdpq algqqnrgpt pfnqnqlhql


181
raqimaykml argqplpdhl qmavqgkrpm pgmqqqmptl pppsvsatgp gpgpgpgpgp


241
gpgpappnys rphgmggpnm pppgpsgvpp gmpgqppggp pkpwpegpma naaaptstpq


301
klippqptgr pspappavpp aaspvmppqt qspgqpaqpa plvplhqkqs ritpiqkprg


361
ldpveilqer eyrlqariah riqeienlpg slagdlrtka tielkalrll nfqrqlrqev


421
vvcmrrdtal etalnakayk tskrqslrea riteklekqq kieqerkrrq khqeylnsil


481
qhakdfreyh rsvtgklqkl tkavatyhan tereqkkene riekermrrl maedeegyrk


541
lidqkkdkrl ayllqqtdey vanltelvrq hkaaqvakek kkkkkkkkae naegqtpaig


601
pdgepldets qmsdlpvkvi hvesgkiltg tdapkagqle awlemnpgye vaprsdsees


661
gseeeeeeee eeqpqpaqpp tlpveekkki pdpdsddvse vdarhiiena kqdvddeygv


721
sqalarglqs yyavahavte rvdkqsalmv ngvlkqyqik glewlvslyn nnlngilade


781
mglgktiqti alitylmehk ringpfliiv plstlsnway efdkwapsvv kvsykgspaa


841
rralvpqlrs gkfnvlltty eyiikdkhil akirwkymiv deghrmknhh ckltqvlnth


901
yvaprrlllt gtplqnklpe lwallnfllp tifkscstfe qwfnapfamt gekvdlneee


961
tiliirrlhk vlrpfllrrl kkeveaqlpe kveyvikcdm salqrvlyrh mqakgvlltd


1021
gsekdkkgkg gtktlmntim qlrkicnhpy mfqhieesfs ehlgftggiv qgldlyrasg


1081
kfelldrilp klratnhkvl lfcqmtslmt imedyfayrg fkylrldgtt kaedrgmllk


1141
tfnepgseyf ifllstragg lglnlqsadt viifdsdwnp hqdlqaqdra hrigqqnevr


1201
vlrlctvnsv eekilaaaky klnvdqkviq agmfdqksss herraflqai leheeqdeee


1261
devpddetvn qmiarheeef dlfmrmdldr rreearnpkr kprlmeedel pswiikddae


1321
verltceeee ekmfgrgsrh rkevdysdsl tekqwlktlk aieegtleei eeevrqkkss


1381
rkrkrdseag sstpttstrs rdkdeeskkq kkrgrppaek lspnppnltk kmkkivdavi


1441
kykdsssgrq lsevfiqlps rkelpeyyel irkpvdfkki kerirnhkyr slndlekdvm


1501
llcqnaqtfn legsliyeds ivlqsvftsv rqkiekedds egeeseeeee geeegseses


1561
rsvkvkiklg rkekaqdrlk ggrrrpsrgs rakpvvsddd seeeqeedrs gsgseed










SEQ ID NO: 68 Mouse BRG1 cDNA Sequence Variant 2 (NM_011417.3, CDS:


from 261 to 5105)








1
ggcaagtgga gcgggtagac agggaggcgg gggcgcgcgg cgggcgcgtg cggtgggggg


61
gggtggcctg gcgaagccca gcgggcgcgc gcgcgaggct ttcccactcg cttggcagcg


121
gcggagacgg cttctttgtt tcctgaggag aagcgagacg cccactctgt ccccgacccc


181
tcgtggaggg ttgggggcgg cgccaggaag gttacggcgc cgttacctcc aggagaccag


241
tgcctgtagc tccagtaaag atgtctactc cagacccacc cttgggtggg actcctcggc


301
ctggcccttc cccaggccct ggtccttcac ctggtgcaat gctgggtcct agccctggcc


361
cctcaccagg ttctgcccac agcatgatgg ggccaagccc aggacctcct tcagcaggac


421
atcccatgcc cacccagggg cctggagggt acccccagga caacatgcat cagatgcaca


481
agcctatgga gtccatgcac gagaagggca tgcctgatga cccacgatac aaccagatga


541
aagggatggg catgcggtca ggggcccaca caggcatggc acctccacct agtcccatgg


601
accagcattc tcaaggttac ccctcacccc tcggcggctc tgaacatgcc tccagtcctg


661
tcccagccag tggcccatct tcaggccccc agatgtcctc tgggccagga ggggccccac


721
tagatggttc tgatccccag gccttgggac agcaaaacag aggcccaacc ccatttaacc


781
agaaccagct gcatcaactc agagctcaga taatggccta caagatgttg gccaggggcc


841
agccattgcc cgaccacctg cagatggccg tgcaaggcaa gcggccgatg cctggaatgc


901
agcaacagat gccaacacta cctccaccct cagtgtccgc cacaggaccc ggacctggac


961
ccggccctgg ccctggccct ggcccaggac cagcccctcc aaattacagt agaccccatg


1021
gtatgggagg gcccaacatg cctcccccag gaccctcagg tgtgcccccc gggatgcctg


1081
gtcagccgcc tggagggcct cccaagccat ggcctgaagg acccatggcc aatgctgctg


1141
cccccacaag caccccacag aagctgattc ctccgcaacc aacaggccgt ccttcacctg


1201
cacctcctgc tgtcccgcct gctgcctcac ctgtaatgcc accacaaaca cagtccccag


1261
ggcagccagc ccagcctgct ccattggtgc cactgcacca gaagcagagc cgaatcaccc


1321
ccatccagaa gccccgaggc cttgaccctg tggagatcct acaagagcgg gagtacaggc


1381
ttcaggctcg aatcgcacac agaattcagg aacttgaaaa cctccctggg tccctggctg


1441
gggaccttcg aaccaaagca accatcgaac tcaaggccct taggttgctg aacttccaga


1501
ggcagctgcg ccaggaggtg gtggtgtgca tgcgaagaga cacagccccg gagacagccc


1561
tcaatgccaa ggcctacaag cgcagcaaac gtcagtcact acgggaggcc cgcatcactg


1621
agaagttgga gaagcagcag aagattgaac aggagcgcaa gcgccgccag aagcaccagg


1681
agtacctcaa cagcattctg cagcatgcca aggacttcag ggagtatcac agatcagtca


1741
caggcaaact ccagaaactc accaaggctg tggccaccta ccatgccaac actgagcggg


1801
agcagaagaa agaaaatgag cgcattgaga aggagcgaat gcggaggctt atggctgaag


1861
atgaggaggg ctaccgcaaa ctcattgacc agaagaagga caagcgcctg gcctaccttc


1921
tgcagcagac agatgagtat gtggccaacc tcacagagct ggtgcggcag cacaaagctg


1981
cccaggttgc caaggagaag aagaagaaaa agaaaaagaa gaaggcagaa aatgctgaag


2041
gacagacacc tgctattgga ccagatggtg agcctctgga tgagaccagc cagatgagtg


2101
acctccctgt gaaggtgatc cacgtggaga gtggcaagat cctcactggc acagatgccc


2161
caaaagccgg gcagctggaa gcctggcttg aaatgaaccc agggtatgaa gtagccccca


2221
ggtcagacag tgaagaaagt ggctctgaag aggaggagga ggaggaggaa gaggagcagc


2281
ctcagcccgc acagccccct acactgcctg tggaagaaaa gaagaagatt ccagacccag


2341
acagcgatga tgtctctgag gtggacgccc gacacattat tgagaacgcc aagcaagatg


2401
tggacgatga gtacggtgtg tcccaggccc ttgctcgtgg cctgcagtct tactatgctg


2461
tggcccatgc agtcacagag agagtagata agcagtccgc cctcatggtc aacggtgtcc


2521
tcaaacagta ccagatcaag ggtttggagt ggctggtgtc cctgtacaac aacaacctga


2581
atggcatcct ggctgatgag atggggctgg ggaagaccat ccagaccatc gcgctcatca


2641
catacctcat ggagcacaag cgcatcaacg ggcctttcct catcatcgtg cctctctcga


2701
cactgtcaaa ctgggcgtat gaatttgaca agtgggcccc ctctgtggtg aaggtttctt


2761
acaagggctc tccagctgca aggcgagctt ttgtcccaca gcttcgcagt gggaagttca


2821
acgtcttact gaccacctat gaatatatca tcaaagacaa gcatatccta gccaagatcc


2881
gctggaagta catgattgtg gatgaaggcc accgcatgaa aaaccaccac tgcaagttga


2941
cgcaggtcct taacacacac tacgtggccc ctcggcgcct gcttcttaca ggcacaccac


3001
tgcagaacaa gctaccggag ctctgggccc tgcttaactt cctgctcccc actatcttca


3061
agagctgcag caccttcgaa cagtggttca atgcaccctt tgccatgact ggagaaaagg


3121
tggacctgaa tgaagaggag actatcctca ttattcgtcg cctacacaaa gttctgcggc


3181
ccttcctgct gcggcggctc aagaaggaag ttgaagccca gctccctgag aaggtagagt


3241
atgtcatcaa atgcgacatg tcagccctgc agcgtgtgct gtaccgtcac atgcaggcca


3301
aaggtgtgct gctgactgac ggctccgaga aggacaagaa gggcaaaggt ggcaccaaga


3361
cactgatgaa cactattatg caactgcgta agatctgcaa ccacccctac atgttccagc


3421
acatcgagga gtccttttct gagcacttgg ggttcaccgg cggcatcgtg caaggattgg


3481
acctttaccg tgcctcaggg aaatttgaac ttcttgatag aattctaccc aaactccgtg


3541
caacgaacca taaagtgctc ctcttttgcc aaatgacctc cctcatgacc atcatggaag


3601
actactttgc ataccgtggc ttcaaatacc tcaggcttga tggaaccaca aaagcagaag


3661
accggggcat gctgttgaaa acctttaatg aacctggctc tgagtatttc attttcctgc


3721
tcagtacccg tgctgggggg ctgggcctga atctgcagtc agctgacact gtgatcatct


3781
ttgacagtga ctggaatccc caccaggacc tgcaagcaca ggatcgagcc catcgcattg


3841
gacagcagaa tgaggtgcgt gttcttcgcc tgtgcacggt caacagtgtg gaagagaaga


3901
tactggctgc tgccaaatac aaactcaatg tggatcagaa ggtgatccag gcaggcatgt


3961
tcgaccagaa gtcgtccagc catgagaggc gtgccttcct gcaggccatc ctggagcacg


4021
aggagcagga tgaggaggaa gatgaggtgc ctgatgatga gaccgtcaac cagatgattg


4081
cccggcacga agaagagttt gacctcttca tgcgcatgga cttggaccgc cggcgtgaag


4141
aagcccgcaa ccccaagcgg aagccacgcc tgatggaaga ggatgagctc ccatcctgga


4201
tcatcaagga tgatgccgag gtggagcggc tgacatgtga agaggaagag gagaagatgt


4261
tcggccgtgg ttctcgccac cgcaaggagg tagactacag cgactcactg acagagaagc


4321
agtggctcaa ggctatcgag gagggcacgc tggaggagat cgaagaggag gtccggcaga


4381
agaaatcttc acgtaagcgt aagcgagaca gcgaggccgg ctcctccacc ccgaccacca


4441
gcacccgcag ccgtgacaag gatgaggaga gcaagaagca gaagaaacgt gggcggccac


4501
ctgctgagaa gctgtcccca aacccaccta acctcaccaa gaagatgaag aagatcgtgg


4561
atgctgtgat caagtacaaa gacagcagca gtggacgtca gctcagcgag gtgttcatcc


4621
agctcccctc tcgcaaggag cttcctgagt actatgagct catccgaaag cctgtggact


4681
tcaagaagat caaggaacgc atccgaaacc acaagtaccg cagcctcaat gacctggaga


4741
aggatgtgat gctgctgtgc cagaacgctc agacgttcaa cctcgagggt tccctgatct


4801
atgaggactc catcgtcctg cagtctgtct tcaccagcgt acggcagaag attgagaagg


4861
aggacgacag tgaaggcgag gaaagcgagg aggaggagga gggcgaggag gaaggctccg


4921
agtctgagtc ccgctccgtc aaggtgaaga tcaagctggg ccgcaaggag aaggcccagg


4981
accgactcaa ggggggccgc cggcggccaa gccggggatc ccgggccaag ccggttgtga


5041
gtgacgatga cagtgaggag gagcaggagg aggaccgctc aggaagtggc agtgaggaag


5101
actgaaccag acattcctga gtcctgaccc cgaggcgctc gtcccagcca agatggagta


5161
gcccttagca gtgatgggta gcaccagatg tagtttcgaa cttggagaac tgtacacatg


5221
caatcttcca catttttagg cagagaagta taggcctgtc tgtcggccct ggcctggcct


5281
cgagtctcta ccagcattaa ctgtctagag aggggacctc ctgggagcac catccacctc


5341
cccaggcccc agtcactgta gctcagtgga tgcatgcgcg tgccggccgc tccttgtact


5401
gtatcttact ggacagggcc agctctccag gaggctcaca ggcccagcgg gtatgtcagt


5461
gtcactggag tcagacagta ataaattaaa gcaatgacaa gccaccactg gctccctgga


5521
ctccttgctg tcagcagtgg ctccggggcc acagagaaga aagaaagact tttaggaact


5581
gggtctaact tatgggcaaa gtacttgcct tgccaggtgt atgggttttg cattcccatc


5641
acccacacac cctaaacaag ccaagtcagt gagcttcaag ttagagcctc cacctcaatg


5701
tgtacgtgga aagcaatcaa agatgatgcc tagcatccac ctctggccct catgtgcaga


5761
tgtacacaca ctgaattaca tacacgggac acacacatcc acacggaggc agtccatgac


5821
ttgcactggg gagatggtac cataggcgaa agtgccacag gcacagggcc aggctaattt


5881
agtcctgcag tcctgtgctc ttaagatgaa ggcacaaaga ggaaccccag gcgctccaac


5941
tagcatgcca ggcagtgaca agaccctgct tcaaatgaat cagagcccac attcagtatt


6001
gccctcttac ccgatgcgat gcccatgccc tcacatatga atgtgtatat atacatacat


6061
acgtaaaata attctttttt aaattataga catttttgtg tgaatgtttt gcctgaatgt


6121
gtgtgtgtgt gtgtgtgtgt gtgtgtgtgt gtgtgtgtgt gtatcaagta cattcctaga


6181
gcctacagag gtcaagggag ggcattggat ctggaactgg agtcacatga ggctgtgagc


6241
aactgtgtgg gttcctgggc ctttgcaaca gcagttagta ctcttcacca ctgagccatt


6301
tctccaatct caaaaagaag cattctttta aatgaagact gaaataaata agtaggactt


6361
gccttgg










SEQ ID NO: 69 Mouse BRG1 Amino Acid Sequence Isoform B (NP_035547.2)








1
mstpdpplgg tprpgpspgp gpspgamlgp spgpspgsah smmgpspgpp saghpmptqg


61
pggypqdnmh qmhkpmesmh ekgmpddpry nqmkgmgmrs gahtgmappp spmdqhsqgy


121
psplggseha sspvpasgps sgpqmssgpg gapldgsdpq algqqnrgpt pfnqnqlhql


181
raqimaykml argqplpdhl qmavqgkrpm pgmqqqmptl pppsvsatgp gpgpgpgpgp


241
gpgpappnys rphgmggpnm pppgpsgvpp gmpgqppggp pkpwpegpma naaaptstpq


301
klippqptgr pspappavpp aaspvmppqt qspgqpaqpa plvplhqkqs ritpiqkprg


361
ldpveilqer eyrlqariah riqelenlpg slagdlrtka tielkalrll nfqrqlrqev


421
vvcmrrdtal etalnakayk rskrqslrea riteklekqq kieqerkrrq khqeylnsil


481
qhakdfreyh rsvtgklqkl tkavatyhan tereqkkene riekermrrl maedeegyrk


541
lidqkkdkrl ayllqqtdey vanltelvrq hkaaqvakek kkkkkkkkae naegqtpaig


601
pdgepldets qmsdlpvkvi hvesgkiltg tdapkagqle awlemnpgye vaprsdsees


661
gseeeeeeee eeqpqpaqpp tlpveekkki pdpdsddvse vdarhiiena kqdvddeygv


721
sqalarglqs yyavahavte rvdkqsalmv ngvlkqyqik glewlvslyn nnlngilade


781
mglgktiqti alitylmehk ringpfliiv plstlsnway efdkwapsvv kvsykgspaa


841
rrafvpqlrs gkfnvlltty eyiikdkhil akirwkymiv deghrmknhh ckltqvlnth


901
yvaprrlllt gtplqnklpe lwallnfllp tifkscstfe qwfnapfamt gekvdlneee


961
tiliirrlhk vlrpfllrrl kkeveaqlpe kveyvikcdm salqrvlyrh mqakgvlltd


1021
gsekdkkgkg gtktlmntim qlrkicnhpy mfqhieesfs ehlgftggiv qgldlyrasg


1081
kfelldrilp klratnhkvl lfcqmtslmt imedyfayrg fkylrldgtt kaedrgmllk


1141
tfnepgseyf ifllstragg lglnlqsadt viifdsdwnp hqdlqaqdra hrigqqnevr


1201
vlrlctvnsv eekilaaaky klnvdqkviq agmfdqksss herraflqai leheeqdeee


1261
devpddetvn qmiarheeef dlfmrmdldr rreearnpkr kprlmeedel pswiikddae


1321
verltceeee ekmfgrgsrh rkevdysdsl tekqwlkaie egtleeieee vrqkkssrkr


1381
krdseagsst pttstrsrdk deeskkqkkr grppaeklsp nppnltkkmk kivdavikyk


1441
dsssgrqlse vfiqlpsrke lpeyyelirk pvdfkkiker irnhkyrsln dlekdvmllc


1501
qnaqtfnleg sliyedsivl qsvftsvrqk iekeddsege eseeeeegee egsesesrsv


1561
kvkiklgrke kaqdrlkggr rrpsrgsrak pvvsdddsee eqeedrsgsg seed










SEQ ID NO: 70 Mouse BRG1 cDNA Sequence Variant 3 (NM_001174079.1, CDS:


from 261 to 5102)








1
ggcaagtgga gcgggtagac agggaggcgg gggcgcgcgg cgggcgcgtg cggtgggggg


61
gggtggcctg gcgaagccca gcgggcgcgc gcgcgaggct ttcccactcg cttggcagcg


121
gcggagacgg cttctttgtt tcctgaggag aagcgagacg cccactctgt ccccgacccc


181
tcgtggaggg ttgggggcgg cgccaggaag gttacggcgc cgttacctcc aggagaccag


241
tgcctgtagc tccagtaaag atgtctactc cagacccacc cttgggtggg actcctcggc


301
ctggtccttc cccaggccct ggtccttcac ctggtgcaat gctgggtcct agccctggcc


361
cctcaccagg ttctgcccac agcatgatgg ggccaagccc aggacctcct tcagcaggac


421
atcccatgcc cacccagggg cctggagggt acccccagga caacatgcat cagatgcaca


481
agcctatgga gtccatgcac gagaagggca tgcctgatga cccacgatac aaccagatga


541
aagggatggg catgcggtca ggggcccaca caggcatggc acctccacct agtcccatgg


601
accagcattc tcaaggttac ccctcacccc tcggcggctc tgaacatgcc tccagtcctg


661
tcccagccag tggcccatct tcaggccccc agatgtcctc tgggccagga ggggccccac


721
tagatggttc tgatccccag gccttgggac agcaaaacag aggcccaacc ccatttaacc


781
agaaccagct gcatcaactc agagctcaga taatggccta caagatgttg gccaggggcc


841
agccattgcc cgaccacctg cagatggccg tgcaaggcaa gcggccgatg cctggaatgc


901
agcaacagat gccaacacta cctccaccct cagtgtccgc cacaggaccc ggacctggac


961
ccggccctgg ccctggccct ggcccaggac cagcccctcc aaattacagt agaccccatg


1021
gtatgggagg gcccaacatg cctcccccag gaccctcagg tgtgcccccc gggatgcctg


1081
gtcagccgcc tggagggcct cccaagccat ggcctgaagg acccatggcc aatgctgctg


1141
cccccacaag caccccacag aagctgattc ctccgcaacc aacaggccgt ccttcacctg


1201
cacctcctgc tgtcccgcct gctgcctcac ctgtaatgcc accacaaaca cagtccccag


1261
ggcagccagc ccagcctgct ccattggtgc cactgcacca gaagcagagc cgaatcaccc


1321
ccatccagaa gccccgaggc cttgaccccg tggagatcct acaagagcgg gagtacaggc


1381
ttcaggctcg aatcgcacac agaattcagg aacttgaaaa cctccctggg tccctggctg


1441
gggaccttcg aaccaaagca accatcgaac tcaaggccct taggttgctg aacttccaga


1501
ggcagctgcg ccaggaggtg gtggtgtgca tgcgaagaga cacagccctg gagacagccc


1561
tcaatgccaa ggcctacaag cgcagcaaac gtcagtcact acgggaggcc cgcatcactg


1621
agaagttgga gaagcagcag aagattgaac aggagcgcaa gcgccgccag aagcaccagg


1681
agtacctcaa cagcattctg cagcatgcca aggacttcag ggagtatcac agatcagtca


1741
caggcaaact ccagaaactc accaaggctg tggccaccta ccatgccaac actgagcggg


1801
agcagaagaa agaaaatgag cgcattgaga aggagcgaat gcggaggctt atggctgaag


1861
atgaggaggg ctaccgcaaa ctcattgacc agaagaagga caagcgcctg gcctaccttc


1921
tgcagcagac agatgagtat gtggccaacc tcacagagct ggtgcggcag cacaaagctg


1981
cccaggttgc caaggagaag aagaagaaaa agaaaaagaa gaaggcagaa aatgctgaag


2041
gacagacacc tgctattgga ccagatggtg agcctctgga tgagaccagc cagatgagtg


2101
acctccctgt gaaggtgatc cacgtggaga gtggcaagat cctcactggc acagatgccc


2161
caaaagccgg gcagctggaa gcctggcttg aaatgaaccc agggtatgaa gtagccccca


2221
ggtcagacag tgaagaaagt ggctctgaag aggaggagga ggaggaggaa gaggagcagc


2281
ctcagcccgc acagccccct acactgcctg tggaagaaaa gaagaagatt ccagacccag


2341
acagcgatga tgtctctgag gtggacgccc gacacattat tgagaacgcc aagcaagatg


2401
tggacgatga gtacggtgtg tcccaggccc ttgctcgtgg cctgcagtct tactatgctg


2461
tggcccatgc agtcacagag agagtagata agcagtccgc ccccatggtc aacggtgtcc


2521
tcaaacagta ccagatcaag ggtttggagt ggctggcgtc cctgtacaac aacaacctga


2581
atggcatcct ggctgatgag atggggctgg ggaagaccat ccagaccatc gcgctcatca


2641
catacctcat ggagcacaag cgcatcaacg ggcctttcct catcatcgtg cctctctcga


2701
cactgtcaaa ctgggcgtat gaatttgaca agtgggcccc ctctgtggtg aaggtttctt


2761
acaagggctc tccagctgca aggcgagctt ttgtcccaca gctccgcagt gggaagttca


2821
acgtcttact gaccacctat gaatatatca tcaaagacaa gcatatccta gccaagatcc


2881
gctggaagta catgattgtg gatgaaggcc accgcatgaa aaaccaccac tgcaagttga


2941
cgcaggtcct taacacacac tacgtggccc ctcggcgcct gcttcttaca ggcacaccac


3001
tgcagaacaa gctaccggag ctctgggccc tgcttaactt cctgctcccc actatcttca


3061
agagctgcag caccttcgaa cagtggttca atgcaccctt tgccatgact ggagaaaagg


3121
tggacctgaa tgaagaggag actatcctca ttattcgtcg cctacacaaa gttctgcggc


3181
ccttcctgct gcggcggctc aagaaggaag ttgaagccca gctccctgag aaggtagagt


3241
atgtcatcaa atgcgacatg tcagccctgc agcgtgtgct gtaccgtcac atgcaggcca


3301
aaggtgtgct gctgactgac ggctccgaga aggacaagaa gggcaaaggt ggcaccaaga


3361
cactgatgaa cactattatg caactgcgta agatctgcaa ccacccctac atgttccagc


3421
acatcgagga gtccttttct gagcacttgg ggttcaccgg cggcatcgtg caaggattgg


3481
acctttaccg tgcctcaggg aaatttgaac ttcttgatag aattctaccc aaactccgtg


3541
caacgaacca taaagtgctc ctcttttgcc aaatgacctc cctcatgacc atcatggaag


3601
actactttgc ataccgtggc ttcaaatacc tcaggcttga tggaaccaca aaagcagaag


3661
accggggcat gctgttgaaa acctttaatg aacctggctc tgagtatttc attttcctgc


3721
tcagtacccg tgctgggggg ctgggcctga atctgcagtc agctgacact gtgatcatct


3781
ttgacagtga ctggaatccc caccaggacc tgcaagcaca ggatcgagcc catcgcattg


3841
gacagcagaa tgaggtgcgt gttcttcgcc tgtgcacggt caacagtgtg gaagagaaga


3901
tactggctgc tgccaaatac aaactcaatg tggatcagaa ggtgatccag gcaggcatgt


3961
tcgaccagaa gtcgtccagc catgagaggc gtgccttcct gcaggccatc ctggagcacg


4021
aggagcagga tgaggaggaa gatgaggtgc ctgatgatga gaccgtcaac cagatgattg


4081
cccggcacga agaagagttt gacctcttca tgcgcatgga cttggaccgc cggcgtgaag


4141
aagcccgcaa ccccaagcgg aagccacgcc tgatggaaga ggatgagctc ccatcctgga


4201
tcatcaagga tgatgccgag gtggagcggc tgacatgtga agaggaagag gagaagatgt


4261
tcggccgtgg ttctcgccac cgcaaggagg tagactacag cgactcactg acagagaagc


4321
agtggctcaa ggctatcgag gagggcacgc tggaggagat cgaagaggag gtccggcaga


4381
agaaatcttc acgtaagcgt aagcgagaca gcgaggccgg ctcctccacc ccgaccacca


4441
gcacccgcag ccgtgacaag gatgaggaga gcaagaagca gaagaaacgt gggcggccac


4501
ctgctgagaa gctgtcccca aacccaccta acctcaccaa gaagatgaag aagatcgtgg


4561
atgctgtgat caagtacaaa gacagcagtg gacgtcagct cagcgaggtg ttcatccagc


4621
tcccctctcg caaggagctt cctgagtact atgagctcat ccgaaagcct gtggacttca


4681
agaagatcaa ggaacgcatc cgaaaccaca agtaccgcag cctcaatgac ctggagaagg


4741
atgtgatgct gctgtgccag aacgctcaga cgttcaacct cgagggttcc ctgatctatg


4801
aggactccat cgtcctgcag tctgtcttca ccagcgtacg gcagaagatt gagaaggagg


4861
acgacagtga aggcgaggaa agcgaggagg aggaggaggg cgaggaggaa ggctccgagt


4921
ctgagtcccg ctccgtcaag gtgaagatca agctgggccg caaggagaag gcccaggacc


4981
gactcaaggg gggccgccgg cggccaagcc ggggatcccg ggccaagccg gttgtgagtg


5041
acgatgacag tgaggaggag caggaggagg accgctcagg aagtggcagt gaggaagact


5101
gaaccagaca tccctgagtc ctgaccccga ggcgctcgtc ccagccaaga tggagtagcc


5161
cttagcagtg atgggtagca ccagatgtag tttcgaactt ggagaactgt acacatgcaa


5221
tcttccacac ttttaggcag agaagtatag gcctgtctgt cggccctggc ctggcctcga


5281
gtctctacca gcattaactg tctagagagg ggacctcctg ggagcaccat ccacctcccc


5341
aggccccagt cactgtagct cagtggatgc atgcgcgtgc cggccgctcc ttgtactgta


5401
tcttactgga cagggccagc tctccaggag gctcacaggc ccagcgggta tgtcagtgtc


5461
actggagtca gacagtaata aattaaagca atgacaagcc accactggct ccctggactc


5521
cttgctgtca gcagtggctc cggggccaca gagaagaaag aaagactttt aggaactggg


5581
tctaacttat gggcaaagta cttgccttgc caggtgtatg ggttttgcat tcccatcacc


5641
cacacaccct aaacaagcca agtcagtgag cttcaagtta gagcctccac ctcaatgtgt


5701
acgtggaaag caatcaaaga tgatgcctag catccacctc tggccctcat gtgcagatgt


5761
acacacactg aactacatac acgggacaca cacatccaca cggaggcagt ccatgacttg


5821
cactggggag atggtaccat aggcgaaagt gccacaggca cagggccagg ctaatttagt


5881
cctgcagtcc tgtgctctta agatgaaggc acaaagagga accccaggcg ctccaactag


5941
catgccaggc agtgacaaga ccctgcttca aatgaatcag agcccacatt cagtattgcc


6001
ctcttacccg atgcgatgcc catgccctca catatgaatg tgtatatata catacatacg


6061
taaaataatt cttttttaaa ttatagacat ttttgtgtga atgttttgcc tgaatgtgtg


6121
tgtgtgtgtg tgtgtgtgtg tgtgtgtgtg tgtgtgtgta tcaagtacat tcctagagcc


6181
tacagaggtc aagggagggc attggatctg gaactggagt cacatgaggc tgtgagcaac


6241
tgtgtgggtt cctgggcctt tgcaacagca gttagtactc ttcaccactg agccatttct


6301
ccaatctcaa aaagaagcat tcttttaaat gaagactgaa ataaataagt aggacttgcc


6361
ttgg










SEQ ID NO: 71 Mouse BRG1 Amino Acid Sequence Isoform C (NP_001167550.1)








1
mstpdpplgg tprpgpspgp gpspgamlgp spgpspgsah smmgpspgpp saghpmptqg


61
pggypqdnmh qmhkpmesmh ekgmpddpry nqmkgmgmrs gahtgmappp spmdqhsqgy


121
psplggseha sspvpasgps sgpqmssgpg gapldgsdpq algqqnrgpt pfnqnqlhql


181
raqimaykml argqplpdhl qmavqgkrpm pgmqqqmptl pppsvsatgp gpgpgpgpgp


241
gpgpappnys rphgmggpnm pppgpsgvpp gmpgqppggp pkpwpegpma naaaptstpq


301
klippqptgr pspappavpp aaspvmppqt qspgqpaqpa plvplhqkqs ritpiqkprg


361
ldpveilqer eyrlqariah riqelenlpg slagdlrtka tielkalrll nfqrqlrqev


421
vvcmrrdtal etalnakayk rskrqslrea riteklekqq kieqerkrrq khqeylnsil


481
qhakdfreyh rsvtgklqkl tkavatyhan tereqkkene riekermrrl maedeegyrk


541
lidqkkdkrl ayllqqtdey vanltelvrq hkaaqvakek kkkkkkkkae naegqtpaig


601
pdgepldets qmsdlpvkvi hvesgkiltg tdapkagqle awlemnpgye vaprsdsees


661
gseeeeeeee eeqpqpaqpp tlpveekkki pdpdsddvse vdarhiiena kqdvddeygv


721
sqalarglqs yyavahavte rvdkqsalmv ngvlkqyqik glewlvslyn nnlngilade


781
mglgktiqti alitylmehk ringpfliiv plstlsnway efdkwapsvv kvsykgspaa


841
rrafvpqlrs gkfnvlltty eyiikdkhil akirwkymiv deghrmknhh ckltqvlnth


901
yvaprrlllt gtplqnklpe lwallnfllp tifkscstfe qwfnapfamt gekvdlneee


961
tiliirrlhk vlrpfllrrl kkeveaqlpe kveyvikcdm salqrvlyrh mqakgvlltd


1021
gsekdkkgkg gtktlmntim qlrkicnhpy mfqhieesfs ehlgftggiv qgldlyrasg


1081
kfelldrilp klratnhkvl lfcqmtslmt imedyfayrg fkylrldgtt kaedrgmllk


1141
tfnepgseyf ifllstragg lglnlqsadt viifdsdwnp hqdlqaqdra hrigqqnevr


1201
vlrlctvnsv eekilaaaky klnvdqkviq agmfdqksss herraflqai leheeqdeee


1261
devpddetvn qmiarheeef dlfmrmdldr rreearnpkr kprlmeedel pswiikddae


1321
verltceeee ekmfgrgsrh rkevdysdsl tekqwlkaie egtleeieee vrqkkssrkr


1381
krdseagsst pttstrsrdk deeskkqkkr grppaeklsp nppnltkkmk kivdavikyk


1441
dssgrqlsev fiqlpsrkel peyyelirkp vdfkkikeri rnhkyrslnd lekdvmllcq


1501
naqtfnlegs liyedsivlq svftsvrqki ekeddsegee seeeeegeee gsesesrsvk


1561
vkiklgrkek aqdrlkggrr rpsrgsrakp vvsdddseee qeedrsgsgs eed










SEQ ID NO: 72 Human BRM cDNA Sequence Variant 1 (NM_003070.4, CDS: from


223 to 4995)








1
gcgtcttccg gcgcccgcgg aggaggcgag ggtgggacgc tgggcggagc ccgagtttag


61
gaagaggagg ggacggctgt catcaatgaa gtcatattca taatctagtc ctctctccct


121
ctgtttctgt actctgggtg actcagagag ggaagagatt cagccagcac actcctcgcg


181
agcaagcatt actctactga ctggcagaga caggagaggt agatgtccac gcccacagac


241
cctggtgcga tgccccaccc agggccttcg ccggggcctg ggccttcccc tgggccaatt


301
cttgggccta gtccaggacc aggaccatcc ccaggttccg tccacagcat gatggggcca


361
agtcctggac ctccaagtgt ctcccatcct atgccgacga tggggtccac agacttccca


421
caggaaggca tgcatcaaat gcataagccc atcgatggta tacatgacaa ggggattgta


481
gaagacatcc attgtggatc catgaagggc actggtatgc gaccacctca cccaggcatg


541
ggccctcccc agagtccaat ggatcaacac agccaaggtt atatgtcacc acacccatct


601
ccattaggag ccccagagca cgtctccagc cctatgtctg gaggaggccc aactccacct


661
cagatgccac caagccagcc gggggccctc atcccaggtg atccgcaggc catgagccag


721
cccaacagag gtccctcacc tttcagtcct gtccagctgc atcagcttcg agctcagatt


781
ttagcttata aaatgctggc ccgaggccag cccctccccg aaacgctgca gcttgcagtc


841
caggggaaaa ggacgttgcc tggcttgcag caacaacagc agcagcaaca gcagcagcag


901
cagcagcagc agcagcagca gcagcagcaa cagcagccgc agcagcagcc gccgcaacca


961
cagacgcagc aacaacagca gccggccctt gttaactaca acagaccatc tggcccgggg


1021
ccggagctga gcggcccgag caccccgcag aagctgccgg tgcccgcgcc cggcggccgg


1081
ccctcgcccg cgccccccgc agccgcgcag ccgcccgcgg ccgcagtgcc cgggccctca


1141
gtgccgcagc cggccccggg gcagccctcg cccgtcctcc agctgcagca gaagcagagc


1201
cgcatcagcc ccatccagaa accgcaaggc ctggaccccg tggaaattct gcaagagcgg


1261
gaatacagac ttcaggcccg catagctcat aggatacaag aactggaaaa tctgcctggc


1321
tctttgccac cagatttaag aaccaaagca accgtggaac taaaagcact tcggttactc


1381
aatttccagc gtcagctgag acaggaggtg gtggcctgca tgcgcaggga cacgaccctg


1441
gagacggctc tcaactccaa agcatacaaa cggagcaagc gccagactct gagagaagct


1501
cgcatgaccg agaagctgga gaagcagcag aagattgagc aggagaggaa acgccgtcag


1561
aaacaccagg aatacctgaa cagcattttg caacatgcaa aagattttaa ggaatatcat


1621
cggtctgtgg ccggaaagat ccagaagctc tccaaagcag tggcaacttg gcatgccaac


1681
actgaaagag agcagaagaa ggagacagag cggattgaaa aggagagaat gcggcgactg


1741
atggctgaag atgaggaggg ttatagaaaa ctgattgatc aaaagaaaga caggcgttta


1801
gcttaccttt tgcagcagac cgatgagtat gtagccaatc tgaccaatct ggtttgggag


1861
cacaagcaag cccaggcagc caaagagaag aagaagagga ggaggaggaa gaagaaggct


1921
gaggagaatg cagagggtgg ggagtctgcc ctgggaccgg atggagagcc catagatgag


1981
agcagccaga tgagtgacct ccctgtcaaa gtgacccaca cagaaaccgg caaggttctg


2041
ttcggaccag aagcacccaa agcaagtcag ctggacgcct ggctggaaat gaatcctggt


2101
tatgaagttg cccctagatc tgacagtgaa gagagtgatt ctgattatga ggaagaggat


2161
gaggaagaag agtccagtag gcaggaaacc gaagagaaaa tactcctgga tccaaatagc


2221
gaagaagttt ctgagaagga tgctaagcag atcattgaga cagctaagca agacgtggat


2281
gatgaataca gcatgcagta cagtgccagg ggctcccagt cctactacac cgtggctcat


2341
gccatctcgg agagggtgga gaaacagtct gccctcctaa ttaatgggac cctaaagcat


2401
taccagctcc agggcctgga atggatggtt tccctgtata ataacaactt gaacggaatc


2461
ttagccgatg aaacggggct tggaaagacc atacagacca ttgcactcat cacttatctg


2521
atggagcaca aaagactcaa tggcccctat ctcatcattg ttcccctttc gactctatct


2581
aactggacat atgaatttga caaatgggct ccttctgtgg tgaagatttc ttacaagggt


2641
actcctgcca tgcgtcgctc ccttgtcccc cagctacgga gtggcaaatt caatgtcctc


2701
ttgactactt atgagtatat tataaaagac aagcacattc ttgcaaagat tcggtggaaa


2761
tacatgatag tggacgaagg ccaccgaatg aagaatcacc actgcaagct gactcaggtc


2821
ttgaacactc actatgtggc ccccagaagg atcctcttga ctgggacccc gctgcagaat


2881
aagctccctg aactctgggc cctcctcaac ttcctcctcc caacaatttt taagagctgc


2941
agcacatttg aacaatggtt caatgctcca tttgccatga ctggtgaaag ggtggactta


3001
aatgaagaag aaactatatt gatcatcagg cgtctacata aggtgttaag accattttta


3061
ctaaggagac tgaagaaaga agttgaatcc cagcttcccg aaaaagtgga atatgtgatc


3121
aagtgtgaca tgtcagctct gcagaagatt ctgtatcgcc atatgcaagc caaggggatc


3181
cttctcacag atggttctga gaaagataag aaggggaaag gaggtgctaa gacacttatg


3241
aacactatta tgcagttgag aaaaatctgc aaccacccat atatgtttca gcacattgag


3301
gaatcctttg ctgaacacct aggctattca aatggggtca tcaatggggc tgaactgtat


3361
cgggcctcag ggaagtttga gctgcttgat cgtattctgc caaaattgag agcgactaat


3421
caccgagctc tgcttttctg ccagatgaca tccctcatga ccatcatgga ggattatttt


3481
gcttttcgga acttccttta cctacgcctt gatggcacca ccaagtctga agatcgtgct


3541
gctttgctga agaaattcaa tgaacctgga tcccagtatt tcattttctt gctgagcaca


3601
agagctggtg gcctgggctt aaatcttcag gcagctgata cagtggtcat ctttgacagc


3661
gactggaatc ctcatcagga tctgcaggcc caagaccgag ctcaccgcat cgggcagcag


3721
aacgaggtcc gggtactgag gctctgtacc gtgaacagcg tggaggaaaa gatcctcgcg


3781
gccgcaaaat acaagctgaa cgtggatcag aaagtgatcc aggcgggcat gtttgaccaa


3841
aagtcttcaa gccacgagcg gagggcattc ctgcaggcca tcttggagca tgaggaggaa


3901
aatgaggaag aagatgaagt accggacgat gagactctga accaaatgat tgctcgacga


3961
gaagaagaat ttgacctttt tatgcggatg gacatggacc ggcggaggga agatgcccgg


4021
aacccgaaac ggaagccccg tttaatggag gaggatgagc tgccctcctg gatcattaag


4081
gatgacgctg aagtagaaag gctcacctgt gaagaagagg aggagaaaat atttgggagg


4141
gggtcccgcc agcgccgtga cgtggactac agtgacgccc tcacggagaa gcagtggcta


4201
agggccatcg aagacggcaa tttggaggaa atggaagagg aagtacggct taagaagcga


4261
aaaagacgaa gaaatgtgga taaagatcct gcaaaagaag atgtggaaaa agctaagaag


4321
agaagaggcc gccctcccgc tgagaaactg tcaccaaatc cccccaaact gacaaagcag


4381
atgaacgcta tcatcgatac tgtgataaac tacaaagata ggtgtaacgt ggagaaggtg


4441
cccagtaatt ctcagttgga aatagaagga aacagttcag ggcgacagct cagtgaagtc


4501
ttcattcagt taccttcaag gaaagaatta ccagaatact atgaattaat taggaagcca


4561
gtggatttca aaaaaataaa ggaaaggatt cgtaatcata agtaccggag cctaggcgac


4621
ctggagaagg atgtcatgct tctctgtcac aacgctcaga cgttcaacct ggagggatcc


4681
cagatctatg aagactccat cgtcttacag tcagtgttta agagtgcccg gcagaaaatt


4741
gccaaagagg aagagagtga ggatgaaagc aatgaagagg aggaagagga agatgaagaa


4801
gagtcagagt ccgaggcaaa atcagtcaag gtgaaaatta agctcaataa aaaagatgac


4861
aaaggccggg acaaagggaa aggcaagaaa aggccaaatc gaggaaaagc caaacctgta


4921
gtgagcgatt ttgacagcga tgaggagcag gatgaacgtg aacagtcaga aggaagtggg


4981
acggatgatg agtgatcagt atggaccttt ttccttggta gaactgaatt ccttcctccc


5041
ctgtctcatt tctacccagt gagttcattt gtcatatagg cactgggttg tttctatatc


5101
atcatcgtct ataaactagc tttaggatag tgccagacaa acatatgata tcatggtgta


5161
aaaaacacac acatacacaa atatttgtaa catattgtga ccaaatgggc ctcaaagatt


5221
cagattgaaa caaacaaaaa gcttttgatg gaaaatatgt gggtggatag tatatttcta


5281
tgggtgggtc taatttggta acggtttgat tgtgcctggt tttatcacct gttcagatga


5341
gaagattttt gtcttttgta gcactgataa ccaggagaag ccattaaaag ccactggtta


5401
ttttattttt catcaggcaa ttttcgaggt ttttatttgt tcggtattgt ttttttacac


5461
tgtggtacat ataagcaact ttaataggtg ataaatgtac agtagttaga tttcacctgc


5521
atatacattt ttccatttta tgctctatga tctgaacaaa agctttttga attgtataag


5581
atttatgtct actgtaaaca ttgcttaatt tttttgctct tgatttaaaa aaaagttttg


5641
ttgaaagcgc tattgaatat tgcaatctat atagtgtatt ggatggcttc ttttgtcacc


5701
ccgatctcct atgttaccaa tgtgtatcgt ctccttctcc ctaaagtgta cttaatcttt


5761
gctttctttg cacaatgtct ttggttgcaa gtcataagcc tgaggcaaat aaaattccag


5821
taatttcgaa gaatgtggtg ttggcgcttt cctaataaag aaataattta gcttgacaaa


5881
aaaaaaaaaa aa










SEQ ID NO: 73 Human BRM Amino Acid Sequence Isoform A (NP_003061.3)








1
msrptdpgam phpgpspgpg pspgpilgps pgpgpspgsv hsmmgpspgp psvshpmptm


61
gstdfpqegm hqmhkpidgi hdkgivedih cgsmkgtgmr pphpgmgppq spmdqhsqgy


121
msphpsplga pehvsspmsg ggptppqmpp sqpgalipgd pqamsqpnrg pspfspvqlh


181
qlraqilayk mlargqplpe tlqlavqgkr tlpglqqqqq qqqqqqqqqq qqqqqqqqpq


241
qqppqpqtqq qqqpalvnyn rpsgpgpels gpstpqklpv papggrpspa ppaaaqppaa


301
avpgpsvpqp apgqpspvlq lqqkqsrisp iqkpqgldpv eilqereyrl qariahriqe


361
lenlpgslpp dlrtkatvel kalrllnfqr qlrqevvacm rrdttletal nskaykrskr


421
qtlrearmte klekqqkieq erkrrqkhqe ylnsilqhak dfkeyhrsva gkiqklskav


481
atwhantere qkketeriek ermrrlmaed eegyrklidq kkdrrlayll qqtdeyvanl


S41
tnlvwehkqa qaakekkkrr rrkkkaeena eggesalgpd gepidessqm sdipvkvtht


601
etgkvlfgpe apkasqldaw lemnpgyeva prsdseesds dyeeedeeee ssrqeteeki


661
lldpnseevs ekdakqiiet akqdvddeys mqysargsqs yytvahaise rvekqsalli


721
ngtlkhyqlq glewmvslyn nnlngilade mglgktiqti alitylmehk rlngpyliiv


781
plstlsnwty efdkwapsvv kisykgtpam rrslvpqlrs gkfnvlltty eyiikdkhil


841
akirwkymiv deghrmknhh ckltqvlnth yvaprrillt gtplqnklpe lwallnfllp


901
tifkscstfe qwfnapfamt gervdlneee tiliirrlhk vlrpfllrrl kkevesqlpe


961
kveyvikcdm salqkilyrh mqakgilltd gsekdkkgkg gaktlmntim qlrkicnhpy


1021
mfqhieesfa ehlgysngvi ngaelyrasg kfelldrilp klratnhrvl lfcqmrslmt


1081
imedyfafrn flylrldgtt ksedraallk kfnepgsqyf ifllstragg lglnlqaadt


1141
vvifdsdwnp hqdlqaqdra hrigqqnevr vlrlctvnsv eekilaaaky klnvdqkviq


1201
agmfdqksss herraflqai leheeeneee devpddetln qmiarreeef dlfmrmdmdr


1261
rredarnpkr kprlmeedel pswiikddae verltceeee ekifgrgsrq rrdvdysdal


1321
tekqwlraie dgnleemeee vrlkkrkrrr nvdkdpaked vekakkrrgr ppaeklspnp


1381
pkltkqmnai idtvinykdr cnvekvpsns qleiegnssg rqlsevfiql psrkelpeyy


1441
elirkpvdfk kikerirnhk yrslgdlekd vmllchnaqt fnlegsqiye dsivlqsvfk


1501
sarqkiakee esedesneee eeedeeeses eaksvkvkik lnkkddkgrd kgkgkkrpnr


1561
gkakpvvsdf dsdeeqdere qsegsgtdde










SEQ ID NO: 74 Human BRM cDNA Sequence Variant 2 (NM_139045.3, CDS: from


223 to 4941)








1
gcgtcttccg gcgcccgcgg aggaggcgag ggtgggacgc tgggcggagc ccgagtttag


61
gaagaggagg ggacggctgt catcaatgaa gtcatattca taatctagtc ctctctccct


121
ctgtttctgt actctgggtg actcagagag ggaagagatt cagccagcac actccccgcg


181
agcaagcatt actctactga ctggcagaga caggagaggt agatgtccac gcccacagac


241
cctggtgcga tgccccaccc agggccttcg ccggggcctg ggccttcccc tgggccaatt


301
cttgggccta gtccaggacc aggaccatcc ccaggttccg tccacagcat gatggggcca


361
agtcctggac ctccaagtgt ctcccatcct atgccgacga tggggtccac agacttccca


421
caggaaggca tgcatcaaat gcataagccc atcgatggta tacatgacaa ggggattgta


481
gaagacatcc attgtggatc catgaagggc actggtatgc gaccacctca cccaggcatg


541
ggccctcccc agagtccaat ggatcaacac agccaagatt atatgtcacc acacccatct


601
ccattaggag ccccagagca cgtctccagc cctatgtctg gaggaggccc aactccacct


661
cagatgccac caagccagcc gggggccctc atcccaggtg atccgcaggc catgagccag


721
cccaacagag gtccctcacc tttcagtcct gtccagctgc atcagcttcg agctcagatt


781
ttagcttata aaatgctggc ccgaggccag cccctccccg aaacgctgca gcttgcagtc


841
caggggaaaa ggacgttgcc tggcttgcag caacaacagc agcagcaaca gcagcagcag


901
cagcagcagc agcagcagca gcagcagcaa cagcagccgc agcagcagcc gccgcaacca


961
cagacgcagc aacaacagca gccggccctt gttaactaca acagaccatc tggcccgggg


1021
ccggagctga gcggcccgag caccccgcag aagctgccgg tgcccgcgcc cggcggccgg


1081
ccctcgcccg cgccccccgc agccgcgcag ccgcccgcgg ccgcagtgcc cgggccctca


1141
gtgccgcagc cggccccggg gcagccctcg cccgtcctcc agctgcagca gaagcagagc


1201
cgcatcagcc ccatccagaa accgcaaggc ctggaccccg tggaaattct gcaagagcgg


1261
gaatacagac ttcaggcccg catagctcat aggatacaag aactggaaaa tctgcctggc


1321
tctttgccac cagatttaag aaccaaagca accgtggaac taaaagcact tcggttaccc


1381
aatttccagc gtcagctgag acaggaggtg gtggcctgca tgcgcaggga cacgaccctg


1441
gagacggctc tcaactccaa agcatacaaa cggagcaagc gccagactct gagagaagct


1501
cgcatgaccg agaagctgga gaagcagcag aagattgagc aggagaggaa acgccgtcag


1561
aaacaccagg aatacctgaa cagtattttg caacatgcaa aagattttaa ggaatatcat


1621
cggtctgtgg ccggaaagat ccagaagctc tccaaagcag tggcaacttg gcatgccaac


1681
actgaaagag agcagaagaa ggagacagag cggattgaaa aggagagaat gcggcgactg


1741
atggctgaag atgaggaggg ttatagaaaa ctgattgatc aaaagaaaga caggcgttta


1801
gcttaccttt tgcagcagac cgatgagtat gtagccaatc tgaccaatct ggtttgggag


1861
cacaagcaag cccaggcagc caaagagaag aagaagagga ggaggaggaa gaagaaggct


1921
gaggagaatg cagagggtgg ggagtctgcc ctgggaccgg atggagagcc catagatgag


1981
agcagccaga tgagtgacct ccctgtcaaa gtgactcaca cagaaaccgg caaggttctg


2041
ttcggaccag aagcacccaa agcaagtcag ctggacgcct ggctggaaat gaatcctggt


2101
tatgaagttg cccctagatc tgacagtgaa gagagtgatt ctgattatga ggaagaggat


2161
gaggaagaag agtccagtag gcaggaaacc gaagagaaaa tactcctgga tccaaatagc


2221
gaagaagttt ctgagaagga tgctaagcag atcattgaga cagctaagca agacgtggat


2281
gatgaataca gcatgcagta cagtgccagg ggctcccagt cctactacac cgtggctcat


2341
gccatctcgg agagggtgga gaaacagtct gccctcctaa ttaatgggac cctaaagcat


2401
taccagctcc agggcctgga atggatggtt tccctgtata acaacaactt gaacggaatc


2461
ttagccgatg aaatggggct tggaaagacc atacagacca ttgcactcat cacttatctg


2521
atggagcaca aaagactcaa tggcccctat ctcatcattg ttcccctttc gactctatct


2581
aactggacat atgaatttga caaatgggct ccttctgtgg tgaagatttc ttacaagggt


2641
actcctgcca tgcgtcgctc ccttgtcccc cagctacgga gtggcaaatt caatgtcctc


2701
ttgactactt atgagtatat tataaaagac aagcacattc ttgcaaagat tcggtggaaa


2761
tacatgatag tggacgaagg ccaccgaatg aagaatcacc actgcaagct gactcaggtc


2821
ttgaacactc actatgtggc ccccagaagg atcctcttga ctgggacccc gctgcagaat


2881
aagctccctg aactctgggc cctcctcaac ttcctcctcc caacaatttt taagagctgc


2941
agcacatttg aacaatggtt caatgctcca tttgccatga ctggtgaaag ggtggactta


3001
aatgaagaag aaactatatt gatcatcagg cgtctacata aggtgttaag accattttta


3061
ctaaggagac tgaagaaaga agttgaatcc cagcttcccg aaaaagtgga atatgtgatc


3121
aagtgtgaca tgtcagctct gcagaagatt ctgtatcgcc atatgcaagc caaggggatc


3181
cttctcacag atggttctga gaaagataag aaggggaaag gaggtgctaa gacacttatg


3241
aacactatta tgcagttgag aaaaatctgc aaccacccat atatgtttca gcacattgag


3301
gaatcctttg ctgaacacct aggctattca aatggggtca tcaatggggc tgaactgtat


3361
cgggcctcag ggaagtttga gctgcttgat cgtatcctgc caaaattgag agcgactaat


3421
caccgagtgc tgcttttctg ccagatgaca tctctcatga ccatcatgga ggattatttt


3481
gcttttcgga acttccttta cctacgcctt gatggcacca ccaagtctga agatcgtgct


3541
gctttgctga agaaattcaa tgaacctgga tcccagtatt tcattttctt gctgagcaca


3601
agagctggtg gcctgggctt aaatcttcag gcagctgata cagtggtcat ctttgacagc


3661
gactggaatc ctcatcagga tctgcaggcc caagaccgag ctcaccgcat cgggcagcag


3721
aacgaggtcc gggtactgag gctctgtacc gtgaacagcg tggaggaaaa gatcctcgcg


3781
gccgcaaaat acaagctgaa cgtggatcag aaagtgatcc aggcgggcat gtttgaccaa


3841
aagtcttcaa gccacgagcg gagggcattc ccgcaggcca tcttggagca tgaggaggaa


3901
aatgaggaag aagatgaagt accggacgat gagactctga accaaatgat tgctcgacga


3961
gaagaagaat ttgacctttt tatgcggatg gacatggacc ggcggaggga agatgcccgg


4021
aacccgaaac ggaagccccg tttaatggag gaggatgagc tgcccccctg gatcattaag


4081
gatgacgctg aagtagaaag gctcacctgt gaagaagagg aggagaaaat atttgggagg


4141
gggtcccgcc agcgccgtga cgtggactac agtgacgccc tcacggagaa gcagtggcta


4201
agggccatcg aagacggcaa tttggaggaa atggaagagg aagtacggct taagaagcga


4261
aaaagacgaa gaaatgtgga taaagatcct gcaaaagaag atgtggaaaa agctaagaag


4321
agaagaggcc gccctcccgc tgagaaactg tcaccaaatc cccccaaact gacaaagcag


4381
acgaacgcta tcatcgatac tgtgataaac tacaaagata gttcagggcg acagctcagt


4441
gaagtcttca ttcagttacc ttcaaggaaa gaattaccag aatactatga attaattagg


4501
aagccagtgg atttcaaaaa aataaaggaa aggattcgta atcataagta ccggagccta


4561
ggcgacctgg agaaggatgt catgcttctc tgtcacaacg ctcagacgtt caacctggag


4621
ggatcccaga tctatgaaga ctccatcgtc ttacagtcag tgtttaagag tgcccggcag


4681
aaaattgcca aagaggaaga gagtgaggat gaaagcaatg aagaggagga agaggaagat


4741
gaagaagagt cagagtccga ggcaaaatca gtcaaggtga aaattaagct caataaaaaa


4801
gatgacaaag gccgggacaa agggaaaggc aagaaaaggc caaatcgagg aaaagccaaa


4861
cctgtagtga gcgatttcga cagcgatgag gagcaggatg aacgtgaaca gtcagaagga


4921
agtgggacgg atgatgagtg atcagtatgg acctttttcc ttggtagaac tgaattcctt


4981
cctcccctgt ctcatttcta cccagtgagt tcatttgtca tataggcact gggttgtttc


5041
tatatcatca tcgtctataa actagcttta ggatagtgcc agacaaacat atgatatcat


5101
ggtgtaaaaa acacacacat acacaaatat ttgcaacata ttgtgaccaa atgggcctca


5161
aagattcaga ttgaaacaaa caaaaagctt ttgatggaaa atatgtgggt ggatagtata


5221
tttctatggg tgggtctaat ttggtaacgg tttgattgtg cctggtttta tcacctgttc


5281
agatgagaag atttttgtct tttgtagcac tgataaccag gagaagccat taaaagccac


5341
tggttatttt atttttcatc aggcaatttt cgaggttttt atttgttcgg tattgctttt


5401
ttacactgtg gtacatataa gcaactttaa taggtgataa atgtacagta gtcagatttc


5461
acctgcatat acatttttcc attttatgct ctatgatctg aacaaaagct ttttgaactg


5521
tataagattt atgtctactg taaacattgc ttaatttttt tgctcttgat ttaaaaaaaa


5581
gctttgttga aagcgctatt gaatattgca atctatatag tgtattggat ggcttctttt


5641
gtcaccctga tctcctatgt taccaatgtg tatcgtctcc ttctccctaa agtgtactta


5701
atctttgctt tctttgcaca atgtctttgg ttgcaagtca taagcctgag gcaaataaaa


5761
ttccagtaat ttcgaagaat gtggtgttgg tgctttccta ataaagaaat aatttagctt


5821
gacaaaaaaa aaaaaaaa










SEQ ID NO: 75 Human BRM Amino Acid Sequence Isoform B (NP_620614.2)








1
mstptdpgam phpgpspgpg pspgpilgps pgpgpspgsv hsmmgpspgp psvshpmptm


61
gstdfpqegm hqmhkpidgi hdkgivedih cgsmkgtgmr pphpgmgppq spmdqhsqgy


121
msphpsplga pehvsspmsg ggptppqmpp sqpgalipgd pqamsqpnrg pspfspvqlh


181
qlraqilayk mlargqplpe tlqlavqgkr tlpglqqqqq qqqqqqqqqq qqqqqqqqpq


241
qqppqpqtqq qqqpalvnyn rpsgpgpels gpstpqklpv papggrpspa ppaaaqppaa


301
avpgpsvpqp apgqpspvlq lqqkqsrisp iqkpqgldpv eilqereyrl qariahriqe


361
lenlpgslpp dlrtkatvel kalrllnfqr qlrqevvacm rrdttletal nskaykrskr


421
qtlrearmte klekqqkieq erkrrqkhqe ylnsilqhak dfkeyhrsva gkiqklskav


481
atwhantere qkketeriek ermrrlmaed eegyrklidq kkdrrlayll qqtdeyvanl


541
tnlvwehkqa qaakekkkrr rrkkkaeena eggesalgpd gepidessqm sdlpvkvtht


601
etgkvlfgpe apkasqldaw lemnpgyeva prsdseesds dyeeedeeee ssrqeteeki


661
lldpnseevs ekdakqiiet akqdvddeys mqysargsqs yytvahaise rvekqsalli


721
ngtlkhyqlq glewmvslyn nnlngilade mglgktiqti alitylmehk rlngpyliiv


781
plstlsnwty etdkwapsvv kisykgtpam rrslvpqlrs gkfnvlltty eyiikdkhil


841
akirwkymiv deghrmknhh ckltqvlnth yvaprrillt gtplqnklpe lwallnfllp


901
tifkscstfe qwfnapfamt gervdlneee tiliirrlhk vlrpfllrrl kkevesqlpe


961
kveyvikcdm salqkilyrh mqakgilltd gsekdkkgkg gaktlmntim qlrkicnhpy


1021
mfqhieesfa ehlgysngvi ngaelyrasg kfelldrilp klratnhrvl lfcqmtslmt


1081
imedyfafrn flylrldgtt ksedraallk kfnepgsqyf ifllstragg lglnlqaadt


1141
vvifdsdwnp hqdlqaqdra hrigqqnevr vlrlctvnsv eekilaaaky klnvdqkviq


1201
agmfdqksss herraflqai leheeeneee devpddetln qmiarreeef dlfmrmdmdr


1261
rredarnpkr kprlmeedel pswiikddae verltceeee ekifgrgsrq rrdvdysdal


1321
tekqwlraie dgnleemeee vrlkkrkrrr nvdkdpaked vekakkrrgr ppaeklspnp


1381
pkltkqmnai idtvinykds sgrqlsevfi qlpsrkelpe yyelirkpvd fkkikerirn


1441
hkyrslgdle kdvmllchna qtfnlegsqi yedsivlqsv fksarqkiak eeesedesne


1501
eeeeedeees eseaksvkvk iklnkkddkg rdkgkgkkrp nrgkakpvvs dfdsdeeqde


1561
reqsegsgtd de










SEQ ID NO: 76 Human BRM cDNA Sequence Variant 3 (NM_001289396.1, CDS:


from 210 to 4982)








1
tcagaagaaa gccccgagat cacagagacc cggcgagatc acagagaccc ggcctgaagg


61
aacgtggaaa gaccaatgta cctgttttga ccggttgcct ggagcaagaa gttccagttg


121
gggagaattt tcagaagata aagtcggaga ttgtggaaag acttgacttg cagcattact


181
ctactgactg gcagagacag gagaggtaga tgtccacgcc cacagaccct ggtgcgatgc


241
cccacccagg gccttcgccg gggcctgggc cttcccctgg gccaattctt gggcctagtc


301
caggaccagg accatcccca ggttccgtcc acagcatgat ggggccaagt cctggacctc


361
caagtgtctc ccatcctatg ccgacgatgg ggtccacaga cttcccacag gaaggcatgc


421
atcaaatgca taagcccatc gatggtatac atgacaaggg gattgtagaa gacatccatt


481
gtggatccat gaagggcact ggtatgcgac cacctcaccc aggcatgggc cctccccaga


541
gtccaatgga tcaacacagc caaggttata tgtcaccaca cccatctcca ttaggagccc


601
cagagcacgt ccccagccct atgtctggag gaggcccaac tccacctcag atgccaccaa


661
gccagccggg ggccctcatc ccaggtgatc cgcaggccat gagccagccc aacagaggtc


721
cctcaccttt cagtcctgtc cagctgcatc agcttcgagc tcagatttta gcttataaaa


781
tgctggcccg aggccagccc ctccccgaaa cgctgcagct tgcagtccag gggaaaagga


841
cgttgcctgg cttgcagcaa caacagcagc agcaacagca gcagcagcag cagcagcagc


901
agcagcagca gcagcaacag cagccgcagc agcagccgcc gcaaccacag acgcagcaac


961
aacagcagcc ggcccttgtt aactacaaca gaccatctgg cccggggccg gagctgagcg


1021
gcccgagcac cccgcagaag ctgccggtgc ccgcgcccgg cggccggccc tcgcccgcgc


1081
cccccgcagc cgcgcagccg cccgcggccg cagtgcccgg gccctcagtg ccgcagccgg


1141
ccccggggca gccctcgccc gtcctccagc tgcagcagaa gcagagccgc atcagcccca


1201
tccagaaacc gcaaggcctg gaccccgtgg aaattctgca agagcgggaa tacagacttc


1261
aggcccgcat agctcatagg atacaagaac tggaaaatcc gcctggctct ttgccaccag


1321
atttaagaac caaagcaacc gtggaactaa aagcacttcg gttactcaat ttccagcgtc


1381
agctgagaca ggaggtggtg gcctgcatgc gcagggacac gaccctggag acggctctca


1441
actccaaagc atacaaacgg agcaagcgcc agactctgag agaagctcgc atgaccgaga


1501
agctggagaa gcagcagaag attgagcagg agaggaaacg ccgtcagaaa caccaggaat


1561
acctgaacag tattttgcaa catgcaaaag attttaagga atatcatcgg tctgtggccg


1621
gaaagatcca gaagctctcc aaagcagtgg caacttggca tgccaacact gaaagagagc


1681
agaagaagga gacagagcgg attgaaaagg agagaatgcg gcgactgatg gctgaagatg


1741
aggagggtta tagaaaactg attgatcaaa agaaagacag gcgtttagct taccttttgc


1801
agcagaccga tgagtatgta gccaatctga ccaatctggt ttgggagcac aagcaagccc


1861
aggcagccaa agagaagaag aagaggagga ggaggaagaa gaaggctgag gagaatgcag


1921
agggtgggga gtctgccctg ggaccggatg gagagcccat agatgagagc agccagatga


1981
gtgacctccc tgtcaaagtg actcacacag aaaccggcaa ggttctgttc ggaccagaag


2041
cacccaaagc aagtcagctg gacgcctggc tggaaatgaa tcctggttat gaagttgccc


2101
ctagatctga cagtgaagag agtgattctg attatgagga agaggatgag gaagaagagt


2161
ccagtaggca ggaaaccgaa gagaaaatac tcctggatcc aaatagcgaa gaagtttctg


2221
agaaggatgc taagcagatc attgagacag ctaagcaaga cgtggacgat gaatacagca


2281
tgcagtacag tgccaggggc tcccagtcct actacaccgt ggctcatgcc atctcggaga


2341
gggtggagaa acagtctgcc ctcctaatta atgggaccct aaagcattac cagctccagg


2401
gcctggaatg gatggtttcc ctgtataata acaacttgaa cggaatctta gccgatgaaa


2461
tggggcttgg aaagaccata cagaccattg cactcatcac ttatctgatg gagcacaaaa


2521
gactcaatgg cccctatctc atcattgttc ccctttcgac tctatctaac tggacatacg


2581
aatttgacaa atgggctcct tctgtggtga agatttctta caagggtact cctgccatgc


2641
gtcgctccct tgtcccccag ctacggagtg gcaaattcaa tgtcctcttg actacttatg


2701
agtatattat aaaagacaag cacattcttg caaagattcg gtggaaatac atgatagtgg


2761
acgaaggcca ccgaatgaag aatcaccact gcaagctgac tcaggtcttg aacactcact


2821
atgtggcccc cagaaggatc ctcttgactg ggaccccgct gcagaataag ctccctgaac


2881
tctgggccct cctcaacttc ctcctcccaa caatttttaa gagctgcagc acatttgaac


2941
aatggttcaa tgctccattt gccatgactg gtgaaagggt ggacttaaat gaagaagaaa


3001
ctatattgat catcaggcgt ctacataagg tgttaagacc atttttacta aggagactga


3061
agaaagaagt tgaatcccag cttcccgaaa aagtggaata tgtgatcaag tgtgacatgt


3121
cagctctgca gaagattctg tatcgccata tgcaagccaa ggggatcctt ctcacagatg


3181
gttctgagaa agataagaag gggaaaggag gtgctaagac acttatgaac actattatgc


3241
agttgagaaa aatctgcaac cacccatata tgtttcagca cattgaggaa tcctttgctg


3301
aacacctagg ctattcaaat ggggtcatca atggggctga actgtatcgg gcctcaggga


3361
agtttgagct gcttgatcgt attctgccaa aattgagagc gactaatcac cgagtgctgc


3421
ttttctgcca gatgacatct ctcatgacca tcatggagga ttattttgct tttcggaact


3481
tcctttacct acgccttgat ggcaccacca agtctgaaga tcgtgctgct ttgctgaaga


3541
aattcaatga acctggatcc cagtatttca ttttcttgct gagcacaaga gctggtggcc


3601
tgggcttaaa tcttcaggca gctgatacag tggtcatctt tgacagcgac tggaatcctc


3661
atcaggatct gcaggcccaa gaccgagctc accgcatcgg gcagcagaac gaggtccggg


3721
tactgaggct ctgtaccgtg aacagcgtgg aggaaaagat cctcgcggcc gcaaaataca


3781
agctgaacgt ggatcagaaa gtgatccagg cgggcatgtt tgaccaaaag tcttcaagcc


3841
acgagcggag ggcattcctg caggccatct tggagcatga ggaggaaaat gaggaagaag


3901
atgaagtacc ggacgatgag actctgaacc aaatgattgc tcgacgagaa gaagaatttg


3961
acctttttat gcggatggac atggaccggc ggagggaaga tgcccggaac ccgaaacgga


4021
agccccgttt aatggaggag gatgagctgc cctcccggat cattaaggat gacgctgaag


4081
tagaaaggct cacctgtgaa gaagaggagg agaaaatatt tgggaggggg tcccgccagc


4141
gccgtgacgt ggactacagt gacgccctca cggagaagca gtggctaagg gccatcgaag


4201
acggcaattt ggaggaaatg gaagaggaag tacggcttaa gaagcgaaaa agacgaagaa


4261
atgtggataa agatcctgca aaagaagatg tggaaaaagc taagaagaga agaggccgcc


4321
ctcccgctga gaaactgtca ccaaatcccc ccaaactgac aaagcagatg aacgctatca


4381
tcgatactgt gataaactac aaagataggt gtaacgtgga gaaggtgccc agtaattctc


4441
agttggaaat agaaggaaac agttcagggc gacagctcag tgaagtcttc attcagttac


4501
cttcaaggaa agaattacca gaatactatg aattaattag gaagccagtg gatttcaaaa


4561
aaataaagga aaggattcgt aatcataagt accggagcct aggcgacctg gagaaggatg


4621
tcatgcttct ctgtcacaac gctcagacgt tcaacctgga gggatcccag atctatgaag


4681
actccatcgt cttacagtca gtgtttaaga gtgcccggca gaaaattgcc aaagaggaag


4741
agagtgagga tgaaagcaat gaagaggagg aagaggaaga tgaagaagag tcagagtccg


4801
aggcaaaatc agtcaaggtg aaaattaagc tcaataaaaa agatgacaaa ggccgggaca


4861
aagggaaagg caagaaaagg ccaaatcgag gaaaagccaa acctgtagtg agcgattttg


4921
acagcgatga ggagcaggat gaacgtgaac agtcagaagg aagtgggacg gatgatgagt


4981
gatcagcatg gacctttttc cttggtagaa ctgaattcct tcctcccctg tctcatttct


5041
acccagtgag ttcatttgtc atataggcac tgggttgttt ctatatcatc atcgtctata


5101
aactagcttt aggatagtgc cagacaaaca tatgatatca tggtgtaaaa aacacacaca


5161
tacacaaata tttgtaacat attgtgacca aatgggcctc aaagattcag attgaaacaa


5221
acaaaaagct tttgatggaa aatatgtggg tggatagtat atttctatgg gtgggtctaa


5281
tttggtaacg gtttgattgt gcctggtttt atcacctgtt cagatgagaa gatttttgtc


5341
ttttgtagca ctgataacca ggagaagcca ttaaaagcca ctggttattt tatttttcat


5401
caggcaattt tcgaggtttt tatttgttcg gtattgtttt tttacactgt ggtacatata


5461
agcaacttta ataggtgata aatgtacagt agttagattt cacctgcata tacatttttc


5521
cattttatgc tctatgatct gaacaaaagc tttttgaatt gtataagatt tatgtctact


5581
gtaaacattg cttaattttt ttgctcttga tttaaaaaaa agttttgttg aaagcgctat


5641
tgaatattgc aatctatata gtgtattgga tggcttcttt tgtcaccctg atctcctatg


5701
ttaccaatgt gtatcgtctc cttctcccta aagtgtactt aatctttgct ttctttgcac


5761
aatgtctttg gttgcaagtc ataagcctga ggcaaataaa attccagtaa tttcgaagaa


5821
tgtggtgttg gtgctttcct aataaagaaa taatttagct tgacaaaaaa aaaaaaaaa










SEQ ID NO: 77 Human BRM cDNA Sequence Variant 4 (NM_001289397.1, CDS:


from 223 to 4767)








1
gcgtcttccg gcgcccgcgg aggaggcgag ggtgggacgc tgggcggagc ccgagtttag


61
gaagaggagg ggacggctgt catcaatgaa gtcatattca taatctagtc ctctctccct


121
ctgtttctgt actctgggtg actcagagag ggaagagatt cagccagcac actcctcgcg


181
agcaagcatt actctactga ctggcagaga caggagaggt agatgtccac gcccacagac


241
cctggtgcga tgccccaccc agggccttcg ccggggcctg ggccttcccc tgggccaatt


301
cttgggccta gtccaggacc aggaccatcc ccaggttccg tccacagcat gatggggcca


361
agtcctggac ctccaagtgt ctcccatcct atgccgacga tggggtccac agacttccca


421
caggaaggca tgcaccaaat gcataagccc atcgatggta tacatgacaa ggggattgta


481
gaagacatcc attgtggatc catgaagggc actggtatgc gaccacctca cccaggcatg


541
ggccctcccc agagtccaat ggatcaacac agccaaggtt acatgtcacc acacccatct


601
ccattaggag ccccagagca cgtctccagc cctatgtctg gaggaggccc aactccacct


661
cagatgccac caagccagcc gggggccctc accccaggtg atccgcaggc catgagccag


721
cccaacagag gtccctcacc tttcagtcct gtccagctgc atcagcttcg agctcagatt


781
ttagcttata aaatgctggc ccgaggccag cccctccccg aaacgctgca gcttgcagtc


841
caggggaaaa ggacgttgcc tggcttgcag caacaacagc agcagcaaca gcagcagcag


901
cagcagcagc agcagcagca gcagcagcaa cagcagccgc agcagcagcc gccgcaacca


961
cagacgcagc aacaacagca gccggccctt gttaactaca acagaccatc tggcccgggg


1021
ccggagctga gcggcccgag caccccgcag aagctgccgg tgcccgcgcc cggcggccgg


1081
ccctcgcccg cgccccccgc agccgcgcag ccgcccgcgg ccgcagtgcc cgggccctca


1141
gtgccgcagc cggccccggg gcagccctcg cccgtcctcc agctgcagca gaagcagagc


1201
cgcatcagcc ccatccagaa accgcaaggc ctggaccccg tggaaactct gcaagagcgg


1261
gaatacagac ttcaggcccg catagctcat aggatacaag aactggaaaa tctgcctggc


1321
tctttgccac cagatttaag aaccaaagca accgtggaac taaaagcact tcggttactc


1381
aatttccagc gtcagctgag acaggaggtg gtggcctgca tgcgcaggga cacgaccctg


1441
gagacggctc tcaactccaa agcatacaaa cggagcaagc gccagactct gagagaagct


1501
cgcatgaccg agaagctgga gaagcagcag aagattgagc aggagaggaa acgccgtcag


1561
aaacaccagg aatacctgaa cagtattttg caacatgcaa aagattttaa ggaatatcat


1621
cggtctgtgg ccggaaagat ccagaagctc tccaaagcag tggcaacttg gcatgccaac


1681
actgaaagag agcagaagaa ggagacagag cggattgaaa aggagagaat gcggcgactg


1741
atggctgaag atgaggaggg ttatagaaaa ctgattgatc aaaagaaaga caggcgttta


1801
gcttaccttt tgcagcagac cgatgagtat gtagccaatc tgaccaatct ggtttgggag


1861
cacaagcaag cccaggcagc caaagagaag aagaagagga ggaggaggaa gaagaaggct


1921
gaggagaatg cagagggtgg ggagtctgcc ctgggaccgg atggagagcc catagatgag


1981
agcagccaga tgagtgacct ccctgtcaaa gtgactcaca cagaaaccgg caaggttctg


2041
ttcggaccag aagcacccaa agcaagtcag ctggacgcct ggctggaaat gaatcctggt


2101
tatgaagttg cccctagatc tgacagtgaa gagagtgatt ctgattatga ggaagaggat


2161
gaggaagaag agtccagtag gcaggaaacc gaagagaaaa tactcctgga tccaaatagc


2221
gaagaagttt ctgagaagga tgctaagcag atcattgaga cagctaagca agacgtggat


2281
gatgaataca gcatgcagta cagtgccagg ggctcccagt cctactacac cgtggctcat


2341
gccatctcgg agagggtgga gaaacagtct gccctcctaa ttaatgggac cctaaagcat


2401
taccagctcc agggcctgga atggatggtt tccctgtata ataacaactt gaacggaatc


2461
ttagccgatg aaatggggct tggaaagacc atacagacca ttgcactcat cacttatctg


2521
atggagcaca aaagactcaa tggcccctat ctcatcattg ttcccctttc gactctatct


2581
aactggacat atgaatttga caaatgggct ccttctgtgg tgaagatttc ttacaagggt


2641
actcctgcca tgcgtcgctc ccttgtcccc cagctacgga gtggcaaatt caatgtcctc


2701
ttgactactt atgagtatat tataaaagac aagcacattc ttgcaaagat tcggtggaaa


2761
tacatgatag tggacgaagg ccaccgaatg aagaatcacc actgcaagct gactcaggtg


2821
gacttaaatg aagaagaaac tatattgatc atcaggcgtc tacataaggt gttaagacca


2881
tttttactaa ggagactgaa gaaagaagtt gaatcccagc ttcccgaaaa agtggaatat


2941
gtgatcaagt gtgacatgtc agctctgcag aagattctgt atcgccatat gcaagccaag


3001
gggatccttc tcacagatgg ttctgagaaa gataagaagg ggaaaggagg tgctaagaca


3061
cttatgaaca ccattatgca gttgagaaaa atctgcaacc acccatatat gtttcagcac


3121
attgaggaat cctttgctga acacctaggc tattcaaatg gggtcatcaa tggggctgaa


3181
ctgtatcggg cctcagggaa gtttgagctg cttgatcgta ttctgccaaa attgagagcg


3241
actaatcacc gagtgctgct tttctgccag atgacatctc tcatgaccat catggaggat


3301
tattttgctt ttcggaactt cctttaccta cgccttgatg gcaccaccaa gtctgaagat


3361
cgtgctgctt tgctgaagaa attcaatgaa cctggatccc agtatttcat tttcttgctg


3421
agcacaagag ctggtggcct gggcttaaat cttcaggcag ctgatacagt ggtcatcttt


3481
gacagcgact ggaatcctca tcaggatctg caggcccaag accgagctca ccgcatcggg


3541
cagcagaacg aggtccgggt actgaggctc tgtaccgtga acagcgtgga ggaaaagatc


3601
ctcgcggccg caaaatacaa gctgaacgtg gatcagaaag tgatccaggc gggcatgttt


3661
gaccaaaagt cttcaagcca cgagcggagg gcattcctgc aggccatctt ggagcatgag


3721
gaggaaaatg aggaagaaga tgaagtaccg gacgatgaga ctctgaacca aatgattgct


3781
cgacgagaag aagaatttga cctttttatg cggatggaca tggaccggcg gagggaagat


3841
gcccggaacc cgaaacggaa gccccgttta atggaggagg atgagctgcc ctcctggatc


3901
attaaggatg acgctgaagt agaaaggctc acctgtgaag aagaggagga gaaaatattt


3961
gggagggggt cccgccagcg ccgtgacgtg gactacagtg acgccctcac ggagaagcag


4021
tggctaaggg ccatcgaaga cggcaatttg gaggaaatgg aagaggaagt acggcttaag


4081
aagcgaaaaa gacgaagaaa tgtggataaa gatcctgcaa aagaagatgt ggaaaaagct


4141
aagaagagaa gaggccgccc tcccgctgag aaactgtcac caaatccccc caaactgaca


4201
aagcagatga acgctatcat cgatactgtg ataaactaca aagatagttc agggcgacag


4261
ctcagtgaag tcttcattca gttaccttca aggaaagaat taccagaata ctatgaatta


4321
attaggaagc cagtggattt caaaaaaata aaggaaagga ttcgtaatca taagtaccgg


4381
agcctaggcg acctggagaa ggatgtcatg cttctctgtc acaacgctca gacgttcaac


4441
ctggagggat cccagatcta tgaagactcc atcgtcttac agtcagtgtt taagagtgcc


4501
cggcagaaaa ttgccaaaga ggaagagagt gaggatgaaa gcaatgaaga ggaggaagag


4561
gaagatgaag aagagtcaga gtccgaggca aaatcagtca aggtgaaaat taagctcaat


4621
aaaaaagatg acaaaggccg ggacaaaggg aaaggcaaga aaaggccaaa tcgaggaaaa


4681
gccaaacctg tagtgagcga ttttgacagc gatgaggagc aggatgaacg tgaacagtca


4741
gaaggaagtg ggacggatga tgagtgatca gtatggacct ttttccttgg tagaactgaa


4801
ttccttcctc ccctgtctca tttctaccca gtgagttcat ttgtcatata ggcactgggt


4861
tgtttctata tcatcatcgt ctataaacta gctttaggat agtgccagac aaacatatga


4921
tatcatggtg taaaaaacac acacatacac aaatatttgt aacatattgt gaccaaatgg


4981
gcctcaaaga ttcagattga aacaaacaaa aagcttttga tggaaaatat gtgggtggat


5041
agtatatttc tatgggtggg tctaatttgg taacggtttg attgtgcctg gttttatcac


5101
ctgttcagat gagaagattt ttgtcttttg tagcactgat aaccaggaga agccattaaa


5161
agccactggt tattttattt ttcatcaggc aattttcgag gtttttattt gttcggtatt


5221
gtttttttac actgtggtac atataagcaa ctttaatagg tgataaatgt acagtagtta


5281
gatttcacct gcatatacat ttttccattt tatgctctat gatctgaaca aaagcttttt


5341
gaattgtata agatttatgt ctactgtaaa cattgcttaa tttttttgct cttgatttaa


5401
aaaaaagttt tgttgaaagc gctattgaat attgcaatct atatagtgta ttggatggct


5461
tcttttgtca ccctgatctc ctatgttacc aatgtgtatc gtctccttct ccctaaagtg


5521
tacttaatct ttgctttctt tgcacaatgt ctttggttgc aagtcataag cctgaggcaa


5581
ataaaattcc agtaatttcg aagaatgtgg tgttggtgct ttcctaataa agaaataatt


5641
tagcttgaca aaaaaaaaaa aaaa










SEQ ID NO: 78 Human BRM Amino Acid Sequence Isoform C (NP_001276326.1)








1
mstptdpgam phpgpspgpg pspgpilgps pgpgpspgsv hsmmgpspgp psvshpmptm


61
gstdfpqegm hqmhkpidgi hdkgivedih cgsmkgtgmr pphpgmgppq spmdqhsqgy


121
msphpsplga pehvsspmsg ggptppqmpp sqpgalipgd pqamsqpnrg pspfspvqlh


181
qlraqilayk mlargqplpe tlqlavqgkr tlpglqqqqq qqqqqqqqqq qqqqqqqqpq


241
qqppqpqtqq qqqpalvnyn rpsgpgpels gpstpqklpv papggrpspa ppaaaqppaa


301
avpgpsvpqp apgqpspvlq lqqkqsrisp iqkpqgldpv eilqereyrl qariahriqe


361
lenlpgslpp dlrtkatvel kalrllnfqr qlrqevvacm rrdttletal nskaykrskr


421
qtlrearmte klekqqkieq erkrrqkhqe ylnsilqhak dfkeyhrsva gkiqklskav


481
atwhantere qkketeriek ermrrlmaed eegyrklidq kkdrrlayll qqtdeyvanl


541
tnlvwehkqa qaakekkkrr rrkkkaeena eggesalgpd gepidessqm sdlpvkvtht


601
etgkvlfgpe apkasqldaw lemnpgyeva prsdseesds dyeeedeeee ssrqeteeki


661
lldpnseevs ekdakqiiet akqdvddeys mqysargsqs yytvahaise rvekqsalli


721
ngtlkhyqlq glewmvslyn nnlngilade mglgktiqti alitylmehk rlngpyliiv


781
plstlsnwty efdkwapsvv kisykgtpam rrslvpqlrs gkfnvlltty eyiikdkhil


841
akirwkymiv deghrmknhh ckltqvdlne eetiliirrl hkvlrpfllr rlkkevesql


901
pekveyvikc dmsalqkily rhmqakgill tdgsekdkkg kggaktlmnt imqlrkicnh


961
pymfqhiees faehlgysng vingaelyra sgkfelldri Ipklratnhr vllfcqmtsl


1021
mtimedyfaf rnflylrldg ttksedraal lkkfnepgsq yfifllstra gglglnlqaa


1081
dtvvifdsdw nphqdlqaqd rahrigqqne vrvlrlctvn sveekilaaa kyklnvdqkv


1141
iqagmfdqks ssherraflq aileheeene eedevpddet lnqmiarree efdlfmrmdm


1201
drrredarnp krkprlmeed elpswiikdd aeverltcee eeekifgrgs rqrrdvdysd


1261
altekqwlra iedgnleeme eevrlkkrkr rrnvdkdpak edvekakkrr grppaekisp


1321
nppkltkqmn aiidtvinyk dssgrqlsev fiqlpsrkel peyyelirkp vdfkkikeri


1381
rnhkyrslgd lekdvmllch naqtfnlegs qiyedsivlq svfksarqki akeeesedes


1441
neeeeeedee eseseaksvk vkiklnkkdd kgrdkgkgkk rpnrgkakpv vsdfdsdeeq


1501
dereqsegsg tdde










SEQ ID NO: 79 Human BRM cDNA Sequence Variant 5 (NM_001289398.1, CDS:


from 203 to 949)








1
cttggagagg cggaggtgga aacgatgcgc aggagttggc ttggggcttt ttgtttgcgt


61
gtccctgttt acctattcat aatcatggat cccctctgct ttgtgatact gtgaaccacg


121
cataacagca attctttaca ccaccgggtt gagaagaagg cgcctgaggc tgactttctg


181
gacctgccgt cacgcagtaa agatgtggtt ggccatcgaa gacggcaatt tggaggaaat


241
ggaagaggaa gtacggctta agaagcgaaa aagacgaaga aatgtggata aagatcctgc


301
aaaagaagat gtggaaaaag ctaagaagag aagaggccgc cctcccgctg agaaactgtc


361
accaaatccc cccaaactga caaagcagat gaacgctatc atcgatactg tgataaacta


421
caaagatagt tcagggcgac agctcagtga agtcttcatt cagttacctt caaggaaaga


481
attaccagaa tactatgaat taattaggaa gccagtggat ttcaaaaaaa taaaggaaag


541
gattcgtaat cataagtacc ggagcctagg cgacctggag aaggatgtca tgcttctctg


601
tcacaacgct cagacgttca acctggaggg atcccagatc tatgaagact ccatcgtctt


661
acagtcagtg tttaagagtg cccggcagaa aattgccaaa gaggaagaga gtgaggatga


721
aagcaatgaa gaggaggaag aggaagatga agaagagtca gagtccgagg caaaatcagt


781
caaggtgaaa attaagctca ataaaaaaga tgacaaaggc cgggacaaag ggaaaggcaa


841
gaaaaggcca aatcgaggaa aagccaaacc tgtagtgagc gattttgaca gcgatgagga


901
gcaggatgaa cgtgaacagt cagaaggaag tgggacggat gatgagtgat cagtatggac


961
ctttttcctt ggtagaactg aattccttcc tcccctgtct catttctacc cagtgagttc


1021
atttgtcata taggcactgg gttgtttcta tatcatcatc gtctataaac tagctttagg


1081
atagtgccag acaaacatat gatatcatgg tgtaaaaaac acacacatac acaaatattt


1141
gtaacatatt gtgaccaaat gggcctcaaa gattcagatt gaaacaaaca aaaagctttt


1201
gatggaaaat atgtgggtgg atagtatatt tctatgggtg ggtctaattt ggtaacggtt


1261
tgattgtgcc tggttttatc acctgttcag atgagaagat ttttgtcttt tgtagcactg


1321
ataaccagga gaagccatta aaagccactg gttattttat ttttcatcag gcaattttcg


1381
aggtttttat ttgttcggta ttgttttttt acactgtggt acatataagc aactttaata


1441
ggtgataaat gtacagtagt tagatttcac ctgcatatac atttttccat tttatgctct


1501
atgatctgaa caaaagcttt ttgaattgta taagatttat gtctactgta aacattgctt


1561
aatttttttg ctctcgattt aaaaaaaagt tttgttgaaa gcgctattga atattgcaat


1621
ctatatagtg tattggatgg cttcttttgt caccctgatc tcctatgtta ccaatgtgta


1681
tcgtctcctt ctccctaaag tgtacttaat ctttgctttc tttgcacaat gtctttggtt


1741
gcaagtcata agcctgaggc aaataaaatt ccagtaattt cgaagaatgt ggtgttggtg


1801
ctttcctaat aaagaaataa tttagcttga caaaaaaaaa aaaaaa










SEQ ID NO: 80 Human BRM Amino Acid Sequence Isoform D (NP_001276327.1)








1
mwlaiedgnl eemeeevrlk krkrrrnvdk dpakedveka kkrrgrppae klspnppklt


61
kqmnaiidtv inykdssgrq lsevfiqlps rkelpeyyel irkpvdfkki kerirnhkyr


121
slgdlekdvm llchnaqtfn legsqiyeds ivlqsvfksa rqkiakeees edesneeeee


181
edeeesesea ksvkvkikln kkddkgrdkg kgkkrpnrgk akpvvsdfds deeqdereqs


241
egsgtdde










SEQ ID NO: 81 Human BRM cDNA Sequence Variant 6 (NM_001289399.1, CDS:


from 106 to 936)








1
attcacttca ttaaatctag aggcagttga gcatgggagc cgtctgtatg ttgaattagg


61
gctcgcactc ttgcgcaaca cgtcaccagt cggaaactgg ggctgatgaa gagactagca


121
gctcgctgct ttgctggctt gttaatttta tccccactaa ctgtgatttc tgatagccgg


181
cctgctgata gtggtaaggc catcgaagac ggcaatttgg aggaaatgga agaggaagta


241
cggcttaaga agcgaaaaag acgaagaaat gtggataaag atcctgcaaa agaagatgtg


301
gaaaaagcta agaagagaag aggccgccct cccgctgaga aactgtcacc aaatcccccc


361
aaactgacaa agcagatgaa cgctatcatc gatactgtga taaactacaa agatagttca


421
gggcgacagc tcagtgaagt cttcattcag ttaccttcaa ggaaagaatt accagaatac


481
tatgaattaa ttaggaagcc agtggatttc aaaaaaataa aggaaaggat tcgtaatcat


541
aagtaccgga gcctaggcga cctggagaag gatgtcatgc ttctctgtca caacgctcag


601
acgttcaacc tggagggatc ccagatctat gaagactcca tcgtcttaca gtcagtgttt


661
aagagtgccc ggcagaaaat tgccaaagag gaagagagtg aggatgaaag caatgaagag


721
gaggaagagg aagatgaaga agagtcagag tccgaggcaa aatcagtcaa ggtgaaaatt


781
aagctcaata aaaaagatga caaaggccgg gacaaaggga aaggcaagaa aaggccaaat


841
cgaggaaaag ccaaacctgt agtgagcgat tttgacagcg atgaggagca ggatgaacgt


901
gaacagtcag aaggaagtgg gacggatgat gagtgatcag tacggacctt tttccttggt


961
agaactgaat tccttcctcc cctgtctcat ttctacccag tgagttcatt tgtcatatag


1021
gcactgggtt gtttctatat catcatcgtc tataaactag ctttaggata gtgccagaca


1081
aacacatgat atcatggtgt aaaaaacaca cacatacaca aacatttgta acatattgtg


1141
accaaatggg cctcaaagat tcagattgaa acaaacaaaa agcttttgat ggaaaatatg


1201
tgggtggata gtatatttct atgggtgggt ctaatttggt aacggtttga ttgtgcctgg


1261
ttttatcacc tgttcagatg agaagatttt tgtcttttgt agcactgata accaggagaa


1321
gccattaaaa gccactggtt attttatttt tcatcaggca attttcgagg tttttatttg


1381
ttcggtattg tttttttaca ctgtggtaca tataagcaac tttaataggt gataaatgta


1441
cagtagttag atttcacctg catatacatt tttccatttt atgctctatg atctgaacaa


1501
aagctttttg aattgtataa gatttatgtc tactgtaaac attgcttaat ttttttgctc


1561
ttgatttaaa aaaaagtttt gttgaaagcg ctattgaata ttgcaatcta tatagtgtat


1621
tggatggctt cttttgtcac cctgatctcc tatgttacca acgtgtatcg tctccttctc


1681
cctaaagtgt acttaatctt tgctttcttt gcacaatgtc tttggttgca agtcataagc


1741
ctgaggcaaa taaaattcca gtaatttcga agaatgtggt gttggtgctt tcctaataaa


1801
gaaataattt agcttgacaa aaaaaaaaaa aaa










SEQ ID NO: 82 Human BRM Amino Acid Sequence Isoform E (NP_001276328.1)








1
mkrlaarcfa gllilspltv isdsrpadsg kaiedgnlee meeevrlkkr krrrnvdkdp


61
akedvekakk rrgrppaekl spnppkltkq mnaiidtvin ykdssgrqls evfiqlpsrk


121
elpeyyelir kpvdfkkike rirnhkyrsl gdlekdvmll chnaqtfnle gsqiyedsiv


181
lqsvfksarq kiakeeesed esneeeeeed eeeseseaks vkvkiklnkk ddkgrdkgkg


241
kkrpnrgkak pvvsdfdsde eqdereqseg sgtdde










SEQ ID NO: 83 Human BRM cDNA Sequence Variant 7 (NM_001289400.1, CDS:


from 521 to 1357)








1
acttcattaa atctagaggc agttgagcat gggagccgtc tgtatgttga attagggctc


61
gcactcttgc gcaacacgtc accagtcgga aactgggggt tcgcttctgt gatttatttc


121
attattgtgc tggtaaaagg tttggaaggg aattcttttt gggggtagta ctttagcatt


181
gtgtagcaag ttttggggtt tttttcgtgt gtgacccccc agcccccagc gctgagtttg


241
agtcagttga gccagtttag taaataattt tttaaaataa aagaacagtt taaaatctcc


301
atgaacaatt ttacttacat gcaggagtaa tcctactcta ctctttacgt gcgaaaagea


361
ttgggaagtg tttagtgaat tgatttccat tagaaaaaga cccttagaaa tcacagaaca


421
taaagcactg catatggatg tgtttggggt ctttggggag gagggaagat gttttgtagc


481
tctctgcatt cctgcataaa accttagttt gaggggaata atgctgatga agagactagc


541
agctcgctgc tttgctggct tgttaatttt atccccacta actgtgattt ctgatagccg


601
gcctgctgat agtggtaagg ccatcgaaga cggcaatttg gaggaaatgg aagaggaagt


661
acggcttaag aagcgaaaaa gacgaagaaa tgtggataaa gaccctgcaa aagaagatgt


721
ggaaaaagct aagaagagaa gaggccgccc tcccgctgag aaactgtcac caaatccccc


781
caaactgaca aagcagatga acgctatcat cgatactgtg ataaactaca aagatagttc


841
agggcgacag cccagtgaag tcttcattca gttaccttca aggaaagaat taccagaata


901
ctatgaatta attaggaagc cagtggattt caaaaaaata aaggaaagga ttcgtaatca


961
taagtaccgg agcctaggcg acctggagaa ggatgtcatg cttctctgtc acaacgctca


1021
gacgttcaac ctggagggat cccagatcta tgaagactcc atcgtcttac agtcagtgtt


1081
caagagtgcc cggcagaaaa ttgccaaaga ggaagagagt gaggatgaaa gcaatgaaga


1141
ggaggaagag gaagatgaag aagagtcaga gtccgaggca aaatcagtca aggtgaaaat


1201
taagctcaat aaaaaagatg acaaaggccg ggacaaaggg aaaggcaaga aaaggccaaa


1261
tcgaggaaaa gccaaacctg tagtgagcga ttttgacagc gatgaggagc aggatgaacg


1321
tgaacagtca gaaggaagtg ggacggatga tgagtgatca gtatggacct ttttccttgg


1381
tagaactgaa ttccttcctc ccctgtctca tttctaccca gtgagttcat ttgtcatata


1441
ggcactgggt tgtttctata tcatcatcgt ctataaacta gctttaggat agtgccagac


1501
aaacatatga tatcatggtg taaaaaacac acacatacac aaatatttgt aacatattgt


1561
gaccaaatgg gcctcaaaga ttcagattga aacaaacaaa aagcttttga tggaaaatat


1621
gtgggtggat agtatatttc tatgggtggg tctaatttgg taacggtttg attgtgcctg


1681
gttttatcac ctgttcagat gagaagattt ttgtcttttg tagcactgat aaccaggaga


1741
agccattaaa agccactggt tattttattt tccatcaggc aattttcgag gtttttattt


1801
gttcggtatt gtttttttac actgtggtac atataagcaa ctttaatagg tgataaatgt


1861
acagtagtta gatttcacct gcatatacat ttttccattt tatgctctat gatctgaaca


1921
aaagcttttt gaattgtata agatttatgt ctactgtaaa cattgcttaa tttttttgct


1981
cttgatttaa aaaaaagttt tgttgaaagc gctattgaat attgcaatct atatagtgta


2041
ttggatggct tcttttgtca ccctgatctc ctatgttacc aatgtgtatc gtctccttct


2101
ccctaaagtg tacttaatct ttgctttctt tgcacaatgt ctttggttgc aagtcataag


2161
cctgaggcaa ataaaattcc agtaatttcg aagaatgtgg tgttggtgct ttcctaataa


2221
agaaataatt tagcttgaca aaaaaaaaaa aaaa










SEQ ID NO: 84 Human BRM Amino Acid Sequence Isoform F (NP_001276329.1)








1
mlmkrlaarc fagllilspl tvisdsrpad sgkaiedgnl eemeeevrlk krkrrrnvdk


61
dpakedveka kkrrgrppae klspnppklt kqmnaiidtv inykdssgrq lsevfiqlps


121
rkelpeyyel irkpvdfkki kerirnhkyr slgdlekdvm llchnaqtfn legsqiyeds


181
ivlqsvfksa rqkiakeees edesneeeee edeeesesea ksvkvkikln kkddkgrdkg


241
kgkkrpnrgk akpvvsdfds deeqdereqs egsgtdde










SEQ ID NO: 85 Mouse BRM cDNA Sequence Variant 1 (NM_011416.2, CDS: from


111 to 4862)








1
ctcgccccct ctgtttctgt acttgggtg actcagagag ggaagattca gccagcacac


61
tgctcgcgag caagtgtcac tctgctaact ggcagagcca ggagacctag atgtccacac


121
ccacagaccc agcagcaatg ccccatcctg ggccctcccc ggggcctgga ccctctcctg


181
gaccaattct ggggcctagt ccaggaccag gaccatcccc aggttctgtg cacagcatga


241
tgggtcctag tcccggacct cccagcgtct cacatcctct gtcaacgatg ggctctgcag


301
acttcccaca ggaaggcatg caccaattac ataagcccat ggatgggata catgacaaag


361
ggattgtaga agatgtccac tgtggatcca tgaagggcac cagcatgcgc cccccacacc


421
caggaatggg ccctccacag agccccatgg accagcacag ccaaggttat atgtcaccac


481
atccgtctcc tctgggagcc ccggagcacg tctctagccc tatatctgga ggaggcccaa


541
ccccacccca gatgccaccg agccagccag gggcactcat cccaggagat ccgcaggcca


601
tgaaccagcc taacagaggt ccctcgcctt tcagtcctgt gcagctgcat cagcttcgag


661
ctcagatttt agcttacaaa atgttggcca ggggccagcc tctccccgaa actctgcagc


721
tggcagtcca gggaaaaagg accttgcctg gcatgcagca gcagcagcag caacaacaac


781
aacagcagca gcagcagcag cagcagcagc agcaacagca gcaacaacag cagccccagc


841
agcctcagca gcaggctcag gcacagcccc agcagcagca gcaacagcag cagcagccag


901
ctcttgttag ctataatcga ccatctggcc ccgggcagga gctgctactg agtggccaga


961
gcgctccgca gaagctgtca gcaccagcac caagcggccg accttcaccg gcaccccagg


1021
ccgccgtcca gcccacggcc acagcggtgc ccgggccctc cgtgcagcag cccgccccag


1081
ggcagccgtc tccggtccta cagctgcaac agaagcagag ccgcatcagc cccatccaga


1141
aaccgcaagg cctggacccg gtggagatcc tgcaggaacg agagtacaga cttcaagctc


1201
gcatcgctca taggatacaa gaactggaaa gtctgcctgg ttccttgcca ccagatttac


1261
gcaccaaagc aaccgtggaa ctgaaagcac ttcgcttact caacttccaa cgtcagctga


1321
gacaggaggt ggtggcctgc atgcggaggg acaccaccct ggagacggcc ctcaactcca


1381
aagcatataa gcggagcaag cgccagaccc tgcgtgaggc acgcatgaca gagaaactgg


1441
agaagcagca gaagatagaa caggagagga aacgccggca gaaacaccag gaatacctga


1501
acagtatttt gcaacatgca aaagatttta aggaatatca ccggtctgtg gccgggaaga


1561
tccagaagct ctccaaagca gtggcgactt ggcatgctaa cacagaaagg gagcagaaga


1621
aggagacgga gcggatcgag aaggagagaa tgcggaggct gatggccgaa gatgaagagg


1681
gctacaggaa gcttattgac caaaagaaag acagacgtct cgcctaccta ttgcagcaga


1741
ccgatgagta tgtcgccaat ctgaccaacc tggtgtggga gcacaagcag gcccaagcag


1801
ccaaagagaa gaagaagagg aggaggagga agaagaaggc tgaagagaat gcagagggag


1861
gggaacctgc cctgggacca gatggagagc caatagatga aagcagccag atgagtgacc


1921
tgcctgccaa agtgacacac acagaaactg gcaaggtcct ctttggacca gaagcaccca


1981
aagcaagtca gctggatgcc tggctggaga tgaatcctgg ttacgaagtt gcacccagat


2041
ctgacagtga agagagtgaa tcggactacg aggaggagga tgaagaagaa gagtccagta


2101
ggcaggaaac cgaggagaag atactgctgg atcccaacag tgaagaagtt tccgaaaagg


2161
atgccaagca gatcattgag actgcgaagc aggacgtgga cgacgaatac agcatgcagt


2221
acagtgccag aggctctcag tcctactaca cggtggctca cgctatctct gagagggtgg


2281
agaagcagtc tgccctcctc attaacggca ccctaaagca ttaccagctc cagggcctgg


2341
aatggatggt ttccctgtat aataacaatc tgaacggaat cttagctgat gaaatggggc


2401
taggcaagac catccagacc attgcactca tcacgtatct gatggagcac aaaaggctca


2461
atggtcccta cctcatcatc gtccccctct cgactctgtc taactggaca tatgaatttg


2521
acaaatgggc tccttctgtg gtgaaaattt cttacaaggg tacccctgcc atgcgacgct


2581
ccctcgttcc ccagctacgg agtggcaaat tcaatgtccc cctgactact tacgagtaca


2641
ttataaaaga caagcacatt cttgcaaaga ttcggtggaa gtacatgatc gtggacgaag


2701
gccaccggat gaagaatcac cactgcaagc taacccaggt cctgaacaca cactatgtgg


2761
cccccaggcg gatccttctg actgggaccc cactgcagaa taagcttccg gaactctggg


2821
ccctcctcaa cttcctcctc cctacaatct tcaagagttg cagcacattt gagcagtggt


2881
ttaatgctcc atttgccatg accggtgaaa gggtggacct gaacgaagaa gaaacgattt


2941
tgatcatcag gcgtctacac aaggtgctga gacccttttt actgaggagg ctgaagaaag


3001
aggttgagtc tcagcttccg gaaaaggttg agtatgtgat caagtgtgac atgtcagctc


3061
tgcagaagat tctgtaccgt cacatgcaag ccaaggggat cctcctcacg gacgggtctg


3121
agaaagataa gaaggggaaa ggaggtgcca agacacttat gaacaccatc atgcagctga


3181
gaaaaatatg caaccaccca tatatgtttc agcacattga ggaatccttt gctgaacacc


3241
tgggctattc gaatggggtc atcaatgggg ctgagctgta tcgggcctcg ggaaagtttg


3301
agctgctcga tcgcattctg cccaaattga gagcgactaa ccaccgcgtg ctgcttttct


3361
gccagatgac gtcactcatg accattatgg aggattactt tgcttttcgg aacttcctgt


3421
acctgcgcct tgacggcacc accaagtctg aagatcgtgc tgctttgcta aagaaattca


3481
atgaacctgg gtcccagtat ttcattttct tgctgagcac aagagcaggg ggcctgggct


3541
taaatcttca ggcggcagac acggtggtca tatttgacag cgactggaat cctcaccagg


3601
atctgcaggc ccaagaccga gctcaccgca ttggccaaca aaacgaggtc cgggtgctga


3661
ggctttgcac cgtcaacagt gtggaggaaa agattctcgc ggctgccaag tacaagctga


3721
acgtggatca gaaggttatc caagcaggca tgtttgacca gaagtcatcc agccacgagc


3781
ggagggcctt cctgcaggcc attctggagc acgaggagga gaatgaggaa gaagatgagg


3841
taccagacga cgagaccctg aaccagatga ttgctcgccg ggaggaagaa tttgatcttt


3901
ttatgcgcat ggacatggac cggcggaggg aggatgcccg gaacccgaag cgcaaacccc


3961
gcttgatgga ggaagatgag ctgccctcct ggattatcaa ggatgacgcc gaagtggaaa


4021
ggctcacctg tgaagaagag gaggagaaga tatttgggag gggctctcgc cagcgccggg


4081
atgtggacta cagtgatgcc ctcaccgaga agcaatggct cagggccatc gaagacggca


4141
atttggaaga aatggaagag gaggtacggc ttaagaagag aaaaagacga agaaatgtgg


4201
ataaagaccc cgtgaaggaa gatgtggaaa aagcgaagaa aagaagaggc cgccctccgg


4261
ctgagaagtt gtcaccaaat cccccaaaac taacgaagca gatgaacgcc atcattgata


4321
ctgtgataaa ctacaaagac agttcagggc gacagctcag tgaagtcttc attcagttac


4381
cttccaggaa agacttacca gaatactatg aattaattag gaagccagtg gatttcaaaa


4441
agataaagga gcgaatccgt aaccataagt atcggagcct gggagacctg gagaaagacg


4501
tcatgcttct ctgtcacaac gcacagacat tcaacttgga aggatcccag atctacgaag


4561
actccattgt cctacagtca gtgtttaaga gtgctcggca gaaaattgcc aaagaagaag


4621
agagtgagga agaaagcaat gaagaagagg aagaagatga tgaagaggag tcggagtcag


4681
aggcgaaatc tgtgaaggtg aaaatcaagc tgaataaaaa ggaagagaaa ggccgggaca


4741
cagggaaggg caagaagcgg ccaaaccgag gcaaagccaa acccgtcgtg agcgattttg


4801
acagtgacga ggaacaggaa gagaacgaac agtcagaagc aagtggaact gataacgagt


4861
gaccatcctg gacgtgagct tcccgcggtg gcagaaccga atgctttcct ccccctctcc


4921
ttcctcccca gtgagttcac ttgccattcg ggcacactgg gttatttctc cgtcctcatt


4981
gtcatctaga actagcttta gggtagtgcc agacaaacat atgatatcat ggtgtaaaaa


5041
aagaaacaca tgcgtgcaga cacactacac acacacacac acacacacac acacacacac


5101
acacatattt gtaacatatt gtgaccaaat gggcctcaaa gattcaaaga ttaaaaacaa


5161
aaagcttttg atggaaaaga tgtgggtgga tagtatattt ctacaggtgg gtcaggtttg


5221
gtagcagttt gatgtgctgg gttctgtcat ctgttctgat gagaagattt ttatcttctg


5281
cagtgctgat ggccgggagg aaccattcaa agccactggt tattttgttt ttcatcaggc


5341
gattttcaag attttcattt gtttcagtat tgttggtttt ctctttcctc ttttttacac


5401
tgtggtacat ataagcaact tgactagtga caaatgtaca gtagttagat atcacctaca


5461
tatacatttt tccattttat gctctatgat ctgaagaaca aaaaaaaaag ctttttgact


5521
tgtataagat ttatgtctac tgtaaacatt gcggaatttt tttttgttct tgttttattg


5581
acaatgctat tgagtattac agtgtctaga ataccctgga tggcttctct tgtccacccg


5641
atctcccgtg ttaccaatgt gtatggtctc cttctcccga aagtgtactt aatctttgct


5701
ttctttgcac aatgtctttg gttgcaagtc ataagcctga ggcaaataaa attccagtaa


5761
tttccaagaa tgtggtgttg gtactttcct aataaaccga taacgtacct tgaaaaaaaa


5821
aaaaaaaaaa a










SEQ ID NO: 86 Mouse BRM Amino Acid Sequence Isoform A (NP_035546.2)








1
mstptdpaam phpgpspgpg pspgpilgps pgpgpspgsv hsmmgpspgp psvshplstm


61
gsadfpqegm hqlhkpmdgi hdkgivedvh cgsmkgtsmr pphpgmgppq spmdqhsqgy


121
msphpsplga pehvsspisg ggptppqmpp sqpgalipgd pqamnqpnrg pspfspvqlh


181
qlraqilayk mlargqplpe tlqlavqgkr tlpgmqqqqq qqqqqqqqqq qqqqqqqqqq


241
qpqqpqqqaq aqpqqqqqqq qqpalvsynr psgpgqelll sgqsapqkls apapsgrpsp


301
apqaavqpta tavpgpsvqq papgqpspvl qlqqkqsris piqkpqgldp veilqereyr


361
lqariahriq eleslpgslp pdlrtkatve lkalrllnfq rqlcqevvac mrrdttleta


421
lnskaykrsk rqtlrearmt eklekqqkie qerkrrqkhq eylnsilqha kdfkeyhrsv


401
agkiqklska vatwhanter eqkketerie kermrrlmae deegyrklid qkkdrrlayl


541
lqqtdeyvan ltnlvwehkq aqaakekkkr rrrkkkaeen aeggepalgp dgepidessq


601
msdlpvkvth tetgkvlfgp eapkasqlda wlemnpgyev aprsdseese sdyeeedeee


661
essrqeteek illdpnseev sekdakqiie takqdvddey smqysargsq syytvahais


721
ervekqsall ingtlkhyql qglewmvsly nnnlngilad emglgktiqt ialitylmeh


781
krlngpylii vplstlsnwt yefdkwapsv vkisykgtpa mrrslvpqlr sgkfnvlltt


841
yeyiikdkhi lakirwkymi vdeghrmknh hckltqvlnt hyvaprrill tgtplqnklp


901
elwallnfll ptifkscstf eqwfnapfam tgervdlnee etiliirrlh kvlrpfllrr


961
lkkevesqlp ekveyvikcd msalqkilyr hmqakgillt dgsekdkkgk ggaktlmnti


1021
mqlrkicnhp ymfqhieesf aehlgysngv ingaelyras gkfelldril pklratnhrv


1081
llfcqmtslm timedyfafr nflylrldgt tksedraall kkfnepgsqy fifllstrag


1141
glglnlqaad tvvifdsdwn phqdlqaqdr ahrigqqnev rvlrlctvns veekilaaak


1201
yklnvdqkvi qagmfdqkss sherraflqa ileheeenee edevpddetl nqmiarreee


1261
fdlfmrmdmd rrredarnpk rkprlmeede lpswiikdda everltceee eekifgrgsr


1321
qrrdvdysda lrekqwlrai edgnleemee evrlkkrkrr rnvdkdpvke dvekakkrrg


1381
rppaeklspn ppkltkqmna iidtvinykd ssgrqlsevf iqlpsrkdlp eyyelirkpv


1441
dfkkikerir nhkyrslgdl ekdvmllchn aqtfnlegsq iyedsivlqs vfksarqkia


1501
keeeseeesn eeeeeddeee seseaksvkv kiklnkkeek grdtgkgkkr pnrgkakpvv


1561
sdfdsdeeqe eneqseasgt dne










SEQ ID NO: 87 Mouse BRM cDNA Sequence Variant 2 (NM_026003.2, CDS: from


301 to 1011)








1
ttcacctcat taaatctaga ggcggttcag catgggagcc gtctgtatgt tgaattaggg


61
ctcgctctct tgcgcaacac gtcaccagtc ggaaactggg ggtttgcttc tgtgatttat


121
ttcattattg tgctggtaaa agctgatgaa gagactagca gctcgctgct ttgccggctt


181
gttaatttta tccccactaa ctgtgatttc cgatagccgg cctgctgata gtggtaagtg


241
cggctggctc tggtttaaag caagcgtttg caggccatcg aagacggcaa tttggaagaa


301
atggaagagg aggtacggct taagaagaga aaaagacgaa gaaatgtgga taaagacccc


361
gtgaaggaag atgtggaaaa agcgaagaaa agaagaggcc gccctccggc tgagaagttg


421
tcaccaaatc ccccaaaact aacgaagcag atgaacgcca tcattgatac tgtgataaac


481
tacaaagaca gttcagggcg acagctcagt gaagtcttca ttcagttacc ttccaggaaa


541
gacttaccag aatactatga attaattagg aagccagtgg atttcaaaaa gataaaggag


601
cgaatccgta atcataagta tcggagcctg ggagacctgg agaaagacgt catgcttctc


661
tgtcacaacg cacagacatt caacttggaa ggatcccaga tctacgaaga ctccattgtc


721
ctacagtcag tgtttaagag tgctcggcag aaaattgcca aagaagaaga gagtgaggaa


781
gaaagcaatg aagaagagga agaagatgat gaagaggagt cggagtcaga ggcgaaatct


841
gtgaaggtga aaatcaagct gaataaaaag gaagagaaag gccgggacac agggaagggc


901
aagaagcggc caaaccgagg caaagccaaa cccgtcgtga gcgattttga cagtgacgag


961
gaacaggaag agaacgaaca gtcagaagca agtggaactg ataacgagtg accatcctgg


1021
acgtgagctt cccgcggtgg cagaaccgaa tgctttcttc cccctctcct tcctccccag


1081
tgagttcact tgccattcgg gcacactggg ttatttctcc gtcctcattg tcatctagaa


1141
ctagctttag ggtagtgcca gacaaacata tgatatcatg gtgtaaaaaa agaaacacat


1201
gcgtgcagac acactacaca cacacacaca cacacacaca cacacacaca cacatatttg


1261
taacatattg tgaccaaatg ggcctcaaag attcaaagat taaaaacaaa aagcttttga


1321
tggaaaagat gtgggtggat agtatatttc tacaggtggg tcaggtttgg tagcagtttg


1381
atgtgctggg ttctgtcatc tgttctgatg agaagatttt tatcttctgc agtgctgatg


1441
gccgggagga accattcaaa gccactggtt attttgtttt tcatcaggcg attttcaaga


1501
ttttcatttg tttcagtatt gttggttttc tcttttctct tttttacact gtggtacata


1561
taagcaactt gactagtgac aaatgtacag tagttagata tcacctacat atacattttt


1621
ccattttatg ctctatgatc tgaagaacaa aaaaaaaagc tttttgactt gtataagatt


1681
tatgtctact gtaaacattg cggaattttt ttttgttctt gttttattga caatgctatt


1741
gagtattaca gtgtctagaa taccctggat ggcttctctt gtccacccga tctcccgtgt


1801
taccaatgtg tatggtctcc ttctcccgaa agtgtactta atctttgctt tctttgcaca


1861
atgtctttgg ttgcaagtca taagcctgag gcaaataaaa ttccagtaat ttccaagaat


1921
gtggtgttgg tactttccta ataaaccgat aacgtacctt gaaa










SEQ ID NO: 88 Mouse BRM Amino Acid Sequence Isoform B (NP_080279.1)








1
meeevrlkkr krrrnvdkdp vkedvekakk rrgrppaekl spnppkltkq mnaiidtvin


61
ykdssgrqls evfiqlpsrk dlpeyyelir kpvdfkkike rirnhkyrsl gdlekdvmll


121
chnaqtfnle gsqiyedsiv lqsvfksarq kiakeeesee esneeeeedd eeeseseaks


181
vkvkiklnkk eekgrdtgkg kkrpnrgkak pvvsdfdsde eqeeneqsea sgtdne










SEQ ID NO: 89 Mouse BRM cDNA Sequence Variant 3 (NM_001347439.1, CDS:


from 180 to 1010)








1
acacacacac acacacacac acgcaggctg aagtatgctt aactctttta acttggctgg


61
ggctttttag caccatatgg gttctttcgt gacgtccgga cccgaaagag tgcagtgtgc


121
ctttaaggaa agaggtacct caccaaactt ccctgtagtt gtgcctcacc atttagctga


181
tgaagagact agcagctcgc tgctttgccg gcttgttaat tttatcccca ctaactgtga


241
tttccgatag ccggcctgct gatagtggta aggccatcga agacggcaat ttggaagaaa


301
tggaagagga ggtacggctt aagaagagaa aaagacgaag aaatgtggat aaagaccccg


361
tgaaggaaga tgtggaaaaa gcgaagaaaa gaagaggccg ccctccggct gagaagttgt


421
caccaaatcc cccaaaacta acgaagcaga tgaacgccat cattgatact gtgataaact


481
acaaagacag ttcagggcga cagctcagtg aagtcttcat tcagttacct tccaggaaag


541
acttaccaga atactatgaa ttaattagga agccagtgga tttcaaaaag ataaaggagc


601
gaatccgtaa tcataagtat cggagcctgg gagacctgga gaaagacgtc atgcttctct


661
gtcacaacgc acagacattc aacttggaag gatcccagat ctacgaagac tccattgtcc


721
tacagtcagt gtttaagagt gctcggcaga aaattgccaa agaagaagag agtgaggaag


781
aaagcaatga agaagaggaa gaagatgatg aagaggagtc ggagtcagag gcgaaatctg


841
tgaaggtgaa aaccaagctg aataaaaagg aagagaaagg ccgggacaca gggaagggca


901
agaagcggcc aaaccgaggc aaagccaaac ccgtcgtgag cgattttgac agtgacgagg


961
aacaggaaga gaacgaacag tcagaagcaa gtggaactga taacgagtga ccatcctgga


1021
cgtgagcttc ccgcggtggc agaaccgaat gctttcttcc ccctctcctt cctccccagt


1081
gagttcactt gccattcggg cacactgggt tattcctccg tcctcattgt catctagaac


1141
tagctttagg gtagtgccag acaaacatat gatatcatgg tgtaaaaaaa gaaacacatg


1201
cgtgcagaca cactacacac acacacacac acacacacac acacacacac acatatttgt


1261
aacatattgt gaccaaatgg gcctcaaaga ttcaaagatt aaaaacaaaa agcttttgat


1321
ggaaaagatg tgggtggata gtatatttct acaggtgggt caggtttggt agcagtttga


1381
tgtgctgggt tctgtcatct gttctgatga gaagattttt atcttctgca gtgctgatgg


1441
ccgggaggaa ccattcaaag ccactggtta ttttgttttt catcaggcga ttttcaagat


1501
tttcatttgt ttcagtattg ttggttttct cttttctctt ttttacactg tggtacatat


1561
aagcaacttg actagtgaca aatgtacagt agttagatat cacctacata tacatttttc


1621
cattttatgc tctatgatct gaagaacaaa aaaaaaagct ttttgacttg tataagattt


1681
atgtctactg taaacattgc ggaattttct tttgttcttg ttttattgac aatgctattg


1741
agtattacag tgtctagaat accctggatg gcttcccttg tccacccgat ctcccgtgtt


1801
accaatgtgt atggtctcct tctcccgaaa gtgtacttaa tctttgcttt ctttgcacaa


1861
tgtctttggt tgcaagtcat aagcctgagg caaataaaat tccagtaatt tccaagaatg


1921
tggtgttggt actttcctaa taaaccgata acgtaccttg aaaaaaaaaa aaaaaaaaa










SEQ ID NO: 90 Mouse BRM Amino Acid Sequence Isoform C (NP_001334368.1)








1
mkrlaarcfa gllilspltv isdsrpadsg kaiedgnlee meeevrlkkr krrrnvdkdp


61
vkedvekakk rrgrppaekl spnppkltkq mnaiidtvin ykdssgrqls evfiqlpsrk


121
dlpeyyelir kpvdfkkike rirnhkyrsl gdlekdvnll chnaqtfnle gsqiyedsiv


181
lqsvfksarq kiakeeesee esneeeeedd eeeseseaks vkvkiklnkk eekgrdtgkg


241
kkrpnrgkak pvvsdfdsdc eqeeneqsea sgtdne










SEQ ID NO: 91 Human EGFR cDNA Sequence Variant 1 (NM_005228.4, CDS:


from 258 to 3890)








1
gtccgggcag cccccggcgc agcgcggccg cagcagcctc cgccccccgc acggtgtgag


61
cgcccgacgc ggccgaggcg gccggagtcc cgagctagcc ccggcggccg ccgccgccca


121
gaccggacga caggccacct cgtcggcgtc cgcccgagtc cccgcctcgc cgccaacgcc


181
acaaccaccg cgcacggccc cctgactccg tccagtattg atcgggagag ccggagcgag


241
ctcttcgggg agcagcgatg cgaccctccg ggacggccgg ggcagcgctc ctggcgctgc


301
tggctgcgct ctgcccggcg agtcgggctc tggaggaaaa gaaagtttgc caaggcacga


361
gtaacaagct cacgcagttg ggcacttttg aagatcactt tctcagcctc cagaggatgt


421
tcaataactg tgaggtggtc cttgggaatt tggaaattac ctatgtgcag aggaattatg


481
atctttcctt cttaaagacc atccaggagg tggctggtta tgtcctcatt gccctcaaca


541
cagtggagcg aattcctttg gaaaacctgc agatcatcag aggaaatatg tactacgaaa


601
attcctatgc cttagcagtc ttatctaact atgatgcaaa taaaaccgga ctgaaggagc


661
tgcccatgag aaatttacag gaaatcctgc atggcgccgt gcggttcagc aacaaccctg


721
ccctgtgcaa cgtggagagc atccagtggc gggacatagt cagcagtgac tttctcagca


781
acatgtcgat ggacttccag aaccacctgg gcagctgcca aaagtgtgat ccaagctgtc


841
ccaatgggag ctgctggggt gcaggagagg agaactgcca gaaactgacc aaaatcatct


901
gtgcccagca gtgctccggg cgctgccgtg gcaagtcccc cagtgactgc tgccacaacc


961
agtgtgctgc aggctgcaca ggcccccggg agagcgactg cccggtctgc cgcaaattcc


1021
gagacgaagc cacgtgcaag gacacctgcc ccccactcat gctctacaac cccaccacgt


1081
accagatgga tgtgaacccc gagggcaaat acagctttgg tgccacctgc gtgaagaagt


1141
gtccccgtaa ttatgtggtg acagatcacg gctcgtgcgt ccgagcctgt ggggccgaca


1201
gctatgagat ggaggaagac ggcgtccgca agtgtaagaa gtgcgaaggg ccttgccgca


1261
aagtgtgtaa cggaataggt attggcgaat ttaaagactc actctccata aatgctacga


1321
atattaaaca cttcaaaaac tgcacctcca tcagtggcga tctccacatc ctgccggtgg


1381
catttagggg tgactccttc acacatactc ctcctctgga tccacaggaa ctggatattc


1441
tgaaaaccgt aaaggaaatc acagggtttt tgctgattca ggcttggcct gaaaacagga


1501
cggacctcca tgcctttgag aacctagaaa tcatacgcgg caggaccaag caacatggtc


1561
agttttctct tgcagtcgtc agcctgaaca taacatcctt gggattacgc tccctcaagg


1621
agataagtga tggagatgtg acaatttcag gaaacaaaaa tttgtgctat gcaaatacaa


1681
taaactggaa aaaactgttt gggacctccg gtcagaaaac caaaattata agcaacagag


1741
gtgaaaacag ctgcaaggcc acaggccagg tctgccatgc cttgtgctcc cccgagggct


1801
gctggggccc ggagcccagg gactgcgtct cttgccggaa tgtcagccga ggcagggaat


1861
gcgtggacaa gtgcaacctt ctggagggtg agccaaggga gtttgtggag aactctgagt


1921
gcatacagtg ccacccagag tgcctgcctc aggccatgaa catcacctgc acaggacggg


1981
gaccagacaa ctgtatccag tgtgcccact acattgacgg cccccactgc gtcaagacct


2041
gcccggcagg agtcatggga gaaaacaaca ccctggtctg gaagtacgca gacgccggcc


2101
atgtgtgcca cctgtgccac ccaaactgca cctacggatg cactgggcca ggtcttgaag


2161
gctgtccaac gaatgggcct aagatcccgt ccatcgccac tgggatggtg ggggccctcc


2221
tcttgctgct ggtggtggcc ctggggatcg gcctcttcat gcgaaggcgc cacatcgttc


2281
ggaagcgcac gctgcggagg ctgctgcagg agagggagct tgtggagcct cttacaccca


2341
gtggagaagc tcccaaccaa gctctcttga ggatcttgaa ggaaactgaa ttcaaaaaga


2401
tcaaagtgct gggctccggt gcgttcggca cggtgtataa gggactctgg atcccagaag


2461
gtgagaaagt taaaattccc gtcgctatca aggaattaag agaagcaaca tctccgaaag


2521
ccaacaagga aatcctcgat gaagcctacg tgatggccag cgtggacaac ccccacgtgt


2581
gccgcctgct gggcatctgc ctcacctcca ccgtgcagct catcacgcag ctcatgccct


2641
tcggctgcct cctggactat gtccgggaac acaaagacaa tattggctcc cagtacctgc


2701
tcaactggtg tgtgcagatc gcaaagggca tgaactactt ggaggaccgt cgcttggtgc


2761
accgcgacct ggcagccagg aacgtactgg tgaaaacacc gcagcatgtc aagatcacag


2821
attttgggct ggccaaactg ctgggtgcgg aagagaaaga ataccatgca gaaggaggca


2881
aagtgcctat caagtggatg gcattggaat caattttaca cagaatctat acccaccaga


2941
gtgatgtctg gagctacggg gtgactgttt gggagttgat gacctttgga tccaagccat


3001
atgacggaat ccctgccagc gagatctcct ccatcctgga gaaaggagaa cgcctccctc


3061
agccacccat atgtaccatc gatgtctaca tgatcatggt caagtgctgg atgatagacg


3121
cagatagtcg cccaaagttc cgtgagttga tcatcgaatt ctccaaaatg gcccgagacc


3181
cccagcgcta ccttgtcatt cagggggatg aaagaatgca tttgccaagt cctacagact


3241
ccaacttcta ccgtgccctg atggatgaag aagacatgga cgacgtggtg gatgccgacg


3301
agtacctcat cccacagcag ggcttcttca gcagcccctc cacgtcacgg actcccctcc


3361
tgagctctct gagtgcaacc agcaacaatt ccaccgtggc ttgcattgat agaaatgggc


3421
tgcaaagctg tcccatcaag gaagacagct tcctgcagcg atacagctca gaccccacag


3481
gcgccttgac tgaggacagc atagacgaca ccttcctccc agtgcctgaa tacataaacc


3541
agtccgttcc caaaaggccc gctggctctg tgcagaatcc tgtctatcac aatcagcctc


3601
tgaaccccgc gcccagcaga gacccacact accaggaccc ccacagcact gcagtgggca


3661
accccgagta tctcaacact gtccagccca cctgtgtcaa cagcacattc gacagccctg


3721
cccactgggc ccagaaaggc agccaccaaa ttagcctgga caaccctgac taccagcagg


3781
acttctttcc caaggaagcc aagccaaatg gcatctttaa gggctccaca gctgaaaatg


3841
cagaatacct aagggtcgcg ccacaaagca gtgaatttat tggagcatga ccacggagga


3901
tagtatgagc cctaaaaatc cagactcttt cgatacccag gaccaagcca cagcaggtcc


3961
tccatcccaa cagccatgcc cgcattagct cttagaccca cagactggtt ttgcaacgct


4021
tacaccgact agccaggaag tacttccacc tcgggcacat tttgggaagt tgcattcctt


4081
tgtcttcaaa ctgtgaagca tttacagaaa cgcatccagc aagaatattg tccctttgag


4141
cagaaattta tctttcaaag aggtatattt gaaaaaaaaa aaaagtatat gtgaggattt


4201
ttattgattg gggatcttgg agtttttcat tgtcgctatt gatttttact tcaatgggct


4261
cttccaacaa ggaagaagct tgctggtagc acttgctacc ctgagttcat ccaggcccaa


4321
ctgtgagcaa ggagcacaag ccacaagtct tccagaggac gcttgattcc agtggttctg


4381
cttcaaggct tccactgcaa aacactaaag atccaagaag gccttcatgg ccccagcagg


4441
ccggatcggt actgtatcaa gtcatggcag gtacagtagg ataagccact ctgtcccttc


4501
ctgggcaaag aagaaacgga ggggatggaa ttcttcctta gacttacttt tgtaaaaatg


4561
tccccacggt acttactccc cactgatgga ccagtggctt ccagtcatga gcgttagact


4621
gacttgtttg tcttccattc cattgttttg aaactcagta tgctgcccct gtcttgctgt


4681
catgaaatca gcaagagagg atgacacatc aaataataac tcggattcca gcccacattg


4741
gattcatcag catttggacc aatagcccac agctgagaat gtggaatacc taaggatagc


4801
accgcttttg ttctcgcaaa aacgtatctc ctaatttgag gcccagatga aatgcatcag


4861
gtcctttggg gcatagatca gaagactaca aaaatgaagc tgctctgaaa tctcctttag


4921
ccatcacccc aaccccccaa aattagtttg tgctacttat ggaagatagt tttctccttt


4981
tacttcactt caaaagcttt ttactcaaag agtatatgtt ccctccaggt cagctgcccc


5041
caaaccccct ccttacgctt tgtcacacaa aaagtgtctc tgccttgagt catctattca


5101
agcacttaca gctctggcca caacagggca ttttacaggt gcgaatgaca gtagcattat


5161
gagtagtgtg gaattcaggt agtaaatatg aaactagggt ttgaaattga taatgctttc


5221
acaacatttg cagatgtttt agaaggaaaa aagttccttc ctaaaataat ttctctacaa


5281
ttggaagatt ggaagattca gctagttagg agcccacctt ttttcctaat ctgtgtgtgc


5341
cctgtaacct gactggttaa cagcagtcct ttgtaaacag tgttttaaac tctcctagtc


5401
aatatccacc ccatccaatt tatcaaggaa gaaatggttc agaaaatatt ttcagcctac


5461
agttatgttc agtcacacac acatacaaaa tgttcctttt gcttttaaag taatttttga


5521
ctcccagatc agtcagagcc cctacagcat tgttaagaaa gtatttgatt tttgtctcaa


5581
tgaaaataaa actatattca tttccactct attatgctct caaatacccc taagcatcta


5641
tactagcctg gtatgggtat gaaagataca aagataaata aaacatagtc cctgattcta


5701
agaaattcac aatttagcaa aggaaatgga ctcatagatg ctaaccttaa aacaacgtga


5761
caaatgccag acaggaccca tcagccaggc actgtgagag cacagagcag ggaggttggg


5821
tcctgcctga ggagacctgg aagggaggcc tcacaggagg atgaccaggt ctcagtcagc


5881
ggggaggtgg aaagtgcagg tgcatcaggg gcaccctgac cgaggaaaca gctgccagag


5941
gcctccactg ctaaagtcca cataaggctg aggtcagtca ccctaaacaa cctgctccct


6001
ctaagccagg ggatgagctt ggagcatccc acaagttccc taaaagttgc agcccccagg


6061
gggattttga gctatcatct ctgcacatgc ttagtgagaa gactacacaa catttctaag


6121
aatctgagat tttatattgt cagttaacca ctttcattat tcattcacct caggacatgc


6181
agaaatattt cagtcagaac tgggaaacag aaggacctac attctgctgt cacttatgtg


6241
tcaagaagca gatgatcgat gaggcaggtc agttgtaagt gagtcacatt gtagcattaa


6301
attctagtat ttttgtagtt tgaaacagta acttaataaa agagcaaaag ctaaaaaaaa


6361
aaaaaaaaa










SEQ ID NO: 92 Human EGFR Amino Acid Sequence Isoform A (NP_005219.2)








1
mrpsgtagaa llallaalcp asraleekkv cqgtsnkltq lgtfedhfls lqrmfnncev


61
vlgnleityv qrnydlsflk tiqevagyvl ialntverip lenlqiirgn myyensyala


121
vlsnydankt glkelpmrnl qeilhgavrf snnpalcnve siqwrdivss dflsnmsmdf


181
qnhlgscqkc dpscpngscw gageencqkl tkiicaqqcs grcrgkspsd cchnqcaagc


241
tgpresdclv crkfrdeatc kdtcpplmly npttyqmdvn pegkysfgat cvkkcprnyv


301
vtdhgscvra cgadsyemee dgvrkckkce gpcrkvcngi gigefkdsls inatnikhfk


361
nctsisgdlh ilpvafrgds fthtppldpq eldilktvke itgflliqaw penrtdlhaf


421
enleiirgrt kqhgqfslav vslnitslgl rslkeisdgd viisgnknlc yantinwkkl


481
fgtsgqktki isnrgensck atgqvchalc spegcwgpep rdcvscrnvs rgrecvdkcn


541
llegeprefv enseciqchp eclpqamnit ctgrgpdnci qcahyidgph cvktcpagvm


601
genntlvwky adaghvchlc hpnctygctg pglegcptng pkipsiatgm vgalllllvv


661
algiglfmrr rhivrkrtlr rllqerelve pltpsgeapn qallrilket efkkikvlgs


721
gafgtvykgl wipegekvki pvaikelrea tspkankeil deayvmasvd nphvcrllgi


781
cltsrvqlit qlmpfgclld yvrehkdnig sqyllnwcvq iakgmnyled rrlvhrdlaa


841
rnvlvktpqh vkitdfglak llgaeekeyh aeggkvpikw malesilhri ythqsdvwsy


901
gvtvwelmtf gskpydgipa seissilekg erlpqppict idvymimvkc wmidadsrpk


961
freliiefsk mardpqrylv iqgdermhlp sptdsnfyra lmdeedmddv vdadeylipq


1021
qgffsspsts rtpllsslsa tsnnstvaci drnglqscpi kedsflqrys sdptgalted


1081
siddtflpvp eyinqsvpkr pagsvqnpvy hnqplnpaps rdphyqdphs tavgnpeyln


1141
tvqptcvnst fdspahwaqk gshqisldnp dyqqdffpke akpngifkgs taenaeylrv


1201
apqssefiga










SEQ ID NO 93 Human HGFR CPNA Sequence Variant 2 (NM_201282.1, CDS:


from 247 to 2133)








1
ccccggcgca gcgcggccgc agcagcctcc gccccccgca cggtgtgagc gcccgacgcg


61
gccgaggcgg ccggagtccc gagctagccc cggcggccgc cgccgcccag accggacgac


121
aggccacctc gtcggcgtcc gcccgagtcc ccgcctcgcc gccaacgcca caaccaccgc


181
gcacggcccc ctgactccgt ccagtattga tcgggagagc cggagcgagc tcttcgggga


241
gcagcgatgc gaccctccgg gacggccggg gcagcgctcc tggcgctgct ggctgcgctc


301
tgcccggcga gtcgggctct ggaggaaaag aaagtttgcc aaggcacgag taacaagctc


361
acgcagttgg gcacttttga agatcatttt ctcagcctcc agaggatgtt caataactgt


421
gaggtggtcc ttgggaattt ggaaattacc tatgtgcaga ggaattatga tctttccttc


481
ttaaagacca tccaggaggt ggctggttat gtcctcattg ccctcaacac agtggagcga


541
attcctttgg aaaacctgca gatcatcaga ggaaatatgt actacgaaaa ttcctatgcc


601
ttagcagtct tatctaacta tgatgcaaat aaaaccggac tgaaggagct gcccatgaga


661
aatttacagg aaatcctgca tggcgccgtg cggttcagca acaaccctgc cctgtgcaac


721
gtggagagca tccagtggcg ggacatagtc agcagtgact ttctcagcaa catgtcgatg


781
gacttccaga accacctggg cagctgccaa aagtgtgatc caagctgtcc caatgggagc


841
tgctggggtg caggagagga gaactgccag aaactgacca aaatcatctg tgcccagcag


901
tgctccgggc gctgccgtgg caagtccccc agtgactgct gccacaacca gtgtgctgca


961
ggctgcacag gcccccggga gagcgactgc ctggtctgcc gcaaattccg agacgaagcc


1021
acgtgcaagg acacctgccc cccactcatg ctctacaacc ccaccacgta ccagatggat


1081
gtgaaccccg agggcaaata cagctttggt gccacctgcg tgaagaagtg cccccgtaat


1141
tatgtggtga cagatcacgg ctcgtgcgtc cgagcctgtg gggccgacag ctatgagatg


1201
gaggaagacg gcgtccgcaa gtgtaagaag tgcgaagggc cttgccgcaa agtgtgtaac


1261
ggaataggta ttggtgaatt taaagactca ctctccataa atgctacgaa tattaaacac


1321
ttcaaaaact gcacctccat cagtggcgat ctccacatcc tgccggtggc atttaggggt


1381
gactccttca cacatactcc tcctctggat ccacaggaac tggatattct gaaaaccgta


1441
aaggaaatca cagggttttt gctgattcag gcttggcctg aaaacaggac ggacctccat


1501
gcctttgaga acctagaaat catacgcggc aggaccaagc aacatggtca gttttctctt


1561
gcagtcgtca gcctgaacat aacatccttg ggattacgct ccctcaagga gataagtgat


1621
ggagatgtga taatttcagg aaacaaaaat ttgtgctatg caaatacaat aaactggaaa


1681
aaactgtttg ggacctccgg tcagaaaacc aaaattataa gcaacagagg tgaaaacagc


1741
tgcaaggcca caggccaggt ctgccatgcc ttgtgctccc ccgagggctg ctggggcccg


1801
gagcccaggg actgcgtctc ttgccggaat gtcagccgag gcagggaatg cgtggacaag


1861
tgcaaccttc tggagggtga gccaagggag tttgtggaga actctgagtg catacagtgc


1921
cacccagagt gcctgcctca ggccatgaac atcacctgca caggacgggg accagacaac


1981
tgtatccagt gtgcccacta cattgacggc ccccactgcg tcaagacctg cccggcagga


2041
gtcatgggag aaaacaacac cctggtctgg aagtacgcag acgccggcca tgtgtgccac


2101
ctgtgccatc caaactgcac ctacgggtcc taataaatct tcactgtctg actttagtct


2161
cccactaaaa ctgcatttcc tttctacaat ttcaatttct ccctttgcct caaataaagt


2221
cctgacacta ttcatttga










SEQ ID NO: 94 Human EGFR Amino Acid Sequence Isoform B (NP_958439.1)








1
mrpsgtagaa llallaalcp asraleekkv cqgtsnkltq lgtfedhfls lqrmfnncev


61
vlgnleityv qrnydlsflk tiqevagyvl ialntverip lenlqiirgn myyensyala


121
vlsnydankt glkelpmrnl qeilhgavrf snnpalcnve siqwrdivss dflsnmsmdf


181
qnhlgscqkc dpscpngscw gageencqkl tkiicaqqcs grcrgkspsd cchnqcaagc


241
tgpresdclv crkfrdeatc kdtcpplmly npttyqmdvn pegkysfgat cvkkcprnyv


301
vtdhgscvra cgadsyemee dgvrkckkce gpcrkvcngi gigefkdsls inatnikhfk


361
nctsisgdlh ilpvafrgds fthtppldpq eldilktvke itgflliqaw penrtdlhaf


421
enleiirgrt kqhgqfslav vslnitslgl rslkeisdgd viisgnknlc yantinwkkl


481
fgtsgqktki isnrgensck atgqvchalc spegcwgpep rdcvscrnvs rgrecvdkcn


541
llegeprefv enseciqchp eclpqamnit ctgrgpdnci qcahyidgph cvktcpagvm


601
genntlvwky adaghvchlc hpnctygs










SEQ ID NO: 95 Human EGFR cDNA Sequence Variant 3 (NM_201283.1, CDS:


from 247 to 1464)








1
ccccggcgca gcgcggccgc agcagcctcc gccccccgca cggtgtgagc gcccgacgcg


61
gccgaggcgg ccggagtccc gagctagccc cggcggccgc cgccgcccag accggacgac


121
aggccacctc gtcggcgtcc gcccgagtcc ccgcctcgcc gccaacgcca caaccaccgc


181
gcacggcccc ctgactccgt ccagtattga tcgggagagc cggagcgagc tcttcgggga


241
gcagcgatgc gaccctccgg gacggccggg gcagcgctcc tggcgctgct ggctgcgctc


301
tgcccggcga gtcgggctct ggaggaaaag aaagtttgcc aaggcacgag taacaagctc


361
acgcagttgg gcacttttga agatcatttt ctcagcctcc agaggatgtt caataactgt


421
gaggtggtcc ttgggaattt ggaaattacc tatgtgcaga ggaattatga tctttccttc


481
ttaaagacca tccaggaggt ggctggttat gtcctcattg ccctcaacac agtggagcga


541
attcctttgg aaaacctgca gatcatcaga ggaaatatgt actacgaaaa ttcctatgcc


601
ttagcagtct tatctaacta tgatgcaaat aaaaccggac tgaaggagct gcccatgaga


661
aatttacagg aaatcctgca tggcgccgtg cggttcagca acaaccctgc cctgtgcaac


721
gtggagagca tccagtggcg ggacatagtc agcagtgact ttctcagcaa catgtcgatg


781
gacttccaga accacctggg cagctgccaa aagtgtgatc caagctgtcc caatgggagc


841
tgctggggtg caggagagga gaactgccag aaactgacca aaatcatctg tgcccagcag


901
tgctccgggc gctgccgtgg caagtccccc agtgactgct gccacaacca gtgtgctgca


961
ggctgcacag gcccccggga gagcgactgc ctggtctgcc gcaaattccg agacgaagcc


1021
acgtgcaagg acacctgccc cccactcatg ctctacaacc ccaccacgta ccagatggat


1081
gtgaaccccg agggcaaata cagctttggt gccacctgcg tgaagaagtg tccccgtaat


1141
tatgtggtga cagatcacgg ctcgtgcgtc cgagcctgtg gggccgacag ctatgagatg


1201
gaggaagacg gcgtccgcaa gtgtaagaag tgcgaagggc cttgccgcaa agtgtgtaac


1261
ggaataggta ttggtgaatt taaagactca ctctccataa atgctacgaa tattaaacac


1321
ttcaaaaact gcacctccat cagtggcgat ctccacatcc tgccggtggc atttaggggt


1381
gactccttca cacatactcc tcctctggat ccacaggaac tggatattct gaaaaccgta


1441
aaggaaatca caggtttgag ctgaattatc acatgaatat aaatgggaaa tcagtgtttt


1501
agagagagaa cttttcgaca tatttcctgt tcccttggaa taaaaacatt tcttctgaaa


1561
ttttaccgtt aaaaaaaaaa aaaaaaaaaa aaaaa










SEQ ID NO: 96 Human EGFR Amino Acid Sequence Isoform C (NP_958440.1)








1
mrpsgtagaa llallaalcp asraleekkv cqgtsnkltq lgtfedhfls lqrmfnncev


61
vlgnleityv qrnydlsflk tiqevagyvl ialntverip lenlqiirgn myyensyala


121
vlsnydankt glkelpmrnl qeilhgavrf snnpalcnve siqwrdivss dflsnmsmdf


181
qnhlgscqkc dpscpngscw gageencqkl tkiicaqqcs grcrgkspsd cchnqcaagc


241
tgpresdclv crkfrdeatc kdtcpplmly npttyqmdvn pegkysfgat cvkkcprnyv


301
vtdhgscvra cgadsyemee dgvrkckkce gpcrkvcngi gigefkdsls inatnikhfk


361
nctsisgdlh ilpvafrgds fthtppldpq eldilktvke itgls










SEQ ID NP: 97 Human EGFR cDNA Sequence Variant 4 (NM_201284.1, CDS:


from 247 to 2364)








1
ccccggcgca gcgcggccgc agcagcctcc gccccccgca cggtgtgagc gcccgacgcg


61
gccgaggcgg ccggagtccc gagctagccc cggcggccgc cgccgcccag accggacgac


121
aggccacctc gtcggcgtcc gcccgagtcc ccgcctcgcc gccaacgcca caaccaccgc


181
gcacggcccc ctgactccgt ccagtattga tcgggagagc cggagcgagc tcttcgggga


241
gcagcgatgc gaccctccgg gacggccggg gcagcgctcc tggcgctgct ggctgcgctc


301
tgcccggcga gtcgggctct ggaggaaaag aaagtttgcc aaggcacgag taacaagctc


361
acgcagttgg gcacttttga agatcatttt ctcagcctcc agaggatgtt caataactgt


421
gaggtggtcc ttgggaattt ggaaattacc tatgtgcaga ggaattatga tctttccttc


481
ttaaagacca tccaggaggt ggctggttat gtcctcattg ccctcaacac agtggagcga


541
attcctttgg aaaacctgca gatcatcaga ggaaatatgt actacgaaaa ttcctatgcc


601
ttagcagtct tatctaacta tgatgcaaat aaaaccggac tgaaggagct gcccatgaga


661
aatttacagg aaatcctgca tggcgccgtg cggttcagca acaaccctgc cctgtgcaac


721
gtggagagca tccagtggcg ggacatagtc agcagtgact ttctcagcaa catgtcgatg


781
gacttccaga accacctggg cagctgccaa aagtgtgatc caagctgtcc caatgggagc


841
tgctggggtg caggagagga gaactgccag aaactgacca aaatcatctg tgcccagcag


901
tgctccgggc gctgccgtgg caagtccccc agtgactgct gccacaacca gtgtgctgca


961
ggctgcacag gcccccggga gagcgactgc ctggtctgcc gcaaattccg agacgaagcc


1021
acgtgcaagg acacctgccc cccactcatg ctctacaacc ccaccacgta ccagatggat


1081
gtgaaccccg agggcaaata cagctttggt gccacctgcg tgaagaagtg tccccgtaat


1141
tatgtggtga cagatcacgg ctcgtgcgtc cgagcctgtg gggccgacag ctatgagacg


1201
gaggaagacg gcgtccgcaa gtgtaagaag tgcgaagggc cttgccgcaa agtgtgtaac


1261
ggaataggta ttggtgaatt taaagactca ctctccataa atgctacgaa tattaaacac


1321
ttcaaaaact gcacctccat cagtggcgat ctccacatcc tgccggtggc atttaggggt


1381
gactccttca cacatactcc tcctctggat ccacaggaac tggatattct gaaaaccgta


1441
aaggaaatca cagggttttt gctgattcag gcttggcctg aaaacaggac ggacctccat


1501
gcctttgaga acctagaaat catacgcggc aggaccaagc aacatggtca gttttctctt


1561
gcagtcgtca gcctgaacat aacatccttg ggattacgct ccctcaagga gataagtgat


1621
ggagatgtga taatttcagg aaacaaaaat ttgtgctatg caaacacaat aaactggaaa


1681
aaactgtttg ggacctccgg tcagaaaacc aaaattataa gcaacagagg tgaaaacagc


1741
tgcaaggcca caggccaggt ctgccatgcc ttgtgctccc ccgagggctg ctggggcccg


1801
gagcccaggg actgcgtctc ttgccggaat gtcagccgag gcagggaatg cgtggacaag


1861
tgcaaccttc tggagggtga gccaagggag tttgtggaga actctgagtg catacagtgc


1921
cacccagagt gcctgcctca ggccatgaac atcacctgca caggacgggg accagacaac


1981
tgtatccagt gtgcccacta cattgacggc ccccactgcg tcaagacctg cccggcagga


2041
gtcatgggag aaaacaacac cctggtctgg aagtacgcag acgccggcca tgtgtgccac


2101
ctgtgccatc caaactgcac ctacgggcca ggaaatgaga gtctcaaagc catgttattc


2161
tgccttttta aactatcatc ctgtaatcaa agtaatgatg gcagcgtgtc ccaccagagc


2221
gggagcccag ctgctcagga gtcatgctta ggatggatcc cttctcttct gccgtcagag


2281
tttcagctgg gttggggtgg atgcagccac ctccatgcct ggccttctgc atctgtgatc


2341
atcacggcct cctcctgcca ctgagcctca tgccttcacg tgtctgttcc ccccgctttt


2401
cctttctgcc acccctgcac gtgggccgcc aggttcccaa gagtatccta cccatttcct


2461
tccttccact ccctttgcca gtgcctctca ccccaactag tagctaacca tcacccccag


2521
gactgacctc ttcctcctcg ctgccagatg attgttcaaa gcacagaatt tgtcagaaac


2581
ctgcagggac tccatgctgc cagccttctc cgtaattagc atggccccag tccatgcttc


2641
tagccttggt tccttctgcc cctctgtttg aaattctaga gccagctgtg ggacaattat


2701
ctgtgtcaaa agccagatgt gaaaacatct caataacaaa ctggctgctt tgttcaatgc


2761
tagaacaacg cctgtcacag agtagaaact caaaaatatt tgctgagtga atgaacaaat


2821
gaataaatgc ataataaata attaaccacc aatccaacat ccaga










SEQ ID NO: 98 Human EGFR Amino Acid Sequence Isoform D (NP_95844.1)








1
mrpsgtagaa llallaalcp asraleekkv cqgtsnkltq lgtfedhfls lqrmfnncev


61
vlgnleityv qrnydlsflk tiqevagyvl ialntverip lenlqiirgn myyensyala


121
vlsnydankt glkelpmrnl qeilhgavrf snnpalcnve siqwrdivss dflsnmsmdf


181
qnhlgscqkc dpscpngscw gageencqkl tkiicaqqcs grcrgkspsd cchnqcaagc


241
tgpresdclv crkfrdeatc kdtcpplmly npttyqmdvn pegkystgat cvkkcprnyv


301
vtdhgscvra cgadsyemee dgvrkckkce gpcrkvcngi gigefkdsls inatnikhfk


361
nctsisgdlh ilpvafrgds fthtppldpq eldilktvke itgflliqaw penrtdlhaf


421
enleiirgrt kqhgqfslav vslnitslgl rslkeisdgd viisgnknlc yantinwkkl


481
fgtsgqktki isnrgensck atgqvchalc spegcwgpep rdcvscrnvs rgrecvdkcn


541
llegeprefv enseciqchp eclpqamnit ctgrgpdnci qcahyidgph cvktcpagvm


601
genntlvwky adaghvchlc hpnctygpgn eslkamlfcl fklsscnqsn dgsvshqsgs


661
paaqesclgw ipsllpsefq lgwggcshlh awpsasvilt assch










SEQ ID NO: 99 Human EGFR cDNA Sequence Variant 5 (NM_001346897.1, CDS:


from 258 to 3533)








1
gtccgggcag cccccggcgc agcgcggccg cagcagcctc cgccccccgc acggtgtgag


61
cgcccgacgc ggccgaggcg gccggagtcc cgagctagcc ccggcggccg ccgccgccca


121
gaccggacga caggccacct cgtcggcgtc cgcccgagtc cccgcctcgc cgccaacgcc


181
acaaccaccg cgcacggccc cctgactccg tccagtattg atcgggagag ccggagcgag


241
ctcttcgggg agcagcgatg cgaccctccg ggacggccgg ggcagcgctc ctggcgctgc


301
tggctgcgct ctgcccggcg agtcgggctc tggaggaaaa gaaagtttgc caaggcacga


361
gtaacaagct cacgcagttg ggcacttttg aagatcattt tctcagcctc cagaggatgt


421
tcaataactg tgaggtggtc cttgggaatt tggaaattac ctatgtgcag aggaattatg


481
atctttcctt cttaaagacc atccaggagg tggctggtta tgtcctcatt gccctcaaca


541
cagtggagcg aattcctttg gaaaacctgc agatcatcag aggaaatatg tactacgaaa


601
attcctatgc cttagcagtc ttatctaact atgatgcaaa taaaaccgga ctgaaggagc


661
tgcccatgag aaatttacag ggccaaaagt gtgatccaag ctgtcccaat gggagctgct


721
ggggtgcagg agaggagaac tgccagaaac tgaccaaaat catctgtgcc cagcagtgct


781
ccgggcgctg ccgtggcaag tcccccagtg actgctgcca caaccagtgt gctgcaggct


841
gcacaggccc ccgggagagc gactgcctgg tctgccgcaa attccgagac gaagccacgt


901
gcaaggacac ctgcccccca ctcatgctct acaaccccac cacgtaccag atggatgtga


961
accccgaggg caaatacagc tttggtgcca cctgcgtgaa gaagtgtccc cgtaattatg


1021
tggtgacaga tcacggctcg tgcgtccgag cctgtggggc cgacagctat gagatggagg


1081
aagacggcgt ccgcaagtgt aagaagtgcg aagggccttg ccgcaaagtg tgtaacggaa


1141
taggtattgg tgaatttaaa gactcactct ccataaatgc tacgaatatt aaacacttca


1201
aaaactgcac ctccatcagt ggcgatctcc acatcctgcc ggtggcattt aggggtgact


1261
ccttcacaca tactcctcct ctggatccac aggaactgga tattctgaaa accgtaaagg


1321
aaatcacagg gtttttgctg attcaggctt ggcctgaaaa caggacggac ctccatgcct


1381
ttgagaacct agaaatcata cgcggcagga ccaagcaaca tggtcagttt tctcttgcag


1441
tcgtcagcct gaacataaca tccttgggat tacgctccct caaggagata agtgatggag


1501
atgtgataat ttcaggaaac aaaaatttgt gctatgcaaa tacaataaac tggaaaaaac


1561
tgtttgggac ctccggtcag aaaaccaaaa ttataagcaa cagaggtgaa aacagctgca


1621
aggccacagg ccaggtctgc catgccttgt gctcccccga gggctgctgg ggcccggagc


1681
ccagggactg cgtctcttgc cggaatgtca gccgaggcag ggaatgcgtg gacaagtgca


1741
accttctgga gggtgagcca agggagtttg tggagaactc tgagtgcata cagtgccacc


1801
cagagtgcct gcctcaggcc atgaacatca cctgcacagg acggggacca gacaactgta


1861
tccagtgtgc ccactacatt gacggccccc actgcgtcaa gacctgcccg gcaggagtca


1921
tgggagaaaa caacaccctg gtctggaagt acgcagacgc cggccatgtg tgccacctgt


1981
gccatccaaa ctgcacctac ggatgcactg ggccaggtct tgaaggctgt ccaacgaatg


2041
ggcctaagat cccgtccatc gccactggga tggtgggggc cctcctcttg ctgctggtgg


2101
tggccctggg gatcggcctc ttcatgcgaa ggcgccacat cgttcggaag cgcacgctgc


2161
ggaggctgct gcaggagagg gagcttgtgg agcctcttac acccagtgga gaagctccca


2221
accaagctct cttgaggatc ttgaaggaaa ctgaattcaa aaagatcaaa gtgctgggct


2281
ccggtgcgtt cggcacggtg tataagggac tctggatccc agaaggtgag aaagttaaaa


2341
ttcccgtcgc tatcaaggaa ttaagagaag caacatctcc gaaagccaac aaggaaatcc


2401
tcgatgaagc ctacgtgatg gccagcgtgg acaaccccca cgtgtgccgc ctgctgggca


2461
tctgcctcac ctccaccgtg cagctcatca cgcagctcat gcccttcggc tgcctcctgg


2521
actatgtccg ggaacacaaa gacaatattg gctcccagta cctgctcaac tggtgtgtgc


2581
agatcgcaaa gggcatgaac tacttggagg accgtcgctt ggtgcaccgc gacctggcag


2641
ccaggaacgt actggtgaaa acaccgcagc atgtcaagat cacagatttt gggctggcca


2701
aactgctggg tgcggaagag aaagaatacc atgcagaagg aggcaaagtg cctatcaagt


2761
ggatggcatt ggaatcaatt ttacacagaa tctataccca ccagagtgat gtctggagct


2821
acggggtgac tgtttgggag ttgatgacct ttggatccaa gccatatgac ggaatccctg


2881
ccagcgagat ctcctccatc ctggagaaag gagaacgcct ccctcagcca cccatatgta


2941
ccatcgatgt ctacatgatc atggtcaagt gctggatgat agacgcagat agtcgcccaa


3001
agttccgtga gttgatcatc gaattctcca aaatggcccg agacccccag cgctaccttg


3061
tcattcaggg ggatgaaaga atgcatttgc caagtcctac agactccaac ttctaccgtg


3121
ccctgatgga tgaagaagac atggacgacg tggtggatgc cgacgagtac ctcatcccac


3181
agcagggctt cttcagcagc ccctccacgt cacggactcc cctcctgagc tctctgagtg


3241
caaccagcaa caattccacc gtggcttgca ttgatagaaa tgggctgcaa agctgtccca


3301
tcaaggaaga cagcttcttg cagcgataca gctcagaccc cacaggcgcc ttgactgagg


3361
acagcataga cgacaccttc ctcccagtgc ctggtgagtg gcttgtctgg aaacagtcct


3421
gctcctcaac ctcctcgacc cactcagcag cagccagtct ccagtgtcca agccaggtgc


3481
tccctccagc atctccagag ggggaaacag tggcagattt gcagacacag tgaagggcgt


3541
aaggagcaga taaacacatg accgagcctg cacaagctct ttgttgtgtc tggttgtttg


3601
ctgtacctct gttgtaagaa tgaatctgca aaatttctag cttatgaagc aaatcacgga


3661
catacacatc tgtgtgtgtg agtgttcatg atgtgtgtac atctgtgtat gtgtgtgtgt


3721
gtatgtgtgt gtttgtgaca gatttgatcc ctgttctctc tgctggctct atcttgacct


3781
gtgaaacgta tatttaacta attaaatatt agttaatatt aataaatttt aagctttatc


3841
cagaaaaaaa aaaaaaaaa










SEQ ID NO: 100 Human EGFR Amino Acid Sequence Isoform E (NP_001333826.1)








1
mrpsgtagaa llallaalcp asraleekkv cqgtsnkltq lgtfedhfls lqrmfnncev


61
vlgnleityv qrnydlsflk tiqevagyvl ialntverip lenlqiirgn myyensyala


121
vlsnydankt glkelpmrnl qgqkcdpscp ngscwgagee ncqkltkiic aqqcsgrcrg


181
kspsdcchnq caagctgpre sdclvcrkfr deatckdccp plmlynptty qmdvnpegky


241
sfgatcvkkc prnyvvtdhg scvracgads yemeedgvrk ckkcegpcrk vcngigigef


301
kdslsinatn ikhfknctsi sgdlhilpva frgdsfthtp pldpqeldil ktvkeitgfl


361
liqawpenrt dlhafenlei irgrtkqhgq fslavvslni tslglrslke isdgdviisg


421
nknlcyanti nwkklfgtsg qktkiisnrg ensckatgqv chalcspegc wgpeprdcvs


481
crnvsrgrec vdkcnllege prefvensec iqchpeclpq amnitctgrg pdnciqcahy


541
idgphcvktc pagvmgennt lvwkyadagh vchlchpnct ygctgpgleg cptngpkips


601
iatgmvgall lllvvalgig lfmrrrhivr krtlrrllqe relvepltps geapnqallr


661
ilketefkki kvlgsgafgt vykglwipeg ekvkipvaik elreatspka nkeildeayv


721
masvdnphvc rllgicltst vqlitqlmpf gclldyvreh kdnigsqyll nwcvqiakgm


781
nyledrrlvh rdlaarnvlv ktpqhvkitd fglakllgae ekeyhaeggk vpikwmales


841
ilhriythqs dvwsygvtvw elmtfgskpy dgipaseiss ilekgerlpq ppictidvym


901
imvkcwmida dsrpkfreli iefskmardp qrylviqgde rmhlpsptds nfyralmdee


961
dmddvvdade ylipqqgffs spstsrtpll sslsatsnns tvacidrngl qscpikedsf


1021
lqryssdptg altedsiddt flpvpgewlv wkqscsstss thsaaaslqc psqvlppasp


1081
egetvadlqt q










SEQ ID NO: 101 Human EGFR cDNA Sequence Variant 6 (NM_001346898.1, CDS:


from 258 to 3668)








1
gtccgggcag cccccggcgc agcgcggccg cagcagcctc cgccccccgc acggtgtgag


61
cgcccgacgc ggccgaggcg gccggagtcc cgagctagcc ccggcggccg ccgccgccca


121
gaccggacga caggccacct cgtcggcgtc cgcccgagtc cccgcctcgc cgccaacgcc


181
acaaccaccg cgcacggccc cctgactccg tccagtattg atcgggagag ccggagcgag


241
ctcttcgggg agcagcgatg cgaccctccg ggacggccgg ggcagcgctc ctggcgctgc


301
tggctgcgct ctgcccggcg agtcgggctc tggaggaaaa gaaagtttgc caaggcacga


361
gtaacaagct cacgcagttg ggcacttttg aagatcattt tctcagcctc cagaggatgt


421
tcaataactg tgaggtggtc cttgggaatt tggaaattac ctatgtgcag aggaattatg


481
atctttcctt cttaaagacc atccaggagg tggctggtta tgtcctcatt gccctcaaca


541
cagtggagcg aattcctttg gaaaacctgc agatcatcag aggaaatatg tactacgaaa


601
attcctatgc cttagcagtc ttatctaact atgatgcaaa taaaaccgga ctgaaggagc


661
tgcccatgag aaatttacag gaaatcctgc atggcgccgt gcggttcagc aacaaccctg


721
ccctgtgcaa cgtggagagc atccagtggc gggacatagt cagcagtgac ttcctcagca


781
acatgtcgat ggacttccag aaccacctgg gcagctgcca aaagtgtgat ccaagctgtc


841
ccaatgggag ctgctggggt gcaggagagg agaactgcca gaaactgacc aaaatcatct


901
gtgcccagca gtgctccggg cgctgccgtg gcaagtcccc cagtgactgc tgccacaacc


961
agtgtgctgc aggctgcaca ggcccccggg agagcgactg cctggtctgc cgcaaattcc


1021
gagacgaagc cacgtgcaag gacacctgcc ccccactcat gccctacaac cccaccacgt


1081
accagatgga tgtgaacccc gagggcaaat acagctttgg tgccacctgc gtgaagaagt


1141
gtccccgtaa ttatgtggtg acagatcacg gctcgtgcgt ccgagcctgt ggggccgaca


1201
gctatgagat ggaggaagac ggcgtccgca agtgtaagaa gtgcgaaggg ccttgccgca


1261
aagtgtgtaa cggaataggt attggtgaat ttaaagactc actctccata aatgctacga


1321
atattaaaca cttcaaaaac tgcacctcca tcagtggcga tctccacatc ctgccggtgg


1381
catttagggg tgactccttc acacatactc ctcctctgga tccacaggaa ctggatattc


1441
tgaaaaccgt aaaggaaatc acagggtttt tgctgattca ggcttggcct gaaaacagga


1501
cggacctcca tgcctttgag aacctagaaa tcatacgcgg caggaccaag caacatggtc


1561
agttttctct tgcagtcgtc agcctgaaca taacatcctt gggattacgc tccctcaagg


1621
agataagtga tggagatgtg ataatttcag gaaacaaaaa tttgtgctat gcaaatacaa


1681
taaactggaa aaaactgttt gggacctccg gtcagaaaac caaaattata agcaacagag


1741
gtgaaaacag ctgcaaggcc acaggccagg tctgccatgc cttgtgctcc cccgagggct


1801
gctggggccc ggagcccagg gactgcgtct cttgccggaa tgtcagccga ggcagggaat


1861
gcgtggacaa gtgcaacctt ctggagggtg agccaaggga gtttgtggag aactctgagt


1921
gcatacagtg ccacccagag tgcctgcctc aggccatgaa catcacctgc acaggacggg


1981
gaccagacaa ctgtatccag tgtgcccact acattgacgg cccccactgc gtcaagacct


2041
gcccggcagg agtcatggga gaaaacaaca ccctggtctg gaagtacgca gacgccggcc


2101
atgtgtgcca cctgtgccat ccaaactgca cctacggatg cactgggcca ggtcttgaag


2161
gctgtccaac gaatgggcct aagatcccgt ccatcgccac tgggatggtg ggggccctcc


2221
tcttgctgct ggtggtggcc ctggggatcg gcctcttcat gcgaaggcgc cacatcgttc


2281
ggaagcgcac gctgcggagg ctgctgcagg agagggagct tgtggagcct cttacaccca


2341
gtggagaagc tcccaaccaa gctctcttga ggatcttgaa ggaaactgaa ttcaaaaaga


2401
tcaaagtgct gggctccggt gcgttcggca cggtgtataa gggactctgg atcccagaag


2461
gtgagaaagt taaaattccc gtcgctatca aggaattaag agaagcaaca tctccgaaag


2521
ccaacaagga aatcctcgat gaagcctacg tgatggccag cgtggacaac ccccacgtgt


2581
gccgcctgct gggcatctgc ctcacctcca ccgtgcagct catcacgcag ctcatgccct


2641
tcggctgcct cctggactat gtccgggaac acaaagacaa tattggctcc cagtacctgc


2701
tcaactggtg tgtgcagatc gcaaagggca tgaactactt ggaggaccgt cgcttggtgc


2761
accgcgacct ggcagccagg aacgtactgg tgaaaacacc gcagcatgtc aagatcacag


2821
attttgggct ggccaaactg ctgggtgcgg aagagaaaga ataccatgca gaaggaggca


2881
aagtgcctat caagtggatg gcattggaat caattttaca cagaatctat acccaccaga


2941
gtgatgtctg gagctacggg gcgactgttt gggagttgat gacctttgga tccaagccat


3001
atgacggaat ccctgccagc gagatctcct ccatcctgga gaaaggagaa cgcctccctc


3061
agccacccat atgtaccatc gatgtctaca tgatcatggt caagtgctgg atgatagacg


3121
cagatagtcg cccaaagttc cgtgagttga tcatcgaatt ctccaaaatg gcccgagacc


3181
cccagcgcta ccttgtcatt cagggggatg aaagaatgca tttgccaagt cctacagact


3241
ccaacttcta ccgtgccctg atggatgaag aagacatgga cgacgtggtg gatgccgacg


3301
agtacctcat cccacagcag ggcttcttca gcagcccctc cacgtcacgg actcccctcc


3361
tgagctctct gagtgcaacc agcaacaatt ccaccgtggc ttgcattgat agaaatgggc


3421
tgcaaagctg tcccatcaag gaagacagct tcttgcagcg atacagctca gaccccacag


3481
gcgccttgac tgaggacagc atagacgaca ccttcctccc agtgcctggt gagtggcttg


3541
tctggaaaca gtcctgctcc tcaacctcct cgacccactc agcagcagcc agtctccagt


3601
gtccaagcca ggtgctccct ccagcatctc cagaggggga aacagtggca gatttgcaga


3661
cacagtgaag ggcgtaagga gcagataaac acatgaccga gcctgcacaa gctctttgtt


3721
gtgtctggtt gtttgctgta cctctgttgt aagaatgaat ctgcaaaatt tctagcttat


3781
gaagcaaatc acggacatac acatctgtgt gtgtgagtgt tcatgatgtg tgtacatctg


3841
tgtatgtgtg tgtgtgtatg tgtgtgtttg tgacagattt gatccctgtt ctctctgctg


3901
gctctacctt gacctgtgaa acgtatattt aactaattaa atattagtta atattaataa


3961
attttaagct ttatccagaa aaaaaaaaaa aaaa










SEQ ID NO: 102 Human EGFR Amino Acid Sequence Isoform F (NP_001333827.1)








1
mrpsgtagaa llallaalcp asraleekkv cqgtsnkltq lgtfedhfls lqrmfnncev


61
vlgnleityv qrnydlsflk tiqevagyvl ialntverip lenlqiirgn myyensyala


121
vlsnydankt glkelpmrnl qeilhgavrf snnpalcnve siqwrdivss dflsnmsmdf


181
qnhlgscqkc dpscpngscw gageencqkl tkiicaqqcs grcrgkspsd cchnqcaagc


241
tgpresdclv crkfrdeatc kdtcpplmly npttyqmdvn pegkysfgat cvkkcprnyv


301
vtdhgscvra cgadsyemee dgvrkckkce gpcrkvcngi gigefkdsls inatnikhfk


361
nctsisgdlh ilpvafrgds fthtppldpq eldilktvke itgflliqaw penrtdlhaf


421
enleiirgrt kqhgqtslav vslnitslgl rslkeisdgd viisgnknlc yantinwkkl


481
fgtsgqktki isnrgensck atgqvchalc spegcwgpep rdcvscrnvs rgrecvdkcn


541
llegeprefv enseciqchp eclpqamnit ctgrgpdnci qcahyidgph cvktcpagvm


601
genntlvwky adaghvchlc hpnctygctg pglegcptng pkipsiatgm vgalllllvv


661
algiglfmrr rhivrkrtlr rllqerelve pltpsgeapn qallrilket efkkikvlgs


721
gafgtvykgl wipegekvki pvaikelrea tspkankeil deayvmasvd nphvcrllgi


781
cltstvqlit qlmpfgclld yvrehkdnig sqyllnwcvq iakgmnyled rrlvhrdlaa


841
rnvlvktpqh vkitdfglak llgaeekeyh aeggkvpikw malesilhri ythqsdvwsy


901
gvtvwelmtf gskpydgipa seissilekg erlpqppict idvymimvkc wmidadsrpk


961
freliiefsk mardpqrylv iqgdermhlp sptdsnfyra lmdeedmddv vdadeylipq


1021
qgffsspsts rtpllsslsa tsnnstvaci drnglqscpi kedsflqrys sdptgalted


1081
siddtflpvp gewlvwkqsc sstssthsaa aslqcpsqvl ppaspegetv adlqtq










SEQ ID NO: 103 Human EGFR cDNA Sequence Variant 7 (NM_001346899.1, CDS:


from 258 to 3755)








1
gtccgggcag cccccggcgc agcgcggccg cagcagcctc cgccccccgc acggtgtgag


61
cgcccgacgc ggccgaggcg gccggagtcc cgagctagcc ccggcggccg ccgccgccca


121
gaccggacga caggccacct cgtcggcgtc cgcccgagtc cccgcctcgc cgccaacgcc


181
acaaccaccg cgcacggccc cctgactccg tccagtattg atcgggagag ccggagcgag


241
ctcttcgggg agcagcgatg cgaccctccg ggacggccgg ggcagcgctc ctggcgctgc


301
tggctgcgct ctgcccggcg agtcgggctc tggaggaaaa gaaagtttgc caaggcacga


361
gtaacaagct cacgcagttg ggcacttttg aagatcattt tctcagcctc cagaggatgt


421
tcaataactg tgaggtggtc cttgggaatt tggaaattac ctatgtgcag aggaattatg


481
atctttcctt cttaaagacc atccaggagg tggctggtta tgtcctcatt gccctcaaca


541
cagtggagcg aattcctttg gaaaacctgc agatcatcag aggaaatatg tactacgaaa


601
attcctatgc cttagcagtc ttatctaact atgatgcaaa taaaaccgga ctgaaggagc


661
tgcccatgag aaatttacag ggccaaaagt gtgatccaag ctgtcccaat gggagctgct


721
ggggtgcagg agaggagaac tgccagaaac tgaccaaaat catctgtgcc cagcagtgct


781
ccgggcgctg ccgtggcaag tcccccagtg actgctgcca caaccagtgt gctgcaggct


841
gcacaggccc ccgggagagc gactgcctgg tctgccgcaa attccgagac gaagccacgt


901
gcaaggacac ctgcccccca ctcatgctct acaaccccac cacgtaccag atggatgtga


961
accccgaggg caaatacagc tttggtgcca cctgcgtgaa gaagtgtccc cgtaattatg


1021
tggtgacaga tcacggctcg tgcgtccgag cctgtggggc cgacagctat gagatggagg


1081
aagacggcgt ccgcaagtgt aagaagtgcg aagggccttg ccgcaaagtg tgtaacggaa


1141
taggtattgg tgaatttaaa gactcactct ccataaatgc tacgaatatt aaacacttca


1201
aaaactgcac ctccatcagt ggcgatctcc acatcctgcc ggtggcattt aggggtgact


1261
ccttcacaca tactcctcct ctggatccac aggaactgga tattctgaaa accgtaaagg


1321
aaatcacagg gtttttgctg attcaggctt ggcctgaaaa caggacggac ctccatgcct


1381
ttgagaacct agaaatcata cgcggcagga ccaagcaaca tggtcagttt tctcttgcag


1441
tcgtcagcct gaacataaca tccttgggat tacgctccct caaggagata agtgatggag


1501
atgtgataat ttcaggaaac aaaaatttgt gctatgcaaa tacaataaac tggaaaaaac


1561
tgtttgggac ctccggtcag aaaaccaaaa ttataagcaa cagaggtgaa aacagctgca


1621
aggccacagg ccaggtctgc catgccttgt gctcccccga gggctgctgg ggcccggagc


1681
ccagggactg cgtctcttgc cggaatgtca gccgaggcag ggaatgcgtg gacaagtgca


1741
accttctgga gggtgagcca agggagtttg tggagaactc tgagtgcata cagtgccacc


1801
cagagtgcct gcctcaggcc atgaacatca cctgcacagg acggggacca gacaactgta


1861
tccagtgtgc ccactacatt gacggccccc actgcgtcaa gacctgcccg gcaggagtca


1921
tgggagaaaa caacaccctg gtctggaagt acgcagacgc cggccatgtg tgccacctgt


1981
gccatccaaa ctgcacctac ggatgcactg ggccaggtct tgaaggctgt ccaacgaatg


2041
ggcctaagat cccgtccatc gccactggga tggtgggggc cctcctcttg ctgctggtgg


2101
tggccctggg gatcggcctc ttcatgcgaa ggcgccacat cgttcggaag cgcacgctgc


2161
ggaggctgct gcaggagagg gagcttgtgg agcctcttac acccagtgga gaagctccca


2221
accaagctct cttgaggatc ttgaaggaaa ctgaattcaa aaagatcaaa gtgctgggct


2281
ccggtgcgtt cggcacggtg tataagggac tctggatccc agaaggtgag aaagttaaaa


2341
ttcccgtcgc tatcaaggaa ttaagagaag caacatctcc gaaagccaac aaggaaatcc


2401
tcgatgaagc ctacgtgatg gccagcgtgg acaaccccca cgtgtgccgc ctgctgggca


2461
tctgcctcac ctccaccgtg cagctcatca cgcagctcat gcccttcggc tgcctcctgg


2521
actatgtccg ggaacacaaa gacaatattg gctcccagta cctgctcaac tggtgcgtgc


2581
agatcgcaaa gggcatgaac tacttggagg accgtcgctt ggtgcaccgc gacctggcag


2641
ccaggaacgt actggtgaaa acaccgcagc atgtcaagat cacagatttt gggctggcca


2701
aactgctggg tgcggaagag aaagaatacc atgcagaagg aggcaaagtg cctatcaagt


2761
ggatggcatt ggaatcaatt ttacacagaa tctataccca ccagagtgat gtctggagct


2821
acggggtgac tgtttgggag ttgatgacct ttggatccaa gccatatgac ggaatccctg


2881
ccagcgagat ctcctccatc ctggagaaag gagaacgcct ccctcagcca cccatatgta


2941
ccatcgatgt ctacatgatc atggtcaagt gctggatgat agacgcagat agtcgcccaa


3001
agttccgtga gttgatcatc gaattctcca aaatggcccg agacccccag cgctaccttg


3061
tcattcaggg ggatgaaaga atgcatttgc caagtcctac agactccaac ttctaccgtg


3121
ccctgatgga tgaagaagac atggacgacg tggtggatgc cgacgagtac ctcatcccac


3181
agcagggctt cttcagcagc ccctccacgt cacggactcc cctcctgagc tctctgagtg


3241
caaccagcaa caattccacc gtggcttgca ttgatagaaa tgggctgcaa agctgtccca


3301
tcaaggaaga cagcttcttg cagcgataca gctcagaccc cacaggcgcc ttgactgagg


3361
acagcataga cgacaccttc ctcccagtgc ctgaatacat aaaccagtcc gttcccaaaa


3421
ggcccgctgg ctctgtgcag aatcctgtct atcacaatca gcctctgaac cccgcgccca


3481
gcagagaccc acactaccag gacccccaca gcactgcagt gggcaacccc gagtatctca


3541
acactgtcca gcccacctgt gtcaacagca cattcgacag ccctgcccac tgggcccaga


3601
aaggcagcca ccaaattagc ctggacaacc ctgactacca gcaggacttc tttcccaagg


3661
aagccaagcc aaatggcatc tttaagggct ccacagctga aaatgcagaa tacctaaggg


3721
tcgcgccaca aagcagtgaa tttattggag catgaccacg gaggatagta tgagccctaa


3781
aaatccagac tctttcgata cccaggacca agccacagca ggtcctccat cccaacagcc


3841
atgcccgcat tagctcttag acccacagac tggttttgca acgtttacac cgactagcca


3901
ggaagtactt ccacctcggg cacattttgg gaagttgcat tcctttgtct tcaaactgtg


3961
aagcatttac agaaacgcat ccagcaagaa tattgtccct ttgagcagaa atttatcttt


4021
caaagaggta tatttgaaaa aaaaaaaaag tatatgtgag gatttttatt gattggggat


4081
cttggagttt ttcattgtcg ctattgattt ttacttcaat gggctcttcc aacaaggaag


4141
aagcttgctg gtagcacttg ctaccctgag ttcatccagg cccaactgtg agcaaggagc


4201
acaagccaca agtcttccag aggatgcttg attccagtgg ttctgcttca aggcttccac


4261
tgcaaaacac taaagatcca agaaggcctt catggcccca gcaggccgga tcggtactgt


4321
atcaagtcat ggcaggtaca gtaggataag ccactctgtc ccttcctggg caaagaagaa


4381
acggagggga tggaattctt ccttagactt acttttgtaa aaatgtcccc acggtactta


4441
ctccccactg atggaccagt ggtttccagt catgagcgtt agactgactt gtttgtcttc


4501
cattccattg ttttgaaact cagtatgctg cccctgtctt gctgtcatga aatcagcaag


4561
agaggatgac acatcaaata ataactcgga ttccagccca cattggattc atcagcattt


4621
ggaccaatag cccacagctg agaatgtgga atacctaagg atagcaccgc ttttgttctc


4681
gcaaaaacgt atctcctaat ttgaggctca gatgaaatgc atcaggtcct ttggggcata


4741
gatcagaaga ctacaaaaat gaagctgctc tgaaatctcc tttagccatc accccaaccc


4801
cccaaaatta gtttgtgtta cttatggaag atagttttct ccttttactt cacttcaaaa


4861
gctttctact caaagagtat atgttccctc caggtcagct gcccccaaac cccctcctta


4521
cgctttgtca cacaaaaagt gtctctgcct tgagtcatct attcaagcac ttacagctct


4981
ggccacaaca gggcatttta caggtgcgaa tgacagtagc attatgagta gtgtggaatt


5041
caggtagtaa atatgaaact agggtttgaa attgataatg ctttcacaac atttgcagat


5101
gttttagaag gaaaaaagtt ccttcctaaa ataatttctc tacaattgga agattggaag


5161
attcagctag ttaggagccc accttttttc ctaatctgtg tgtgccctgt aacctgactg


5221
gttaacagca gtcctttgta aacagtgttt taaactctcc tagtcaatat ccaccccatc


5281
caatttatca aggaagaaat ggttcagaaa atattttcag cctacagtta tgttcagtca


5341
cacacacata caaaatgttc cttttgcttt taaagtaatt tttgactccc agatcagtca


5401
gagcccctac agcattgtta agaaagtatt tgatttttgt ctcaatgaaa ataaaactat


5461
attcatttcc actctattat gctctcaaat acccctaagc atctatacta gcctggtatg


5521
ggtatgaaag atacaaagat aaataaaaca tagtccctga ttctaagaaa ttcacaattt


5581
agcaaaggaa atggactcat agatgctaac cttaaaacaa cgtgacaaat gccagacagg


5641
acccatcagc caggcactgt gagagcacag agcagggagg ttgggtcctg cctgaggaga


5701
cctggaaggg aggcctcaca ggaggatgac caggtctcag tcagcgggga ggtggaaagt


5761
gcaggtgcat caggggcacc ctgaccgagg aaacagctgc cagaggcctc cactgctaaa


5821
gtccacataa ggctgaggtc agtcacccta aacaacctgc tccctctaag ccaggggatg


5881
agcttggagc atcccacaag ttccctaaaa gttgcagccc ccagggggat tttgagctat


5941
catctctgca catgcttagt gagaagacta cacaacattt ctaagaatct gagattttat


6001
attgtcagtt aaccactttc attattcatt cacctcagga catgcagaaa tatttcagtc


6061
agaactggga aacagaagga cctacattct gctgtcactt atgtgtcaag aagcagatga


6121
tcgatgaggc aggtcagttg taagtgagtc acattgtagc attaaattct agtatttttg


6181
tagtttgaaa cagtaactta ataaaagagc aaaagctaaa aaaaaaaaaa aaaa










SEQ ID NO: 104 Human EGQFR Amino Acid Sequence Isoform G (NP_001333828.1)








1
mrpsgtagaa llallaalcp asraleekkv cqgtsnkltq lgtfedhfls lqrmfnncev


61
vlgnleityv qrnydlsflk tiqevagyvl ialntverip lenlqiirgn myyensyala


121
vlsnydankt glkelpmrnl qgqkcdpscp ngscwgagee ncqkltkiic aqqcsgrcrg


181
kspsdcchnq caagctgpre sdclvcrkfr deatckdtcp plmlynptty qmdvnpegky


241
sfgatcvkkc prnyvvtdhg scvracgads yemeedgvrk ckkcegpcrk vcngigigef


301
kdslsinatn ikhfknctsi sgdlhilpva frgdsfthtp pldpqeldil ktvkeitgfl


361
liqawpenrt dlhafenlei irgrtkqhgq fslavvslni tslglrslke isdgdviisg


421
nknlcyanti nwkklfgtsg qktkiisnrg ensckatgqv chalcspegc wgpeprdcvs


481
crnvsrgrec vdkcnllege prefvensec iqchpeclpq amnitctgrg pdnciqcahy


541
idgphcvktc pagvmgennt lvwkyadagh vchlchpnct ygctgpgleg cptngpkips


601
iatgmvgall lllvvalgig lfmrrrhivr krtlrrllqe relvepltps geapnqallr


661
ilketefkki kvlgsgafgt vykglwipeg ekvkipvaik elreatspka nkeildeayv


721
masvdnphvc rllgicltst vqlitqlmpf gclldyvreh kdnigsqyll nwcvqiakgm


781
nyledrrlvh rdlaarnvlv ktpqhvkitd fglakllgae ekeyhaeggk vpikwmales


841
ilhriythqs dvwsygvtvw elmtfgskpy dgipaseiss ilekgerlpq ppictidvym


901
imvkcwmida dsrpkfreli iefskmardp qrylviqgde rmhlpsptds nfyralmdee


961
dmddvvdade ylipqqgffs spstsrtpll sslsatsnns tvacidrngl qscpikedsf


1021
lqryssdptg altedsiddt flpvpeyinq svpkrpagsv qnpvyhnqpl npapsrdphy


1081
qdphstavgn peylntvqpt cvnstfdspa hwaqkgshqi sldnpdyqqd ffpkeakpng


1141
ifkgstaena eylrvapqss efiga










SEQ ID NO: 105 Human EGFR cDNA Sequence Variant 8 (NM_001346900.1, CDS:


from 214 to 3687)








1
ccttttgaat gagctctaaa acagttctcc actggacttc agaacaagag ggagctctgg


61
gctgctggct ggttgtgcat ttgctgtggg ttccccccgg caggcgacct ctccgcgctg


121
agaaggttat ccggataacc aatttgccaa ggcacgagta acaagctcac gcagttgggc


181
acttttgaag atcatttcct cagcctccag aggatgttca ataactgtga ggtggtcctt


241
gggaatttgg aaattaccta tgtgcagagg aattatgatc tttccttctt aaagaccatc


301
caggaggtgg ctggttatgt cctcattgcc ctcaacacag tggagcgaat tcctttggaa


361
aacctgcaga tcatcagagg aaatatgtac tacgaaaatt cctatgcctt agcagtctta


421
tctaactatg atgcaaataa aaccggactg aaggagctgc ccatgagaaa tttacaggaa


481
atcctgcatg gcgccgtgcg gttcagcaac aaccctgccc tgtgcaacgt ggagagcatc


541
cagtggcggg acatagtcag cagtgacttt ctcagcaaca tgtcgatgga cttccagaac


601
cacctgggca gctgccaaaa gtgtgatcca agctgtccca atgggagctg ctggggtgca


661
ggagaggaga actgccagaa actgaccaaa accatctgtg cccagcagtg ctccgggcgc


721
tgccgtggca agtcccccag tgactgctgc cacaaccagt gtgctgcagg ctgcacaggc


781
ccccgggaga gcgactgcct ggtctgccgc aaattccgag acgaagccac gtgcaaggac


841
acctgccccc cactcatgct ctacaacccc accacgtacc agatggatgt gaaccccgag


901
ggcaaataca gctttggtgc cacctgcgtg aagaagtgtc cccgtaatta tgtggtgaca


961
gatcacggct cgtgcgtccg agcctgtggg gccgacagct atgagatgga ggaagacggc


1021
gtccgcaagt gtaagaagtg cgaagggcct tgccgcaaag tgtgtaacgg aataggtatt


1081
ggtgaattta aagactcact ctccataaat gctacgaata ttaaacactt caaaaactgc


1141
acctccatca gtggcgatct ccacatcctg ccggtggcat ttaggggtga ctccttcaca


1201
catactcctc ctctggatcc acaggaactg gatattctga aaaccgtaaa ggaaatcaca


1261
gggtttttgc tgattcaggc ttggcctgaa aacaggacgg acctccatgc ctttgagaac


1321
ctagaaatca tacgcggcag gaccaagcaa catggtcagt tttctcttgc agtcgtcagc


1381
ctgaacataa catccttggg attacgctcc ctcaaggaga taagtgatgg agatgtgata


1441
atttcaggaa acaaaaattt gtgctatgca aatacaataa actggaaaaa actgtttggg


1501
acctccggtc agaaaaccaa aattataagc aacagaggtg aaaacagctg caaggccaca


1561
ggccaggtct gccatgcctt gtgctccccc gagggctgct ggggcccgga gcccagggac


1621
tgcgtctctt gccggaatgt cagccgaggc agggaatgcg tggacaagtg caaccttctg


1681
gagggtgagc caagggagtt tgtggagaac tctgagtgca tacagtgcca cccagagtgc


1741
ctgcctcagg ccatgaacat cacctgcaca ggacggggac cagacaactg tatccagtgt


1801
gcccactaca ttgacggccc ccactgcgtc aagacctgcc cggcaggagt catgggagaa


1861
aacaacaccc tggtctggaa gtacgcagac gccggccatg tgtgccacct gtgccatcca


1921
aactgcacct acggatgcac tgggccaggt cttgaaggct gtccaacgaa tgggcctaag


1981
atcccgtcca tcgccactgg gatggtgggg gccctcctct tgctgctggt ggtggccctg


2041
gggatcggcc tcttcatgcg aaggcgccac atcgttcgga agcgcacgct gcggaggctg


2101
ctgcaggaga gggagcttgc ggagcctctt acacccagtg gagaagctcc caaccaagct


2161
ctcttgagga tcttgaagga aactgaattc aaaaagatca aagtgctggg ctccggtgcg


2221
ttcggcacgg tgtataaggg actctggatc ccagaaggtg agaaagttaa aattcccgtc


2281
gctatcaagg aattaagaga agcaacatct ccgaaagcca acaaggaaat cctcgatgaa


2341
gcctacgtga tggccagcgt ggacaacccc cacgtgtgcc gcctgctggg catctgcctc


2401
acctccaccg tgcagctcat cacgcagctc atgcccttcg gctgcctcct ggactatgtc


2461
cgggaacaca aagacaatat tggctcccag tacctgctca actggtgtgt gcagatcgca


2521
aagggcatga accacttgga ggaccgtcgc ttggtgcacc gcgacctggc agccaggaac


2581
gtactggtga aaacaccgca gcatgtcaag atcacagatt ttgggctggc caaactgctg


2641
ggtgcggaag agaaagaata ccatgcagaa ggaggcaaag tgcctatcaa gtggatggca


2701
ttggaatcaa ttttacacag aatctatacc caccagagtg atgtctggag ctacggggtg


2761
actgtttggg agttgatgac ctttggatcc aagccatatg acggaatccc tgccagcgag


2821
atctcctcca tcctggagaa aggagaacgc ctccctcagc cacccatatg taccatcgat


2881
gtctacatga tcatggtcaa gtgctggatg atagacgcag atagtcgccc aaagttccgt


2941
gagttgatca tcgaattctc caaaatggcc cgagaccccc agcgctacct tgtcattcag


3001
ggggatgaaa gaatgcattt gccaagtcct acagactcca acttctaccg tgccctgatg


3061
gatgaagaag acatggacga cgtggtggat gccgacgagt acctcatccc acagcagggc


3121
ttcttcagca gcccctccac gtcacggact cccctcctga gctctctgag tgcaaccagc


3181
aacaattcca ccgtggcttg cattgataga aatgggctgc aaagctgtcc catcaaggaa


3241
gacagcttct tgcagcgata cagctcagac cccacaggcg ccttgactga ggacagcata


3301
gacgacacct tcctcccagt gcctgaatac ataaaccagt ccgttcccaa aaggcccgct


3361
ggctctgtgc agaatcctgt ctatcacaat cagcctctga accccgcgcc cagcagagac


3421
ccacactacc aggaccccca cagcactgca gtgggcaacc ccgagtatct caacactgtc


3481
cagcccacct gtgtcaacag cacattcgac agccctgccc actgggccca gaaaggcagc


3541
caccaaatta gcctggacaa ccctgactac cagcaggact tctttcccaa ggaagccaag


3601
ccaaatggca tctttaaggg ctccacagct gaaaatgcag aatacctaag ggtcgcgcca


3661
caaagcagtg aatttattgg agcatgacca cggaggatag tatgagccct aaaaatccag


3721
actctttcga tacccaggac caagccacag caggtcctcc atcccaacag ccatgcccgc


3781
attagctctt agacccacag actggttttg caacgtttac accgactagc caggaagtac


3841
ttccacctcg ggcacatttt gggaagttgc attcctttgt cttcaaactg tgaagcattt


3901
acagaaacgc atccagcaag aatattgtcc ctttgagcag aaatttatct ttcaaagagg


3961
tatatttgaa aaaaaaaaaa agtatatgtg aggattttta ttgattgggg atcttggagt


4021
ttttcatcgt cgctattgat ttttacttca atgggctctt ccaacaagga agaagcttgc


4081
tggtagcact tgctaccctg agttcatcca ggcccaactg tgagcaagga gcacaagcca


4141
caagtcttcc agaggatgct tgattccagt ggttctgctt caaggcttcc actgcaaaac


4201
actaaagatc caagaaggcc ttcatggccc cagcaggccg gatcggtact gtatcaagtc


4261
atggcaggta cagtaggata agccactctg tcccttcctg ggcaaagaag aaacggaggg


4321
gatggaattc ttccttagac ttacttttgt aaaaatgtcc ccacggtact tactccccac


4381
tgatggacca gtggtttcca gtcatgagcg ttagactgac ttgtttgtct tccattccat


4441
tgttttgaaa ctcagtatgc tgcccctgtc ttgctgtcat gaaatcagca agagaggatg


4501
acacatcaaa taataactcg gattccagcc cacattggat tcatcagcat ttggaccaat


4561
agcccacagc tgagaatgtg gaatacctaa ggatagcacc gcttttgttc tcgcaaaaac


4621
gtatctccta atttgaggct cagatgaaat gcatcaggtc ctttggggca tagatcagaa


4681
gactacaaaa atgaagctgc tctgaaatct cctttagcca tcaccccaac cccccaaaat


4741
tagtttgtgt tacttatgga agatagtttt ctccttttac ttcacttcaa aagcttttta


4801
ctcaaagagt atatgttccc tccaggtcag ctgcccccaa accccctcct tacgctttgt


4861
cacacaaaaa gtgtctctgc cttgagtcat ctattcaagc acttacagct ctggccacaa


4921
cagggcattt tacaggtgcg aatgacagta gcattatgag tagtgtggaa ttcaggtagt


4981
aaatatgaaa ctagggtttg aaattgataa tgctttcaca acatttgcag atgttttaga


5041
aggaaaaaag ttccttccta aaacaatttc tctacaattg gaagattgga agattcagct


5101
agttaggagc ccaccttttt tcctaatctg tgtgtgccct gtaacctgac tggttaacag


5161
cagtcctttg taaacagtgt tttaaactct cctagtcaat atccacccca tccaatttat


5221
caaggaagaa atggttcaga aaatattttc agcctacagt tatgttcagt cacacacaca


5281
tacaaaatgt tccttttgct tttaaagtaa tttttgactc ccagatcagt cagagcccct


5341
acagcattgt taagaaagta tttgattttt gtctcaatga aaataaaact atattcattt


5401
ccactctatt atgctctcaa atacccctaa gcatctatac tagcctggta tgggtatgaa


5461
agatacaaag ataaataaaa catagtccct gattctaaga aattcacaat ttagcaaagg


5521
aaatggactc atagatgcta accttaaaac aacgtgacaa atgccagaca ggacccatca


5581
gccaggcact gtgagagcac agagcaggga ggttgggtcc tgcctgagga gacctggaag


5641
ggaggcctca caggaggatg accaggtctc agtcagcggg gaggtggaaa gtgcaggtgc


5701
atcaggggca ccctgaccga ggaaacagct gccagaggcc tccactgcta aagtccacat


5761
aaggctgagg tcagtcaccc taaacaacct gctccctcta agccagggga tgagcttgga


5821
gcatcccaca agttccctaa aagttgcagc ccccaggggg attttgagct atcatctctg


5881
cacatgctta gtgagaagac tacacaacat ttctaagaat ctgagatttt atattgtcag


5941
ttaaccactt tcattattca ttcacctcag gacatgcaga aatatttcag tcagaactgg


6001
gaaacagaag gacctacatt ctgctgtcac ttatgcgtca agaagcagat gatcgatgag


6061
gcaggtcagt tgtaagtgag tcacattgta gcattaaatt ctagtatttt tgtagtttga


6121
aacagtaact taataaaaga gcaaaagcta aaaaaaaaaa aaaaaa










SEQ ID NO: 106 Human EGFR Amino Acid Sequence Isoform H (NP_001333829.1)








1
mfnncewlg nleityvqrn ydlsflktiq evagyvlial ntveriplen lqiirgnmyy


61
ensyalavls nydanktglk elpmrnlqei lhgavrfsnn palcnvesiq wrdivssdfl


121
snmsmdfqnh igscqkcdps cpngscwgag eencqkltki icaqqcsgrc rgkspsdcch


181
nqcaagctgp resdclvcrk frdeatckdt cpplmlynpt tyqmdvnpeg kysfgatcvk


241
keprnyvvtd hgscvracga dsyemeedgv rkckkcegpc rkvengigig efkdslsina


301
tnikhfknct sisgdlhilp vafrgdsfrh tppldpqeld ilktvkeitg flliqawpen


361
rtdlhafenl eiirgrtkqh gqfslavvsl nitslglrsl keisdgdvii sgnknlcyan


421
tinwkklfgt sgqktkiisn rgensckatg qvchalcspe gcwgpeprdc vscrnvsrgr


481
ecvdkcnlle geprefvens eciqchpecl pqamnitctg rgpdnciqca hyidgphcvk


541
tcpagvmgen ntlvwkyada ghvchlchpn ctygctgpgl egcptngpki psiatgmvga


601
lllllvvalg iglfmrrrhi vrkrtlrrll qerelveplt psgeapnqal lrilketefk


661
kikvlgsgaf gtvykglwip egekvkipva ikelreatsp kankeildea yvmasvdnph


721
vcrllgiclt stvqlitqlm pfgclldyvr ehkdnigsqy llnwcvqiak gmnyledrrl


781
vhrdlaarnv lvktpqhvki tdfglakllg aeekeyhaeg gkvpikwmal esilhriyth


841
qsdvwsygvt vwelmtfgsk pydgipasei ssilekgerl pqppictidv ymimvkcwmi


901
dadsrpkfre liiefskmar dpqrylviqg dermhlpspt dsnfyralmd eedmddvvda


961
deylipqqgf fsspstsrtp llsslsatsn nstvacidrn glqscpiked sflqryssdp


1021
tgaltedsid dtflpvpeyi nqsvpkrpag svqnpvyhnq plnpapsrdp hyqdphstav


1081
gnpeylncvq ptcvnscfds pahwaqkgsh qisldnpdyq qdffpkeakp ngifkgstae


1141
naeylrvapq ssefiga










SEQ ID NO: 107 Human EGFR cDNA Sequence Variant 9 (NM_001346941.1, CDS:


from 258 to 3089)








1
gtccgggcag cccccggcgc agcgcggccg cagcagcctc cgccccccgc acggtgtgag


61
cgcccgacgc ggccgaggcg gccggagtcc cgagctagcc ccggcggccg ccgccgccca


121
gaccggacga caggccacct cgtcggcgtc cgcccgagtc cccgcctcgc cgccaacgcc


181
acaaccaccg cgcacggccc cctgactccg tccagtattg atcgggagag ccggagcgag


241
ctcttcgggg agcagcgatg cgaccctccg ggacggccgg ggcagcgctc ctggcgctgc


301
tggctgcgct ctgcccggcg agtcgggctc tggaggaaaa gaaaggtaat tatgtggtga


361
cagatcacgg ctcgtgcgtc cgagcctgtg gggccgacag ctatgagatg gaggaagacg


421
gcgtccgcaa gtgtaagaag tgcgaagggc cttgccgcaa agtgtgtaac ggaataggta


481
ttggtgaatt taaagactca ctctccataa atgctacgaa tactaaacac ttcaaaaact


541
gcacctccat cagtggcgat ctccacatcc tgccggtggc atttaggggt gactcctcca


601
cacatactcc tcctctggat ccacaggaac tggatattct gaaaaccgta aaggaaatca


661
cagggttttt gctgattcag gcttggcctg aaaacaggac ggacctccat gcctttgaga


721
acctagaaat catacgcggc aggaccaagc aacatggtca gttttctctt gcagtcgtca


781
gcctgaacat aacatccttg ggattacgct ccctcaagga gataagtgat ggagatgtga


841
taatttcagg aaacaaaaat ttgtgctatg caaatacaat aaactggaaa aaactgtttg


901
ggacctccgg tcagaaaacc aaaattataa gcaacagagg tgaaaacagc tgcaaggcca


961
caggccaggt ctgccatgcc ttgtgctccc ccgagggctg ctggggcccg gagcccaggg


1021
actgcgtctc ttgccggaat gtcagccgag gcagggaatg cgtggacaag tgcaaccttc


1081
tggagggtga gccaagggag tttgtggaga actctgagtg catacagtgc cacccagagt


1141
gcctgcctca ggccatgaac atcacctgca caggacgggg accagacaac tgtatccagt


1201
gtgcccacta cattgacggc ccccactgcg tcaagacctg cccggcagga gtcatgggag


1261
aaaacaacac cctggtccgg aagtacgcag acgccggcca tgtgtgccac ctgtgccacc


1321
caaactgcac ctacggatgc actgggccag gtcttgaagg ctgtccaacg aatgggccta


1381
agatcccgtc catcgccact gggatggtgg gggccctcct cttgctgctg gtggtggccc


1441
tggggatcgg cctcttcatg cgaaggcgcc acatcgttcg gaagcgcacg ctgcggaggc


1501
tgctgcagga gagggagctt gtggagcctc ttacacccag tggagaagct cccaaccaag


1561
ctctcttgag gatcttgaag gaaactgaat tcaaaaagat caaagtgctg ggctccggtg


1621
cgttcggcac ggtgtataag ggactctgga tcccagaagg tgagaaagtt aaaattcccg


1681
tcgctatcaa ggaattaaga gaagcaacat ctccgaaagc caacaaggaa atcctcgatg


1741
aagcctacgt gatggccagc gtggacaacc cccacgtgtg ccgcctgctg ggcatctgcc


1801
tcacctccac cgtgcagctc atcacgcagc tcatgccctt cggctgcctc ctggactatg


1861
tccgggaaca caaagacaat attggctccc agtacctgct caactggtgt gtgcagatcg


1921
caaagggcat gaactacttg gaggaccgtc gcttggtgca ccgcgacctg gcagccagga


1981
acgtactggt gaaaacaccg cagcatgtca agatcacaga ttttgggctg gccaaactgc


2041
tgggtgcgga agagaaagaa taccatgcag aaggaggcaa agtgcccatc aagtggatgg


2101
cattggaatc aattttacac agaatctata cccaccagag tgatgtctgg agctacgggg


2161
tgactgtttg ggagttgatg acctttggat ccaagccata tgacggaatc cctgccagcg


2221
agatctcctc catcctggag aaaggagaac gcctccctca gccacccata tgtaccatcg


2281
atgtctacat gatcatggtc aagtgctgga tgatagacgc agatagtcgc ccaaagttcc


2341
gtgagttgat catcgaattc tccaaaatgg cccgagaccc ccagcgctac cttgtcattc


2401
agggggatga aagaatgcat ttgccaagtc ctacagactc caacttctac cgtgccctga


2461
tggatgaaga agacatggac gacgtggtgg atgccgacga gtacctcatc ccacagcagg


2521
gcttcttcag cagcccctcc acgtcacgga ctcccctcct gagctctctg agtgcaacca


2581
gcaacaattc caccgtggct tgcattgata gaaatgggct gcaaagctgt cccatcaagg


2641
aagacagctt cttgcagcga tacagctcag accccacagg cgccttgact gaggacagca


2701
tagacgacac cttcctccca gtgcctgaat acataaacca gtccgttccc aaaaggcccg


2761
ctggctctgt gcagaatcct gtctatcaca atcagcctct gaaccccgcg cccagcagag


2821
acccacacta ccaggacccc cacagcactg cagtgggcaa ccccgagtat ctcaacactg


2881
tccagcccac ctgtgtcaac agcacattcg acagccctgc ccactgggcc cagaaaggca


2941
gccaccaaat tagcctggac aaccctgact accagcagga cttctttccc aaggaagcca


3001
agccaaatgg catctttaag ggctccacag ctgaaaatgc agaataccta agggtcgcgc


3061
cacaaagcag tgaatttatt ggagcatgac cacggaggat agtatgagcc ctaaaaatcc


3121
agactctttc gatacccagg accaagccac agcaggtcct ccatcccaac agccatgccc


3181
gcattagctc ttagacccac agactggttt tgcaacgttt acaccgacta gccaggaagt


3241
acttccacct cgggcacatt ttgggaagtt gcattccttt gtcttcaaac tgtgaagcat


3301
ttacagaaac gcatccagca agaatattgt ccctttgagc agaaatttat ctttcaaaga


3361
ggtatatttg aaaaaaaaaa aaagtatatg tgaggatttt tattgattgg ggatcttgga


3421
gtttttcatt gtcgctattg atttttactt caatgggctc ttccaacaag gaagaagctt


3481
gctggtagca cttgctaccc tgagttcatc caggcccaac tgtgagcaag gagcacaagc


3541
cacaagtctt ccagaggatg cttgattcca gtggttctgc ttcaaggctt ccactgcaaa


3601
acactaaaga tccaagaagg ccttcatggc cccagcaggc cggatcggta ctgtatcaag


3661
tcatggcagg tacagtagga taagccactc tgtcccttcc tgggcaaaga agaaacggag


3721
gggatggaat tcttccttag acttactttt gtaaaaatgt ccccacggta cttactcccc


3781
actgatggac cagtggtttc cagtcatgag cgttagactg acttgtttgt cttccattcc


3841
attgttttga aactcagtat gctgcccctg tcttgctgtc atgaaatcag caagagagga


3901
tgacacatca aataataact cggattccag cccacattgg attcatcagc atttggacca


3961
atagcccaca gctgagaatg tggaatacct aaggatagca ccgcttttgt tctcgcaaaa


4021
acgtatctcc taatttgagg ctcagatgaa atgcatcagg tctttcgggg catagatcag


4081
aagactacaa aaatgaagct gctctgaaat ctcctttagc catcacccca accccccaaa


4141
attagtttgt gttacttatg gaagatagtt ttctcctttt acttcacttc aaaagctttt


4201
tactcaaaga gtatatgttc cctccaggtc agctgccccc aaaccccctc cttacgcttt


4261
gtcacacaaa aagtgtctct gccttgagtc atctattcaa gcacttacag ctctggccac


4321
aacagggcat tttacaggtg cgaatgacag tagcattatg agtagtgtgg aattcaggta


4381
gtaaatatga aactagggtt tgaaattgat aatgctttca caacatttgc agatgtttta


4441
gaaggaaaaa agctccttcc taaaataatt tctctacaat tggaagattg gaagattcag


4501
ctagttagga gcccaccttt tttcctaatc tgtgtgtgcc ctgtaacctg actggttaac


4561
agcagtcctt tgtaaacagt gttttaaact ctcctagtca atatccaccc catccaattt


4621
atcaaggaag aaatggttca gaaaatattt tcagcctaca gttatgttca gtcacacaca


4681
catacaaaat gttccttttg cttttaaagt aatttttgac tcccagatca gtcagagccc


4741
ctacagcact gttaagaaag tatttgattt ttgtctcaat gaaaataaaa ctatattcat


4801
ttccactcta ttatgctctc aaatacccct aagcatctat actagcctgg tatgggtatg


4861
aaagatacaa agataaataa aacatagtcc ctgattctaa gaaattcaca atttagcaaa


4921
ggaaatggac tcatagatgc taaccttaaa acaacgtgac aaatgccaga caggacccat


4981
cagccaggca ctgtgagagc acagagcagg gaggttgggt cctgcctgag gagacctgga


5041
agggaggcct cacaggagga tgaccaggtc tcagtcagcg gggaggtgga aagtgcaggt


5101
gcatcagggg caccctgacc gaggaaacag ctgccagagg cctccactgc taaagtccac


5161
ataaggctga ggtcagtcac cctaaacaac ctgctccctc taagccaggg gatgagcttg


5221
gagcatccca caagttccct aaaagttgca gcccccaggg ggatttcgag ctatcatctc


5281
tgcacatgct tagtgagaag actacacaac atttctaaga atctgagatt ttatattgtc


5341
agttaaccac tttcattatt cattcacctc aggacatgca gaaatatttc agtcagaact


5401
gggaaacaga aggacctaca ttctgctgtc acttatgtgt caagaagcag atgatcgatg


5461
aggcaggtca gttgtaagtg agtcacattg tagcattaaa ttctagtatt tttgtagttt


5521
gaaacagtaa cttaataaaa gagcaaaagc ta










SEQ ID NO: 108 Human EGFR Amino Acid Sequence Isoform I (NP_001333870.1)








1
mrpsgtagaa llallaalcp asraleekkg nyvvtdhgsc vracgadsye meedgvrkck


61
kcegpcrkvc ngigigefkd slsinatnik hfknctsisg dlhilpvafr gdsfthtppl


121
dpqeldilkt vkeitgflli qawpenrtdl hafenleiir grtkqhgqfs lavvslnits


181
lglrslkeis dgdviisgnk nlcyantinw kklfgtsgqk tkiisnrgen sckatgqvch


241
alcspegcwg peprdcvscr nvsrgrecvd kcnllegepr efvenseciq chpeclpqam


301
nitctgrgpd nciqcahyid gphcvktcpa gvmgenntlv wkyadaghvc hlchpnctyg


361
ctgpglegcp tngpkipsia tgmvgallll lvvalgiglf mrrrhivrkr tlrrllqere


421
lvepltpsge apnqallril kerefkkikv lgsgafgtvy kglwipegek vkipvaikel


481
reatspkank eildeayvma svdnphvcrl lgicltstvq litqlmpfgc lldyvrehkd


541
nigsqyllnw cvqiakgmny ledrrlvhrd laarnvlvkt pqhvkitdfg lakllgaeek


601
eyhaeggkvp ikwmalesil hriythqsdv wsygvtvwel mtfgskpydg ipaseissil


661
ekgerlpqpp ictidvymim vkcwmidads rpkfreliie fskmardpqr ylviqgderm


721
hlpsptdsnf yralmdeedm ddvvdadeyl ipqqgffssp stsrtpllss lsatsnnstv


781
acidrnglqs cpikedsflq ryssdptgal tedsiddtfl pvpeyinqsv pkrpagsvqn


841
pvyhnqplnp apsrdphyqd phstavgnpe ylntvqptcv nstfdspahw aqkgshqisl


901
dnpdyqqdff pkeakpngif kgstaenaey lrvapqssef iga










SEQ ID NO: 109 Mouse EGFR cDNA Sequence Variant 1 (NM_207655.2, CDS:


from 281 to 3913)








1
ctcccccagc cccgacccga gctaactaga cgtctgggca gccccagcgc aacgcgcagc


61
agcctccctc ctcttcttcc cgcactgtgc gctcctcctg ggctagggcg tctggatcga


121
gtcccggagg ctaccgcctc ccagacagac gacaggtcac ctggacgcga gcctgtgtcc


181
gggtctcgtc gttgccggcg cagtcactgg gcacaaccgt gggactccgt ctgtctcgga


241
ttaatcccgg agagccagag ccaacctctc ccggtcagag atgcgaccct cagggaccgc


301
gagaaccaca ctgctggtgt tgctgaccgc gctctgcgcc gcaggtgggg cgttggagga


361
aaagaaagtc tgccaaggca caagtaacag gctcacccaa ctgggcactt ttgaagacca


421
ctttctgagc ctgcagagga tgtacaacaa ctgtgaagtg gtccttggga acttggaaat


481
tacctatgtg caaaggaatt acgacctttc cttcttaaag accatccagg aggtggccgg


541
ctatgtcctc attgccctca acaccgtgga gagaatccct ttggagaacc tgcagatcat


601
caggggaaat gctctttatg aaaacaccta tgccttagcc atcccgtcca actatgggac


661
aaacagaact gggcttaggg aactgcccat gcggaactta caggaaatcc tgattggtgc


721
tgtgcgattc agcaacaacc ccatcctctg caatatggat actatccagt ggagggacat


781
cgtccaaaac gtctttatga gcaacatgtc aatggactta cagagccatc cgagcagttg


841
ccccaaatgt gatccaagct gtcccaatgg aagctgctgg ggaggaggag aggagaactg


901
ccagaaattg accaaaatca tctgtgccca gcaatgttcc catcgctgtc gtggcaggtc


961
ccccagtgac tgctgccaca accaatgtgc tgcggggtgt acagggcccc gagagagtga


1021
ctgtctggtc tgccaaaagt tccaagatga ggccacatgc aaagacacct gcccaccact


1081
catgctgtac aaccccacca cctaccagat ggatgtcaac cctgaaggga agtacagctt


1141
tggtgccacc tgtgtgaaga agtgcccccg aaactacgtg gcgacagatc atggctcatg


1201
tgtccgagcc tgtgggcctg actactacga agtggaagaa gatggcatcc gcaagtgtaa


1261
aaaatgtgat gggccctgtc gcaaagtttg taatggcata ggcattggtg aacttaaaga


1321
cacactctcc ataaatgcta caaacatcaa acacttcaaa tactgcactg ccatcagcgg


1381
ggaccttcac atcccgccag tggcctttaa gggggattct ttcacgcgca ctcctcctct


1441
agacccacga gaactagaaa ttctaaaaac cgtaaaggaa ataacaggct ttttgctgat


1501
tcaggcttgg cctgataact ggactgacct ccatgctttc gagaacctag aaataatacg


1561
tggcagaaca aagcaacatg gtcagttttc tttggcggtc gttggcctga acatcacatc


1621
actggggctg cgttccctca aggagatcag tgatggggat gtgatcattt ctggaaaccg


1681
aaatttgtgc tacgcaaaca caataaactg gaaaaaactc ttcgggacac ccaatcagaa


1741
aaccaaaatc atgaacaaca gagctgagaa agactgcaag gccgtgaacc acgtctgcaa


1801
tcctttatgc tcctcggaag gctgctgggg ccctgagccc agggactgtg tctcctgcca


1861
gaatgtgagc agaggcaggg agtgcgtgga gaaatgcaac atcctggagg gggaaccaag


1921
ggagtttgtg gaaaattctg aatgcatcca gtgccatcca gaatgtctgc cccaggccat


1981
gaacatcacc tgtacaggca ggggaccaga caactgcatc cagtgtgccc actacattga


2041
tggcccacac tgtgtcaaga cctgcccagc tggcatcatg ggagagaaca acactctggt


2101
ctggaagtat gcagatgcca ataatgtctg ccacctatgc cacgccaact gtacctatgg


2161
atgtgctggg ccaggtcttc aaggatgtga agtgtggcca tctgggccaa agataccatc


2221
tattgccact gggattgtgg gtggcctcct cttcatagtg gtggtggccc ttgggattgg


2281
cctattcatg cgaagacgtc acattgttcg aaagcgtaca ctacgccgcc tgcttcaaga


2341
gagagagctc gtggaacctc tcacacccag cggagaagct ccaaaccaag cccacttgag


2401
gatattaaag gaaacagaat tcaaaaagat caaagttctg ggttcgggag catttggcac


2461
agtgtataag ggtctctgga tcccagaagg tgagaaagta aaaatcccgg tggccatcaa


2521
ggagttaaga gaagccacat ctccaaaagc caacaaagaa atccttgacg aagcctatgt


2581
gatggctagt gtggacaacc ctcatgtatg ccgcctcctg ggcatctgtc tgacctccac


2641
tgtccagctc attacacagc tcatgcccta cggttgcctc ctggactacg tccgagaaca


2701
caaggacaac attggctccc agtacctcct caactggtgt gtgcagattg caaagggcat


2761
gaactacctg gaagatcggc gtttggtgca ccgtgacttg gcagccagga atgtactggt


2821
gaagacacca cagcatgtca agatcacaga ttttgggctg gccaaactgc ttggtgctga


2881
agagaaagaa tatcatgccg aggggggcaa agtgcctatc aagtggatgg ctttggaatc


2941
aattttacac cgaatttaca cacaccaaag tgatgtctgg agctatggtg tcactgtgtg


3001
ggaactgatg acctttgggt ccaagcctta tgatggaatc ccagcaagtg acatctcatc


3061
catcctagag aaaggagagc gccttccaca gccacctatc tgcaccatcg atgtctacat


3121
gatcatggtc aagtgctgga tgatagatgc tgatagccgc ccaaagttcc gagagttgat


3181
tcttgaattc tccaaaatgg cccgagaccc acagcgctac cttgttatcc agggggatga


3241
aagaatgcat ttgccaagcc ctacagactc caacttttac cgagccctga tggatgaaga


3301
ggacatggag gatgtagttg atgctgatga gtatcttatc ccacagcaag gcttcttcaa


3361
cagcccgtcc acgtcgagga ctcccctctt gagttctctg agtgcaacta gcaacaattc


3421
cactgtggct tgcattaata gaaatgggag ctgccgtgtc aaagaagacg ccttcttgca


3481
gcggtacagc tccgacccca caggtgctgt aacagaggac aacatagatg acgcattcct


3541
ccccgtacct gaatatgtaa accaatctgt tcccaagagg ccagcaggct ctgtgcagaa


3601
ccctgtctat cacaatcagc ccctgcatcc agctcctgga agagacctgc attatcaaaa


3661
tccccacagc aatgcagtgg gcaaccctga gtatctcaac actgcccagc ctacctgtct


3721
cagcagtggg tttaacagcc ctgcactctg gatccagaaa ggcagtcacc aaatgagcct


3781
agacaaccct gactaccagc aggacttctt ccccaaggaa accaagccaa atggcatatt


3841
taagggcccc acagctgaaa atgcagagta cctacgggtg gcacctccaa gcagtgagtt


3901
tattggagca tgacaagaag gggcatcata ccagctataa aatgtctgga ctttctagaa


3961
tcccaggacc aactatggca gcacctccac ttctggtagc catgcccacg ctgtgtcaaa


4021
tgtcactcag actggcttta aagcataact ctgatgggct ttgtcactga gccaagaagt


4081
gggcctctct cctgatgcac tttgggaagt tgaaggtaca tcaattgatc ttcgaactgt


4141
gaagattcca caaaaaaggt atccatcgag aacattgtcc attggaacag aagtttgcct


4201
catggtgagg tacatatggg aaaaaaacag acatatggag cttatattta gggaactttg


4261
ggattcttgt ctttattgat ttgattgatg cactcttgta gtctggtaca cagagttgcc


4321
tggagccaac tgaccagaca gttggttcca ccagctctgc atcaagacac ttccgtggca


4381
agacaactaa atgtataaga agtccatgga tgccctgagc aggccacact tgtacagcat


4441
taaaccatgg cagatacaat aggataagcc actttgttac ttactggggc tgggagaaga


4501
ggaatgacgg ggtagaattt tccctcagac gtacttttta tataaatatg tccctggcac


4561
ctaacacgcg ctagtttacc agtgttttct attagacttc cttctatgtt ttctgtttca


4621
ttgttttgag ttgtaaatat gtgttcctgt cttcatttca tgaagtaaac aaacaaacaa


4681
aaaacccagt attaagtatt atcaaagaac aaccatgatt ccacattcga acccattcaa


4741
accatcagta ttgtgaccaa aagcctttaa ctaagaagga gtaaccatgc aaaaatccat


4801
agaggaattt aacccaaaat tttagtctca gcattgtgtc tgctgaggtg tgtatatgag


4861
actacgaaag tgaactactc ttcaaatcca ctttgccttc actcctctat accctaaatc


4921
tagtgtaaac cacacatgga ggataacttt tttttttaat tttaaaagtg tttattagat


4981
atgtttttct tcctggtaaa ctgcagccaa acatcagtta agagccattt ttgataaaca


5011
ctatcacaat gatctcggga tccatccttt ccgatttacc aagtgatgga tagacgtgaa


5101
ctcataaaca ctacccataa gacaaaacaa tgagtgccag acaagacatc agccaggcac


5161
cagagcacag agcaggactg ggcaatctgt tggagatatc tagaaagttc acaaaggaaa


5221
caagattgtc cactaccttg tgagatctag cagtcataaa taccagggaa atggaaagtg


5281
tgtttcctta cagcaccagg tcttcgatct tcctaatgct gtgacccttt aatacagttt


5341
gccatgttgt ggtgaccccc aaccataaaa ttatttttgt tgctacttca taactgtaaa


5401
tttgctactc ttacagacca caatgtaaat atctgatatg ctatctgata tgcaggctat


5461
ctgacagagg tcgcaacccg caggttgaga gccactgcct tcaaggcttt aatcaagaga


5521
gtagtgagct gagggcttta ctggtaagtc aggggcaagt ccaactcaat catcctcaca


5581
tactggctgc tccctcaggc ctgagaatga ggcttgcagc atcctctggt ttcctaaccg


5641
ttatccatcc ctgactctca tctctgaaaa tagatgtcat ccatgaaatt aaggagtgag


5701
aatattaagc agcatttata gagctcaaaa ttccatgtca tcaccaggaa gtgccatgtt


5761
gatcacagag aacacagagg agacatatag acagggtttt gctcaaaatt gggatataga


5821
atgagcctgt caggtaccta tcaggagcgg taatccgtga gagagaaccg ttgcaagcca


5881
ctctaactgt agcaatgaaa ccctagtatt tttgtacttt gaaatacttt cttataacaa


5941
aataaagtag caaaaaaact gttcaaaaaa aaaaaaaaaa aaa










SEQ ID NO: 110 Mouse EGFR Amino Acid Sequence Isoform A (NP_997538.1)








1
mrpsgtartt llvlltalca aggaleekkv cqgtsnrltq lgtfedhfls lqrmynncev


61
vlgnleityv qrnydlsflk tiqevagyvl ialntverip lenlqiirgn alyentyala


121
ilsnygtnrt glrelpmrnl qeiligavrf snnpilcnmd tiqwrdivqn vfmsnmsmdl


181
qshpsscpkc dpscpngscw gggeencqkl tkiicaqqcs hrcrgrspsd cchnqcaagc


241
tgpresdclv cqkfqdeatc kdtcpplmly npttyqmdvn pegkysfgat cvkkcprnyv


301
vtdhgscvra cgpdyyevee dgirkckkcd gpcrkvcngi gigefkdtls inatnikhfk


361
yctaisgdlh ilpvafkgds ftrtppldpr eleilktvke itgflliqaw pdnwtdlhaf


421
enleiirgrt kqhgqfslav vglnitslgl rslkeisdgd viisgnrnlc yantinwkkl


481
fgtpnqktki mnnraekdck avnhvcnplc ssegcwgpep rdcvscqnvs rgrecvekcn


541
ilegeprefv enseciqchp eclpqamnit ctgrgpdnci qcahyidgph cvktcpagim


601
genntlvwky adannvchlc hanctygcag pglqgcevwp sgpkipsiat givggllfiv


661
vvalgiglfm rrrhivrkrt lrrllqerel vepltpsgea pnqahlrilk etefkkikvl


721
gsgafgtvyk glwipegekv kipvaikelr eatspkanke ildeayvmas vdnphvcrll


781
gicltstvql itqlmpygcl ldyvrehkdn igsqyllnwc vqiakgmnyl edrrlvhrdl


841
aarnvlvktp qhvkitdfgl akllgaeeke yhaeggkvpi kwmalesilh riythqsdvw


901
sygvtvwelm tfgskpydgi pasdissile kgerlpqppi ctidvymimv kcwmidadsr


961
pkfrelilef skmardpqry lviqgdermh lpsptdsnfy ralmdeedme dvvdadeyli


1021
pqqgffnsps tsrtpllssl satsnnstva cinrngscrv kedaflqrys sdptgavted


1081
niddaflpvp eyvnqsvpkr pagsvqnpvy hnqplhpapg rdlhyqnphs navgnpeyln


1141
taqptclssg fnspalwiqk gshqmsldnp dyqqdffpke tkpngifkgp taenaeylrv


1201
appssefiga










SEQ ID NO: 111 Mouse EGFR cDNA Sequence Variant 2 (NM_007912.4, CDS:


from 281 to 22478)








1
ctcccccagt cccgacccga gctaactaga cgtctgggca gccccagcgc aacgcgcagc


61
agcccccctc ctcttcttcc cgcactgtgc gctccccctg ggctagggcg tctggatcga


121
gtcccggagg ctaccgcctc ccagacagac gacaggtcac ctggacgcga gcctgtgtcc


181
gggtctcgtc gttgccggcg cagccactgg gcacaaccgt gggactccgt ctgtctcgga


241
ttaatcccgg agagccagag ccaacctctc ccggtcagag atgcgaccct cagggaccgc


301
gagaaccaca ccgctggtgt tgctgaccgc gctctgcgcc gcaggtgggg cgttggagga


361
aaagaaagtc tgccaaggca caagtaacag gctcacccaa ctgggcactt ttgaagacca


421
ctttctgagc ctgcagagga tgtacaacaa ctgtgaagtg gtccttggga acttggaaat


481
tacctatgtg caaaggaatt acgacctttc cttcttaaag accatccagg aggtggccgg


541
ctatgtcctc attgccctca acaccgtgga gagaatccct ttggagaacc tgcagatcat


601
caggggaaat gctctttatg aaaacaccta tgccttagcc atcctgtcca actatgggac


661
aaacagaact gggcttaggg aactgcccat gcggaactta caggaaatcc tgattggtgc


721
tgtgcgattc agcaacaacc ccatcctctg caatatggat actatccagt ggagggacat


781
cgtccaaaac gtctttatga gcaacatgtc aatggactta cagagccatc cgagcagttg


841
ccccaaatgt gatccaagct gtcccaatgg aagctgctgg ggaggaggag aggagaactg


901
ccagaaattg accaaaatca tctgtgccca gcaatgttcc catcgctgtc gtggcaggtc


961
ccccagtgac tgctgccaca accaatgtgc tgcggggtgt acagggcccc gagagagtga


1021
ctgtctggtc tgccaaaagt tccaagatga ggccacatgc aaagacacct gcccaccact


1081
catgctgtac aaccccacca cctatcagat ggatgtcaac cctgaaggga agtacagctt


1141
tggtgccacc tgtgtgaaga agtgcccccg aaactacgtg gtgacagatc atggctcatg


1201
tgtccgagcc tgtgggcctg actactacga agtggaagaa gatggcatcc gcaagtgtaa


1261
aaaatgtgat gggccctgtc gcaaagtttg taatggcata ggcattggtg aatttaaaga


1321
cacactctcc ataaatgcta caaacatcaa acacttcaaa tactgcactg ccatcagcgg


1381
ggaccttcac atcctgccag tggcctttaa gggggattct ttcacgcgca ctcctcctct


1441
agacccacga gaactagaaa ttctaaaaac cgtaaaggaa ataacaggct ttttgctgat


1501
tcaggcttgg cctgataact ggactgacct ccatgctttc gagaacctag aaataatacg


1561
tggcagaaca aagcaacatg gtcagttttc tttggcggtc gttggcctga acatcacatc


1621
actggggctg cgttccctca aggagatcag tgatggggat gtgatcattt ctggaaaccg


1681
aaatttgtgc tacgcaaaca caataaactg gaaaaaactc ttcgggacac ccaatcagaa


1741
aaccaaaatc atgaacaaca gagctgagaa agactgcaag gccgtgaacc acgtctgcaa


1801
tcctttatgc tcctcggaag gctgctgggg ccctgagccc agggactgtg tctcctgcca


1861
gaatgtgagc agaggcaggg agtgcgtgga gaaatgcaac atcctggagg gggaaccaag


1921
ggagtttgtg gaaaattctg aatgcatcca gtgccatcca gaatgtctgc cccaggccat


1981
gaacatcacc tgtacaggca ggggaccaga caactgcatc cagtgtgccc actacattga


2041
tggcccacac tgtgtcaaga cctgcccagc tggcatcatg ggagagaaca acactctggt


2101
ctggaagtat gcagatgcca ataatgtctg ccacctatgc cacgccaact gtacctatgg


2161
atgtgctggg ccaggtcttc aaggatgtga agtgtggcca tctgggtacg ttcaatggca


2221
gtggatctta aagacctttt ggatctaaga ccagaagcca tctctgactc ccctctcacc


2281
ttccagtttc ttccaaatcc tctgggccag ccagaggtct cagattctgc cctcttgccc


2341
tgtgcccacc ttgttgacca ctggacagca tatgtgatgg ctactgctag tgccagcttc


2401
acaagaggtt aacactacgg actagccatt cttcctatgt atctgtttct gcaaatacag


2461
ccgctttact taagtctcag cacttcttag tctcctcttt tcctctcagt agcccaaggg


2521
gtcatgtcac aaacatggtg tgaagggcta ctttgtcaaa tgaaaaggtc tatcttgggg


2581
ggcatttttt tcttttcttt ttttcttgaa acacattgcc cagcaaagcc aataaatttc


2641
tctcatcatt ttgtttctga taaattctta ctattgat










SEQ ID NO: 112 Mouse EGFR Amino Acid Sequence Isoform B (NP_031938.1)








1
mrpsgtartt llvlltalca aggaleekkv cqgtsnrltq lgtfedhfls lqrmynncev


61
vlgnleityv qrnydlsflk tiqevagyvl ialntverip lenlqiirgn alyentyala


121
ilsnygtnrt glrelpmrnl qeiligavrf snnpilcnmd tiqwrdivqn vfmsnmsmdl


181
qshpsscpkc dpscpngscw gggeencqkl tkiicaqqcs hrccgrspsd cchnqcaagc


241
tgpresdclv cqkfqdeatc kdtcpplmly npttyqmdvn pegkysfgat cvkkcprnyv


301
vtdhgscvra cgpdyyevee dgirkckkcd gpcrkvcngi gigefkdtls inatnikhfk


361
yctaisgdlh ilpvafkgds ftrtppldpr eleilktvke itgflliqaw pdnwtdlhaf


421
enleiirgrt kqhgqfslav vglnitslgl rslkeisdgd viisgnrnlc yantinwkkl


481
fgtpnqktki mnnraekdck avnhvcnplc ssegcwgpep rdcvscqnvs rgrecvekcn


541
ilegeprefv enseciqchp eclpqamnit ctgrgpdnci qcahyidgph cvktcpagim


601
genntlvwky adannvchlc hanctygcag pglqgcevwp sgyvqwqwil ktfwi





* Included in Table 1 are RNA nucleic acid molecules (e.g., thymines replaced with uredines), nucleic acid molecules encoding orthologs of the encoded proteins, as well as DNA or RNA nucleic acid sequences comprising a nucleic acid sequence having at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5% or more identity across their full length with the nucleic acid sequence of any SEQ ID NO or biomarker described in Table 1 (see below for example), or a portion thereof. Such nucleic acid molecules can have a function of the full-length nucleic acid as described further herein.


* Included in Table 1 are orthologs of the proteins, as well as polypeptide molecules comprising an amino acid sequence having at least 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, 99.5%, or more identity across their full length with an amino acid sequence of any SEQ ID NO or biomarker described in Table 1 (see below for example), or a portion thereof. Such polypeptides can have a function of the full-length polypeptide as described further herein.


* Included in Table 1 are one or more subunits of a SWI/SNF complex like BAF or PBAF, and mutations within the one more more subunits. In some embodiments, the biomarkers are a class of mutations encompassing the one or more subunits of a SWI/SNF complex, such as the class of synonymous and/or non-synonymous mutations of ARID2 and/or PBRM1, or the class of loss-of-function mutations for biomarkers shown in Tables 4-5. In other embodiment, the biomarkers are particular mutations of one or more subunits of a SWI/SNF complex, such as particular mutations described in the Tables and Examples (e.g., Tables 4-5). Thus, included in Table 1 is, for example, PBRM1, ARID2, BRD7, PHF10, KDM6A, ARID1A, ARID1B, BRG1, BRM, CRB1, and or EGFR, including any cDNA or polypeptide of PBRM1, ARID2, BRD7, PHF10, KDM6A, ARID1A, ARID1B, BRG1, BRM, CRB1, and EGFR. Similarly, included in Table 1 is, for example, PBRM1, ARID2, BRD7, PHF10, KDM6A, ARID1A, ARID1B, BRG1, BRM, CRB1, and EGFR nucleic acid and/or amino acid sequences encoding or representing PBRM1, ARID2, BRD7, PHF10, KDM6A, ARID1A, ARID1B, BRG1, BRM, CRB1, and EGFR having reduced or eliminated function (e.g, truncating mutations causing encoding of incomplete protein of PBRM1, ARID2, BRD7, PHF10, KDM6A, ARID1A, ARID1B, BRG1, BRM, CRB1, and EGFR). Many of these mutations were found in subjects having cancer and who were insensitive to immune checkpoint therapies. It is further determined that EGFR as a biomarker of immune checkpoint efficacy acts in opposite fashion to the other biomarkers described in Table 1 such that EGFR is mutated more frequently (e.g., hotspot mutations) in non-responders or less efficacious responders to immune checkpoint therapy rather than more frequently in subjects who respond to immune checkpoint therapy.






II. Subjects

In one embodiment, the subject for whom predicted likelihood of efficacy of an immune checkpoint therapy is determined, is a mammal (e.g., mouse, rat, primate, non-human mammal, domestic animal, such as a dog, cat, cow, horse, and the like), and is preferably a human.


In another embodiment of the methods of the present invention, the subject has not undergone treatment, such as chemotherapy, radiation therapy, targeted therapy, and/or immune checkpoint therapy. In still another embodiment, the subject has undergone treatment, such as chemotherapy, radiation therapy, targeted therapy, and/or immune checkpoint therapy.


In certain embodiments, the subject has had surgery to remove cancerous or precancerous tissue. In other embodiments, the cancerous tissue has not been removed, e.g., the cancerous tissue may be located in an inoperable region of the body, such as in a tissue that is essential for life, or in a region where a surgical procedure would cause considerable risk of harm to the patient.


The methods of the present invention can be used to determine the responsiveness to anti-immune checkpoint therapies of a cancer. In one embodiment, the cancer is one for which an immune checkpoint therapy (e.g., anti-PD-1 blocking antibody, anti-PD-L1 blocking antibody, CTLA-4 blocking antibody, and the like) is FDA-approved for treatment, such as those described in the Examples. In one embodiment, the cancers are solid tumors, such as lung cancer such as non-small cell lung cancer, bladder cancer, melanoma such as metastatic melanoma, and/or renal cell carcinoma. In another embodiment, the cancer is an epithelial cancer such as, but not limited to, brain cancer (e.g., glioblastomas) bladder cancer, breast cancer, cervical cancer, colon cancer, gynecologic cancers, renal cancer, laryngeal cancer, lung cancer, oral cancer, head and neck cancer, ovarian cancer, pancreatic cancer, prostate cancer, or skin cancer. In still other embodiments, the cancer is breast cancer, prostate cancer, lung cancer, or colon cancer. In still other embodiments, the epithelial cancer is non-small-cell lung cancer, nonpapillary renal cell carcinoma, cervical carcinoma, ovarian carcinoma (e.g., serous ovarian carcinoma), or breast carcinoma. The epithelial cancers may be characterized in various other ways including, but not limited to, serous, endometrioid, mucinous, clear cell, brenner, or undifferentiated. In yet other embodiments, the cancer is a mesenchymal cancer, such as sarcoma.


III. Sample Collection, Preparation and Separation

In some embodiments, biomarker amount and/or activity measurement(s) in a sample from a subject is compared to a predetermined control (standard) sample. The sample from the subject is typically from a diseased tissue, such as cancer cells or tissues. The control sample can be from the same subject or from a different subject. The control sample is typically a normal, non-diseased sample. However, in some embodiments, such as for staging of disease or for evaluating the efficacy of treatment, the control sample can be from a diseased tissue. The control sample can be a combination of samples from several different subjects. In some embodiments, the biomarker amount and/or activity measurement(s) from a subject is compared to a pre-determined level. This pre-determined level is typically obtained from normal samples. As described herein, a “pre-determined” biomarker amount and/or activity measurement(s) may be a biomarker amount and/or activity measurement(s) used to, by way of example only, evaluate a subject that may be selected for treatment, evaluate a response to an immune checkpoint therapy, and/or evaluate a response to a combination immune checkpoint therapy. A pre-determined biomarker amount and/or activity measurement(s) may be determined in populations of patients with or without cancer. The pre-determined biomarker amount and/or activity measurement(s) can be a single number, equally applicable to every patient, or the pre-determined biomarker amount and/or activity measurement(s) can vary according to specific subpopulations of patients. Age, weight, height, and other factors of a subject may affect the pre-determined biomarker amount and/or activity measurement(s) of the individual. Furthermore, the pre-determined biomarker amount and/or activity can be determined for each subject individually. In one embodiment, the amounts determined and/or compared in a method described herein are based on absolute measurements.


In another embodiment, the amounts determined and/or compared in a method described herein are based on relative measurements, such as ratios (e.g., biomarker copy numbers, level, and/or activity before a treatment vs. after a treatment, such biomarker measurements relative to a spiked or man-made control, such biomarker measurements relative to the expression of a housekeeping gene, and the like). For example, the relative analysis can be based on the ratio of pre-treatment biomarker measurement as compared to post-treatment biomarker measurement. Pre-treatment biomarker measurement can be made at any time prior to initiation of anti-cancer therapy. Post-treatment biomarker measurement can be made at any time after initiation of anti-cancer therapy. In some embodiments, post-treatment biomarker measurements are made 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 weeks or more after initiation of anti-cancer therapy, and even longer toward indefinitely for continued monitoring. Treatment can comprise anti-cancer therapy, such as a therapeutic regimen comprising an anti-PD1 monoclonal antibody (e.g., nivolumab) alone or in combination with other anti-cancer agents, such as anti-PD-L1/PD-L2 antibodies, anti-VEGF agents (e.g., bevacizumab), agents described in the Examples, Figures, and Tables, or anti-PBRM1 (or anti-ARID2, anti-BRD7, anti-PHF10, or anti-KDM6A) agents.


The pre-determined biomarker amount and/or activity measurement(s) can be any suitable standard. For example, the pre-determined biomarker amount and/or activity measurement(s) can be obtained from the same or a different human for whom a patient selection is being assessed. In one embodiment, the pre-determined biomarker amount and/or activity measurement(s) can be obtained from a previous assessment of the same patient. In such a manner, the progress of the selection of the patient can be monitored over time. In addition, the control can be obtained from an assessment of another human or multiple humans, e.g., selected groups of humans, if the subject is a human. In such a manner, the extent of the selection of the human for whom selection is being assessed can be compared to suitable other humans, e.g., other humans who are in a similar situation to the human of interest, such as those suffering from similar or the same condition(s) and/or of the same ethnic group.


In some embodiments of the present invention the change of biomarker amount and/or activity measurement(s) from the pre-determined level is about 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, or 5.0 fold or greater, or any range in between, inclusive. Such cutoff values apply equally when the measurement is based on relative changes, such as based on the ratio of pre-treatment biomarker measurement as compared to post-treatment biomarker measurement.


Biological samples can be collected from a variety of sources from a patient including a body fluid sample, cell sample, or a tissue sample comprising nucleic acids and/or proteins. “Body fluids” refer to fluids that are excreted or secreted from the body as well as fluids that are normally not (e.g., amniotic fluid, aqueous humor, bile, blood and blood plasma, cerebrospinal fluid, cerumen and earwax, cowper's fluid or pre-ejaculatory fluid, chyle, chyme, stool, female ejaculate, interstitial fluid, intracellular fluid, lymph, menses, breast milk, mucus, pleural fluid, pus, saliva, sebum, semen, serum, sweat, synovial fluid, tears, urine, vaginal lubrication, vitreous humor, vomit). In a preferred embodiment, the subject and/or control sample is selected from the group consisting of cells, cell lines, histological slides, paraffin embedded tissues, biopsies, whole blood, nipple aspirate, serum, plasma, buccal scrape, saliva, cerebrospinal fluid, urine, stool, and bone marrow. In one embodiment, the sample is serum, plasma, or urine. In another embodiment, the sample is serum.


The samples can be collected from individuals repeatedly over a longitudinal period of time (e.g., once or more on the order of days, weeks, months, annually, biannually, etc.). Obtaining numerous samples from an individual over a period of time can be used to verify results from earlier detections and/or to identify an alteration in biological pattern as a result of, for example, disease progression, drug treatment, etc. For example, subject samples can be taken and monitored every month, every two months, or combinations of one, two, or three month intervals according to the present invention. In addition, the biomarker amount and/or activity measurements of the subject obtained over time can be conveniently compared with each other, as well as with those of normal controls during the monitoring period, thereby providing the subject's own values, as an internal, or personal, control for long-term monitoring.


Sample preparation and separation can involve any of the procedures, depending on the type of sample collected and/or analysis of biomarker measurement(s). Such procedures include, by way of example only, concentration, dilution, adjustment of pH, removal of high abundance polypeptides (e.g., albumin, gamma globulin, and transferrin, etc.), addition of preservatives and calibrants, addition of protease inhibitors, addition of denaturants, desalting of samples, concentration of sample proteins, extraction and purification of lipids.


The sample preparation can also isolate molecules that are bound in non-covalent complexes to other protein (e.g., carrier proteins). This process may isolate those molecules bound to a specific carrier protein (e.g., albumin), or use a more general process, such as the release of bound molecules from all carrier proteins via protein denaturation, for example using an acid, followed by removal of the carrier proteins.


Removal of undesired proteins (e.g., high abundance, uninformative, or undetectable proteins) from a sample can be achieved using high affinity reagents, high molecular weight filters, ultracentrifugation and/or electrodialysis. High affinity reagents include antibodies or other reagents (e.g., aptamers) that selectively bind to high abundance proteins. Sample preparation could also include ion exchange chromatography, metal ion affinity chromatography, gel filtration, hydrophobic chromatography, chromatofocusing, adsorption chromatography, isoelectric focusing and related techniques. Molecular weight filters include membranes that separate molecules on the basis of size and molecular weight. Such filters may further employ reverse osmosis, nanofiltration, ultrafiltration and microfiltration.


Ultracentrifugation is a method for removing undesired polypeptides from a sample. Ultracentrifugation is the centrifugation of a sample at about 15,000-60,000 rpm while monitoring with an optical system the sedimentation (or lack thereof) of particles. Electrodialysis is a procedure which uses an electromembrane or semipermable membrane in a process in which ions are transported through semi-permeable membranes from one solution to another under the influence of a potential gradient. Since the membranes used in electrodialysis may have the ability to selectively transport ions having positive or negative charge, reject ions of the opposite charge, or to allow species to migrate through a semipermable membrane based on size and charge, it renders electrodialysis useful for concentration, removal, or separation of electrolytes.


Separation and purification in the present invention may include any procedure known in the art, such as capillary electrophoresis (e.g., in capillary or on-chip) or chromatography (e.g., in capillary, column or on a chip). Electrophoresis is a method which can be used to separate ionic molecules under the influence of an electric field. Electrophoresis can be conducted in a gel, capillary, or in a microchannel on a chip. Examples of gels used for electrophoresis include starch, acrylamide, polyethylene oxides, agarose, or combinations thereof. A gel can be modified by its cross-linking, addition of detergents, or denaturants, immobilization of enzymes or antibodies (affinity electrophoresis) or substrates (zymography) and incorporation of a pH gradient. Examples of capillaries used for electrophoresis include capillaries that interface with an electrospray.


Capillary electrophoresis (CE) is preferred for separating complex hydrophilic molecules and highly charged solutes. CE technology can also be implemented on microfluidic chips. Depending on the types of capillary and buffers used, CE can be further segmented into separation techniques such as capillary zone electrophoresis (CZE), capillary isoelectric focusing (CIEF), capillary isotachophoresis (cITP) and capillary electrochromatography (CEC). An embodiment to couple CE techniques to electrospray ionization involves the use of volatile solutions, for example, aqueous mixtures containing a volatile acid and/or base and an organic such as an alcohol or acetonitrile.


Capillary isotachophoresis (cITP) is a technique in which the analytes move through the capillary at a constant speed but are nevertheless separated by their respective mobilities. Capillary zone electrophoresis (CZE), also known as free-solution CE (FSCE), is based on differences in the electrophoretic mobility of the species, determined by the charge on the molecule, and the frictional resistance the molecule encounters during migration which is often directly proportional to the size of the molecule. Capillary isoelectric focusing (CIEF) allows weakly-ionizable amphoteric molecules, to be separated by electrophoresis in a pH gradient. CEC is a hybrid technique between traditional high performance liquid chromatography (HPLC) and CE.


Separation and purification techniques used in the present invention include any chromatography procedures known in the art. Chromatography can be based on the differential adsorption and elution of certain analytes or partitioning of analytes between mobile and stationary phases. Different examples of chromatography include, but not limited to, liquid chromatography (LC), gas chromatography (GC), high performance liquid chromatography (HPLC), etc.


IV. Biomarker Nucleic Acids and Polypeptides

One aspect of the present invention pertains to the use of isolated nucleic acid molecules that correspond to biomarker nucleic acids that encode a biomarker polypeptide or a portion of such a polypeptide. As used herein, the term “nucleic acid molecule” is intended to include DNA molecules (e.g., cDNA or genomic DNA) and RNA molecules (e.g., mRNA) and analogs of the DNA or RNA generated using nucleotide analogs. The nucleic acid molecule can be single-stranded or double-stranded, but preferably is double-stranded DNA.


An “isolated” nucleic acid molecule is one which is separated from other nucleic acid molecules which are present in the natural source of the nucleic acid molecule. Preferably, an “isolated” nucleic acid molecule is free of sequences (preferably protein-encoding sequences) which naturally flank the nucleic acid (i.e., sequences located at the 5′ and 3′ ends of the nucleic acid) in the genomic DNA of the organism from which the nucleic acid is derived. For example, in various embodiments, the isolated nucleic acid molecule can contain less than about 5 kB, 4 kB, 3 kB, 2 kB, 1 kB, 0.5 kB or 0.1 kB of nucleotide sequences which naturally flank the nucleic acid molecule in genomic DNA of the cell from which the nucleic acid is derived. Moreover, an “isolated” nucleic acid molecule, such as a cDNA molecule, can be substantially free of other cellular material or culture medium when produced by recombinant techniques, or substantially free of chemical precursors or other chemicals when chemically synthesized.


A biomarker nucleic acid molecule of the present invention can be isolated using standard molecular biology techniques and the sequence information in the database records described herein. Using all or a portion of such nucleic acid sequences, nucleic acid molecules of the present invention can be isolated using standard hybridization and cloning techniques (e.g., as described in Sambrook et al., ed., Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y., 1989).


A nucleic acid molecule of the present invention can be amplified using cDNA, mRNA, or genomic DNA as a template and appropriate oligonucleotide primers according to standard PCR amplification techniques. The nucleic acid molecules so amplified can be cloned into an appropriate vector and characterized by DNA sequence analysis. Furthermore, oligonucleotides corresponding to all or a portion of a nucleic acid molecule of the present invention can be prepared by standard synthetic techniques, e.g., using an automated DNA synthesizer.


Moreover, a nucleic acid molecule of the present invention can comprise only a portion of a nucleic acid sequence, wherein the full length nucleic acid sequence comprises a marker of the present invention or which encodes a polypeptide corresponding to a marker of the present invention. Such nucleic acid molecules can be used, for example, as a probe or primer. The probe/primer typically is used as one or more substantially purified oligonucleotides. The oligonucleotide typically comprises a region of nucleotide sequence that hybridizes under stringent conditions to at least about 7, preferably about 15, more preferably about 25, 50, 75, 100, 125, 150, 175, 200, 250, 300, 350, or 400 or more consecutive nucleotides of a biomarker nucleic acid sequence. Probes based on the sequence of a biomarker nucleic acid molecule can be used to detect transcripts or genomic sequences corresponding to one or more markers of the present invention. The probe comprises a label group attached thereto, e.g., a radioisotope, a fluorescent compound, an enzyme, or an enzyme co-factor.


A biomarker nucleic acid molecules that differ, due to degeneracy of the genetic code, from the nucleotide sequence of nucleic acid molecules encoding a protein which corresponds to the biomarker, and thus encode the same protein, are also contemplated.


In addition, it will be appreciated by those skilled in the art that DNA sequence polymorphisms that lead to changes in the amino acid sequence can exist within a population (e.g., the human population). Such genetic polymorphisms can exist among individuals within a population due to natural allelic variation. An allele is one of a group of genes which occur alternatively at a given genetic locus. In addition, it will be appreciated that DNA polymorphisms that affect RNA expression levels can also exist that may affect the overall expression level of that gene (e.g., by affecting regulation or degradation).


The term “allele,” which is used interchangeably herein with “allelic variant,” refers to alternative forms of a gene or portions thereof. Alleles occupy the same locus or position on homologous chromosomes. When a subject has two identical alleles of a gene, the subject is said to be homozygous for the gene or allele. When a subject has two different alleles of a gene, the subject is said to be heterozygous for the gene or allele. For example, biomarker alleles can differ from each other in a single nucleotide, or several nucleotides, and can include substitutions, deletions, and insertions of nucleotides. An allele of a gene can also be a form of a gene containing one or more mutations.


The term “allelic variant of a polymorphic region of gene” or “allelic variant”, used interchangeably herein, refers to an alternative form of a gene having one of several possible nucleotide sequences found in that region of the gene in the population. As used herein, allelic variant is meant to encompass functional allelic variants, non-functional allelic variants, SNPs, mutations and polymorphisms.


The term “single nucleotide polymorphism” (SNP) refers to a polymorphic site occupied by a single nucleotide, which is the site of variation between allelic sequences. The site is usually preceded by and followed by highly conserved sequences of the allele (e.g., sequences that vary in less than 1/100 or 1/1000 members of a population). A SNP usually arises due to substitution of one nucleotide for another at the polymorphic site. SNPs can also arise from a deletion of a nucleotide or an insertion of a nucleotide relative to a reference allele. Typically the polymorphic site is occupied by a base other than the reference base. For example, where the reference allele contains the base “T” (thymidine) at the polymorphic site, the altered allele can contain a “C” (cytidine), “G” (guanine), or “A” (adenine) at the polymorphic site. SNP's may occur in protein-coding nucleic acid sequences, in which case they may give rise to a defective or otherwise variant protein, or genetic disease. Such a SNP may alter the coding sequence of the gene and therefore specify another amino acid (a “missense” SNP) or a SNP may introduce a stop codon (a “nonsense” SNP). When a SNP does not alter the amino acid sequence of a protein, the SNP is called “silent.” SNP's may also occur in noncoding regions of the nucleotide sequence. This may result in defective protein expression, e.g., as a result of alternative spicing, or it may have no effect on the function of the protein.


As used herein, the terms “gene” and “recombinant gene” refer to nucleic acid molecules comprising an open reading frame encoding a polypeptide corresponding to a marker of the present invention. Such natural allelic variations can typically result in 1-5% variance in the nucleotide sequence of a given gene. Alternative alleles can be identified by sequencing the gene of interest in a number of different individuals. This can be readily carried out by using hybridization probes to identify the same genetic locus in a variety of individuals. Any and all such nucleotide variations and resulting amino acid polymorphisms or variations that are the result of natural allelic variation and that do not alter the functional activity are intended to be within the scope of the present invention.


In another embodiment, a biomarker nucleic acid molecule is at least 7, 15, 20, 25, 30, 40, 60, 80, 100, 150, 200, 250, 300, 350, 400, 450, 550, 650, 700, 800, 900, 1000, 1100, 1200, 1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000, 2200, 2400, 2600, 2800, 3000, 3500, 4000, 4500, or more nucleotides in length and hybridizes under stringent conditions to a nucleic acid molecule corresponding to a marker of the present invention or to a nucleic acid molecule encoding a protein corresponding to a marker of the present invention. As used herein, the term “hybridizes under stringent conditions” is intended to describe conditions for hybridization and washing under which nucleotide sequences at least 60% (65%, 70%, 75%, 80%, preferably 85%) identical to each other typically remain hybridized to each other. Such stringent conditions are known to those skilled in the art and can be found in sections 6.3.1-6.3.6 of Current Protocols in Molecular Biology, John Wiley & Sons, N.Y. (1989). A preferred, non-limiting example of stringent hybridization conditions are hybridization in 6× sodium chloride/sodium citrate (SSC) at about 45° C., followed by one or more washes in 0.2×SSC, 0.1% SDS at 50-65° C.


In addition to naturally-occurring allelic variants of a nucleic acid molecule of the present invention that can exist in the population, the skilled artisan will further appreciate that sequence changes can be introduced by mutation thereby leading to changes in the amino acid sequence of the encoded protein, without altering the biological activity of the protein encoded thereby. For example, one can make nucleotide substitutions leading to amino acid substitutions at “non-essential” amino acid residues. A “non-essential” amino acid residue is a residue that can be altered from the wild-type sequence without altering the biological activity, whereas an “essential” amino acid residue is required for biological activity. For example, amino acid residues that are not conserved or only semi-conserved among homologs of various species may be non-essential for activity and thus would be likely targets for alteration. Alternatively, amino acid residues that are conserved among the homologs of various species (e.g., murine and human) may be essential for activity and thus would not be likely targets for alteration.


Accordingly, another aspect of the present invention pertains to nucleic acid molecules encoding a polypeptide of the present invention that contain changes in amino acid residues that are not essential for activity. Such polypeptides differ in amino acid sequence from the naturally-occurring proteins which correspond to the markers of the present invention, yet retain biological activity. In one embodiment, a biomarker protein has an amino acid sequence that is at least about 40% identical, 50%, 60%, 70%, 75%, 80%, 83%, 85%, 87.5%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99% or identical to the amino acid sequence of a biomarker protein described herein.


An isolated nucleic acid molecule encoding a variant protein can be created by introducing one or more nucleotide substitutions, additions or deletions into the nucleotide sequence of nucleic acids of the present invention, such that one or more amino acid residue substitutions, additions, or deletions are introduced into the encoded protein. Mutations can be introduced by standard techniques, such as site-directed mutagenesis and PCR-mediated mutagenesis. Preferably, conservative amino acid substitutions are made at one or more predicted non-essential amino acid residues. A “conservative amino acid substitution” is one in which the amino acid residue is replaced with an amino acid residue having a similar side chain. Families of amino acid residues having similar side chains have been defined in the art. These families include amino acids with basic side chains (e.g., lysine, arginine, histidine), acidic side chains (e.g., aspartic acid, glutamic acid), uncharged polar side chains (e.g., glycine, asparagine, glutamine, serine, threonine, tyrosine, cysteine), non-polar side chains (e.g., alanine, valine, leucine, isoleucine, proline, phenylalanine, methionine, tryptophan), beta-branched side chains (e.g., threonine, valine, isoleucine) and aromatic side chains (e.g., tyrosine, phenylalanine, tryptophan, histidine). Alternatively, mutations can be introduced randomly along all or part of the coding sequence, such as by saturation mutagenesis, and the resultant mutants can be screened for biological activity to identify mutants that retain activity. Following mutagenesis, the encoded protein can be expressed recombinantly and the activity of the protein can be determined.


In some embodiments, the present invention further contemplates the use of anti-biomarker antisense nucleic acid molecules, i.e., molecules which are complementary to a sense nucleic acid of the present invention, e.g., complementary to the coding strand of a double-stranded cDNA molecule corresponding to a marker of the present invention or complementary to an mRNA sequence corresponding to a marker of the present invention. Accordingly, an antisense nucleic acid molecule of the present invention can hydrogen bond to (i.e. anneal with) a sense nucleic acid of the present invention. The antisense nucleic acid can be complementary to an entire coding strand, or to only a portion thereof, e.g., all or part of the protein coding region (or open reading frame). An antisense nucleic acid molecule can also be antisense to all or part of a non-coding region of the coding strand of a nucleotide sequence encoding a polypeptide of the present invention. The non-coding regions (“5′ and 3′ untranslated regions”) are the 5′ and 3′ sequences which flank the coding region and are not translated into amino acids.


An antisense oligonucleotide can be, for example, about 5, 10, 15, 20, 25, 30, 35, 40, 45, or 50 or more nucleotides in length. An antisense nucleic acid can be constructed using chemical synthesis and enzymatic ligation reactions using procedures known in the art. For example, an antisense nucleic acid (e.g., an antisense oligonucleotide) can be chemically synthesized using naturally occurring nucleotides or variously modified nucleotides designed to increase the biological stability of the molecules or to increase the physical stability of the duplex formed between the antisense and sense nucleic acids, e.g., phosphorothioate derivatives and acridine substituted nucleotides can be used. Examples of modified nucleotides which can be used to generate the antisense nucleic acid include 5-fluorouracil, 5-bromouracil, 5-chlorouracil, 5-iodouracil, hypoxanthine, xanthine, 4-acetylcytosine, 5-(carboxyhydroxylmethyl) uracil, 5-carboxymethylaminomethyl-2-thiouridine, 5-carboxymethylaminomethyluracil, dihydrouracil, beta-D-galactosylqueosine, inosine, N6-isopentenyladenine, 1-methylguanine, 1-methylinosine, 2,2-dimethylguanine, 2-methyladenine, 2-methylguanine, 3-methylcytosine, 5-methylcytosine, N6-adenine, 7-methylguanine, 5-methylaminomethyluracil, 5-methoxyaminomethyl-2-thiouracil, beta-D-mannosylqueosine, 5′-methoxycarboxymethyluracil, 5-methoxyuracil, 2-methylthio-N6-isopentenyladenine, uracil-5-oxyacetic acid (v), wybutoxosine, pseudouracil, queosine, 2-thiocytosine, 5-methyl-2-thiouracil, 2-thiouracil, 4-thiouracil, 5-methyluracil, uracil-5-oxyacetic acid methylester, uracil-5-oxy acetic acid (v), 5-methyl-2-thiouracil, 3-(3-amino-3-N-2-carboxypropyl) uracil, (acp3)w, and 2,6-diaminopurine. Alternatively, the antisense nucleic acid can be produced biologically using an expression vector into which a nucleic acid has been sub-cloned in an antisense orientation (i.e., RNA transcribed from the inserted nucleic acid will be of an antisense orientation to a target nucleic acid of interest, described further in the following subsection).


The antisense nucleic acid molecules of the present invention are typically administered to a subject or generated in situ such that they hybridize with or bind to cellular mRNA and/or genomic DNA encoding a polypeptide corresponding to a selected marker of the present invention to thereby inhibit expression of the marker, e.g., by inhibiting transcription and/or translation. The hybridization can be by conventional nucleotide complementarity to form a stable duplex, or, for example, in the case of an antisense nucleic acid molecule which binds to DNA duplexes, through specific interactions in the major groove of the double helix. Examples of a route of administration of antisense nucleic acid molecules of the present invention includes direct injection at a tissue site or infusion of the antisense nucleic acid into a blood- or bone marrow-associated body fluid. Alternatively, antisense nucleic acid molecules can be modified to target selected cells and then administered systemically. For example, for systemic administration, antisense molecules can be modified such that they specifically bind to receptors or antigens expressed on a selected cell surface, e.g., by linking the antisense nucleic acid molecules to peptides or antibodies which bind to cell surface receptors or antigens. The antisense nucleic acid molecules can also be delivered to cells using the vectors described herein. To achieve sufficient intracellular concentrations of the antisense molecules, vector constructs in which the antisense nucleic acid molecule is placed under the control of a strong pol II or pol III promoter are preferred.


An antisense nucleic acid molecule of the present invention can be an α-anomeric nucleic acid molecule. An α-anomeric nucleic acid molecule forms specific double-stranded hybrids with complementary RNA in which, contrary to the usual α-units, the strands run parallel to each other (Gaultier et al. (1987) Nucleic Acids Res. 15:6625-6641). The antisense nucleic acid molecule can also comprise a 2′-o-methylribonucleotide (Inoue et al. (1987) Nucleic Acids Res. 15:6131-6148) or a chimeric RNA-DNA analogue (Inoue et al. (1987) FEBS Lett. 215:327-330).


The present invention also encompasses ribozymes. Ribozymes are catalytic RNA molecules with ribonuclease activity which are capable of cleaving a single-stranded nucleic acid, such as an mRNA, to which they have a complementary region. Thus, ribozymes (e.g., hammerhead ribozymes as described in Haselhoff and Gerlach (1988) Nature 334:585-591) can be used to catalytically cleave mRNA transcripts to thereby inhibit translation of the protein encoded by the mRNA. A ribozyme having specificity for a nucleic acid molecule encoding a polypeptide corresponding to a marker of the present invention can be designed based upon the nucleotide sequence of a cDNA corresponding to the marker. For example, a derivative of a Tetrahymena L-19 IVS RNA can be constructed in which the nucleotide sequence of the active site is complementary to the nucleotide sequence to be cleaved (see Cech et al. U.S. Pat. No. 4,987,071; and Cech et al. U.S. Pat. No. 5,116,742). Alternatively, an mRNA encoding a polypeptide of the present invention can be used to select a catalytic RNA having a specific ribonuclease activity from a pool of RNA molecules (see, e.g., Bartel and Szostak (1993) Science 261:1411-1418).


The present invention also encompasses nucleic acid molecules which form triple helical structures. For example, expression of a biomarker protein can be inhibited by targeting nucleotide sequences complementary to the regulatory region of the gene encoding the polypeptide (e.g., the promoter and/or enhancer) to form triple helical structures that prevent transcription of the gene in target cells. See generally Helene (1991) Anticancer Drug Des. 6(6):569-84; Helene (1992) Ann. N. Y. Acad. Sci. 660:27-36; and Maher (1992) Bioassays 14(12):807-15.


In various embodiments, the nucleic acid molecules of the present invention can be modified at the base moiety, sugar moiety or phosphate backbone to improve, e.g., the stability, hybridization, or solubility of the molecule. For example, the deoxyribose phosphate backbone of the nucleic acid molecules can be modified to generate peptide nucleic acid molecules (see Hyrup et al. (1996) Bioorganic & Medicinal Chemistry 4(1): 5-23). As used herein, the terms “peptide nucleic acids” or “PNAs” refer to nucleic acid mimics, e.g., DNA mimics, in which the deoxyribose phosphate backbone is replaced by a pseudopeptide backbone and only the four natural nucleobases are retained. The neutral backbone of PNAs has been shown to allow for specific hybridization to DNA and RNA under conditions of low ionic strength. The synthesis of PNA oligomers can be performed using standard solid phase peptide synthesis protocols as described in Hyrup et al. (1996), supra; Perry-O'Keefe et al. (1996) Proc. Natl. Acad. Sci. USA 93:14670-675.


PNAs can be used in therapeutic and diagnostic applications. For example, PNAs can be used as antisense or antigene agents for sequence-specific modulation of gene expression by, e.g., inducing transcription or translation arrest or inhibiting replication. PNAs can also be used, e.g., in the analysis of single base pair mutations in a gene by, e.g., PNA directed PCR clamping; as artificial restriction enzymes when used in combination with other enzymes, e.g., S1 nucleases (Hyrup (1996), supra; or as probes or primers for DNA sequence and hybridization (Hyrup (1996), supra; Perry-O'Keefe et al. (1996) Proc. Natl. Acad. Sci. USA 93:14670-14675).


In another embodiment, PNAs can be modified, e.g., to enhance their stability or cellular uptake, by attaching lipophilic or other helper groups to PNA, by the formation of PNA-DNA chimeras, or by the use of liposomes or other techniques of drug delivery known in the art. For example, PNA-DNA chimeras can be generated which can combine the advantageous properties of PNA and DNA. Such chimeras allow DNA recognition enzymes, e.g., RNASE H and DNA polymerases, to interact with the DNA portion while the PNA portion would provide high binding affinity and specificity. PNA-DNA chimeras can be linked using linkers of appropriate lengths selected in terms of base stacking, number of bonds between the nucleobases, and orientation (Hyrup (1996), supra). The synthesis of PNA-DNA chimeras can be performed as described in Hyrup (1996), supra, and Finn et al. (1996) Nucleic Acids Res. 24(17):3357-3363. For example, a DNA chain can be synthesized on a solid support using standard phosphoramidite coupling chemistry and modified nucleoside analogs. Compounds such as 5′-(4-methoxytrityl)amino-5′-deoxy-thymidine phosphoramidite can be used as a link between the PNA and the 5′ end of DNA (Mag et al. (1989) Nucleic Acids Res. 17:5973-5988). PNA monomers are then coupled in a step-wise manner to produce a chimeric molecule with a 5′ PNA segment and a 3′ DNA segment (Finn et al. (1996) Nucleic Acids Res. 24:3357-3363). Alternatively, chimeric molecules can be synthesized with a 5′ DNA segment and a 3′ PNA segment (Peterser et al. (1975) Bioorganic Med. Chem. Lett. 5:1119-11124).


In other embodiments, the oligonucleotide can include other appended groups such as peptides (e.g., for targeting host cell receptors in vivo), or agents facilitating transport across the cell membrane (see, e.g., Letsinger et al. (1989) Proc. Natl. Acad. Sci. USA 86:6553-6556; Lemaitre et al. (1987) Proc. Natl. Acad. Sci. USA 84:648-652; PCT Publication No. WO 88/09810) or the blood-brain barrier (see, e.g., PCT Publication No. WO 89/10134). In addition, oligonucleotides can be modified with hybridization-triggered cleavage agents (see, e.g., Krol et al. (1988) Bio Techniques 6:958-976) or intercalating agents (see, e.g., Zon (1988) Pharm. Res. 5:539-549). To this end, the oligonucleotide can be conjugated to another molecule, e.g., a peptide, hybridization triggered cross-linking agent, transport agent, hybridization-triggered cleavage agent, etc.


Another aspect of the present invention pertains to the use of biomarker proteins and biologically active portions thereof. In one embodiment, the native polypeptide corresponding to a marker can be isolated from cells or tissue sources by an appropriate purification scheme using standard protein purification techniques. In another embodiment, polypeptides corresponding to a marker of the present invention are produced by recombinant DNA techniques. Alternative to recombinant expression, a polypeptide corresponding to a marker of the present invention can be synthesized chemically using standard peptide synthesis techniques.


An “isolated” or “purified” protein or biologically active portion thereof is substantially free of cellular material or other contaminating proteins from the cell or tissue source from which the protein is derived, or substantially free of chemical precursors or other chemicals when chemically synthesized. The language “substantially free of cellular material” includes preparations of protein in which the protein is separated from cellular components of the cells from which it is isolated or recombinantly produced. Thus, protein that is substantially free of cellular material includes preparations of protein having less than about 30%, 20%, 10%, or 5% (by dry weight) of heterologous protein (also referred to herein as a “contaminating protein”). When the protein or biologically active portion thereof is recombinantly produced, it is also preferably substantially free of culture medium, i.e., culture medium represents less than about 20%, 10%, or 5% of the volume of the protein preparation. When the protein is produced by chemical synthesis, it is preferably substantially free of chemical precursors or other chemicals, i.e., it is separated from chemical precursors or other chemicals which are involved in the synthesis of the protein. Accordingly such preparations of the protein have less than about 30%, 20%, 10%, 5% (by dry weight) of chemical precursors or compounds other than the polypeptide of interest.


Biologically active portions of a biomarker polypeptide include polypeptides comprising amino acid sequences sufficiently identical to or derived from a biomarker protein amino acid sequence described herein, but which includes fewer amino acids than the full length protein, and exhibit at least one activity of the corresponding full-length protein. Typically, biologically active portions comprise a domain or motif with at least one activity of the corresponding protein. A biologically active portion of a protein of the present invention can be a polypeptide which is, for example, 10, 25, 50, 100 or more amino acids in length. Moreover, other biologically active portions, in which other regions of the protein are deleted, can be prepared by recombinant techniques and evaluated for one or more of the functional activities of the native form of a polypeptide of the present invention.


Preferred polypeptides have an amino acid sequence of a biomarker protein encoded by a nucleic acid molecule described herein. Other useful proteins are substantially identical (e.g., at least about 40%, preferably 50%, 60%, 70%, 75%, 80%, 83%, 85%, 88%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%) to one of these sequences and retain the functional activity of the protein of the corresponding naturally-occurring protein yet differ in amino acid sequence due to natural allelic variation or mutagenesis.


To determine the percent identity of two amino acid sequences or of two nucleic acids, the sequences are aligned for optimal comparison purposes (e.g., gaps can be introduced in the sequence of a first amino acid or nucleic acid sequence for optimal alignment with a second amino or nucleic acid sequence). The amino acid residues or nucleotides at corresponding amino acid positions or nucleotide positions are then compared. When a position in the first sequence is occupied by the same amino acid residue or nucleotide as the corresponding position in the second sequence, then the molecules are identical at that position. The percent identity between the two sequences is a function of the number of identical positions shared by the sequences (i.e., % identity=# of identical positions/total # of positions (e.g., overlapping positions)×100). In one embodiment the two sequences are the same length.


The determination of percent identity between two sequences can be accomplished using a mathematical algorithm. A preferred, non-limiting example of a mathematical algorithm utilized for the comparison of two sequences is the algorithm of Karlin and Altschul (1990) Proc. Natl. Acad. Sci. USA 87:2264-2268, modified as in Karlin and Altschul (1993) Proc. Natl. Acad. Sci. USA 90:5873-5877. Such an algorithm is incorporated into the NBLAST and XBLAST programs of Altschul, et al. (1990) J Mol. Biol. 215:403-410. BLAST nucleotide searches can be performed with the NBLAST program, score=100, wordlength=12 to obtain nucleotide sequences homologous to a nucleic acid molecules of the present invention. BLAST protein searches can be performed with the XBLAST program, score=50, wordlength=3 to obtain amino acid sequences homologous to a protein molecules of the present invention. To obtain gapped alignments for comparison purposes, Gapped BLAST can be utilized as described in Altschul et al. (1997) Nucleic Acids Res. 25:3389-3402. Alternatively, PSI-Blast can be used to perform an iterated search which detects distant relationships between molecules. When utilizing BLAST, Gapped BLAST, and PSI-Blast programs, the default parameters of the respective programs (e.g., XBLAST and NBLAST) can be used. See http://www.ncbi.nlm.nih.gov. Another preferred, non-limiting example of a mathematical algorithm utilized for the comparison of sequences is the algorithm of Myers and Miller, (1988) Comput Appl Biosci, 4:11-7. Such an algorithm is incorporated into the ALIGN program (version 2.0) which is part of the GCG sequence alignment software package. When utilizing the ALIGN program for comparing amino acid sequences, a PAM120 weight residue table, a gap length penalty of 12, and a gap penalty of 4 can be used. Yet another useful algorithm for identifying regions of local sequence similarity and alignment is the FASTA algorithm as described in Pearson and Lipman (1988) Proc. Natl. Acad. Sci. USA 85:2444-2448. When using the FASTA algorithm for comparing nucleotide or amino acid sequences, a PAM120 weight residue table can, for example, be used with a k-tuple value of 2.


The percent identity between two sequences can be determined using techniques similar to those described above, with or without allowing gaps. In calculating percent identity, only exact matches are counted.


The present invention also provides chimeric or fusion proteins corresponding to a biomarker protein. As used herein, a “chimeric protein” or “fusion protein” comprises all or part (preferably a biologically active part) of a polypeptide corresponding to a marker of the present invention operably linked to a heterologous polypeptide (i.e., a polypeptide other than the polypeptide corresponding to the marker). Within the fusion protein, the term “operably linked” is intended to indicate that the polypeptide of the present invention and the heterologous polypeptide are fused in-frame to each other. The heterologous polypeptide can be fused to the amino-terminus or the carboxyl-terminus of the polypeptide of the present invention.


One useful fusion protein is a GST fusion protein in which a polypeptide corresponding to a marker of the present invention is fused to the carboxyl terminus of GST sequences. Such fusion proteins can facilitate the purification of a recombinant polypeptide of the present invention.


In another embodiment, the fusion protein contains a heterologous signal sequence, immunoglobulin fusion protein, toxin, or other useful protein sequence. Chimeric and fusion proteins of the present invention can be produced by standard recombinant DNA techniques. In another embodiment, the fusion gene can be synthesized by conventional techniques including automated DNA synthesizers. Alternatively, PCR amplification of gene fragments can be carried out using anchor primers which give rise to complementary overhangs between two consecutive gene fragments which can subsequently be annealed and re-amplified to generate a chimeric gene sequence (see, e.g., Ausubel et al., supra). Moreover, many expression vectors are commercially available that already encode a fusion moiety (e.g., a GST polypeptide). A nucleic acid encoding a polypeptide of the present invention can be cloned into such an expression vector such that the fusion moiety is linked in-frame to the polypeptide of the present invention.


A signal sequence can be used to facilitate secretion and isolation of the secreted protein or other proteins of interest. Signal sequences are typically characterized by a core of hydrophobic amino acids which are generally cleaved from the mature protein during secretion in one or more cleavage events. Such signal peptides contain processing sites that allow cleavage of the signal sequence from the mature proteins as they pass through the secretory pathway. Thus, the present invention pertains to the described polypeptides having a signal sequence, as well as to polypeptides from which the signal sequence has been proteolytically cleaved (i.e., the cleavage products). In one embodiment, a nucleic acid sequence encoding a signal sequence can be operably linked in an expression vector to a protein of interest, such as a protein which is ordinarily not secreted or is otherwise difficult to isolate. The signal sequence directs secretion of the protein, such as from a eukaryotic host into which the expression vector is transformed, and the signal sequence is subsequently or concurrently cleaved. The protein can then be readily purified from the extracellular medium by art recognized methods. Alternatively, the signal sequence can be linked to the protein of interest using a sequence which facilitates purification, such as with a GST domain.


The present invention also pertains to variants of the biomarker polypeptides described herein. Such variants have an altered amino acid sequence which can function as either agonists (mimetics) or as antagonists. Variants can be generated by mutagenesis, e.g., discrete point mutation or truncation. An agonist can retain substantially the same, or a subset, of the biological activities of the naturally occurring form of the protein. An antagonist of a protein can inhibit one or more of the activities of the naturally occurring form of the protein by, for example, competitively binding to a downstream or upstream member of a cellular signaling cascade which includes the protein of interest. Thus, specific biological effects can be elicited by treatment with a variant of limited function. Treatment of a subject with a variant having a subset of the biological activities of the naturally occurring form of the protein can have fewer side effects in a subject relative to treatment with the naturally occurring form of the protein.


Variants of a biomarker protein which function as either agonists (mimetics) or as antagonists can be identified by screening combinatorial libraries of mutants, e.g., truncation mutants, of the protein of the present invention for agonist or antagonist activity. In one embodiment, a variegated library of variants is generated by combinatorial mutagenesis at the nucleic acid level and is encoded by a variegated gene library. A variegated library of variants can be produced by, for example, enzymatically ligating a mixture of synthetic oligonucleotides into gene sequences such that a degenerate set of potential protein sequences is expressible as individual polypeptides, or alternatively, as a set of larger fusion proteins (e.g., for phage display). There are a variety of methods which can be used to produce libraries of potential variants of the polypeptides of the present invention from a degenerate oligonucleotide sequence. Methods for synthesizing degenerate oligonucleotides are known in the art (see, e.g., Narang (1983) Tetrahedron 39:3; Itakura et al. (1984) Annu. Rev. Biochem. 53:323; Itakura et al. (1984) Science 198:1056; Ike et al. (1983) Nucleic Acid Res. 11:477).


In addition, libraries of fragments of the coding sequence of a polypeptide corresponding to a marker of the present invention can be used to generate a variegated population of polypeptides for screening and subsequent selection of variants. For example, a library of coding sequence fragments can be generated by treating a double stranded PCR fragment of the coding sequence of interest with a nuclease under conditions wherein nicking occurs only about once per molecule, denaturing the double stranded DNA, renaturing the DNA to form double stranded DNA which can include sense/antisense pairs from different nicked products, removing single stranded portions from reformed duplexes by treatment with S1 nuclease, and ligating the resulting fragment library into an expression vector. By this method, an expression library can be derived which encodes amino terminal and internal fragments of various sizes of the protein of interest.


Several techniques are known in the art for screening gene products of combinatorial libraries made by point mutations or truncation, and for screening cDNA libraries for gene products having a selected property. The most widely used techniques, which are amenable to high throughput analysis, for screening large gene libraries typically include cloning the gene library into replicable expression vectors, transforming appropriate cells with the resulting library of vectors, and expressing the combinatorial genes under conditions in which detection of a desired activity facilitates isolation of the vector encoding the gene whose product was detected. Recursive ensemble mutagenesis (REM), a technique which enhances the frequency of functional mutants in the libraries, can be used in combination with the screening assays to identify variants of a protein of the present invention (Arkin and Yourvan (1992) Proc. Natl. Acad. Sci. USA 89:7811-7815; Delgrave et al. 91993) Protein Engineering 6(3):327-331).


The production and use of biomarker nucleic acid and/or biomarker polypeptide molecules described herein can be facilitated by using standard recombinant techniques. In some embodiments, such techniques use vectors, preferably expression vectors, containing a nucleic acid encoding a biomarker polypeptide or a portion of such a polypeptide. As used herein, the term “vector” refers to a nucleic acid molecule capable of transporting another nucleic acid to which it has been linked. One type of vector is a “plasmid”, which refers to a circular double stranded DNA loop into which additional DNA segments can be ligated. Another type of vector is a viral vector, wherein additional DNA segments can be ligated into the viral genome. Certain vectors are capable of autonomous replication in a host cell into which they are introduced (e.g., bacterial vectors having a bacterial origin of replication and episomal mammalian vectors). Other vectors (e.g., non-episomal mammalian vectors) are integrated into the genome of a host cell upon introduction into the host cell, and thereby are replicated along with the host genome. Moreover, certain vectors, namely expression vectors, are capable of directing the expression of genes to which they are operably linked. In general, expression vectors of utility in recombinant DNA techniques are often in the form of plasmids (vectors). However, the present invention is intended to include such other forms of expression vectors, such as viral vectors (e.g., replication defective retroviruses, adenoviruses and adeno-associated viruses), which serve equivalent functions.


The recombinant expression vectors of the present invention comprise a nucleic acid of the present invention in a form suitable for expression of the nucleic acid in a host cell. This means that the recombinant expression vectors include one or more regulatory sequences, selected on the basis of the host cells to be used for expression, which is operably linked to the nucleic acid sequence to be expressed. Within a recombinant expression vector, “operably linked” is intended to mean that the nucleotide sequence of interest is linked to the regulatory sequence(s) in a manner which allows for expression of the nucleotide sequence (e.g., in an in vitro transcription/translation system or in a host cell when the vector is introduced into the host cell). The term “regulatory sequence” is intended to include promoters, enhancers and other expression control elements (e.g., polyadenylation signals). Such regulatory sequences are described, for example, in Goeddel, Methods in Enzymology: Gene Expression Technology vol. 185, Academic Press, San Diego, Calif. (1991). Regulatory sequences include those which direct constitutive expression of a nucleotide sequence in many types of host cell and those which direct expression of the nucleotide sequence only in certain host cells (e.g., tissue-specific regulatory sequences). It will be appreciated by those skilled in the art that the design of the expression vector can depend on such factors as the choice of the host cell to be transformed, the level of expression of protein desired, and the like. The expression vectors of the present invention can be introduced into host cells to thereby produce proteins or peptides, including fusion proteins or peptides, encoded by nucleic acids as described herein.


The recombinant expression vectors for use in the present invention can be designed for expression of a polypeptide corresponding to a marker of the present invention in prokaryotic (e.g., E. coli) or eukaryotic cells (e.g., insect cells {using baculovirus expression vectors}, yeast cells or mammalian cells). Suitable host cells are discussed further in Goeddel, supra. Alternatively, the recombinant expression vector can be transcribed and translated in vitro, for example using T7 promoter regulatory sequences and T7 polymerase.


Expression of proteins in prokaryotes is most often carried out in E. coli with vectors containing constitutive or inducible promoters directing the expression of either fusion or non-fusion proteins. Fusion vectors add a number of amino acids to a protein encoded therein, usually to the amino terminus of the recombinant protein. Such fusion vectors typically serve three purposes: 1) to increase expression of recombinant protein; 2) to increase the solubility of the recombinant protein; and 3) to aid in the purification of the recombinant protein by acting as a ligand in affinity purification. Often, in fusion expression vectors, a proteolytic cleavage site is introduced at the junction of the fusion moiety and the recombinant protein to enable separation of the recombinant protein from the fusion moiety subsequent to purification of the fusion protein. Such enzymes, and their cognate recognition sequences, include Factor Xa, thrombin and enterokinase. Typical fusion expression vectors include pGEX (Pharmacia Biotech Inc; Smith and Johnson, 1988, Gene 67:31-40), pMAL (New England Biolabs, Beverly, Mass.) and pRIT5 (Pharmacia, Piscataway, N.J.) which fuse glutathione S-transferase (GST), maltose E binding protein, or protein A, respectively, to the target recombinant protein.


Examples of suitable inducible non-fusion E. coli expression vectors include pTrc (Amann et al. (1988) Gene 69:301-315) and pET 11d (Studier et al., p. 60-89, In Gene Expression Technology: Methods in Enzymology vol. 185, Academic Press, San Diego, Calif., 1991). Target biomarker nucleic acid expression from the pTrc vector relies on host RNA polymerase transcription from a hybrid trp-lac fusion promoter. Target biomarker nucleic acid expression from the pET 11d vector relies on transcription from a T7 gn10-lac fusion promoter mediated by a co-expressed viral RNA polymerase (T7 gn1). This viral polymerase is supplied by host strains BL21 (DE3) or HMS174(DE3) from a resident prophage harboring a T7 gn1 gene under the transcriptional control of the lacUV 5 promoter.


One strategy to maximize recombinant protein expression in E. coli is to express the protein in a host bacterium with an impaired capacity to proteolytically cleave the recombinant protein (Gottesman, p. 119-128, In Gene Expression Technology: Methods in Enzymology vol. 185, Academic Press, San Diego, Calif., 1990. Another strategy is to alter the nucleic acid sequence of the nucleic acid to be inserted into an expression vector so that the individual codons for each amino acid are those preferentially utilized in E. coli (Wada et al., (1992) Nucleic Acids Res. 20:2111-2118). Such alteration of nucleic acid sequences of the present invention can be carried out by standard DNA synthesis techniques.


In another embodiment, the expression vector is a yeast expression vector. Examples of vectors for expression in yeast S. cerevisiae include pYepSec1 (Baldari et al. (1987) EMBO J. 6:229-234), pMFa (Kurjan and Herskowitz (1982) Cell 30:933-943), pJRY88 (Schultz et al. (1987) Gene 54:113-123), pYES2 (Invitrogen Corporation, San Diego, Calif.), and pPicZ (Invitrogen Corp, San Diego, Calif.).


Alternatively, the expression vector is a baculovirus expression vector. Baculovirus vectors available for expression of proteins in cultured insect cells (e.g., Sf 9 cells) include the pAc series (Smith et al. (1983)Mol. Cell Biol. 3:2156-2165) and the pVL series (Lucklow and Summers (1989) Virology 170:31-39).


In yet another embodiment, a nucleic acid of the present invention is expressed in mammalian cells using a mammalian expression vector. Examples of mammalian expression vectors include pCDM8 (Seed (1987) Nature 329:840) and pMT2PC (Kaufman et al. (1987) EMBO J. 6:187-195). When used in mammalian cells, the expression vector's control functions are often provided by viral regulatory elements. For example, commonly used promoters are derived from polyoma, Adenovirus 2, cytomegalovirus and Simian Virus 40. For other suitable expression systems for both prokaryotic and eukaryotic cells see chapters 16 and 17 of Sambrook et al., supra.


In another embodiment, the recombinant mammalian expression vector is capable of directing expression of the nucleic acid preferentially in a particular cell type (e.g., tissue-specific regulatory elements are used to express the nucleic acid). Tissue-specific regulatory elements are known in the art. Non-limiting examples of suitable tissue-specific promoters include the albumin promoter (liver-specific; Pinkert et al. (1987) Genes Dev. 1:268-277), lymphoid-specific promoters (Calame and Eaton (1988) Adv. Immunol. 43:235-275), in particular promoters of T cell receptors (Winoto and Baltimore (1989) EMBO J. 8:729-733) and immunoglobulins (Banerji et al. (1983) Cell 33:729-740; Queen and Baltimore (1983) Cell 33:741-748), neuron-specific promoters (e.g., the neurofilament promoter; Byrne and Ruddle (1989) Proc. Natl. Acad. Sci. USA 86:5473-5477), pancreas-specific promoters (Edlund et al. (1985) Science 230:912-916), and mammary gland-specific promoters (e.g., milk whey promoter; U.S. Pat. No. 4,873,316 and European Application Publication No. 264,166). Developmentally-regulated promoters are also encompassed, for example the murine hox promoters (Kessel and Gruss (1990) Science 249:374-379) and the α-fetoprotein promoter (Camper and Tilghman (1989) Genes Dev. 3:537-546).


The present invention further provides a recombinant expression vector comprising a DNA molecule cloned into the expression vector in an antisense orientation. That is, the DNA molecule is operably linked to a regulatory sequence in a manner which allows for expression (by transcription of the DNA molecule) of an RNA molecule which is antisense to the mRNA encoding a polypeptide of the present invention. Regulatory sequences operably linked to a nucleic acid cloned in the antisense orientation can be chosen which direct the continuous expression of the antisense RNA molecule in a variety of cell types, for instance viral promoters and/or enhancers, or regulatory sequences can be chosen which direct constitutive, tissue-specific or cell type specific expression of antisense RNA. The antisense expression vector can be in the form of a recombinant plasmid, phagemid, or attenuated virus in which antisense nucleic acids are produced under the control of a high efficiency regulatory region, the activity of which can be determined by the cell type into which the vector is introduced. For a discussion of the regulation of gene expression using antisense genes (see Weintraub et al. (1986) Trends in Genetics, Vol. 1(1)).


Another aspect of the present invention pertains to host cells into which a recombinant expression vector of the present invention has been introduced. The terms “host cell” and “recombinant host cell” are used interchangeably herein. It is understood that such terms refer not only to the particular subject cell but to the progeny or potential progeny of such a cell. Because certain modifications may occur in succeeding generations due to either mutation or environmental influences, such progeny may not, in fact, be identical to the parent cell, but are still included within the scope of the term as used herein.


A host cell can be any prokaryotic (e.g., E. coli) or eukaryotic cell (e.g., insect cells, yeast or mammalian cells).


Vector DNA can be introduced into prokaryotic or eukaryotic cells via conventional transformation or transfection techniques. As used herein, the terms “transformation” and “transfection” are intended to refer to a variety of art-recognized techniques for introducing foreign nucleic acid into a host cell, including calcium phosphate or calcium chloride co-precipitation, DEAE-dextran-mediated transfection, lipofection, or electroporation. Suitable methods for transforming or transfecting host cells can be found in Sambrook, et al. (supra), and other laboratory manuals.


For stable transfection of mammalian cells, it is known that, depending upon the expression vector and transfection technique used, only a small fraction of cells may integrate the foreign DNA into their genome. In order to identify and select these integrants, a gene that encodes a selectable marker (e.g., for resistance to antibiotics) is generally introduced into the host cells along with the gene of interest. Preferred selectable markers include those which confer resistance to drugs, such as G418, hygromycin and methotrexate. Cells stably transfected with the introduced nucleic acid can be identified by drug selection (e.g., cells that have incorporated the selectable marker gene will survive, while the other cells die).


V. Analyzing Biomarker Nucleic Acids and Polypeptides

Biomarker nucleic acids and/or biomarker polypeptides can be analyzed according to the methods described herein and techniques known to the skilled artisan to identify such genetic or expression alterations useful for the present invention including, but not limited to, 1) an alteration in the level of a biomarker transcript or polypeptide, 2) a deletion or addition of one or more nucleotides from a biomarker gene, 4) a substitution of one or more nucleotides of a biomarker gene, 5) aberrant modification of a biomarker gene, such as an expression regulatory region, and the like.


a. Methods for Detection of Copy Number


Methods of evaluating the copy number of a biomarker nucleic acid are well known to those of skill in the art. The presence or absence of chromosomal gain or loss can be evaluated simply by a determination of copy number of the regions or markers identified herein.


In one embodiment, a biological sample is tested for the presence of copy number changes in genomic loci containing the genomic marker. A copy number of at least 3, 4, 5, 6, 7, 8, 9, or 10 is predictive of poorer outcome of anti-immune checkpoint treatment.


Methods of evaluating the copy number of a biomarker locus include, but are not limited to, hybridization-based assays. Hybridization-based assays include, but are not limited to, traditional “direct probe” methods, such as Southern blots, in situ hybridization (e.g., FISH and FISH plus SKY) methods, and “comparative probe” methods, such as comparative genomic hybridization (CGH), e.g., cDNA-based or oligonucleotide-based CGH. The methods can be used in a wide variety of formats including, but not limited to, substrate (e.g. membrane or glass) bound methods or array-based approaches.


In one embodiment, evaluating the biomarker gene copy number in a sample involves a Southern Blot. In a Southern Blot, the genomic DNA (typically fragmented and separated on an electrophoretic gel) is hybridized to a probe specific for the target region. Comparison of the intensity of the hybridization signal from the probe for the target region with control probe signal from analysis of normal genomic DNA (e.g., a non-amplified portion of the same or related cell, tissue, organ, etc.) provides an estimate of the relative copy number of the target nucleic acid. Alternatively, a Northern blot may be utilized for evaluating the copy number of encoding nucleic acid in a sample. In a Northern blot, mRNA is hybridized to a probe specific for the target region. Comparison of the intensity of the hybridization signal from the probe for the target region with control probe signal from analysis of normal RNA (e.g., a non-amplified portion of the same or related cell, tissue, organ, etc.) provides an estimate of the relative copy number of the target nucleic acid. Alternatively, other methods well known in the art to detect RNA can be used, such that higher or lower expression relative to an appropriate control (e.g., a non-amplified portion of the same or related cell tissue, organ, etc.) provides an estimate of the relative copy number of the target nucleic acid.


An alternative means for determining genomic copy number is in situ hybridization (e.g., Angerer (1987)Meth. Enzymol 152: 649). Generally, in situ hybridization comprises the following steps: (1) fixation of tissue or biological structure to be analyzed; (2) prehybridization treatment of the biological structure to increase accessibility of target DNA, and to reduce nonspecific binding; (3) hybridization of the mixture of nucleic acids to the nucleic acid in the biological structure or tissue; (4) post-hybridization washes to remove nucleic acid fragments not bound in the hybridization and (5) detection of the hybridized nucleic acid fragments. The reagent used in each of these steps and the conditions for use vary depending on the particular application. In a typical in situ hybridization assay, cells are fixed to a solid support, typically a glass slide. If a nucleic acid is to be probed, the cells are typically denatured with heat or alkali. The cells are then contacted with a hybridization solution at a moderate temperature to permit annealing of labeled probes specific to the nucleic acid sequence encoding the protein. The targets (e.g., cells) are then typically washed at a predetermined stringency or at an increasing stringency until an appropriate signal to noise ratio is obtained. The probes are typically labeled, e.g., with radioisotopes or fluorescent reporters. In one embodiment, probes are sufficiently long so as to specifically hybridize with the target nucleic acid(s) under stringent conditions. Probes generally range in length from about 200 bases to about 1000 bases. In some applications it is necessary to block the hybridization capacity of repetitive sequences. Thus, in some embodiments, tRNA, human genomic DNA, or Cot-I DNA is used to block non-specific hybridization.


An alternative means for determining genomic copy number is comparative genomic hybridization. In general, genomic DNA is isolated from normal reference cells, as well as from test cells (e.g., tumor cells) and amplified, if necessary. The two nucleic acids are differentially labeled and then hybridized in situ to metaphase chromosomes of a reference cell. The repetitive sequences in both the reference and test DNAs are either removed or their hybridization capacity is reduced by some means, for example by prehybridization with appropriate blocking nucleic acids and/or including such blocking nucleic acid sequences for said repetitive sequences during said hybridization. The bound, labeled DNA sequences are then rendered in a visualizable form, if necessary. Chromosomal regions in the test cells which are at increased or decreased copy number can be identified by detecting regions where the ratio of signal from the two DNAs is altered. For example, those regions that have decreased in copy number in the test cells will show relatively lower signal from the test DNA than the reference compared to other regions of the genome. Regions that have been increased in copy number in the test cells will show relatively higher signal from the test DNA. Where there are chromosomal deletions or multiplications, differences in the ratio of the signals from the two labels will be detected and the ratio will provide a measure of the copy number. In another embodiment of CGH, array CGH (aCGH), the immobilized chromosome element is replaced with a collection of solid support bound target nucleic acids on an array, allowing for a large or complete percentage of the genome to be represented in the collection of solid support bound targets. Target nucleic acids may comprise cDNAs, genomic DNAs, oligonucleotides (e.g., to detect single nucleotide polymorphisms) and the like. Array-based CGH may also be performed with single-color labeling (as opposed to labeling the control and the possible tumor sample with two different dyes and mixing them prior to hybridization, which will yield a ratio due to competitive hybridization of probes on the arrays). In single color CGH, the control is labeled and hybridized to one array and absolute signals are read, and the possible tumor sample is labeled and hybridized to a second array (with identical content) and absolute signals are read. Copy number difference is calculated based on absolute signals from the two arrays. Methods of preparing immobilized chromosomes or arrays and performing comparative genomic hybridization are well known in the art (see, e.g., U.S. Pat. Nos. 6,335,167; 6,197,501; 5,830,645; and 5,665,549 and Albertson (1984) EMBO J. 3: 1227-1234; Pinkel (1988) Proc. Natl. Acad. Sci. USA 85: 9138-9142; EPO Pub. No. 430,402; Methods in Molecular Biology, Vol. 33: In situ Hybridization Protocols, Choo, ed., Humana Press, Totowa, N.J. (1994), etc.). In another embodiment, the hybridization protocol of Pinkel, et al. (1998) Nature Genetics 20: 207-211, or of Kallioniemi (1992) Proc. Natl Acad Sci USA 89:5321-5325 (1992) is used.


In still another embodiment, amplification-based assays can be used to measure copy number. In such amplification-based assays, the nucleic acid sequences act as a template in an amplification reaction (e.g., Polymerase Chain Reaction (PCR). In a quantitative amplification, the amount of amplification product will be proportional to the amount of template in the original sample. Comparison to appropriate controls, e.g. healthy tissue, provides a measure of the copy number.


Methods of “quantitative” amplification are well known to those of skill in the art. For example, quantitative PCR involves simultaneously co-amplifying a known quantity of a control sequence using the same primers. This provides an internal standard that may be used to calibrate the PCR reaction. Detailed protocols for quantitative PCR are provided in Innis, et al. (1990) PCR Protocols, A Guide to Methods and Applications, Academic Press, Inc. N.Y.). Measurement of DNA copy number at microsatellite loci using quantitative PCR analysis is described in Ginzonger, et al. (2000) Cancer Research 60:5405-5409. The known nucleic acid sequence for the genes is sufficient to enable one of skill in the art to routinely select primers to amplify any portion of the gene. Fluorogenic quantitative PCR may also be used in the methods of the present invention. In fluorogenic quantitative PCR, quantitation is based on amount of fluorescence signals, e.g., TaqMan and SYBR green.


Other suitable amplification methods include, but are not limited to, ligase chain reaction (LCR) (see Wu and Wallace (1989) Genomics 4: 560, Landegren, et al. (1988) Science 241:1077, and Barringer et al. (1990) Gene 89: 117), transcription amplification (Kwoh, et al. (1989) Proc. Natl. Acad. Sci. USA 86: 1173), self-sustained sequence replication (Guatelli, et al. (1990) Proc. Nat. Acad. Sci. USA 87: 1874), dot PCR, and linker adapter PCR, etc.


Loss of heterozygosity (LOH) and major copy proportion (MCP) mapping (Wang, Z. C., et al. (2004) Cancer Res 64(1):64-71; Seymour, A. B., et al. (1994) Cancer Res 54, 2761-4; Hahn, S. A., et al. (1995) Cancer Res 55, 4670-5; Kimura, M., et al. (1996) Genes Chromosomes Cancer 17, 88-93; Li et al., (2008) MBC Bioinform. 9, 204-219) may also be used to identify regions of amplification or deletion.


b. Methods for Detection of Biomarker Nucleic Acid Expression


Biomarker expression may be assessed by any of a wide variety of well known methods for detecting expression of a transcribed molecule or protein. Non-limiting examples of such methods include immunological methods for detection of secreted, cell-surface, cytoplasmic, or nuclear proteins, protein purification methods, protein function or activity assays, nucleic acid hybridization methods, nucleic acid reverse transcription methods, and nucleic acid amplification methods.


In preferred embodiments, activity of a particular gene is characterized by a measure of gene transcript (e.g. mRNA), by a measure of the quantity of translated protein, or by a measure of gene product activity. Marker expression can be monitored in a variety of ways, including by detecting mRNA levels, protein levels, or protein activity, any of which can be measured using standard techniques. Detection can involve quantification of the level of gene expression (e.g., genomic DNA, cDNA, mRNA, protein, or enzyme activity), or, alternatively, can be a qualitative assessment of the level of gene expression, in particular in comparison with a control level. The type of level being detected will be clear from the context.


In another embodiment, detecting or determining expression levels of a biomarker and functionally similar homologs thereof, including a fragment or genetic alteration thereof (e.g., in regulatory or promoter regions thereof) comprises detecting or determining RNA levels for the marker of interest. In one embodiment, one or more cells from the subject to be tested are obtained and RNA is isolated from the cells. In a preferred embodiment, a sample of breast tissue cells is obtained from the subject.


In one embodiment, RNA is obtained from a single cell. For example, a cell can be isolated from a tissue sample by laser capture microdissection (LCM). Using this technique, a cell can be isolated from a tissue section, including a stained tissue section, thereby assuring that the desired cell is isolated (see, e.g., Bonner et al. (1997) Science 278:1481; Emmert-Buck et al. (1996) Science 274:998; Fend et al. (1999) Am. J. Path. 154:61 and Murakami et al. (2000) Kidney Int. 58:1346). For example, Murakami et al., supra, describe isolation of a cell from a previously immunostained tissue section.


It is also possible to obtain cells from a subject and culture the cells in vitro, such as to obtain a larger population of cells from which RNA can be extracted. Methods for establishing cultures of non-transformed cells, i.e., primary cell cultures, are known in the art.


When isolating RNA from tissue samples or cells from individuals, it may be important to prevent any further changes in gene expression after the tissue or cells has been removed from the subject. Changes in expression levels are known to change rapidly following perturbations, e.g., heat shock or activation with lipopolysaccharide (LPS) or other reagents. In addition, the RNA in the tissue and cells may quickly become degraded. Accordingly, in a preferred embodiment, the tissue or cells obtained from a subject is snap frozen as soon as possible.


RNA can be extracted from the tissue sample by a variety of methods, e.g., the guanidium thiocyanate lysis followed by CsCl centrifugation (Chirgwin et al. (1979) Biochemistry 18:5294-5299). RNA from single cells can be obtained as described in methods for preparing cDNA libraries from single cells, such as those described in Dulac, C. (1998) Curr. Top. Dev. Biol. 36:245 and Jena et al. (1996) J. Immunol. Methods 190:199. Care to avoid RNA degradation must be taken, e.g., by inclusion of RNAsin.


The RNA sample can then be enriched in particular species. In one embodiment, poly(A)+RNA is isolated from the RNA sample. In general, such purification takes advantage of the poly-A tails on mRNA. In particular and as noted above, poly-T oligonucleotides may be immobilized within on a solid support to serve as affinity ligands for mRNA. Kits for this purpose are commercially available, e.g., the MessageMaker kit (Life Technologies, Grand Island, N.Y.).


In a preferred embodiment, the RNA population is enriched in marker sequences. Enrichment can be undertaken, e.g., by primer-specific cDNA synthesis, or multiple rounds of linear amplification based on cDNA synthesis and template-directed in vitro transcription (see, e.g., Wang et al. (1989) PNAS 86, 9717; Dulac et al., supra, and Jena et al., supra).


The population of RNA, enriched or not in particular species or sequences, can further be amplified. As defined herein, an “amplification process” is designed to strengthen, increase, or augment a molecule within the RNA. For example, where RNA is mRNA, an amplification process such as RT-PCR can be utilized to amplify the mRNA, such that a signal is detectable or detection is enhanced. Such an amplification process is beneficial particularly when the biological, tissue, or tumor sample is of a small size or volume.


Various amplification and detection methods can be used. For example, it is within the scope of the present invention to reverse transcribe mRNA into cDNA followed by polymerase chain reaction (RT-PCR); or, to use a single enzyme for both steps as described in U.S. Pat. No. 5,322,770, or reverse transcribe mRNA into cDNA followed by symmetric gap ligase chain reaction (RT-AGLCR) as described by R. L. Marshall, et al., PCR Methods and Applications 4: 80-84 (1994). Real time PCR may also be used.


Other known amplification methods which can be utilized herein include but are not limited to the so-called “NASBA” or “3SR” technique described in PNAS USA 87: 1874-1878 (1990) and also described in Nature 350 (No. 6313): 91-92 (1991); Q-beta amplification as described in published European Patent Application (EPA) No. 4544610; strand displacement amplification (as described in G. T. Walker et al., Clin. Chem. 42: 9-13 (1996) and European Patent Application No. 684315; target mediated amplification, as described by PCT Publication WO9322461; PCR; ligase chain reaction (LCR) (see, e.g., Wu and Wallace, Genomics 4, 560 (1989), Landegren et al., Science 241, 1077 (1988)); self-sustained sequence replication (SSR) (see, e.g., Guatelli et al., Proc. Nat. Acad. Sci. USA, 87, 1874 (1990)); and transcription amplification (see, e.g., Kwoh et al., Proc. Natl. Acad. Sci. USA 86, 1173 (1989)).


Many techniques are known in the state of the art for determining absolute and relative levels of gene expression, commonly used techniques suitable for use in the present invention include Northern analysis, RNase protection assays (RPA), microarrays and PCR-based techniques, such as quantitative PCR and differential display PCR. For example, Northern blotting involves running a preparation of RNA on a denaturing agarose gel, and transferring it to a suitable support, such as activated cellulose, nitrocellulose or glass or nylon membranes. Radiolabeled cDNA or RNA is then hybridized to the preparation, washed and analyzed by autoradiography.


In situ hybridization visualization may also be employed, wherein a radioactively labeled antisense RNA probe is hybridized with a thin section of a biopsy sample, washed, cleaved with RNase and exposed to a sensitive emulsion for autoradiography. The samples may be stained with hematoxylin to demonstrate the histological composition of the sample, and dark field imaging with a suitable light filter shows the developed emulsion. Non-radioactive labels such as digoxigenin may also be used.


Alternatively, mRNA expression can be detected on a DNA array, chip or a microarray. Labeled nucleic acids of a test sample obtained from a subject may be hybridized to a solid surface comprising biomarker DNA. Positive hybridization signal is obtained with the sample containing biomarker transcripts. Methods of preparing DNA arrays and their use are well known in the art (see, e.g., U.S. Pat. Nos. 6,618,6796; 6,379,897; 6,664,377; 6,451,536; 548,257; U.S. 20030157485 and Schena et al. (1995) Science 20, 467-470; Gerhold et al. (1999) Trends In Biochem. Sci. 24, 168-173; and Lennon et al. (2000) Drug Discovery Today 5, 59-65, which are herein incorporated by reference in their entirety). Serial Analysis of Gene Expression (SAGE) can also be performed (See for example U.S. Patent Application 20030215858).


To monitor mRNA levels, for example, mRNA is extracted from the biological sample to be tested, reverse transcribed, and fluorescently-labeled cDNA probes are generated. The microarrays capable of hybridizing to marker cDNA are then probed with the labeled cDNA probes, the slides scanned and fluorescence intensity measured. This intensity correlates with the hybridization intensity and expression levels.


Types of probes that can be used in the methods described herein include cDNA, riboprobes, synthetic oligonucleotides and genomic probes. The type of probe used will generally be dictated by the particular situation, such as riboprobes for in situ hybridization, and cDNA for Northern blotting, for example. In one embodiment, the probe is directed to nucleotide regions unique to the RNA. The probes may be as short as is required to differentially recognize marker mRNA transcripts, and may be as short as, for example, 15 bases; however, probes of at least 17, 18, 19 or 20 or more bases can be used. In one embodiment, the primers and probes hybridize specifically under stringent conditions to a DNA fragment having the nucleotide sequence corresponding to the marker. As herein used, the term “stringent conditions” means hybridization will occur only if there is at least 95% identity in nucleotide sequences. In another embodiment, hybridization under “stringent conditions” occurs when there is at least 97% identity between the sequences.


The form of labeling of the probes may be any that is appropriate, such as the use of radioisotopes, for example, 32P and 15S. Labeling with radioisotopes may be achieved, whether the probe is synthesized chemically or biologically, by the use of suitably labeled bases.


In one embodiment, the biological sample contains polypeptide molecules from the test subject. Alternatively, the biological sample can contain mRNA molecules from the test subject or genomic DNA molecules from the test subject.


In another embodiment, the methods further involve obtaining a control biological sample from a control subject, contacting the control sample with a compound or agent capable of detecting marker polypeptide, mRNA, genomic DNA, or fragments thereof, such that the presence of the marker polypeptide, mRNA, genomic DNA, or fragments thereof, is detected in the biological sample, and comparing the presence of the marker polypeptide, mRNA, genomic DNA, or fragments thereof, in the control sample with the presence of the marker polypeptide, mRNA, genomic DNA, or fragments thereof in the test sample.


c. Methods for Detection of Biomarker Protein Expression


The activity or level of a biomarker protein can be detected and/or quantified by detecting or quantifying the expressed polypeptide. The polypeptide can be detected and quantified by any of a number of means well known to those of skill in the art. Aberrant levels of polypeptide expression of the polypeptides encoded by a biomarker nucleic acid and functionally similar homologs thereof, including a fragment or genetic alteration thereof (e.g., in regulatory or promoter regions thereof) are associated with the likelihood of response of a cancer to an immune checkpoint therapy. Any method known in the art for detecting polypeptides can be used. Such methods include, but are not limited to, immunodiffusion, immunoelectrophoresis, radioimmunoassay (RIA), enzyme-linked immunosorbent assays (ELISAs), immunofluorescent assays, Western blotting, binder-ligand assays, immunohistochemical techniques, agglutination, complement assays, high performance liquid chromatography (HPLC), thin layer chromatography (TLC), hyperdiffusion chromatography, and the like (e.g., Basic and Clinical Immunology, Sites and Terr, eds., Appleton and Lange, Norwalk, Conn. pp 217-262, 1991 which is incorporated by reference). Preferred are binder-ligand immunoassay methods including reacting antibodies with an epitope or epitopes and competitively displacing a labeled polypeptide or derivative thereof.


For example, ELISA and RIA procedures may be conducted such that a desired biomarker protein standard is labeled (with a radioisotope such as 125I or 35S, or an assayable enzyme, such as horseradish peroxidase or alkaline phosphatase), and, together with the unlabelled sample, brought into contact with the corresponding antibody, whereon a second antibody is used to bind the first, and radioactivity or the immobilized enzyme assayed (competitive assay). Alternatively, the biomarker protein in the sample is allowed to react with the corresponding immobilized antibody, radioisotope- or enzyme-labeled anti-biomarker protein antibody is allowed to react with the system, and radioactivity or the enzyme assayed (ELISA-sandwich assay). Other conventional methods may also be employed as suitable.


The above techniques may be conducted essentially as a “one-step” or “two-step” assay. A “one-step” assay involves contacting antigen with immobilized antibody and, without washing, contacting the mixture with labeled antibody. A “two-step” assay involves washing before contacting, the mixture with labeled antibody. Other conventional methods may also be employed as suitable.


In one embodiment, a method for measuring biomarker protein levels comprises the steps of: contacting a biological specimen with an antibody or variant (e.g., fragment) thereof which selectively binds the biomarker protein, and detecting whether said antibody or variant thereof is bound to said sample and thereby measuring the levels of the biomarker protein.


Enzymatic and radiolabeling of biomarker protein and/or the antibodies may be effected by conventional means. Such means will generally include covalent linking of the enzyme to the antigen or the antibody in question, such as by glutaraldehyde, specifically so as not to adversely affect the activity of the enzyme, by which is meant that the enzyme must still be capable of interacting with its substrate, although it is not necessary for all of the enzyme to be active, provided that enough remains active to permit the assay to be effected. Indeed, some techniques for binding enzyme are non-specific (such as using formaldehyde), and will only yield a proportion of active enzyme.


It is usually desirable to immobilize one component of the assay system on a support, thereby allowing other components of the system to be brought into contact with the component and readily removed without laborious and time-consuming labor. It is possible for a second phase to be immobilized away from the first, but one phase is usually sufficient.


It is possible to immobilize the enzyme itself on a support, but if solid-phase enzyme is required, then this is generally best achieved by binding to antibody and affixing the antibody to a support, models and systems for which are well-known in the art. Simple polyethylene may provide a suitable support.


Enzymes employable for labeling are not particularly limited, but may be selected from the members of the oxidase group, for example. These catalyze production of hydrogen peroxide by reaction with their substrates, and glucose oxidase is often used for its good stability, ease of availability and cheapness, as well as the ready availability of its substrate (glucose). Activity of the oxidase may be assayed by measuring the concentration of hydrogen peroxide formed after reaction of the enzyme-labeled antibody with the substrate under controlled conditions well-known in the art.


Other techniques may be used to detect biomarker protein according to a practitioner's preference based upon the present disclosure. One such technique is Western blotting (Towbin et at., Proc. Nat. Acad. Sci. 76:4350 (1979)), wherein a suitably treated sample is run on an SDS-PAGE gel before being transferred to a solid support, such as a nitrocellulose filter. Anti-biomarker protein antibodies (unlabeled) are then brought into contact with the support and assayed by a secondary immunological reagent, such as labeled protein A or anti-immunoglobulin (suitable labels including 125I, horseradish peroxidase and alkaline phosphatase). Chromatographic detection may also be used.


Immunohistochemistry may be used to detect expression of biomarker protein, e.g., in a biopsy sample. A suitable antibody is brought into contact with, for example, a thin layer of cells, washed, and then contacted with a second, labeled antibody. Labeling may be by fluorescent markers, enzymes, such as peroxidase, avidin, or radiolabelling. The assay is scored visually, using microscopy.


Anti-biomarker protein antibodies, such as intrabodies, may also be used for imaging purposes, for example, to detect the presence of biomarker protein in cells and tissues of a subject. Suitable labels include radioisotopes, iodine (125I, 121I), carbon (14C), sulphur (35S), tritium (3H), indium (112In), and technetium (99mTc), fluorescent labels, such as fluorescein and rhodamine, and biotin.


For in vivo imaging purposes, antibodies are not detectable, as such, from outside the body, and so must be labeled, or otherwise modified, to permit detection. Markers for this purpose may be any that do not substantially interfere with the antibody binding, but which allow external detection. Suitable markers may include those that may be detected by X-radiography, NMR or MRI. For X-radiographic techniques, suitable markers include any radioisotope that emits detectable radiation but that is not overtly harmful to the subject, such as barium or cesium, for example. Suitable markers for NMR and MRI generally include those with a detectable characteristic spin, such as deuterium, which may be incorporated into the antibody by suitable labeling of nutrients for the relevant hybridoma, for example.


The size of the subject, and the imaging system used, will determine the quantity of imaging moiety needed to produce diagnostic images. In the case of a radioisotope moiety, for a human subject, the quantity of radioactivity injected will normally range from about 5 to 20 millicuries of technetium-99. The labeled antibody or antibody fragment will then preferentially accumulate at the location of cells which contain biomarker protein. The labeled antibody or antibody fragment can then be detected using known techniques.


Antibodies that may be used to detect biomarker protein include any antibody, whether natural or synthetic, full length or a fragment thereof, monoclonal or polyclonal, that binds sufficiently strongly and specifically to the biomarker protein to be detected. An antibody may have a Kd of at most about 10−6M, 10−7M, 10−8M, 10−9M, 10−10M, 10−11M, 10−12M. The phrase “specifically binds” refers to binding of, for example, an antibody to an epitope or antigen or antigenic determinant in such a manner that binding can be displaced or competed with a second preparation of identical or similar epitope, antigen or antigenic determinant. An antibody may bind preferentially to the biomarker protein relative to other proteins, such as related proteins.


Antibodies are commercially available or may be prepared according to methods known in the art.


Antibodies and derivatives thereof that may be used encompass polyclonal or monoclonal antibodies, chimeric, human, humanized, primatized (CDR-grafted), veneered or single-chain antibodies as well as functional fragments, i.e., biomarker protein binding fragments, of antibodies. For example, antibody fragments capable of binding to a biomarker protein or portions thereof, including, but not limited to, Fv, Fab, Fab′ and F(ab′) 2 fragments can be used. Such fragments can be produced by enzymatic cleavage or by recombinant techniques. For example, papain or pepsin cleavage can generate Fab or F(ab′) 2 fragments, respectively. Other proteases with the requisite substrate specificity can also be used to generate Fab or F(ab′) 2 fragments. Antibodies can also be produced in a variety of truncated forms using antibody genes in which one or more stop codons have been introduced upstream of the natural stop site. For example, a chimeric gene encoding a F(ab′) 2 heavy chain portion can be designed to include DNA sequences encoding the CH, domain and hinge region of the heavy chain.


Synthetic and engineered antibodies are described in, e.g., Cabilly et al., U.S. Pat. No. 4,816,567 Cabilly et al., European Patent No. 0,125,023 B1; Boss et al., U.S. Pat. No. 4,816,397; Boss et al., European Patent No. 0,120,694 B1; Neuberger, M. S. et al., WO 86/01533; Neuberger, M. S. et al., European Patent No. 0,194,276 B1; Winter, U.S. Pat. No. 5,225,539; Winter, European Patent No. 0,239,400 B1; Queen et al., European Patent No. 0451216 B1; and Padlan, E. A. et al., EP 0519596 A1. See also, Newman, R. et al., BioTechnology, 10: 1455-1460 (1992), regarding primatized antibody, and Ladner et al., U.S. Pat. No. 4,946,778 and Bird, R. E. et al., Science, 242: 423-426 (1988)) regarding single-chain antibodies. Antibodies produced from a library, e.g., phage display library, may also be used.


In some embodiments, agents that specifically bind to a biomarker protein other than antibodies are used, such as peptides. Peptides that specifically bind to a biomarker protein can be identified by any means known in the art. For example, specific peptide binders of a biomarker protein can be screened for using peptide phage display libraries.


d. Methods for Detection of Biomarker Structural Alterations


The following illustrative methods can be used to identify the presence of a structural alteration in a biomarker nucleic acid and/or biomarker polypeptide molecule in order to, for example, identify PBRM1 (or ARID2, BRD7, PHF10, KDM6A, ARID1A, ARID1B, BRG1, BRM, CRB1, EGFR, and the like) proteins that having mutations such as described herein.


In certain embodiments, detection of the alteration involves the use of a probe/primer in a polymerase chain reaction (PCR) (see, e.g., U.S. Pat. Nos. 4,683,195 and 4,683,202), such as anchor PCR or RACE PCR, or, alternatively, in a ligation chain reaction (LCR) (see, e.g., Landegran et al. (1988) Science 241:1077-1080; and Nakazawa et al. (1994) Proc. Natl. Acad. Sci. USA 91:360-364), the latter of which can be particularly useful for detecting point mutations in a biomarker nucleic acid such as a biomarker gene (see Abravaya et al. (1995) Nucleic Acids Res. 23:675-682). This method can include the steps of collecting a sample of cells from a subject, isolating nucleic acid (e.g., genomic, mRNA or both) from the cells of the sample, contacting the nucleic acid sample with one or more primers which specifically hybridize to a biomarker gene under conditions such that hybridization and amplification of the biomarker gene (if present) occurs, and detecting the presence or absence of an amplification product, or detecting the size of the amplification product and comparing the length to a control sample. It is anticipated that PCR and/or LCR may be desirable to use as a preliminary amplification step in conjunction with any of the techniques used for detecting mutations described herein.


Alternative amplification methods include: self sustained sequence replication (Guatelli, J. C. et al. (1990) Proc. Natl. Acad. Sci. USA 87:1874-1878), transcriptional amplification system (Kwoh, D. Y. et al. (1989) Proc. Natl. Acad. Sci. USA 86:1173-1177), Q-Beta Replicase (Lizardi, P. M. et al. (1988) Bio-Technology 6:1197), or any other nucleic acid amplification method, followed by the detection of the amplified molecules using techniques well known to those of skill in the art. These detection schemes are especially useful for the detection of nucleic acid molecules if such molecules are present in very low numbers.


In an alternative embodiment, mutations in a biomarker nucleic acid from a sample cell can be identified by alterations in restriction enzyme cleavage patterns. For example, sample and control DNA is isolated, amplified (optionally), digested with one or more restriction endonucleases, and fragment length sizes are determined by gel electrophoresis and compared. Differences in fragment length sizes between sample and control DNA indicates mutations in the sample DNA. Moreover, the use of sequence specific ribozymes (see, for example, U.S. Pat. No. 5,498,531) can be used to score for the presence of specific mutations by development or loss of a ribozyme cleavage site.


In other embodiments, genetic mutations in biomarker nucleic acid can be identified by hybridizing a sample and control nucleic acids, e.g., DNA or RNA, to high density arrays containing hundreds or thousands of oligonucleotide probes (Cronin, M. T. et al. (1996) Hum. Mutat. 7:244-255; Kozal, M. J. et al. (1996) Nat. Med. 2:753-759). For example, biomarker genetic mutations can be identified in two dimensional arrays containing light-generated DNA probes as described in Cronin et al. (1996) supra. Briefly, a first hybridization array of probes can be used to scan through long stretches of DNA in a sample and control to identify base changes between the sequences by making linear arrays of sequential, overlapping probes. This step allows the identification of point mutations. This step is followed by a second hybridization array that allows the characterization of specific mutations by using smaller, specialized probe arrays complementary to all variants or mutations detected. Each mutation array is composed of parallel probe sets, one complementary to the wild-type gene and the other complementary to the mutant gene. Such biomarker genetic mutations can be identified in a variety of contexts, including, for example, germline and somatic mutations.


In yet another embodiment, any of a variety of sequencing reactions known in the art can be used to directly sequence a biomarker gene and detect mutations by comparing the sequence of the sample biomarker with the corresponding wild-type (control) sequence. Examples of sequencing reactions include those based on techniques developed by Maxam and Gilbert (1977) Proc. Natl. Acad. Sci. USA 74:560 or Sanger (1977) Proc. Natl. Acad Sci. USA 74:5463. It is also contemplated that any of a variety of automated sequencing procedures can be utilized when performing the diagnostic assays (Naeve (1995) Biotechniques 19:448-53), including sequencing by mass spectrometry (see, e.g., PCT International Publication No. WO 94/16101; Cohen et al. (1996) Adv. Chromatogr. 36:127-162; and Griffin et al. (1993) Appl. Biochem. Biotechnol. 38:147-159).


Other methods for detecting mutations in a biomarker gene include methods in which protection from cleavage agents is used to detect mismatched bases in RNA/RNA or RNA/DNA heteroduplexes (Myers et al. (1985) Science 230:1242). In general, the art technique of “mismatch cleavage” starts by providing heteroduplexes formed by hybridizing (labeled) RNA or DNA containing the wild-type biomarker sequence with potentially mutant RNA or DNA obtained from a tissue sample. The double-stranded duplexes are treated with an agent which cleaves single-stranded regions of the duplex such as which will exist due to base pair mismatches between the control and sample strands. For instance, RNA/DNA duplexes can be treated with RNase and DNA/DNA hybrids treated with SI nuclease to enzymatically digest the mismatched regions. In other embodiments, either DNA/DNA or RNA/DNA duplexes can be treated with hydroxylamine or osmium tetroxide and with piperidine in order to digest mismatched regions. After digestion of the mismatched regions, the resulting material is then separated by size on denaturing polyacrylamide gels to determine the site of mutation. See, for example, Cotton et al. (1988) Proc. Natl. Acad. Sci. USA 85:4397 and Saleeba et al. (1992) Methods Enzymol. 217:286-295. In a preferred embodiment, the control DNA or RNA can be labeled for detection.


In still another embodiment, the mismatch cleavage reaction employs one or more proteins that recognize mismatched base pairs in double-stranded DNA (so called “DNA mismatch repair” enzymes) in defined systems for detecting and mapping point mutations in biomarker cDNAs obtained from samples of cells. For example, the mutY enzyme of E. coli cleaves A at G/A mismatches and the thymidine DNA glycosylase from HeLa cells cleaves T at G/T mismatches (Hsu et al. (1994) Carcinogenesis 15:1657-1662). According to an exemplary embodiment, a probe based on a biomarker sequence, e.g., a wild-type biomarker treated with a DNA mismatch repair enzyme, and the cleavage products, if any, can be detected from electrophoresis protocols or the like (e.g., U.S. Pat. No. 5,459,039.)


In other embodiments, alterations in electrophoretic mobility can be used to identify mutations in biomarker genes. For example, single strand conformation polymorphism (SSCP) may be used to detect differences in electrophoretic mobility between mutant and wild type nucleic acids (Orita et al. (1989) Proc Natl. Acad. Sci USA 86:2766; see also Cotton (1993) Mutat. Res. 285:125-144 and Hayashi (1992) Genet. Anal. Tech. Appl. 9:73-79). Single-stranded DNA fragments of sample and control biomarker nucleic acids will be denatured and allowed to renature. The secondary structure of single-stranded nucleic acids varies according to sequence, the resulting alteration in electrophoretic mobility enables the detection of even a single base change. The DNA fragments may be labeled or detected with labeled probes. The sensitivity of the assay may be enhanced by using RNA (rather than DNA), in which the secondary structure is more sensitive to a change in sequence. In a preferred embodiment, the subject method utilizes heteroduplex analysis to separate double stranded heteroduplex molecules on the basis of changes in electrophoretic mobility (Keen et al. (1991) Trends Genet. 7:5).


In yet another embodiment the movement of mutant or wild-type fragments in polyacrylamide gels containing a gradient of denaturant is assayed using denaturing gradient gel electrophoresis (DGGE) (Myers et al. (1985) Nature 313:495). When DGGE is used as the method of analysis, DNA will be modified to ensure that it does not completely denature, for example by adding a GC clamp of approximately 40 bp of high-melting GC-rich DNA by PCR. In a further embodiment, a temperature gradient is used in place of a denaturing gradient to identify differences in the mobility of control and sample DNA (Rosenbaum and Reissner (1987) Biophys. Chem. 265:12753).


Examples of other techniques for detecting point mutations include, but are not limited to, selective oligonucleotide hybridization, selective amplification, or selective primer extension. For example, oligonucleotide primers may be prepared in which the known mutation is placed centrally and then hybridized to target DNA under conditions which permit hybridization only if a perfect match is found (Saiki et al. (1986) Nature 324:163; Saiki et al. (1989) Proc. Natl. Acad. Sci. USA 86:6230). Such allele specific oligonucleotides are hybridized to PCR amplified target DNA or a number of different mutations when the oligonucleotides are attached to the hybridizing membrane and hybridized with labeled target DNA.


Alternatively, allele specific amplification technology which depends on selective PCR amplification may be used in conjunction with the instant invention. Oligonucleotides used as primers for specific amplification may carry the mutation of interest in the center of the molecule (so that amplification depends on differential hybridization) (Gibbs et al. (1989) Nucleic Acids Res. 17:2437-2448) or at the extreme 3′ end of one primer where, under appropriate conditions, mismatch can prevent, or reduce polymerase extension (Prossner (1993) Tibtech 11:238). In addition it may be desirable to introduce a novel restriction site in the region of the mutation to create cleavage-based detection (Gasparini et al. (1992) Mol. Cell Probes 6:1). It is anticipated that in certain embodiments amplification may also be performed using Taq ligase for amplification (Barany (1991) Proc. Natl. Acad. Sci USA 88:189). In such cases, ligation will occur only if there is a perfect match at the 3′ end of the 5′ sequence making it possible to detect the presence of a known mutation at a specific site by looking for the presence or absence of amplification.


3. Anti-Cancer Therapies

The efficacy of immune checkpoint therapy is predicted according to biomarker amount and/or activity associated with a cancer in a subject according to the methods described herein. In one embodiment, such immune checkpoint therapy or combinations of therapies (e.g., anti-PD-1 antibodies) can be administered once a subject is indicated as being a likely responder to immune checkpoint therapy. In another embodiment, such immune checkpoint therapy can be avoided once a subject is indicated as not being a likely responder to immune checkpoint therapy and an alternative treatment regimen, such as targeted and/or untargeted anti-cancer therapies can be administered. Combination therapies are also contemplated and can comprise, for example, one or more chemotherapeutic agents and radiation, one or more chemotherapeutic agents and immunotherapy, or one or more chemotherapeutic agents, radiation and chemotherapy, each combination of which can be with immune checkpoint therapy.


The term “targeted therapy” refers to administration of agents that selectively interact with a chosen biomolecule to thereby treat cancer. For example, anti-PBRM1 agents (or anti-ARID2 agents, anti-BRD7 agents, anti-PHF10 agents, anti-KDM6A agents, etc.), such as therapeutic monoclonal blocking antibodies, which are well-known in the art and described above, can be used to target tumor microenvironments and cells expressing unwanted PBRM1 (or ARID2, BRD7, PHF10, KDM6A, ARID1A, ARID1B, BRG1, BRM, CRB1, EGFR, and the like). Similarly, nivolumab (Opdivo®) is a human IgG4 anti-PD-1 monoclonal antibody that blocks PD-1 activity (see, for example, Wang et al. (2014) Cancer Immunol. Res. 2:846-856; Johnson et al. (2015) Ther. Adv. Med. Oncol. 7:97-106; and Sundar et al. (2015) Ther. Adv. Med. Oncol. 7:85-96).


Immunotherapy is one form of targeted therapy that may comprise, for example, the use of cancer vaccines and/or sensitized antigen presenting cells. For example, an oncolytic virus is a virus that is able to infect and lyse cancer cells, while leaving normal cells unharmed, making them potentially useful in cancer therapy. Replication of oncolytic viruses both facilitates tumor cell destruction and also produces dose amplification at the tumor site. They may also act as vectors for anticancer genes, allowing them to be specifically delivered to the tumor site. The immunotherapy can involve passive immunity for short-term protection of a host, achieved by the administration of pre-formed antibody directed against a cancer antigen or disease antigen (e.g., administration of a monoclonal antibody, optionally linked to a chemotherapeutic agent or toxin, to a tumor antigen). Immunotherapy can also focus on using the cytotoxic lymphocyte-recognized epitopes of cancer cell lines. Alternatively, antisense polynucleotides, ribozymes, RNA interference molecules, triple helix polynucleotides and the like, can be used to selectively modulate biomolecules that are linked to the initiation, progression, and/or pathology of a tumor or cancer.


The term “untargeted therapy” refers to administration of agents that do not selectively interact with a chosen biomolecule yet treat cancer. ReRepresentative examples of untargeted therapies include, without limitation, chemotherapy, gene therapy, and radiation therapy.


In one embodiment, chemotherapy is used. Chemotherapy includes the administration of a chemotherapeutic agent. Such a chemotherapeutic agent may be, but is not limited to, those selected from among the following groups of compounds: platinum compounds, cytotoxic antibiotics, antimetabolities, anti-mitotic agents, alkylating agents, arsenic compounds, DNA topoisomerase inhibitors, taxanes, nucleoside analogues, plant alkaloids, and toxins; and synthetic derivatives thereof. Exemplary compounds include, but are not limited to, alkylating agents: cisplatin, treosulfan, and trofosfamide; plant alkaloids: vinblastine, paclitaxel, docetaxol; DNA topoisomerase inhibitors: teniposide, crisnatol, and mitomycin; anti-folates: methotrexate, mycophenolic acid, and hydroxyurea; pyrimidine analogs: 5-fluorouracil, doxifluridine, and cytosine arabinoside; purine analogs: mercaptopurine and thioguanine; DNA antimetabolites: 2′-deoxy-5-fluorouridine, aphidicolin glycinate, and pyrazoloimidazole; and antimitotic agents: halichondrin, colchicine, and rhizoxin. Compositions comprising one or more chemotherapeutic agents (e.g., FLAG, CHOP) may also be used. FLAG comprises fludarabine, cytosine arabinoside (Ara-C) and G-CSF. CHOP comprises cyclophosphamide, vincristine, doxorubicin, and prednisone. In another embodiments, PARP (e.g., PARP-1 and/or PARP-2) inhibitors are used and such inhibitors are well known in the art (e.g., Olaparib, ABT-888, BSI-201, BGP-15 (N-Gene Research Laboratories, Inc.); INO-1001 (Inotek Pharmaceuticals Inc.); PJ34 (Soriano et al., 2001; Pacher et al., 2002b); 3-aminobenzamide (Trevigen); 4-amino-1,8-naphthalimide; (Trevigen); 6(5H)-phenanthridinone (Trevigen); benzamide (U.S. Pat. Re. 36,397); and NU1025 (Bowman et al.). The mechanism of action is generally related to the ability of PARP inhibitors to bind PARP and decrease its activity. PARP catalyzes the conversion of .beta.-nicotinamide adenine dinucleotide (NAD+) into nicotinamide and poly-ADP-ribose (PAR). Both poly (ADP-ribose) and PARP have been linked to regulation of transcription, cell proliferation, genomic stability, and carcinogenesis (Bouchard V. J. et. al. Experimental Hematology, Volume 31, Number 6, June 2003, pp. 446-454(9); Herceg Z.; Wang Z.-Q. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, Volume 477, Number 1, 2 Jun. 2001, pp. 97-110(14)). Poly(ADP-ribose) polymerase 1 (PARP1) is a key molecule in the repair of DNA single-strand breaks (SSBs) (de Murcia J. et al. 1997. Proc Natl Acad Sci USA 94:7303-7307; Schreiber V, Dantzer F, Ame J C, de Murcia G (2006) Nat Rev Mol Cell Biol 7:517-528; Wang Z Q, et al. (1997) Genes Dev 11:2347-2358). Knockout of SSB repair by inhibition of PARP1 function induces DNA double-strand breaks (DSBs) that can trigger synthetic lethality in cancer cells with defective homology-directed DSB repair (Bryant H E, et al. (2005) Nature 434:913-917; Farmer H, et al. (2005) Nature 434:917-921). The foregoing examples of chemotherapeutic agents are illustrative, and are not intended to be limiting.


In another embodiment, radiation therapy is used. The radiation used in radiation therapy can be ionizing radiation. Radiation therapy can also be gamma rays, X-rays, or proton beams. Examples of radiation therapy include, but are not limited to, external-beam radiation therapy, interstitial implantation of radioisotopes (1-125, palladium, iridium), radioisotopes such as strontium-89, thoracic radiation therapy, intraperitoneal P-32 radiation therapy, and/or total abdominal and pelvic radiation therapy. For a general overview of radiation therapy, see Hellman, Chapter 16: Principles of Cancer Management: Radiation Therapy, 6th edition, 2001, DeVita et al., eds., J. B. Lippencott Company, Philadelphia. The radiation therapy can be administered as external beam radiation or teletherapy wherein the radiation is directed from a remote source. The radiation treatment can also be administered as internal therapy or brachytherapy wherein a radioactive source is placed inside the body close to cancer cells or a tumor mass. Also encompassed is the use of photodynamic therapy comprising the administration of photosensitizers, such as hematoporphyrin and its derivatives, Vertoporfin (BPD-MA), phthalocyanine, photosensitizer Pc4, demethoxy-hypocrellin A; and 2BA-2-DMHA.


In another embodiment, hormone therapy is used. Hormonal therapeutic treatments can comprise, for example, hormonal agonists, hormonal antagonists (e.g., flutamide, bicalutamide, tamoxifen, raloxifene, leuprolide acetate (LUPRON), LH-RH antagonists), inhibitors of hormone biosynthesis and processing, and steroids (e.g., dexamethasone, retinoids, deltoids, betamethasone, cortisol, cortisone, prednisone, dehydrotestosterone, glucocorticoids, mineralocorticoids, estrogen, testosterone, progestins), vitamin A derivatives (e.g., all-trans retinoic acid (ATRA)); vitamin D3 analogs; antigestagens (e.g., mifepristone, onapristone), or antiandrogens (e.g., cyproterone acetate).


In another embodiment, hyperthermia, a procedure in which body tissue is exposed to high temperatures (up to 106° F.) is used. Heat may help shrink tumors by damaging cells or depriving them of substances they need to live. Hyperthermia therapy can be local, regional, and whole-body hyperthermia, using external and internal heating devices. Hyperthermia is almost always used with other forms of therapy (e.g., radiation therapy, chemotherapy, and biological therapy) to try to increase their effectiveness. Local hyperthermia refers to heat that is applied to a very small area, such as a tumor. The area may be heated externally with high-frequency waves aimed at a tumor from a device outside the body. To achieve internal heating, one of several types of sterile probes may be used, including thin, heated wires or hollow tubes filled with warm water; implanted microwave antennae; and radiofrequency electrodes. In regional hyperthermia, an organ or a limb is heated. Magnets and devices that produce high energy are placed over the region to be heated. In another approach, called perfusion, some of the patient's blood is removed, heated, and then pumped (perfused) into the region that is to be heated internally. Whole-body heating is used to treat metastatic cancer that has spread throughout the body. It can be accomplished using warm-water blankets, hot wax, inductive coils (like those in electric blankets), or thermal chambers (similar to large incubators). Hyperthermia does not cause any marked increase in radiation side effects or complications. Heat applied directly to the skin, however, can cause discomfort or even significant local pain in about half the patients treated. It can also cause blisters, which generally heal rapidly.


In still another embodiment, photodynamic therapy (also called PDT, photoradiation therapy, phototherapy, or photochemotherapy) is used for the treatment of some types of cancer. It is based on the discovery that certain chemicals known as photosensitizing agents can kill one-celled organisms when the organisms are exposed to a particular type of light. PDT destroys cancer cells through the use of a fixed-frequency laser light in combination with a photosensitizing agent. In PDT, the photosensitizing agent is injected into the bloodstream and absorbed by cells all over the body. The agent remains in cancer cells for a longer time than it does in normal cells. When the treated cancer cells are exposed to laser light, the photosensitizing agent absorbs the light and produces an active form of oxygen that destroys the treated cancer cells. Light exposure must be timed carefully so that it occurs when most of the photosensitizing agent has left healthy cells but is still present in the cancer cells. The laser light used in PDT can be directed through a fiber-optic (a very thin glass strand). The fiber-optic is placed close to the cancer to deliver the proper amount of light. The fiber-optic can be directed through a bronchoscope into the lungs for the treatment of lung cancer or through an endoscope into the esophagus for the treatment of esophageal cancer. An advantage of PDT is that it causes minimal damage to healthy tissue. However, because the laser light currently in use cannot pass through more than about 3 centimeters of tissue (a little more than one and an eighth inch), PDT is mainly used to treat tumors on or just under the skin or on the lining of internal organs. Photodynamic therapy makes the skin and eyes sensitive to light for 6 weeks or more after treatment. Patients are advised to avoid direct sunlight and bright indoor light for at least 6 weeks. If patients must go outdoors, they need to wear protective clothing, including sunglasses. Other temporary side effects of PDT are related to the treatment of specific areas and can include coughing, trouble swallowing, abdominal pain, and painful breathing or shortness of breath. In December 1995, the U.S. Food and Drug Administration (FDA) approved a photosensitizing agent called porfimer sodium, or Photofrin®, to relieve symptoms of esophageal cancer that is causing an obstruction and for esophageal cancer that cannot be satisfactorily treated with lasers alone. In January 1998, the FDA approved porfimer sodium for the treatment of early nonsmall cell lung cancer in patients for whom the usual treatments for lung cancer are not appropriate. The National Cancer Institute and other institutions are supporting clinical trials (research studies) to evaluate the use of photodynamic therapy for several types of cancer, including cancers of the bladder, brain, larynx, and oral cavity.


In yet another embodiment, laser therapy is used to harness high-intensity light to destroy cancer cells. This technique is often used to relieve symptoms of cancer such as bleeding or obstruction, especially when the cancer cannot be cured by other treatments. It may also be used to treat cancer by shrinking or destroying tumors. The term “laser” stands for light amplification by stimulated emission of radiation. Ordinary light, such as that from a light bulb, has many wavelengths and spreads in all directions. Laser light, on the other hand, has a specific wavelength and is focused in a narrow beam. This type of high-intensity light contains a lot of energy. Lasers are very powerful and may be used to cut through steel or to shape diamonds. Lasers also can be used for very precise surgical work, such as repairing a damaged retina in the eye or cutting through tissue (in place of a scalpel). Although there are several different kinds of lasers, only three kinds have gained wide use in medicine: Carbon dioxide (CO2) laser—This type of laser can remove thin layers from the skin's surface without penetrating the deeper layers. This technique is particularly useful in treating tumors that have not spread deep into the skin and certain precancerous conditions. As an alternative to traditional scalpel surgery, the CO2 laser is also able to cut the skin. The laser is used in this way to remove skin cancers. Neodymium:yttrium-aluminum-garnet (Nd:YAG) laser—Light from this laser can penetrate deeper into tissue than light from the other types of lasers, and it can cause blood to clot quickly. It can be carried through optical fibers to less accessible parts of the body. This type of laser is sometimes used to treat throat cancers. Argon laser—This laser can pass through only superficial layers of tissue and is therefore useful in dermatology and in eye surgery. It also is used with light-sensitive dyes to treat tumors in a procedure known as photodynamic therapy (PDT). Lasers have several advantages over standard surgical tools, including: Lasers are more precise than scalpels. Tissue near an incision is protected, since there is little contact with surrounding skin or other tissue. The heat produced by lasers sterilizes the surgery site, thus reducing the risk of infection. Less operating time may be needed because the precision of the laser allows for a smaller incision. Healing time is often shortened; since laser heat seals blood vessels, there is less bleeding, swelling, or scarring. Laser surgery may be less complicated. For example, with fiber optics, laser light can be directed to parts of the body without making a large incision. More procedures may be done on an outpatient basis. Lasers can be used in two ways to treat cancer: by shrinking or destroying a tumor with heat, or by activating a chemical—known as a photosensitizing agent—that destroys cancer cells. In PDT, a photosensitizing agent is retained in cancer cells and can be stimulated by light to cause a reaction that kills cancer cells. CO2 and Nd:YAG lasers are used to shrink or destroy tumors. They may be used with endoscopes, tubes that allow physicians to see into certain areas of the body, such as the bladder. The light from some lasers can be transmitted through a flexible endoscope fitted with fiber optics. This allows physicians to see and work in parts of the body that could not otherwise be reached except by surgery and therefore allows very precise aiming of the laser beam. Lasers also may be used with low-power microscopes, giving the doctor a clear view of the site being treated. Used with other instruments, laser systems can produce a cutting area as small as 200 microns in diameter—less than the width of a very fine thread. Lasers are used to treat many types of cancer. Laser surgery is a standard treatment for certain stages of glottis (vocal cord), cervical, skin, lung, vaginal, vulvar, and penile cancers. In addition to its use to destroy the cancer, laser surgery is also used to help relieve symptoms caused by cancer (palliative care). For example, lasers may be used to shrink or destroy a tumor that is blocking a patient's trachea (windpipe), making it easier to breathe. It is also sometimes used for palliation in colorectal and anal cancer. Laser-induced interstitial thermotherapy (LITT) is one of the most recent developments in laser therapy. LITT uses the same idea as a cancer treatment called hyperthermia; that heat may help shrink tumors by damaging cells or depriving them of substances they need to live. In this treatment, lasers are directed to interstitial areas (areas between organs) in the body. The laser light then raises the temperature of the tumor, which damages or destroys cancer cells.


The duration and/or dose of treatment with anti-immune checkpoint therapies may vary according to the particular anti-immune checkpoint agent or combination thereof. An appropriate treatment time for a particular cancer therapeutic agent will be appreciated by the skilled artisan. The present invention contemplates the continued assessment of optimal treatment schedules for each cancer therapeutic agent, where the phenotype of the cancer of the subject as determined by the methods of the present invention is a factor in determining optimal treatment doses and schedules.


Any means for the introduction of a polynucleotide into mammals, human or non-human, or cells thereof may be adapted to the practice of this invention for the delivery of the various constructs of the present invention into the intended recipient. In one embodiment of the present invention, the DNA constructs are delivered to cells by transfection, i.e., by delivery of “naked” DNA or in a complex with a colloidal dispersion system. A colloidal system includes macromolecule complexes, nanocapsules, microspheres, beads, and lipid-based systems including oil-in-water emulsions, micelles, mixed micelles, and liposomes. The preferred colloidal system of this invention is a lipid-complexed or liposome-formulated DNA. In the former approach, prior to formulation of DNA, e.g., with lipid, a plasmid containing a transgene bearing the desired DNA constructs may first be experimentally optimized for expression (e.g., inclusion of an intron in the 5′ untranslated region and elimination of unnecessary sequences (Felgner, et al., Ann NY Acad Sci 126-139, 1995). Formulation of DNA, e.g. with various lipid or liposome materials, may then be effected using known methods and materials and delivered to the recipient mammal. See, e.g., Canonico et al, Am J Respir Cell Mol Biol 10:24-29, 1994; Tsan et al, Am J Physiol 268; Alton et al., Nat Genet. 5:135-142, 1993 and U.S. Pat. No. 5,679,647 by Carson et al.


The targeting of liposomes can be classified based on anatomical and mechanistic factors. Anatomical classification is based on the level of selectivity, for example, organ-specific, cell-specific, and organelle-specific. Mechanistic targeting can be distinguished based upon whether it is passive or active. Passive targeting utilizes the natural tendency of liposomes to distribute to cells of the reticulo-endothelial system (RES) in organs, which contain sinusoidal capillaries. Active targeting, on the other hand, involves alteration of the liposome by coupling the liposome to a specific ligand such as a monoclonal antibody, sugar, glycolipid, or protein, or by changing the composition or size of the liposome in order to achieve targeting to organs and cell types other than the naturally occurring sites of localization.


The surface of the targeted delivery system may be modified in a variety of ways. In the case of a liposomal targeted delivery system, lipid groups can be incorporated into the lipid bilayer of the liposome in order to maintain the targeting ligand in stable association with the liposomal bilayer. Various linking groups can be used for joining the lipid chains to the targeting ligand. Naked DNA or DNA associated with a delivery vehicle, e.g., liposomes, can be administered to several sites in a subject (see below).


Nucleic acids can be delivered in any desired vector. These include viral or non-viral vectors, including adenovirus vectors, adeno-associated virus vectors, retrovirus vectors, lentivirus vectors, and plasmid vectors. Exemplary types of viruses include HSV (herpes simplex virus), AAV (adeno associated virus), HIV (human immunodeficiency virus), BIV (bovine immunodeficiency virus), and MLV (murine leukemia virus). Nucleic acids can be administered in any desired format that provides sufficiently efficient delivery levels, including in virus particles, in liposomes, in nanoparticles, and complexed to polymers.


The nucleic acids encoding a protein or nucleic acid of interest may be in a plasmid or viral vector, or other vector as is known in the art. Such vectors are well known and any can be selected for a particular application. In one embodiment of the present invention, the gene delivery vehicle comprises a promoter and a demethylase coding sequence. Preferred promoters are tissue-specific promoters and promoters which are activated by cellular proliferation, such as the thymidine kinase and thymidylate synthase promoters. Other preferred promoters include promoters which are activatable by infection with a virus, such as the α- and β-interferon promoters, and promoters which are activatable by a hormone, such as estrogen. Other promoters which can be used include the Moloney virus LTR, the CMV promoter, and the mouse albumin promoter. A promoter may be constitutive or inducible.


In another embodiment, naked polynucleotide molecules are used as gene delivery vehicles, as described in WO 90/11092 and U.S. Pat. No. 5,580,859. Such gene delivery vehicles can be either growth factor DNA or RNA and, in certain embodiments, are linked to killed adenovirus. Curiel et al., Hum. Gene. Ther. 3:147-154, 1992. Other vehicles which can optionally be used include DNA-ligand (Wu et al., J. Biol. Chem. 264:16985-16987, 1989), lipid-DNA combinations (Felgner et al., Proc. Natl. Acad. Sci. USA 84:7413 7417, 1989), liposomes (Wang et al., Proc. Natl. Acad. Sci. 84:7851-7855, 1987) and microprojectiles (Williams et al., Proc. Natl. Acad. Sci. 88:2726-2730, 1991).


A gene delivery vehicle can optionally comprise viral sequences such as a viral origin of replication or packaging signal. These viral sequences can be selected from viruses such as astrovirus, coronavirus, orthomyxovirus, papovavirus, paramyxovirus, parvovirus, picornavirus, poxvirus, retrovirus, togavirus or adenovirus. In a preferred embodiment, the growth factor gene delivery vehicle is a recombinant retroviral vector. Recombinant retroviruses and various uses thereof have been described in numerous references including, for example, Mann et al., Cell 33:153, 1983, Cane and Mulligan, Proc. Nat'l. Acad. Sci. USA 81:6349, 1984, Miller et al., Human Gene Therapy 1:5-14, 1990, U.S. Pat. Nos. 4,405,712, 4,861,719, and 4,980,289, and PCT Application Nos. WO 89/02,468, WO 89/05,349, and WO 90/02,806. Numerous retroviral gene delivery vehicles can be utilized in the present invention, including for example those described in EP 0,415,731; WO 90/07936; WO 94/03622; WO 93/25698; WO 93/25234; U.S. Pat. No. 5,219,740; WO 9311230; WO 9310218; Vile and Hart, Cancer Res. 53:3860-3864, 1993; Vile and Hart, Cancer Res. 53:962-967, 1993; Ram et al., Cancer Res. 53:83-88, 1993; Takamiya et al., J. Neurosci. Res. 33:493-503, 1992; Baba et al., J. Neurosurg. 79:729-735, 1993 (U.S. Pat. No. 4,777,127, GB 2,200,651, EP 0,345,242 and WO91/02805).


Other viral vector systems that can be used to deliver a polynucleotide of the present invention have been derived from herpes virus, e.g., Herpes Simplex Virus (U.S. Pat. No. 5,631,236 by Woo et al., issued May 20, 1997 and WO 00/08191 by Neurovex), vaccinia virus (Ridgeway (1988) Ridgeway, “Mammalian expression vectors,” In: Rodriguez R L, Denhardt D T, ed. Vectors: A survey of molecular cloning vectors and their uses. Stoneham: Butterworth; Baichwal and Sugden (1986) “Vectors for gene transfer derived from animal DNA viruses: Transient and stable expression of transferred genes,” In: Kucherlapati R, ed. Gene transfer. New York: Plenum Press; Coupar et al. (1988) Gene, 68:1-10), and several RNA viruses. Preferred viruses include an alphavirus, a poxivirus, an arena virus, a vaccinia virus, a polio virus, and the like. They offer several attractive features for various mammalian cells (Friedmann (1989) Science, 244:1275-1281; Ridgeway, 1988, supra; Baichwal and Sugden, 1986, supra; Coupar et al., 1988; Horwich et al. (1990) J. Virol., 64:642-650).


In other embodiments, target DNA in the genome can be manipulated using well-known methods in the art. For example, the target DNA in the genome can be manipulated by deletion, insertion, and/or mutation are retroviral insertion, artificial chromosome techniques, gene insertion, random insertion with tissue specific promoters, gene targeting, transposable elements and/or any other method for introducing foreign DNA or producing modified DNA/modified nuclear DNA. Other modification techniques include deleting DNA sequences from a genome and/or altering nuclear DNA sequences. Nuclear DNA sequences, for example, may be altered by site-directed mutagenesis.


In other embodiments, recombinant biomarker polypeptides, and fragments thereof, can be administered to subjects. In some embodiments, fusion proteins can be constructed and administered which have enhanced biological properties. In addition, the biomarker polypeptides, and fragment thereof, can be modified according to well-known pharmacological methods in the art (e.g., pegylation, glycosylation, oligomerization, etc.) in order to further enhance desirable biological activities, such as increased bioavailability and decreased proteolytic degradation.


4. Clinical Efficacy

Clinical efficacy can be measured by any method known in the art. For example, the response to a therapy, such as anti-immune checkpoint therapies, relates to any response of the cancer, e.g., a tumor, to the therapy, preferably to a change in tumor mass and/or volume after initiation of neoadjuvant or adjuvant chemotherapy. Tumor response may be assessed in a neoadjuvant or adjuvant situation where the size of a tumor after systemic intervention can be compared to the initial size and dimensions as measured by CT, PET, mammogram, ultrasound or palpation and the cellularity of a tumor can be estimated histologically and compared to the cellularity of a tumor biopsy taken before initiation of treatment. Response may also be assessed by caliper measurement or pathological examination of the tumor after biopsy or surgical resection. Response may be recorded in a quantitative fashion like percentage change in tumor volume or cellularity or using a semi-quantitative scoring system such as residual cancer burden (Symmans et al., J. Clin. Oncol. (2007) 25:4414-4422) or Miller-Payne score (Ogston et al., (2003) Breast (Edinburgh, Scotland) 12:320-327) in a qualitative fashion like “pathological complete response” (pCR), “clinical complete remission” (cCR), “clinical partial remission” (cPR), “clinical stable disease” (cSD), “clinical progressive disease” (cPD) or other qualitative criteria. Assessment of tumor response may be performed early after the onset of neoadjuvant or adjuvant therapy, e.g., after a few hours, days, weeks or preferably after a few months. A typical endpoint for response assessment is upon termination of neoadjuvant chemotherapy or upon surgical removal of residual tumor cells and/or the tumor bed.


In some embodiments, clinical efficacy of the therapeutic treatments described herein may be determined by measuring the clinical benefit rate (CBR). The clinical benefit rate is measured by determining the sum of the percentage of patients who are in complete remission (CR), the number of patients who are in partial remission (PR) and the number of patients having stable disease (SD) at a time point at least 6 months out from the end of therapy. The shorthand for this formula is CBR=CR+PR+SD over 6 months. In some embodiments, the CBR for a particular anti-immune checkpoint therapeutic regimen is at least 25%, 30%, 35%, 40%, 45%, 50%, 55%, 60%, 65%, 70%, 75%, 80%, 85%, or more.


Additional criteria for evaluating the response to anti-immune checkpoint therapies are related to “survival,” which includes all of the following: survival until mortality, also known as overall survival (wherein said mortality may be either irrespective of cause or tumor related); “recurrence-free survival” (wherein the term recurrence shall include both localized and distant recurrence); metastasis free survival; disease free survival (wherein the term disease shall include cancer and diseases associated therewith). The length of said survival may be calculated by reference to a defined start point (e.g., time of diagnosis or start of treatment) and end point (e.g., death, recurrence or metastasis). In addition, criteria for efficacy of treatment can be expanded to include response to chemotherapy, probability of survival, probability of metastasis within a given time period, and probability of tumor recurrence.


For example, in order to determine appropriate threshold values, a particular anti-immune checkpoint therapeutic regimen can be administered to a population of subjects and the outcome can be correlated to biomarker measurements that were determined prior to administration of any immune checkpoint therapy. The outcome measurement may be pathologic response to therapy given in the neoadjuvant setting. Alternatively, outcome measures, such as overall survival and disease-free survival can be monitored over a period of time for subjects following immune checkpoint therapy for whom biomarker measurement values are known. In certain embodiments, the same doses of anti-immune checkpoint agents are administered to each subject. In related embodiments, the doses administered are standard doses known in the art for anti-immune checkpoint agents. The period of time for which subjects are monitored can vary. For example, subjects may be monitored for at least 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 25, 30, 35, 40, 45, 50, 55, or 60 months. Biomarker measurement threshold values that correlate to outcome of an immune checkpoint therapy can be determined using methods such as those described in the Examples section.


5. Further Uses and Methods of the Present Invention

The methods described herein can be used in a variety of diagnostic, prognostic, and therapeutic applications. In any method described herein, such as a diagnostic method, prognostic method, therapeutic method, or combination thereof, all steps of the method can be performed by a single actor or, alternatively, by more than one actor. For example, diagnosis can be performed directly by the actor providing therapeutic treatment. Alternatively, a person providing a therapeutic agent can request that a diagnostic assay be performed. The diagnostician and/or the therapeutic interventionist can interpret the diagnostic assay results to determine a therapeutic strategy. Similarly, such alternative processes can apply to other assays, such as prognostic assays. The compositions described herein can also be used in a variety of diagnostic, prognostic, and therapeutic applications regarding biomarkers described herein, such as those listed in Table 1. Moreover, any method of diagnosis, prognosis, prevention, and the like described herein can be applied to a therapy or test agent of interest, such as immune checkpoint therapies, EGFR therapies, anti-cancer therapies, and the like.


a. Screening Methods


One aspect of the present invention relates to screening assays, including non-cell based assays. In one embodiment, the assays provide a method for identifying whether a cancer is likely to respond to immune checkpoint therapy and/or whether an agent can inhibit the growth of or kill a cancer cell that is unlikely to respond to immune checkpoint therapy.


In one embodiment, the present invention relates to assays for screening test agents which bind to, or modulate the biological activity of, at least one biomarker listed in Table 1. In one embodiment, a method for identifying such an agent entails determining the ability of the agent to modulate, e.g. inhibit, the at least one biomarker listed in Table 1.


In one embodiment, an assay is a cell-free or cell-based assay, comprising contacting at least one biomarker listed in Table 1, with a test agent, and determining the ability of the test agent to modulate (e.g. inhibit) the enzymatic activity of the biomarker, such as by measuring direct binding of substrates or by measuring indirect parameters as described below.


For example, in a direct binding assay, biomarker protein (or their respective target polypeptides or molecules) can be coupled with a radioisotope or enzymatic label such that binding can be determined by detecting the labeled protein or molecule in a complex. For example, the targets can be labeled with 125I, 35S, 14C, or 3H, either directly or indirectly, and the radioisotope detected by direct counting of radioemmission or by scintillation counting. Alternatively, the targets can be enzymatically labeled with, for example, horseradish peroxidase, alkaline phosphatase, or luciferase, and the enzymatic label detected by determination of conversion of an appropriate substrate to product. Determining the interaction between biomarker and substrate can also be accomplished using standard binding or enzymatic analysis assays. In one or more embodiments of the above described assay methods, it may be desirable to immobilize polypeptides or molecules to facilitate separation of complexed from uncomplexed forms of one or both of the proteins or molecules, as well as to accommodate automation of the assay.


Binding of a test agent to a target can be accomplished in any vessel suitable for containing the reactants. Non-limiting examples of such vessels include microtiter plates, test tubes, and micro-centrifuge tubes. Immobilized forms of the antibodies of the present invention can also include antibodies bound to a solid phase like a porous, microporous (with an average pore diameter less than about one micron) or macroporous (with an average pore diameter of more than about 10 microns) material, such as a membrane, cellulose, nitrocellulose, or glass fibers; a bead, such as that made of agarose or polyacrylamide or latex; or a surface of a dish, plate, or well, such as one made of polystyrene.


In an alternative embodiment, determining the ability of the agent to modulate the interaction between the biomarker and a substrate or a biomarker and its natural binding partner can be accomplished by determining the ability of the test agent to modulate the activity of a polypeptide or other product that functions downstream or upstream of its position within the signaling pathway (e.g., feedback loops). Such feedback loops are well-known in the art (see, for example, Chen and Guillemin (2009) Int. J Tryptophan Res. 2:1-19).


The present invention further pertains to novel agents identified by the above-described screening assays. Accordingly, it is within the scope of this invention to further use an agent identified as described herein in an appropriate animal model. For example, an agent identified as described herein can be used in an animal model to determine the efficacy, toxicity, or side effects of treatment with such an agent. Alternatively, an antibody identified as described herein can be used in an animal model to determine the mechanism of action of such an agent.


b. Predictive Medicine


The present invention also pertains to the field of predictive medicine in which diagnostic assays, prognostic assays, and monitoring clinical trials are used for prognostic (predictive) purposes to thereby treat an individual prophylactically. Accordingly, one aspect of the present invention relates to diagnostic assays for determining the amount and/or activity level of a biomarker listed in Table 1 in the context of a biological sample (e.g., blood, serum, cells, or tissue) to thereby determine whether an individual afflicted with a cancer is likely to respond to immune checkpoint therapy, whether in an original or recurrent cancer. Such assays can be used for prognostic or predictive purpose to thereby prophylactically treat an individual prior to the onset or after recurrence of a disorder characterized by or associated with biomarker polypeptide, nucleic acid expression or activity. The skilled artisan will appreciate that any method can use one or more (e.g., combinations) of biomarkers listed in Table 1.


Another aspect of the present invention pertains to monitoring the influence of agents (e.g., drugs, compounds, and small nucleic acid-based molecules) on the expression or activity of a biomarker listed in Table 1. These and other agents are described in further detail in the following sections.


The skilled artisan will also appreciate that, in certain embodiments, the methods of the present invention implement a computer program and computer system. For example, a computer program can be used to perform the algorithms described herein. A computer system can also store and manipulate data generated by the methods of the present invention which comprises a plurality of biomarker signal changes/profiles which can be used by a computer system in implementing the methods of this invention. In certain embodiments, a computer system receives biomarker expression data; (ii) stores the data; and (iii) compares the data in any number of ways described herein (e.g., analysis relative to appropriate controls) to determine the state of informative biomarkers from cancerous or pre-cancerous tissue. In other embodiments, a computer system (i) compares the determined expression biomarker level to a threshold value; and (ii) outputs an indication of whether said biomarker level is significantly modulated (e.g., above or below) the threshold value, or a phenotype based on said indication.


In certain embodiments, such computer systems are also considered part of the present invention. Numerous types of computer systems can be used to implement the analytic methods of this invention according to knowledge possessed by a skilled artisan in the bioinformatics and/or computer arts. Several software components can be loaded into memory during operation of such a computer system. The software components can comprise both software components that are standard in the art and components that are special to the present invention (e.g., dCHIP software described in Lin et al. (2004) Bioinformatics 20, 1233-1240; radial basis machine learning algorithms (RBM) known in the art).


The methods of the present invention can also be programmed or modeled in mathematical software packages that allow symbolic entry of equations and high-level specification of processing, including specific algorithms to be used, thereby freeing a user of the need to procedurally program individual equations and algorithms. Such packages include, e.g., Matlab from Mathworks (Natick, Mass.), Mathematica from Wolfram Research (Champaign, Ill.) or S-Plus from MathSoft (Seattle, Wash.).


In certain embodiments, the computer comprises a database for storage of biomarker data. Such stored profiles can be accessed and used to perform comparisons of interest at a later point in time. For example, biomarker expression profiles of a sample derived from the non-cancerous tissue of a subject and/or profiles generated from population-based distributions of informative loci of interest in relevant populations of the same species can be stored and later compared to that of a sample derived from the cancerous tissue of the subject or tissue suspected of being cancerous of the subject.


In addition to the exemplary program structures and computer systems described herein, other, alternative program structures and computer systems will be readily apparent to the skilled artisan. Such alternative systems, which do not depart from the above described computer system and programs structures either in spirit or in scope, are therefore intended to be comprehended within the accompanying claims.


c. Diagnostic Assays


The present invention provides, in part, methods, systems, and code for accurately classifying whether a biological sample is associated with a cancer that is likely to respond to immune checkpoint therapy. In some embodiments, the present invention is useful for classifying a sample (e.g., from a subject) as associated with or at risk for responding to or not responding to immune checkpoint therapy using a statistical algorithm and/or empirical data (e.g., the amount or activity of a biomarker listed in Table 1).


An exemplary method for detecting the amount or activity of a biomarker listed in Table 1, and thus useful for classifying whether a sample is likely or unlikely to respond to immune checkpoint therapy involves obtaining a biological sample from a test subject and contacting the biological sample with an agent, such as a protein-binding agent like an antibody or antigen-binding fragment thereof, or a nucleic acid-binding agent like an oligonucleotide, capable of detecting the amount or activity of the biomarker in the biological sample. In some embodiments, at least one antibody or antigen-binding fragment thereof is used, wherein two, three, four, five, six, seven, eight, nine, ten, or more such antibodies or antibody fragments can be used in combination (e.g., in sandwich ELISAs) or in serial. In certain instances, the statistical algorithm is a single learning statistical classifier system. For example, a single learning statistical classifier system can be used to classify a sample as a based upon a prediction or probability value and the presence or level of the biomarker. The use of a single learning statistical classifier system typically classifies the sample as, for example, a likely immune checkpoint therapy responder or progressor sample with a sensitivity, specificity, positive predictive value, negative predictive value, and/or overall accuracy of at least about 75%, 76%, 77%, 78%, 79%, 80%, 81%, 82%, 83%, 84%, 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99%.


Other suitable statistical algorithms are well known to those of skill in the art. For example, learning statistical classifier systems include a machine learning algorithmic technique capable of adapting to complex data sets (e.g., panel of markers of interest) and making decisions based upon such data sets. In some embodiments, a single learning statistical classifier system such as a classification tree (e.g., random forest) is used. In other embodiments, a combination of 2, 3, 4, 5, 6, 7, 8, 9, 10, or more learning statistical classifier systems are used, preferably in tandem. Examples of learning statistical classifier systems include, but are not limited to, those using inductive learning (e.g., decision/classification trees such as random forests, classification and regression trees (C&RT), boosted trees, etc.), Probably Approximately Correct (PAC) learning, connectionist learning (e.g., neural networks (NN), artificial neural networks (ANN), neuro fuzzy networks (NFN), network structures, perceptrons such as multi-layer perceptrons, multi-layer feed-forward networks, applications of neural networks, Bayesian learning in belief networks, etc.), reinforcement learning (e.g., passive learning in a known environment such as naive learning, adaptive dynamic learning, and temporal difference learning, passive learning in an unknown environment, active learning in an unknown environment, learning action-value functions, applications of reinforcement learning, etc.), and genetic algorithms and evolutionary programming. Other learning statistical classifier systems include support vector machines (e.g., Kernel methods), multivariate adaptive regression splines (MARS), Levenberg-Marquardt algorithms, Gauss-Newton algorithms, mixtures of Gaussians, gradient descent algorithms, and learning vector quantization (LVQ). In certain embodiments, the method of the present invention further comprises sending the sample classification results to a clinician, e.g., an oncologist.


In another embodiment, the diagnosis of a subject is followed by administering to the individual a therapeutically effective amount of a defined treatment based upon the diagnosis.


In one embodiment, the methods further involve obtaining a control biological sample (e.g., biological sample from a subject who does not have a cancer or whose cancer is susceptible to immune checkpoint therapy), a biological sample from the subject during remission, or a biological sample from the subject during treatment for developing a cancer progressing despite immune checkpoint therapy.


d. Prognostic Assays


The diagnostic methods described herein can furthermore be utilized to identify subjects having or at risk of developing a cancer that is likely or unlikely to be responsive to immune checkpoint therapy. The assays described herein, such as the preceding diagnostic assays or the following assays, can be utilized to identify a subject having or at risk of developing a disorder associated with a misregulation of the amount or activity of at least one biomarker described in Table 1, such as in cancer. Alternatively, the prognostic assays can be utilized to identify a subject having or at risk for developing a disorder associated with a misregulation of the at least one biomarker described in Table 1, such as in cancer. Furthermore, the prognostic assays described herein can be used to determine whether a subject can be administered an agent (e.g., an agonist, antagonist, peptidomimetic, polypeptide, peptide, nucleic acid, small molecule, or other drug candidate) to treat a disease or disorder associated with the aberrant biomarker expression or activity.


e. Treatment Methods


The compositions described herein (including dual binding antibodies and derivatives and conjugates thereof) can be used in a variety of in vitro and in vivo therapeutic applications using the formulations and/or combinations described herein. In one embodiment, anti-immune checkpoint agents can be used to treat cancers determined to be responsive thereto. For example, antibodies that block the interaction between PD-L1, PD-L2, and/or CTLA-4 and their receptors (e.g., PD-L1 binding to PD-1, PD-L2 binding to PD-1, and the like) can be used to treat cancer in subjects identified as likely responding thereto.


6. Pharmaceutical Compositions

In another aspect, the present invention provides pharmaceutically acceptable compositions which comprise a therapeutically-effective amount of an agent that modulates (e.g., decreases) biomarker expression and/or activity, formulated together with one or more pharmaceutically acceptable carriers (additives) and/or diluents. As described in detail below, the pharmaceutical compositions of the present invention may be specially formulated for administration in solid or liquid form, including those adapted for the following: (1) oral administration, for example, drenches (aqueous or non-aqueous solutions or suspensions), tablets, boluses, powders, granules, pastes; (2) parenteral administration, for example, by subcutaneous, intramuscular or intravenous injection as, for example, a sterile solution or suspension; (3) topical application, for example, as a cream, ointment or spray applied to the skin; (4) intravaginally or intrarectally, for example, as a pessary, cream or foam; or (5) aerosol, for example, as an aqueous aerosol, liposomal preparation or solid particles containing the compound.


The phrase “therapeutically-effective amount” as used herein means that amount of an agent that modulates (e.g., inhibits) biomarker expression and/or activity, or expression and/or activity of the complex, or composition comprising an agent that modulates (e.g., inhibits) biomarker expression and/or activity, or expression and/or activity of the complex, which is effective for producing some desired therapeutic effect, e.g., cancer treatment, at a reasonable benefit/risk ratio.


The phrase “pharmaceutically acceptable” is employed herein to refer to those agents, materials, compositions, and/or dosage forms which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of human beings and animals without excessive toxicity, irritation, allergic response, or other problem or complication, commensurate with a reasonable benefit/risk ratio.


The phrase “pharmaceutically-acceptable carrier” as used herein means a pharmaceutically-acceptable material, composition or vehicle, such as a liquid or solid filler, diluent, excipient, solvent or encapsulating material, involved in carrying or transporting the subject chemical from one organ, or portion of the body, to another organ, or portion of the body. Each carrier must be “acceptable” in the sense of being compatible with the other ingredients of the formulation and not injurious to the subject. Some examples of materials which can serve as pharmaceutically-acceptable carriers include: (1) sugars, such as lactose, glucose and sucrose; (2) starches, such as corn starch and potato starch; (3) cellulose, and its derivatives, such as sodium carboxymethyl cellulose, ethyl cellulose and cellulose acetate; (4) powdered tragacanth; (5) malt; (6) gelatin; (7) talc; (8) excipients, such as cocoa butter and suppository waxes; (9) oils, such as peanut oil, cottonseed oil, safflower oil, sesame oil, olive oil, corn oil and soybean oil; (10) glycols, such as propylene glycol; (11) polyols, such as glycerin, sorbitol, mannitol and polyethylene glycol; (12) esters, such as ethyl oleate and ethyl laurate; (13) agar; (14) buffering agents, such as magnesium hydroxide and aluminum hydroxide; (15) alginic acid; (16) pyrogen-free water; (17) isotonic saline; (18) Ringer's solution; (19) ethyl alcohol; (20) phosphate buffer solutions; and (21) other non-toxic compatible substances employed in pharmaceutical formulations.


The term “pharmaceutically-acceptable salts” refers to the relatively non-toxic, inorganic and organic acid addition salts of the agents that modulates (e.g., inhibits) biomarker expression and/or activity, or expression and/or activity of the complex encompassed by the present invention. These salts can be prepared in situ during the final isolation and purification of the respiration uncoupling agents, or by separately reacting a purified respiration uncoupling agent in its free base form with a suitable organic or inorganic acid, and isolating the salt thus formed. ReRepresentative salts include the hydrobromide, hydrochloride, sulfate, bisulfate, phosphate, nitrate, acetate, valerate, oleate, palmitate, stearate, laurate, benzoate, lactate, phosphate, tosylate, citrate, maleate, fumarate, succinate, tartrate, napthylate, mesylate, glucoheptonate, lactobionate, and laurylsulphonate salts and the like (See, for example, Berge et al. (1977) “Pharmaceutical Salts”, J. Pharm. Sci. 66:1-19).


In other cases, the agents useful in the methods of the present invention may contain one or more acidic functional groups and, thus, are capable of forming pharmaceutically-acceptable salts with pharmaceutically-acceptable bases. The term “pharmaceutically-acceptable salts” in these instances refers to the relatively non-toxic, inorganic and organic base addition salts of agents that modulates (e.g., inhibits) biomarker expression and/or activity, or expression and/or activity of the complex. These salts can likewise be prepared in situ during the final isolation and purification of the respiration uncoupling agents, or by separately reacting the purified respiration uncoupling agent in its free acid form with a suitable base, such as the hydroxide, carbonate or bicarbonate of a pharmaceutically-acceptable metal cation, with ammonia, or with a pharmaceutically-acceptable organic primary, secondary or tertiary amine. ReRepresentative alkali or alkaline earth salts include the lithium, sodium, potassium, calcium, magnesium, and aluminum salts and the like. ReRepresentative organic amines useful for the formation of base addition salts include ethylamine, diethylamine, ethylenediamine, ethanolamine, diethanolamine, piperazine and the like (see, for example, Berge et al., supra).


Wetting agents, emulsifiers and lubricants, such as sodium lauryl sulfate and magnesium stearate, as well as coloring agents, release agents, coating agents, sweetening, flavoring and perfuming agents, preservatives and antioxidants can also be present in the compositions.


Examples of pharmaceutically-acceptable antioxidants include: (1) water soluble antioxidants, such as ascorbic acid, cysteine hydrochloride, sodium bisulfate, sodium metabisulfite, sodium sulfite and the like; (2) oil-soluble antioxidants, such as ascorbyl palmitate, butylated hydroxyanisole (BHA), butylated hydroxytoluene (BHT), lecithin, propyl gallate, alpha-tocopherol, and the like; and (3) metal chelating agents, such as citric acid, ethylenediamine tetraacetic acid (EDTA), sorbitol, tartaric acid, phosphoric acid, and the like.


Formulations useful in the methods of the present invention include those suitable for oral, nasal, topical (including buccal and sublingual), rectal, vaginal, aerosol and/or parenteral administration. The formulations may conveniently be presented in unit dosage form and may be prepared by any methods well known in the art of pharmacy. The amount of active ingredient which can be combined with a carrier material to produce a single dosage form will vary depending upon the host being treated, the particular mode of administration. The amount of active ingredient, which can be combined with a carrier material to produce a single dosage form will generally be that amount of the compound which produces a therapeutic effect. Generally, out of one hundred percent, this amount will range from about 1 percent to about ninety-nine percent of active ingredient, preferably from about 5 percent to about 70 percent, most preferably from about 10 percent to about 30 percent.


Methods of preparing these formulations or compositions include the step of bringing into association an agent that modulates (e.g., inhibits) biomarker expression and/or activity, with the carrier and, optionally, one or more accessory ingredients. In general, the formulations are prepared by uniformly and intimately bringing into association a respiration uncoupling agent with liquid carriers, or finely divided solid carriers, or both, and then, if necessary, shaping the product.


Formulations suitable for oral administration may be in the form of capsules, cachets, pills, tablets, lozenges (using a flavored basis, usually sucrose and acacia or tragacanth), powders, granules, or as a solution or a suspension in an aqueous or non-aqueous liquid, or as an oil-in-water or water-in-oil liquid emulsion, or as an elixir or syrup, or as pastilles (using an inert base, such as gelatin and glycerin, or sucrose and acacia) and/or as mouth washes and the like, each containing a predetermined amount of a respiration uncoupling agent as an active ingredient. A compound may also be administered as a bolus, electuary or paste.


In solid dosage forms for oral administration (capsules, tablets, pills, dragees, powders, granules and the like), the active ingredient is mixed with one or more pharmaceutically-acceptable carriers, such as sodium citrate or dicalcium phosphate, and/or any of the following: (1) fillers or extenders, such as starches, lactose, sucrose, glucose, mannitol, and/or silicic acid; (2) binders, such as, for example, carboxymethylcellulose, alginates, gelatin, polyvinyl pyrrolidone, sucrose and/or acacia; (3) humectants, such as glycerol; (4) disintegrating agents, such as agar-agar, calcium carbonate, potato or tapioca starch, alginic acid, certain silicates, and sodium carbonate; (5) solution retarding agents, such as paraffin; (6) absorption accelerators, such as quatemary ammonium compounds; (7) wetting agents, such as, for example, acetyl alcohol and glycerol monostearate; (8) absorbents, such as kaolin and bentonite clay; (9) lubricants, such a talc, calcium stearate, magnesium stearate, solid polyethylene glycols, sodium lauryl sulfate, and mixtures thereof; and (10) coloring agents. In the case of capsules, tablets and pills, the pharmaceutical compositions may also comprise buffering agents. Solid compositions of a similar type may also be employed as fillers in soft and hard-filled gelatin capsules using such excipients as lactose or milk sugars, as well as high molecular weight polyethylene glycols and the like.


A tablet may be made by compression or molding, optionally with one or more accessory ingredients. Compressed tablets may be prepared using binder (for example, gelatin or hydroxypropylmethyl cellulose), lubricant, inert diluent, preservative, disintegrant (for example, sodium starch glycolate or cross-linked sodium carboxymethyl cellulose), surface-active or dispersing agent. Molded tablets may be made by molding in a suitable machine a mixture of the powdered peptide or peptidomimetic moistened with an inert liquid diluent.


Tablets, and other solid dosage forms, such as dragees, capsules, pills and granules, may optionally be scored or prepared with coatings and shells, such as enteric coatings and other coatings well known in the pharmaceutical-formulating art. They may also be formulated so as to provide slow or controlled release of the active ingredient therein using, for example, hydroxypropylmethyl cellulose in varying proportions to provide the desired release profile, other polymer matrices, liposomes and/or microspheres. They may be sterilized by, for example, filtration through a bacteria-retaining filter, or by incorporating sterilizing agents in the form of sterile solid compositions, which can be dissolved in sterile water, or some other sterile injectable medium immediately before use. These compositions may also optionally contain opacifying agents and may be of a composition that they release the active ingredient(s) only, or preferentially, in a certain portion of the gastrointestinal tract, optionally, in a delayed manner. Examples of embedding compositions, which can be used include polymeric substances and waxes. The active ingredient can also be in micro-encapsulated form, if appropriate, with one or more of the above-described excipients.


Liquid dosage forms for oral administration include pharmaceutically acceptable emulsions, microemulsions, solutions, suspensions, syrups and elixirs. In addition to the active ingredient, the liquid dosage forms may contain inert diluents commonly used in the art, such as, for example, water or other solvents, solubilizing agents and emulsifiers, such as ethyl alcohol, isopropyl alcohol, ethyl carbonate, ethyl acetate, benzyl alcohol, benzyl benzoate, propylene glycol, 1,3-butylene glycol, oils (in particular, cottonseed, groundnut, corn, germ, olive, castor and sesame oils), glycerol, tetrahydrofuryl alcohol, polyethylene glycols and fatty acid esters of sorbitan, and mixtures thereof.


Besides inert diluents, the oral compositions can also include adjuvants such as wetting agents, emulsifying and suspending agents, sweetening, flavoring, coloring, perfuming and preservative agents.


Suspensions, in addition to the active agent may contain suspending agents as, for example, ethoxylated isostearyl alcohols, polyoxyethylene sorbitol and sorbitan esters, microcrystalline cellulose, aluminum metahydroxide, bentonite, agar-agar and tragacanth, and mixtures thereof.


Formulations for rectal or vaginal administration may be presented as a suppository, which may be prepared by mixing one or more respiration uncoupling agents with one or more suitable nonirritating excipients or carriers comprising, for example, cocoa butter, polyethylene glycol, a suppository wax or a salicylate, and which is solid at room temperature, but liquid at body temperature and, therefore, will melt in the rectum or vaginal cavity and release the active agent.


Formulations which are suitable for vaginal administration also include pessaries, tampons, creams, gels, pastes, foams or spray formulations containing such carriers as are known in the art to be appropriate.


Dosage forms for the topical or transdermal administration of an agent that modulates (e.g., inhibits) biomarker expression and/or activity include powders, sprays, ointments, pastes, creams, lotions, gels, solutions, patches and inhalants. The active component may be mixed under sterile conditions with a pharmaceutically-acceptable carrier, and with any preservatives, buffers, or propellants which may be required.


The ointments, pastes, creams and gels may contain, in addition to a respiration uncoupling agent, excipients, such as animal and vegetable fats, oils, waxes, paraffins, starch, tragacanth, cellulose derivatives, polyethylene glycols, silicones, bentonites, silicic acid, talc and zinc oxide, or mixtures thereof.


Powders and sprays can contain, in addition to an agent that modulates (e.g., inhibits) biomarker expression and/or activity, excipients such as lactose, talc, silicic acid, aluminum hydroxide, calcium silicates and polyamide powder, or mixtures of these substances. Sprays can additionally contain customary propellants, such as chlorofluorohydrocarbons and volatile unsubstituted hydrocarbons, such as butane and propane.


The agent that modulates (e.g., inhibits) biomarker expression and/or activity, can be alternatively administered by aerosol. This is accomplished by preparing an aqueous aerosol, liposomal preparation or solid particles containing the compound. A nonaqueous (e.g., fluorocarbon propellant) suspension could be used. Sonic nebulizers are preferred because they minimize exposing the agent to shear, which can result in degradation of the compound.


Ordinarily, an aqueous aerosol is made by formulating an aqueous solution or suspension of the agent together with conventional pharmaceutically acceptable carriers and stabilizers. The carriers and stabilizers vary with the requirements of the particular compound, but typically include nonionic surfactants (Tweens, Pluronics, or polyethylene glycol), innocuous proteins like serum albumin, sorbitan esters, oleic acid, lecithin, amino acids such as glycine, buffers, salts, sugars or sugar alcohols. Aerosols generally are prepared from isotonic solutions.


Transdermal patches have the added advantage of providing controlled delivery of a respiration uncoupling agent to the body. Such dosage forms can be made by dissolving or dispersing the agent in the proper medium. Absorption enhancers can also be used to increase the flux of the peptidomimetic across the skin. The rate of such flux can be controlled by either providing a rate controlling membrane or dispersing the peptidomimetic in a polymer matrix or gel.


Ophthalmic formulations, eye ointments, powders, solutions and the like, are also contemplated as being within the scope of this invention.


Pharmaceutical compositions of this invention suitable for parenteral administration comprise one or more respiration uncoupling agents in combination with one or more pharmaceutically-acceptable sterile isotonic aqueous or nonaqueous solutions, dispersions, suspensions or emulsions, or sterile powders which may be reconstituted into sterile injectable solutions or dispersions just prior to use, which may contain antioxidants, buffers, bacteriostats, solutes which render the formulation isotonic with the blood of the intended recipient or suspending or thickening agents.


Examples of suitable aqueous and nonaqueous carriers which may be employed in the pharmaceutical compositions of the present invention include water, ethanol, polyols (such as glycerol, propylene glycol, polyethylene glycol, and the like), and suitable mixtures thereof, vegetable oils, such as olive oil, and injectable organic esters, such as ethyl oleate. Proper fluidity can be maintained, for example, by the use of coating materials, such as lecithin, by the maintenance of the required particle size in the case of dispersions, and by the use of surfactants.


These compositions may also contain adjuvants such as preservatives, wetting agents, emulsifying agents and dispersing agents. Prevention of the action of microorganisms may be ensured by the inclusion of various antibacterial and antifungal agents, for example, paraben, chlorobutanol, phenol sorbic acid, and the like. It may also be desirable to include isotonic agents, such as sugars, sodium chloride, and the like into the compositions. In addition, prolonged absorption of the injectable pharmaceutical form may be brought about by the inclusion of agents which delay absorption such as aluminum monostearate and gelatin.


In some cases, in order to prolong the effect of a drug, it is desirable to slow the absorption of the drug from subcutaneous or intramuscular injection. This may be accomplished by the use of a liquid suspension of crystalline or amorphous material having poor water solubility. The rate of absorption of the drug then depends upon its rate of dissolution, which, in turn, may depend upon crystal size and crystalline form. Alternatively, delayed absorption of a parenterally-administered drug form is accomplished by dissolving or suspending the drug in an oil vehicle.


Injectable depot forms are made by forming microencapsule matrices of an agent that modulates (e.g., inhibits) biomarker expression and/or activity, in biodegradable polymers such as polylactide-polyglycolide. Depending on the ratio of drug to polymer, and the nature of the particular polymer employed, the rate of drug release can be controlled. Examples of other biodegradable polymers include poly(orthoesters) and poly(anhydrides). Depot injectable formulations are also prepared by entrapping the drug in liposomes or microemulsions, which are compatible with body tissue.


When the respiration uncoupling agents of the present invention are administered as pharmaceuticals, to humans and animals, they can be given per se or as a pharmaceutical composition containing, for example, 0.1 to 99.5% (more preferably, 0.5 to 90%) of active ingredient in combination with a pharmaceutically acceptable carrier.


Actual dosage levels of the active ingredients in the pharmaceutical compositions of this invention may be determined by the methods of the present invention so as to obtain an amount of the active ingredient, which is effective to achieve the desired therapeutic response for a particular subject, composition, and mode of administration, without being toxic to the subject.


The nucleic acid molecules of the present invention can be inserted into vectors and used as gene therapy vectors. Gene therapy vectors can be delivered to a subject by, for example, intravenous injection, local administration (see U.S. Pat. No. 5,328,470) or by stereotactic injection (see e.g., Chen et al. (1994) Proc. Nat. Acad. Sci. USA 91:3054 3057). The pharmaceutical preparation of the gene therapy vector can include the gene therapy vector in an acceptable diluent, or can comprise a slow release matrix in which the gene delivery vehicle is imbedded. Alternatively, where the complete gene delivery vector can be produced intact from recombinant cells, e.g., retroviral vectors, the pharmaceutical preparation can include one or more cells which produce the gene delivery system.


The present invention also encompasses kits for detecting and/or modulating biomarkers described herein. A kit of the present invention may also include instructional materials disclosing or describing the use of the kit or an antibody of the disclosed invention in a method of the disclosed invention as provided herein. A kit may also include additional components to facilitate the particular application for which the kit is designed. For example, a kit may additionally contain means of detecting the label (e.g., enzyme substrates for enzymatic labels, filter sets to detect fluorescent labels, appropriate secondary labels such as a sheep anti-mouse-HRP, etc.) and reagents necessary for controls (e.g., control biological samples or standards). A kit may additionally include buffers and other reagents recognized for use in a method of the disclosed invention. Non-limiting examples include agents to reduce non-specific binding, such as a carrier protein or a detergent.


EXEMPLIFICATION

This invention is further illustrated by the following examples, which should not be construed as limiting.


Example 1: Materials and Methods for Examples 2-3

a. Meta-Analysis: Cohort Consolidation


Mutation annotation files, HLA types, and clinical annotations were obtained from published data. Standardized pipelines for somatic variant calling, mutational signature deconvolution, and neoantigen prediction were used. Patients were stratified into clinical benefit (CB) and no clinical benefit (NCB) as described in Van Allen et al. (2015) Science 350:207-211. Analyses were repeated using two other published response metrics (CB=PFS>6 months; CB=CR or PR; see at least Rizvi et al. (2015) Science 348:124-128 and Snyder et al. (2014) N. Engl. J Med. 371:2189-2199).


Specifically, pre-treatment tumors from patients who received immune checkpoint blockade for metastatic cancer at the DFCI and partner institutions were sequenced at the Broad Institute (FIG. 1). Data sources listed in FIG. 1 include data from Zaretsky et al. (2016) New Engl. J Med. 375:819-829 disclosing 4 patients treated with anti-PD-1 therapy for metastatic melanoma (Zaretsky); Van Allen et al. (2015) Science 350:207-211 disclosing treatment of metastatic melanoma patients across Germany with anti-CTLA-4 ipilimumab therapy (Schadendorf); Hugo et al. (2016) Cell 165:35-44 (Hugo); Rizvi et al. (2015) Science 348:124-128 (Rizvi); Snyder et al. (2014) N. Engl. J Med. 371:2189-2199 (Synder); and samples obtained from patients treated with immune checkpoint therapies with clinical monitoring at the Dana-Farber Cancer Institute (DFCI, CANSEQ, BroadNext10, and Rizwan Haq). For example, samples from 2 patients for WES obtained from Dana-Farber Cancer Institute attending physician, Rizwan Haq (Rizwan Haq). Cancer types included melanoma, non-small-cell lung cancer, bladder cancer, anal cancer, sarcoma, head and neck squamous cell carcinoma, including one previously published cohort in Van Allen et al. (2015) Science 350:207-211. Quality controls were included based on exclusion criteria and inclusion criteria (FIG. 2).


In addition, whole exome data from published clinical cohorts of patients who received immune checkpoint therapy for metastatic non-small-cell lung cancer (Rizvi et al. (2015) Science 348:124-128) and melanoma (Snyder et al. (2014) N. Engl. J. Med. 371:2189-2199; Hugo et al. (2016) Cell 165:35-44) were used in the meta-analysis.


In separate meta-analyses described in Example 3 below, mutation annotation files, HLA types, and clinical annotations were obtained from published data. In particular, published mutation annotation files (MAFs), clinical annotations, and neoantigen files were taken from the supplemental information of Rizvi et al. (2015) Science 348:124-128; Van Allen et al. (2015) Science 350:207-211; and Snyder et al. (2014) N. Engl. J Med. 371:2189-2199. These files were joined to form the meta-analysis cohort. Enrichment in mutations in specific genes was assessed in this joined cohort using Fisher's exact test. The joined MAF was also processed through MutSigCV to identify genes significantly mutated throughout the cohort. Thus, standardized pipelines for somatic variant calling, mutational signature deconvolution, and neoantigen prediction were used. Patients were stratified into clinical benefit (CB) and no clinical benefit (NCB) as described in Van Allen et al. (2015) Science 350:207-211. Analyses were repeated using two other published response metrics (CB=PFS>6 months; CB=CR or PR).


b. Sample Preparation, DNA and RNA Extraction, and Sequencing


Sample preparation, DNA and RNA extraction, and sequencing information vary slightly between the studies described in Rizvi et al. (2015) Science 348:124-128; Van Allen et al. (2015) Science 350:207-211; and Snyder et al. (2014) N. Engl. J Med. 371:2189-2199, and particular details of such methods used can be found in the supplemental information files of these three publications.


For other samples, such as metastatic melanoma samples described in Example 3, or unless otherwise described, sample preparation, DNA and RNA extraction, and sequencing information proceeded as described below. Briefly, after fixation and mounting, 5-10 10 μm slices from formalin-fixed, paraffin-embedded (FFPE) tumor blocks were obtained, and tumor-enriched tissue was macrodissected. Paraffin was removed from FFPE sections and cores using CitriSolv™ (Fisher Scientific, Hampton, N.H.), followed by ethanol washes and tissue lysis overnight at 56° C. Samples were then incubated at 90° C. to remove DNA crosslinks, and DNA- and when possible, RNA-extraction was performed using Qiagen AllPrep DNA/RNA Mini Kit (#51306, Qiagen, Hilden, Germany). Germline DNA was obtained from adjacent PBMCs.


Whole exome and whole transcriptome sequencing of tumor and germline samples were performed as previously described (Van Allen et al. (2015) Science 350:207-211; Van Allen et al. (2014) Nat. Med. 20:682-688). All samples in the training cohort were sequenced using the Illumina exome, while a portion of the samples in the validation cohort were sequenced using the Agilent exome (Table 3A). The Illumina exome uses Illumina's in-solution DNA probe based hybrid selection method to target approximately 37.7 Mb of mainly exonic territory, using similar principles as the Broad Institute-Agilent Technologies developed in-solution RNA probe based hybrid selection method (Agilent SureSelect™ All Exon V2) (Fisher et al. (2011) Genome Biol. 12:R1; Gnirke et al. (2009) Nat. Biotechnol. 27:182-189) to generate Illumina exome sequencing libraries.


Pooled libraries were normalized to 2 nM and denatured using 0.2 N NaOH prior to sequencing. Flowcell cluster amplification and sequencing were performed according to the manufacturer's protocols using either the HiSeq 2000 v3 or HiSeq 2500. Each run was a 76 bp paired-end with a dual eight-base index barcode read. Data was analyzed using the Broad Picard Pipeline, which includes de-multiplexing and data aggregation.


Exome sequence data processing was performed using established analytical pipelines at the Broad Institute. A BAM file was produced using the Picard pipeline (at the World Wide Web address of picard.sourceforge.net), which aligns the tumor and normal sequences to the hg19 human genome build using Illumina sequencing reads. The BAM was uploaded into the Firehose pipeline (at the World Wide Web address of broadinstitute.org/cancer/cga/Firehose), which manages input and output files to be executed by GenePattern (Reich et al. (2006) Nat. Genet. 38:500-501). Samples with mean target coverage less than 25× in the tumor and less than 15× in matched normal were excluded.


Quality control modules within Firehose were applied to all sequencing data for comparison of the origin of tumor and normal genotypes and to assess fingerprinting concordance. Cross-contamination of samples was estimated using ContEst (Cibulskis et al. (2011) Bioinformatics 27:2601-2602). Samples with ContEst estimates exceeding 5% were excluded from analysis.


c. Whole Exome and Whole Transcriptome Analyses


MuTect was applied to identify somatic single-nucleotide variants (Cibulskis et al. (2013) Nat. Biotechnol. 31:213-219). Strelka was used to identify somatic insertions and deletions (Saunders et al. (2012) Bioinformatics 28:1811-1817) across the whole exome. Indelocator, which detects small insertions and deletions after local realignment of tumor and normal sequences, was additionally applied to provide further sensitivity to detect indels in PBRM1 (Cancer Genome Atlas Research (2011) Nature 474:609-615). The union of indels called by Strelka and Indelocator was used for final analysis. Artifacts introduced by DNA oxidation during sequencing were computationally removed using a filter-based method (Costello et al. (2013) Nuc. Acids Res. 41:e67). All somatic mutations detected by whole-exome sequencing were analyzed for potential false positive calls by performing a comparison to mutation calls from a panel of 2,500 germline DNA samples (Stachler et al. (2015) Nat. Genet. 47:1047-1055). Mutations found in germline samples were removed from analysis. Annotation of identified variants was done using Oncotator (available at the World Wide Web address of www.broadinstitute.org/cancer/cga/oncotator). All nonsynonymous alterations in PBRM1 were manually reviewed in Integrated Genomics Viewer (IGV_2.3.57) for sequencing quality (Thorvaldsdottir et al. (2013) BriefBioinform 14:178-192).


Copy ratios were calculated for each captured target by dividing the tumor coverage by the median coverage obtained in a set of reference normal samples. The resulting copy ratios were segmented using the circular binary segmentation algorithm (Olshen et al. (2004) Biostatistics 5:557-572). Allelic copy number alterations were called while taking into account sample-specific overall chromosomal aberrations (focality) (Brastianos et al. (2015) Cancer Discov. 5:1164-1177). Inference of mutational clonality, tumor purity, and tumor ploidy was accomplished with ABSOLUTE (Carter et al. (2012) Nat Biotechnol. 30:413-421). Samples had to have estimated tumor purity greater than 10% to be included in the final analysis. As a final quality control metric to ensure adequate sequencing coverage and tumor purity to detect relevant oncogenic events, all samples had to have at least one nonsynonymous mutation in at least one high confidence or candidate cancer driver gene to be included in the final analysis (Tamborero et al. (2013) Sci. Rep. 3:2650).


The 4-digit HLA type for each sample was inferred using Polysolver (Shukla et al. (2015) Nat. Biotechnol. 33:1152-1158). Neo-epitopes were predicted for each patient by defining all novel amino acid 9mers and 10mers resulting from each single nucleotide polymorphism and indel and determining whether the predicted binding affinity to the patient's germline HLA alleles was <500 nM using NetMHCpan (v2.4) (Hoof et al. (2009) Immunogenetics 61:1-13; Karosiene et al. (2013) Immunogenetics 65:711-724; Nielsen et al. (2007) PLoS One 2:e796).


Statistical analyses were also applied and are described further herein.


Example 2: Meta-Analysis of Genomic Predictors of Response to Immune Checkpoint Therapy Across a Variety of Cancers

A large cohort of whole-exome-sequenced pre-treatment tumors were gathered from subjects who received immune checkpoint therapies for various cancers, were gathered and assessed for mutations associated with differential response to immune checkpoint therapies. Tumor types included in this discovery cohort included bladder cancer, renal cell carcinoma, lung cancer, and head and neck squamous cell carcinoma. Tumor-specific (somatic) mutations were assessed in all sequenced tumors to generate mutation annotation files (MAFs), which were later joined with MAFs from previously published studies in clinical cohorts in melanoma (Van Allen et al. (2015) Science 350:207-211; Snyder et al. (2014) N. Engl. J. Med. 371:2189-2199; Hugo et al. (2016) Cell 165:35-44) and non-small cell lung cancer (Rizvi et al. (2015) Science 348:124-128).


In particular, pre-treatment samples from cancer patients (N=268) were tested for their genetic sequences in relation to results of immune checkpoint therapy experienced by the cancer patients (FIG. 3). The results are shown in Table 2 as response by cancer type.















TABLE 2







Melanoma
Lung
HNSCC
Sarcoma
Bladder























Clinical benefit
66
(38.6%)
20 (29.4%)
4 (28.6%)
1 (100%)
6
(46.2%)


Intermediate benefit
6
(3.5%)
23 (33.8%)
3 (21.4%)
0
1
(7.7%)


No clinical benefit
96
(56.1%)
25 (36.8%)
7 (50.0%)
0
4
(30.8%)


Mixed response or not
3
(1.8%)
0
0
0
2
(1.5%)


evaluable















Total
171
68
14
1
13









Nonsynonymous mutational burden is a strong predictor of clinical outcomes across cancer types. As shown in FIG. 4, patients experiencing clinical benefit to immune checkpoint therapy had significantly more nonsynonymous mutations than those experiencing no clinical benefit (p=5.52e-06; Wilcoxon rank-sum). Such relationship is strong for patients with lung cancer (p=5.2e-05) and also significant for patients with bladder cancer (p=0.019) and melanoma (p=0.0016). No relationship between clinical outcome and mutational burden in HNSCC (p=0.45) was found. In addition, complete responders in sarcoma and anal cancer had unexceptional mutational burdens (below and near median, respectively).


In order to identify biormarkers associated with response or nonresponse to immune checkpoint blockade, the following procedure was conducted:

    • Split all patients into responders and non-responders
      • Version A: N=98 CB vs. N=132 NCB
      • Version B: N=98 CB vs. N=165 NCB or IB
    • Calculate significance value for enrichment of mutations in a given gene in responder or non-responders (Fisher's exact test)
      • Version A: All nonsynonymous mutations
      • Version B: Only truncating alterations (frame-shift insertions and deletions, nonsense single nucleotide polymorphisms, splice-site alterations)
    • Run MutSigCV on all 268 patients with called mutations to determine significantly mutated genes across the entire cohort, which takes into account gene size, patient-specific mutational rate, mutational spectra, and gene replication rates and times
    • Select genes that are mutated significantly more often in responders or non-responders (p<0.05) and pass MutSigCV significance (q<0.1; FDR).


The identified biomarkers are shown in FIG. 5. Table 3 is a summary of all genes with significantly more nonsynonymous mutations in R (N=98) or NR (N=132).














TABLE 3










p-value



Gene
N (R)
N (NR)
(Fisher's exact)





















CETP
4
0
0.032



COL3A1
18
10
0.015



COL5A1
22
15
0.029



DDX60
13
5
0.012




DHX8


10


2


0.005




DLEC1
16
9
0.031



DNAH2
23
14
0.011



FHOD1
8
2
0.020



HK3
7
2
0.040




KALRN


27


10


0.000093




KIF21B
15
9
0.049



KIF5A
11
5
0.036




KRAS


11


3


0.0095




MCTP1
12
6
0.045



MGAM
33
26
0.022




NARS2


6


0


0.0055




ZNF253
10
4
0.047



NF1
25
17
0.016




NR1H4


2


11

0.046



PBRM1
10
4
0.047



PKP1
7
2
0.040




PLCB4


21


11


0.0065




POLR2A
10
4
0.047



PREX2
25
19
0.042




RB1


1


10

0.026



ROCK1
8
2
0.020



SAFB2
9
3
0.032



SERPINB3
11
5
0.036



SPATA16
12
6
0.045



STAB1
17
10
0.037



TGM3
11
5
0.036



TSC1
13
6
0.027



TSPAN2
7
2
0.040



ZNF207
6
1
0.044







*Genes in italics (i.e., NR1H4 and RB1) mutated more frequently in NR vs. R. Genes in plain text mutated more frequently in R vs. NR.



**Bolded genes (i.e., DHX8, KALRN, KRAS, NARS2, and PLCB4) have p < 0.01.






After limiting analyses to comparing patients with objective tumor response (CR, PR, or SD by RECIST vs. PD by RECIST) in non-melanoma cancer types, it was observed that a striking association exists between mutations in one or more SWI/SNF complex subunits and response to immune checkpoint therapy (Tables 4-5 and FIGS. 6-8).


For example, truncating alterations in PBRM1 and response to immune checkpoint therapy, driven by nonsense, frameshift, and splice site mutations in bladder cancer, lung cancer, and renal cell carcinoma (9/75 responders vs. 0/41 non-responders, p=0.026). Additionally, it was observed that ARID2 truncating mutations enriched in responders in melanoma across multiple clinical cohorts (6/68 responders vs. 2/96 non-responders), as well as in isolated cases in other tumor types (one frameshift deletion in lung cancer PR and one frameshift deletion in one SD RCC). Interestingly, the two ARID2 alterations occurring in non-responders occurred in patients receiving anti-CTLA4 therapies (rather than anti-PD1 therapies), though one patient with PR to anti-CTLA4 also had an ARID2 splice site mutation. Lastly, it was observed that mutations in SMARCA4 were associated with response in head and neck squamous cell carcinoma (3/6 responders vs. 0/9 non-responders, p=0.044, Fisher's exact test). Thus, alterations in the SWI/SNF pathway were found to be predictive of response to immune checkpoint therapy across cancer types.









TABLE 4







Complete list of all identified SWI/SNF mutations


















Entrez_









Hugo_
Gene_
Chromo-
Start_
End_
Variant_



Tumor_Sample_Barcode
pair_id
Symbol
Id
some
position
position
Classification
response


















MEL-IPI_Pat132-Tumor-SM-
MEL-IPI_Pat132-TP-NB-SM-
ACTL6A
86
3
179294461
179294461
Missense_
+


5VWJA
5VWJA-SM-5VWHR





Mutation



MEL-IPI_Pat138-Tumor-SM-
MEL-IPI_Pat138-TP-NB-SM-
ACTL6A
86
3
179298455
179298455
Missense_
+


5VWJG
5VWJG-SM-5VWHX





Mutation



Pt20
Pt20
ACTL6A
86
3
179294018
179294018
Missense_










Mutation



CR04885
CR04885
ACTL6B
51412
7
100244379
100244379
Missense_
+









Mutation



Lung-DFCI-11-104-009-
Lung-DFCI-11-104-009-TM-
ACTL6B
51412
7
100244451
100244451
Missense_
+


Tumor-SM-5YS7O
NB-SM-5YS70-SM-5YS7P





Mutation



MEL-IPI_Pat130-Tumor-SM-
MEL-IPI_Pat130-TP-NT-SM-
ACTL6B
51412
7
100247744
100247744
Silent



5X2R8
5X2R8-SM-5X2RJ









MEL-IPI_Pat138-Tumor-SM-
MEL-IPI_Pat138-TP-NB-SM-
ACTL6B
51412
7
100240903
100240903
Missense_
+


5VWJG
5VWJG-SM-5VWHX





Mutation



MEL-IPI_Pat139-Tumor-SM-
MEL-IPI_Pat139-TP-NB-SM-
ACTL6B
51412
7
100244908
100244908
Splice_Site



5VWJH
5VWJH-SM-5VWHY









MEL-IPI_Pat28-Tumor-SM-
MEL-IPI_Pat28-TP-NB-SM-
ACTL6B
51412
7
100244416
100244416
Silent



4DK10
4DK10-SM-4NFUU









MEL-IPI_Pat38-Tumor-SM-
MEL-IPI_Pat38-TP-NT-SM-
ACTL6B
51412
7
100244877
100244877
Silent
+


53U3Z
53U3Z-SM-53U5L









MEL-IPI_Pat38-Tumor-SM-
MEL-IPI_Pat38-TP-NT-SM-
ACTL6B
51412
7
100244902
100244902
Silent
+


53U3Z
53U3Z-SM-53U5L









PR4035
PR4035
ACTL6B
51412
7
100253064
100253064
Missense_
+









Mutation



Pt14
Pt14
ACTL6B
51412
7
100253200
100253200
Missense_










Mutation



Pt4
Pt4
ACTL6B
51412
7
100246273
100246273
Missense_
+









Mutation



RH090935
RH090935
ACTL6B
51412
7
100253478
100253478
Missense_
+









Mutation



SD1494
SD1494
ACTL6B
51412
7
100253045
100253045
Splice_Site
±


SU2C_Lung-SU2C-DFCI-
SU2C_Lung-SU2C-DFCI-
ACTL6B
51412
7
100252740
100252740
Missense_



LUAD-1011-Tumor-SM-
LUAD-1011-TM-NB-SM-





Mutation



AOL75
AOL75-SM-A46NN









AL4602
AL4602
ARID1A
8289
1
27023633
27023633
Missense_
±









Mutation



BLADDER-
BLADDER-
ARID1A
8289
1
27101612
27101612
Frame_Shift_



15330_CCPM_0700692-
15330_CCPM_0700692-TM-





Del



Tumor-SM-AVI11
NB-SM-AVI11-SM-AVHZM









BLCA-IM01-Tumor-SM-
BLCA-IM01-TP-NB-SM-
ARID1A
8289
1
27057664
27057664
Missense_



79XD9
79XD9-SM-7AABJ





Mutation



BLCA-IM01-Tumor-SM-
BLCA-IM01-TP-NB-SM-
ARID1A
8289
1
27058092
27058097
Splice_Site



79XD9
79XD9-SM-7AABJ









BLCA-IM01-Tumor-SM-
BLCA-IM01-TP-NB-SM-
ARID1A
8289
1
27057642
27057642
Splice_Site



79XD9
79XD9-SM-7AABJ









HNSCC-287-Tumor-SM-
HNSCC-287-TP-NB-SM-
ARID1A
8289
1
27100352
27100355
Frame_Shift_



AXGEI
AXGEI-SM-ADP7M





Del



LO3793
LO3793
ARID1A
8289
1
27105688
27105688
Nonsense
±









Mutation



LUAD-BS-13-F33496-
LUAD-BS-13-F33496-TP-
ARID1A
8289
1
27056342
27056343
Frame_Shift_
±


Tumor-SM-9J2XU
NB-SM-9J2XU-SM-9HBZX





Del



Lung-DFCI-11-104-009-
Lung-DFCI-11-104-009-IM-
ARID1A
8289
1
27106621
27106621
Nonsense
+


Tumor-SM-5YS7O
NB-SM-5YS7O-SM-5YS7P





Mutation



MEL-IPI_Pat7-Tumor-SM-
MEL-IPI_Pat07-IP-NB-SM-
ARID1A
8289
1
27105918
27105918
Silent
+


4DK13
4DK13-SM-4NFU9









MEL-IPI_Pat11-Tumor-SM-
MEL-IPI_Pat11-TP-NB-SM-
ARID1A
8289
1
27101642
27101642
Missense_



4DK17
4DK17-SM-4NFUD





Mutation



MEL-IPI_Pat110-Tumor-SM-
MEL-IPI_Pat110-TP-NT-SM-
ARID1A
8289
1
27106693
27106693
Missense_



4CU6X
4CU6X-SM-4MGPO





Mutation



MEL-IPI_Pat133-Tumor-SM-
MEL-IPI_Pat133-TP-NB-SM-
ARID1A
8289
1
27089607
27089607
Missense_



5VWJB
5VWJB-SM-5VWHS





Mutation



MEL-IPI_Pat138-Tumor-SM-
MEL-IPI_Pat138-TP-NB-SM-
ARID1A
8289
1
27023487
27023487
Missense_
+


5VWJG
5VWJG-SM-5VWHX





Mutation



MEL-IPI_Pat138-Tumor-SM-
MEL-IPI_Pat138-TP-NB-SM-
ARID1A
8289
1
27106461
27106461
Silent
+


5VWJG
5VWJG-SM-5VWHX









MEL-IPI_Pat138-Tumor-SM-
MEL-IPI_Pat138-TP-NB-SM-
ARID1A
8289
1
27058070
27058070
Missense_
+


5VWJG
5VWJG-SM-5VWHX





Mutation



MEL-IPI_Pat159-Tumor-SM-
MEL-IPI_Pat159-TP-NB-SM-
ARID1A
8289
1
27087452
27087452
Missense_



5VWK2
5VWK2-SM-5VWIJ





Mutation



MEL-IPI_Pat163-Tumor-SM-
MEL-IPI_Pat163-TP-NB-SM-
ARID1A
8289
1
27107176
27107176
Missense_



5VWK6
5VWK6-SM-5VWIN





Mutation



MEL-IPI_Pat37-Tumor-SM-
MEL-IPI_Pat37-TP-NB-SM-
ARID1A
8289
1
27101712
27101712
Splice_Site



53U3Y
53U3Y-SM-4NFV4









MEL-IPI_Pat37-Tumor-SM-
MEL-IPI_Pat37-TP-NB-SM-
ARID1A
8289
1
27105837
27105837
Silent



53U3Y
53U3Y-SM-4NFV4









MEL-IPI_Pat38-Tumor-SM-
MEL-IPI_Pat38-TP-NT-SM-
ARID1A
8289
1
27087393
27087393
Missense_
+


53U3Z
53U3Z-SM-53U5L





Mutation



MEL-IPI_Pat39-Tumor-SM-
MEL-IPI_Pat39-TP-NB-SM-
ARID1A
8289
1
27057822
27057822
Silent
+


4DK1Z
4DK1Z-SM-4NFV6









MEL-IPI_Pat62-Tumor-SM-
MEL-IPI_Pat62-TP-NB-SM-
ARID1A
8289
1
27087494
27087494
Missense_



4DK2N
4DK2N-SM-4NFVT





Mutation



MEL-IPI_Pat64-Tumor-SM-
MEL-IPI_Pat64-TP-NB-SM-
ARID1A
8289
1
27099940
27099940
Missense_



4DK2P
4DK2P-SM-4NFVV





Mutation



MEL-IPI_Pat85-Tumor-SM-
MEL-IPI_Pat85-TP-NB-SM-
ARID1A
8289
1
27058033
27058033
Nonsense



53U2Y
53U2Y-SM-4NFWH





Mutation



PR11217
PR11217
ARID1A
8289
1
27093053
27093053
Missense_
+









Mutation



PR4077
PR4077
ARID1A
8289
1
27089494
27089494
Missense_
+









Mutation



Pt15
Pt15
ARID1A
8289
1
27101090
27101090
Intron
+


SU2C_Lung-SU2C-DFCI-
SU2C_Lung-SU2C-DFCI-
ARID1A
8289
1
27101525
27101525
Frame_Shift_
+


LUAD-1017-Tumor-SM-
LUAD-1017-TM-NB-SM-





Del



AOL99
AOL99-SM-A46NT









SU2C_Lung-SU2C-DFCI-
SU2C_Lung-SU2C-DFCI-
ARID1A
8289
1
27106878
27106878
Frame_Shift_
+


LUAD-1017-Tumor-SM-
LUAD-1017-TM-NB-SM-





Del



AOL99
AOL99-SM-A46NT









Y2087
Y2087
ARID1A
8289
1
27023360
27023360
Missense_
±









Mutation



ZA6965
ZA6965
ARID1A
8289
1
27023690
27023690
Missense_
+









Mutation



BLCA-IM01-Tumor-SM-
BLCA-IM01-TP-NB-SM-
ARID1B
57492
6
157100005
157100005
Silent



79XD9
79XD9-SM-7AABJ









HNSCC-239-Tumor-SM-
HNSCC-239-TP-NB-SM-
ARID1B
57492
6
157100005
157100005
Silent
±


AXGCS
AXGCS-SM-ADP7K









HNSCC-243-Tumor-SM-
HNSCC-243-TP-NB-SM-
ARID1B
57492
6
157100005
157100005
Silent



CLFNS
CLFNS-SM-AV34T









LUAD-BS-11-R21845-
LUAD-BS-11-R21845-TP-
ARID1B
57492
6
157100005
157100005
Silent
+


Tumor-SM-9J2YH
NT-SM-9J2YH-SM-9J2YI









LUAD-BS-13-X14864-
LUAD-BS-13-X14864-TP-
ARID1B
57492
6
157528372
157528372
Missense_
±


Tumor-SM-9J2XQ
NB-SM-9J2XQ-SM-9HBZU





Mutation



LUAD-BS-14-G65174-
LUAD-BS-14-G65174-TP-
ARID1B
57492
6
157100005
157100005
Silent



Tumor-SM-9J2YF
NT-SM-9J2YF-SM-9J2YG









MEL-682321-Tumor-SM-
MEL-682321-TP-NB-SM-
ARID1B
57492
6
157099512
157099512
Missense_
+


CN21G
CN21G-SM-CJP7S





Mutation



MEL-682321-Tumor-SM-
MEL-682321-TP-NB-SM-
ARID1B
57492
6
157099511
157099511
Missense_
+


CN21G
CN21G-SM-CJP7S





Mutation



MEL-IPI_Pat132-Tumor-SM-
MEL-IPI_Pat132-TP-NB-SM-
ARID1B
57492
6
157517305
157517305
Missense_
+


5VWJA
5VWJA-SM-5VWHR





Mutation



MEL-IPI_Pat138-Tumor-SM-
MEL-IPI_Pat138-TP-NB-SM-
ARID1B
57492
6
157522597
157522597
Silent
+


5VWJG
5VWJG-SM-5VWHX









MEL-IPI_Pat138-Tumor-SM-
MEL-IPI_Pat138-TP-NB-SM-
ARID1B
57492
6
157527479
157527479
Missense_
+


5VWJG
5VWJG-SM-5VWHX





Mutation



MEL-IPI_Pat138-Tumor-SM-
MEL-IPI_Pat138-TP-NB-SM-
ARID1B
57492
6
157502265
157502265
Silent
+


5VWJG
5VWJG-SM-5VWHX









MEL-IPI_Pat138-Tumor-SM-
MEL-IPI_Pat138-TP-NB-SM-
ARID1B
57492
6
157511325
157511325
Silent
+


5VWJG
5VWJG-SM-5VWHX









MEL-IPI_Pat139-Tumor-SM-
MEL-IPI_Pat139-TP-NB-SM-
ARID1B
57492
6
157527627
157527627
Silent



5VWJH
5VWJH-SM-5VWHY









MEL-IPI_Pat139-Tumor-SM-
MEL-IPI_Pat139-TP-NB-SM-
ARID1B
57492
6
157505558
157505558
Missense_



5VWJH
5VWJH-SM-5VWHY





Mutation



MEL-IPI_Pat174-Tumor-SM-
MEL-IPI_Pat174-TP-NB-SM-
ARID1B
57492
6
157528667
157528667
Missense_
+


5VOB4
5VOB4-SM-5VWIY





Mutation



MEL-IPI_Pat21-Tumor-SM-
MEL-IPI_Pat21-TP-NT-SM-
ARID1B
57492
6
157522222
157522222
Missense_
+


4DK1H
4DK1H-SM-53U5G





Mutation



MEL-IPI_Pat39-Tumor-SM-
MEL-IPI_Pat39-TP-NB-SM-
ARID1B
57492
6
157511303
157511303
Missense_
+


4DK1Z
4DK1Z-SM-4NFV6





Mutation



MEL-IPI_Pat74-Tumor-SM-
MEL-IPI_Pat74-TP-NB-SM-
ARID1B
57492
6
157100377
157100377
Silent



4DK2Z
4DK2Z-SM-4NFW6









MEL-IPI_Pat74-Tumor-SM-
MEL-IPI_Pat74-TP-NB-SM-
ARID1B
57492
6
157100376
157100376
Missense_



4DK2Z
4DK2Z-SM-4NFW6





Mutation



PR11217
PR11217
ARID1B
57492
6
157522344
157522344
Missense_
+









Mutation



PR4092
PR4092
ARID1B
57492
6
157521990
157521990
Missense_
+









Mutation



Pt8
Pt8
ARID1B
57492
6
157222594
157222594
Missense_
+









Mutation



SA9755
SA9755
ARID1B
57492
6
157522508
157522508
Missense_
+









Mutation



SD1494
SD1494
ARID1B
57492
6
157522095
157522095
Missense_
±









Mutation



SU2C_Lung-SU2C-DFCI-
SU2C_Lung-SU2C-DFCI-
ARID1B
57492
6
157100005
157100005
Silent



LUAD-1006-Tumor-SM-
LUAD-1006-TP-NB-SM-









AOL5E
AOL5E-SM-A46NI









SU2C_Lung-SU2C-DFCI-
SU2C_Lung-SU2C-DFCI-
ARID1B
57492
6
157222621
157222621
Missense_



LUAD-1011-Tumor-SM-
LUAD-1011-TM-NB-SM-





Mutation



AOL75
AOL75-SM-A46NN









Y2087
Y2087
ARID1B
57492
6
157099481
157099481
Missense_
±









Mutation



Case1-BaselineTumor
Case1-TP-NB-Zaretsky
ARID2
196528
12
46287234
46287234
Missense_
+









Mutation



Case3-BaselineTumor
Case3-TP-NB-Zaretsky
ARID2
196528
12
46243857
46243857
Nonsense_
+









Mutation



HNSCC-323-Tumor-SM-
HNSCC-323-TP-NB-SM-
ARID2
196528
12
46240638
46240638
Splice_Site
+


CK9WS
CK9WS-SM-AV34N









LSD6819
LSD6819
ARID2
196528
12
46243857
46243857
Nonsense_
+









Mutation



LUAD-BS-08-013532-
LUAD-BS-08-013532-TP-NT-
ARID2
196528
12
46245525
46245525
Frame_Shift_
+


Tumor-SM-9J2Y1
SM-9J2Y1-SM-9J2Y2





Del



LUAD-BS-13-J60666-
LUAD-BS-13-J60666-TP-NB-
ARID2
196528
12
46246071
46246071
Missense_
+


Tumor-SM-9J2YL
SM-9J2YL-SM-9HBZW





Mutation



MEL-650366-Tumor-SM-
MEL-650366-TP-NB-SM-
ARID2
196528
12
46245857
46245857
Silent



CN221
CN221-SM-CJP7U









MEL-IPI_Pat100-Tumor-SM-
MEL-IPI_Pat100-TP-NT-SM-
ARID2
196528
12
46230641
46230641
Missense_



53U2D
53U2D-SM-53U4M





Mutation



MEL-IPI_Pat100-Tumor-SM-
MEL-IPI_Pat100-TP-NT-SM-
ARID2
196528
12
46242701
46242701
Nonsense_



53U2D
53U2D-SM-53U4M





Mutation



MEL-IPI_Pat103-Tumor-SM-
MEL-IPI_Pat103-TP-NT-SM-
ARID2
196528
12
46243514
46243514
Missense_
+


4CU6Q
4CU6Q-SM-53U4P





Mutation



MEL-IPI_Pat109-Tumor-SM-
MEL-IPI_Pat109-TP-NT-SM-
ARID2
196528
12
46243825
46243825
Missense_



4CU6W
4CU6W-SM-4MGPN





Mutation



MEL-IPI_Pat109-Tumor-SM-
MEL-IPI_Pat109-TP-NT-SM-
ARID2
196528
12
46243824
46243824
Missense_



4CU6W
4CU6W-SM-4MGPN





Mutation



MEL-IPI_Pat115-Tumor-SM-
MEL-IPI_Pat115-TP-NT-SM-
ARID2
196528
12
46211474
46211474
Missense_



5X2QS
5X2QS-SM-5X2RA





Mutation



MEL-IPI_Pat117-Tumor-SM-
MEL-IPI_Pat117-TP-NT-SM-
ARID2
196528
12
46244997
46244997
Nonsense_
+


5X2QU
5X2QU-SM-5X2RC





Mutation



MEL-IPI_Pat117-Tumor-SM-
MEL-IPI_Pat117-TP-NT-SM-
ARID2
196528
12
46245843
46245843
Nonsense_
+


5X2QU
5X2QU-SM-5X2RC





Mutation



MEL-IPI_Pat132-Tumor-SM-
MEL-IPI_Pat132-TP-NB-SM-
ARID2
196528
12
46243530
46243530
Missense_
+


5VWJA
5VWJA-SM-5VWHR





Mutation



MEL-IPI_Pat138-Tumor-SM-
MEL-IPI_Pat138-TP-NB-SM-
ARID2
196528
12
46242749
46242749
Missense_
+


5VWJG
5VWJG-SM-5VWHX





Mutation



MEL-IPI_Pat139-Tumor-SM-
MEL-IPI_Pat139-TP-NB-SM-
ARID2
196528
12
46205217
46205217
Missense_



5VWJH
5VWJH-SM-5VWHY





Mutation



MEL-IPI_Pat151-Tumor-SM-
MEL-IPI_Pat151-TP-NB-SM-
ARID2
196528
12
46287240
46287240
Missense_



5VWJT
5VWJT-SM-5VWIB





Mutation



MEL-IPI_Pat159-Tumor-SM-
MEL-IPI_Pat159-TP-NB-SM-
ARID2
196528
12
46244889
46244889
Nonsense_



5VWK2
5VWK2-SM-5VWIJ





Mutation



MEL-IPI_Pat174-Tumor-SM-
MEL-IPI_Pat174-TP-NB-SM-
ARID2
196528
12
46215271
46215271
Splice_Site
+


5VOB4
5VOB4-SM-5VWIY









MEL-IPI_Pat58-Tumor-SM-
MEL-IPI_Pat58-TP-NB-SM-
ARID2
196528
12
46245648
46245648
Missense_



4DK2J
4DK2J-SM-4NFVP





Mutation



MEL-IPI_Pat58-Tumor-SM-
MEL-IPI_Pat58-TP-NB-SM-
ARID2
196528
12
46240672
46240672
Missense_



4DK2J
4DK2J-SM-4NFVP





Mutation



MEL-IPI_Pat58-Tumor-SM-
MEL-IPI_Pat58-TP-NB-SM-
ARID2
196528
12
46287428
46287428
Missense_



4DK2J
4DK2J-SM-4NFVP





Mutation



MEL-IPI_Pat66-Tumor-SM-
MEL-IPL_Pat66-TP-NB-SM-
ARID2
196528
12
46230691
46230691
Missense_
+


4DK2R
4DK2R-SM-4NFVX





Mutation



PR11217
PR11217
ARID2
196528
12
46233249
46233249
Nonsense_
+









Mutation



PR11217
PR11217
ARID2
196528
12
46245639
46245639
Nonsense_
+









Mutation



PR4077
PR4077
ARID2
196528
12
46243857
46243857
Nonsense_
+









Mutation



PR4092
PR4092
ARID2
196528
12
46242619
46242619
Splice_Site
+


Pt1
Pt1
ARID2
196528
12
46123846
46123846
Missense_










Mutation



Pt31
Pt31
ARID2
196528
12
46243467
46243467
Missense_










Mutation



Pt37
Pt37
ARID2
196528
12
46211600
46211600
Frame_Shift_
+









Del



SU2C_Lung-SU2C-DFCI-
SU2C_Lung-SU2C-DFCI-
ARID2
196528
12
46244393
46244393
Silent
±


LUAD-1016-Tumor-SM-
LUAD-1016-TM-NB-SM-









AOL8W
AOL8W-SM-A46NS









WA7899
WA7899
ARID2
196528
12
46244529
46244529
Missense_










Mutation



DM123062
DM123062
BRD7
29117
16
50384049
50384049
Missense_










Mutation



Lung-DFCI-11-104-009-
Lung-DFCI-11-104-009-TM-
BRD7
29117
16
50388348
50388348
Missense_
+


Tumor-SM-5YS7O
NB-SM-5YS7O-SM-5YS7P





Mutation



MEL-IPI_Pat03-Tumor-SM-
MEL-IPI_Pat03-TP-NB-SM-
BRD7
29117
16
50357497
50357497
Splice_Site



4DJZY
4DJZY-SM-4NFU5









MEL-IPI_Pat110-Tumor-SM-
MEL-IPI_Pat110-TP-NT-SM-
BRD7
29117
16
50368748
50368748
Missense_



4CU6X
4CU6X-SM-4MGPO





Mutation



MEL-IPI_Pat03-Tumor-SM-
MEL-IPI_Pat03-TP-NB-SM-
DPF1
8193
19
38706825
38706825
Missense_



4DJZY
4DJZY-SM-4NFU5





Mutation



MEL-IPI_Pat132-Tumor-SM-
MEL-IPI_Pat132-TP-NB-SM-
DPF1
8193
19
38709622
38709622
Silent
+


5VWJA
5VWJA-SM-5VWHR









MEL-IPI_Pat134-Tumor-SM-
MEL-IPI_Pat134-TP-NB-SM-
DPF1
8193
19
38709646
38709646
Silent



7A151
7A151-SM-5VWHT









MEL-IPI_Pat138-Tumor-SM-
MEL-IPI_Pat138-TP-NB-SM-
DPF1
8193
19
38702995
38702995
Silent
+


5VWJG
5VWJG-SM-5VWHX









MEL-IPI_Pat138-Tumor-SM-
MEL-IPI_Pat138-TP-NB-SM-
DPF1
8193
19
38704352
38704352
Missense_
+


5VWJG
5VWJG-SM-5VWHX





Mutation



MEL-IPI_Pat74-Tumor-SM-
MEL-IPI_Pat74-TP-NB-SM-
DPF1
8193
19
38712998
38712998
Splice_Site



4DK2Z
4DK2Z-SM-4NFW6









Pt27
Pt27
DPF1
8193
19
38709621
38709621
Missense_
+









Mutation



LUAD-BS-12-R10269-
LUAD-BS-12-R10269-TP-
DPF2
5977
11
65108997
65108997
Silent
+


Tumor-SM-9J2XO
NB-SM-9J2XO-SM-9HBZT









MEL-IPI_Pat132-Tumor-SM-
MEL-IPI_Pat132-TP-NB-SM-
DPF2
5977
11
65107914
65107914
Missense_
+


5VWJA
5VWJA-SM-5VWHR





Mutation



MEL-IPI_Pat159-Tumor-SM-
MEL-IPI_Pat159-TP-NB-SM-
DPF2
5977
11
65113741
65113741
Intron



5VWK2
5VWK2-SM-5VWIJ









MEL-IPI_Pat32-Tumor-SM-
MEL-IPI_Pat32-TP-NT-SM-
DPF2
5977
11
65108462
65108462
Silent



53U3T
53U3T-SM-53U67









MEL-IPI_Pat38-Tumor-SM-
MEL-IPI_Pat38-TP-NT-SM-
DPF2
5977
11
65123565
65123565
IGR
+


53U3Z
53U3Z-SM-53U5L









MEL-IPI_Pat58-Tumor-SM-
MEL-IPI_Pat58-TP-NB-SM-
DPF2
5977
11
65113530
65113530
Intron



4DK2J
4DK2J-SM-4NFVP









MEL-IPI_Pat74-Tumor-SM-
MEL-IPI_Pat74-TP-NB-SM-
DPF2
5977
11
65113812
65113812
Intron



4DK2Z
4DK2Z-SM-4NFW6









Pt13
Pt13
DPF2
5977
11
65111304
65111304
Intron
+


Pt14
Pt14
DPF2
5977
11
65109007
65109007
Missense_










Mutation



SU2C_Lung-SU2C-DFCI-
SU2C_Lung-SU2C-DFCI-
DPF2
5977
11
65113251
65113251
Intron



LUAD-1011-Tumor-SM-
LUAD-1011-TM-NB-SM-









AOL75
AOL75-SM-A46NN









DFCI_MM_2-Tumor-SM-
DFCI_MM_2-TP-NB-SM-
DPF3
8110
14
73137945
73137945
Intron
+


BZRJA
BZRJA-SM-BZRJD









DFCI_MM_2-Tumor-SM-
DFCI_MM_2-TP-NB-SM-
DPF3
8110
14
73238507
73238507
Missense_
+


BZRJA
BZRJA-SM-BZRJD





Mutation



FR9547
FR9547
DPF3
8110
14
73140993
73140993
Missense_
+









Mutation



Lung-DFCI-11-104-009-
Lung-DFCI-11-104-009-TM-
DPF3
8110
14
73137964
73137964
Intron
+


Tumor-SM-5YS7O
NB-SM-5YS7O-SM-5YS7P









MEL-IPI_Pat110-Tumor-SM-
MEL-IPI_Pat110-TP-NT-SM-
DPF3
8110
14
73137905
73137905
Intron



4CU6X
4CU6X-SM-4MGPO









MEL-IPI_Pat110-Tumor-SM-
MEL-IPI_Pat110-TP-NT-SM-
DPF3
8110
14
73137904
73137904
Intron



4CU6X
4CU6X-SM-4MGPO









MEL-IPI_Pat139-Tumor-SM-
MEL-IPI_Pat139-TP-NB-SM-
DPF3
8110
14
73138006
73138006
Intron



5VWJH
5VWJH-SM-5VWHY









MEL-IPI_Pat139-Tumor-SM-
MEL-IPI_Pat139-TP-NB-SM-
DPF3
8110
14
73138005
73138005
Intron



5VWJH
5VWJH-SM-5VWHY









MEL-IPI_Pat16-Tumor-SM-
MEL-IPI_Pat16-TP-NT-SM-
DPF3
8110
14
73220050
73220050
Missense_



53U3E
53U3E-SM-53U5B





Mutation



MEL-IPI_Pat21-Tumor-SM-
MEL-IPI_Pat21-TP-NT-SM-
DPF3
8110
14
73190370
73190370
Missense_
+


4DK1H
4DK1H-SM-53U5G





Mutation



SA9755
SA9755
DPF3
8110
14
73190391
73190391
Missense_
+









Mutation



BLCA-IM07-Tumor-SM-
BLCA-IM07-TP-NB-SM-
PBRM1
55193
3
52621431
52621431
Missense_
+


79XDD
79XDD-SM-7AABP





Mutation



CR04885
CR04885
PBRM1
55193
3
52597336
52597336
Missense_
+









Mutation



M4945
M4945
PBRM1
55193
3
52696148
52696148
Splice_Site
+


MA7027
MA7027
PBRM1
55193
3
52598231
52598231
Missense_










Mutation



MEL-IPI_Pat103-Tumor-SM-
MEL-IPI_Pat103-TP-NT-SM-
PBRM1
55193
3
52620592
52620592
Missense_
+


4CU6Q
4CU6Q-SM-53U4P





Mutation



MEL-IPI_Pat103-Tumor-SM-
MEL-IPI_Pat103-TP-NT-SM-
PBRM1
55193
3
52620593
52620593
Missense_
+


4CU6Q
4CU6Q-SM-53U4P





Mutation



MEL-IPI_Pat118-Tumor-SM-
MEL-IPI_Pat118-TP-NT-SM-
PBRM1
55193
3
52692325
52692325
Missense_



5X2QV
5X2QV-SM-5X2RD





Mutation



MEL-IPI_Pat138-Tumor-SM-
MEL-IPI_Pat138-TP-NB-SM-
PBRM1
55193
3
52595959
52595959
Missense_
+


5VWJG
5VWJG-SM-5VWHX





Mutation



MEL-IPI_Pat151-Tumor-SM-
MEL-IPI_Pat151-TP-NB-SM-
PBRM1
55193
3
52643530
52643530
Missense_



5VWJT
5VWJT-SM-5VWIB





Mutation



MEL-IPI_Pat38-Tumor-SM-
MEL-IPI_Pat38-TP-NT-SM-
PBRM1
55193
3
52643692
52643692
Missense_
+


53U3Z
53U3Z-SM-53U5L





Mutation



MEL-IPI_Pat70-Tumor-SM-
MEL-IPI_Pat70-TP-NB-SM-
PBRM1
55193
3
52584527
52584527
Missense_



4DK2V
4DK2V-SM-4NFW2





Mutation



MEL-IPI_Pat79-Tumor-SM-
MEL-IPI_Pat79-TP-NB-SM-
PBRM1
55193
3
52621315
52621315
Intron
+


53U2S
53U2S-SM-4NFWB









MEL-IPI_Pat88-Tumor-SM-
MEL-IPI_Pat88-TP-NT-SM-
PBRM1
55193
3
52668815
52668815
Silent
+


4DK3E
4DK3E-SM-53U4C









MEL-IPI_Pat88-Tumor-SM-
MEL-IPI_Pat88-TP-NT-SM-
PBRM1
55193
3
52668765
52668765
Missense_
+


4DK3E
4DK3E-SM-53U4C





Mutation



PR4035
PR4035
PBRM1
55193
3
52643768
52643768
Nonsense_
+









Mutation



Pt13
Pt13
PBRM1
55193
3
52643768
52643768
Nonsense_
+









Mutation



SU2C_Lung-SU2C-DFCI-
SU2C_Lung-SU2C-DFCI-
PBRM1
55193
3
52651406
52651406
Nonsense_
+


LUAD-1017-Tumor-SM-
LUAD-1017-TM-NB-SM-





Mutation



AOL99
AOL99-SM-A46NT









MEL-IPI_Pat110-Tumor-SM-
MEL-IPI_Pat110-TP-NT-SM-
PHF10
55274
6
170112483
170112483
Splice_Site



4CU6X
4CU6X-SM-4MGPO









MEL-IPI_Pat138-Tumor-SM-
MEL-IPI_Pat138-TP-NB-SM-
PHF10
55274
6
170116103
170116103
Missense_
+


5VWJG
5VWJG-SM-5VWHX





Mutation



MEL-IPI_Pat58-Tumor-SM-
MEL-IPI_Pat58-TP-NB-SM-
PHF10
55274
6
170117919
170117919
Splice_Site



4DK2J
4DK2J-SM-4NFVP









Pt1
Pt1
PHF10
55274
6
170112579
170112579
Missense_










Mutation



Pt2
Pt2
PHF10
55274
6
170116131
170116131
Missense_
+









Mutation



SD1494
SD1494
PHF10
55274
6
170117924
170117924
Missense_
±









Mutation



BLCA-IM10-Tumor-SM-
BLCA-IM10-TP-NB-SM-
SMARCA2
6595
9
2181573
2181573
Missense_
+


79XDG
79XDG-SM-9QSPX





Mutation



BLCA-IM11-Tumor-SM-
BLCA-IM11-TP-NT-SM-
SMARCA2
6595
9
2033008
2033008
Missense_
+


79XDH
79XDH-SM-79XDI





Mutation



LSD0167
LSD0167
SMARCA2
6595
9
2161819
2161819
Missense_
+









Mutation



MEL-IPI_Pat132-Tumor-SM-
MEL-IPI_Pat132-TP-NB-SM-
SMARCA2
6595
9
2039901
2039901
Splice_Site
+


5VWJA
5VWJA-SM-5VWHR









MEL-IPI_Pat132-Tumor-SM-
MEL-IPI_Pat132-TP-NB-SM-
SMARCA2
6595
9
2186134
2186134
Silent
+


5VWJA
5VWJA-SM-5VWHR









MEL-IPI_Pat138-Tumor-SM-
MEL-IPI_Pat138-TP-NB-SM-
SMARCA2
6595
9
2056722
2056722
Silent
+


5VWJG
5VWJG-SM-5VWHX









MEL-IPI_Pat15-Tumor-SM-
MEL-IPI_Pat15-TP-NB-SM-
SMARCA2
6595
9
2070473
2070473
Splice_Site



4DK1B
4DK1B-SM-4NFUH









MEL-IPI_Pat21-Tumor-SM-
MEL-IPI_Pat21-TP-NT-SM-
SMARCA2
6595
9
2161845
2161845
Missense_
+


4DK1H
4DK1H-SM-53U5G





Mutation



MEL-IPI_Pat38-Tumor-SM-
MEL-IPI_Pat38-TP-NT-SM-
SMARCA2
6595
9
2039623
2039623
Silent
+


53U3Z
53U3Z-SM-53U5L









MEL-IPI_Pat90-Tumor-SM-
MEL-IPI_Pat90-TP-NB-SM-
SMARCA2
6595
9
2186142
2186142
Missense_
+


4DK3G
4DK3G-SM-4NFWM





Mutation



PR4092
PR4092
SMARCA2
6595
9
2161836
2161836
Missense_
+









Mutation



Pt31
Pt31
SMARCA2
6595
9
2104046
2104046
Missense_










Mutation



RH090935
RH090935
SMARCA2
6595
9
2123911
2123911
Missense_
+









Mutation



SD2056
SD2056
SMARCA2
6595
9
2077654
2077654
Missense_
+









Mutation



Y2087
Y2087
SMARCA2
6595
9
2047355
2047355
Missense_
±









Mutation



BLCA-IM07-Tumor-SM-
BLCA-IM07-TP-NB-SM-
SMARCA4
6597
19
11134267
11134267
Missense_
+


79XDD
79XDD-SM-7AABP





Mutation



BLCA-IM09-Tumor-SM-
BLCA-IM09-TP-NB-SM-
SMARCA4
6597
19
11097617
11097617
Missense_
+


79XDF
79XDF-SM-7AABN





Mutation



FR9547
FR9547
SMARCA4
6597
19
11136975
11136975
Splice_Site
+


HNSCC-186-Tumor-SM-
HNSCC-186-TP-NB-SM-
SMARCA4
6597
19
11144853
11144853
3'UTR
+


AXGDN
AXGDN-SM-ADP7L









HNSCC-186-Tumor-SM-
HNSCC-186-TP-NB-SM-
SMARCA4
6597
19
11144853
11144853
3'UTR
+


AXGDN
AXGDN-SM-ADP7L









HNSCC-258-Tumor-SM-
HNSCC-258-TP-NB-SM-
SMARCA4
6597
19
11170556
11170556
Missense_
+


AXGAI
AXGAI-SM-ADP7G





Mutation



HNSCC-323-Tumor-SM-
HNSCC-323-TP-NB-SM-
SMARCA4
6597
19
11096069
11096069
Nonsense_
+


CK9WS
CK9WS-SM-AV34N





Mutation



LUAD-BS-13-J60666-
LUAD-BS-13-J60666-TP-NB-
SMARCA4
6597
19
11132428
11132428
Missense_
+


Tumor-SM-9J2YL
SM-9J2YL-SM-9HBZW





Mutation



LUAD-BS-14-G65174-
LUAD-BS-14-G65174-TP-
SMARCA4
6597
19
11145805
11145805
3'UTR



Tumor-SM-9J2YF
NT-SM-9J2YF-SM-9J2YG









M4945
M4945
SMARCA4
6597
19
11144072
11144072
IGR
+


MA7027
MA7027
SMARCA4
6597
19
11134207
11134207
Missense_










Mutation



MEL-IPI_Pat08-Tumor-SM-
MEL-IPI_Pat08-TP-NB-SM-
SMARCA4
6597
19
11121151
11121151
Missense_



4DK14
4DK14-SM-4NFUA





Mutation



MEL-IPI_Pat110-Tumor-SM-
MEL-IPI_Pat110-TP-NT-SM-
SMARCA4
6597
19
11096986
11096986
Silent



4CU6X
4CU6X-SM-4MGPO









MEL-IPI_Pat110-Tumor-SM-
MEL-IPI_Pat110-TP-NT-SM-
SMARCA4
6597
19
11134230
11134230
Missense_



4CU6X
4CU6X-SM-4MGPO





Mutation



MEL-IPI_Pat132-Tumor-SM-
MEL-IPI_Pat132-TP-NB-SM-
SMARCA4
6597
19
11144106
11144106
IGR
+


5VWJA
5VWJA-SM-5VWHR









MEL-IPI_Pat138-Tumor-SM-
MEL-IPI_Pat138-TP-NB-SM-
SMARCA4
6597
19
11144028
11144028
IGR
+


5VWJG
5VWJG-SM-5VWHX









MEL-IPI_Pat139-Tumor-SM-
MEL-IPI_Pat139-TP-NB-SM-
SMARCA4
6597
19
11136986
11136986
Missense_



5VWJH
5VWJH-SM-5VWHY





Mutation



MEL-IPI_Pat16-Tumor-SM-
MEL-IPI_Pat16-TP-NT-SM-
SMARCA4
6597
19
11141561
11141561
IGR



53U3E
53U3E-SM-53U5B









MEL-IPI_Pat19-Tumor-SM-
MEL-IPI_Pat19-TP-NB-SM-
SMARCA4
6597
19
11144856
11144856
3'UTR



4DK1F
4DK1F-SM-4NFUL









MEL-IPI_Pat28-Tumor-SM-
MEL-IPI_Pat28-TP-NB-SM-
SMARCA4
6597
19
11137018
11137018
Nonsense_



4DK1O
4DK1O-SM-4NFUU





Mutation



MEL-IPI_Pat49-Tumor-SM-
MEL-IPI_Pat49-TP-NT-SM-
SMARCA4
6597
19
11121110
11121110
Missense_
±


4DK2A
4DK2A-SM-53U5W





Mutation



MEL-IPI_Pat52-Tumor-SM-
MEL-IPI_Pat52-TP-NT-SM-
SMARCA4
6597
19
11097614
11097614
Missense_



4DK2D
4DK2D-SM-53U5Z





Mutation



MEL-IPI_Pat54-Tumor-SM-
MEL-IPI_Pat54-TP-NB-SM-
SMARCA4
6597
19
11100047
11100047
Silent



4DK2F
4DK2F-SM-4NFVL









MEL-IPI_Pat58-Tumor-SM-
MEL-IPI_Pat58-TP-NB-SM-
SMARCA4
6597
19
11098595
11098595
Silent



4DK2J
4DK2J-SM-4NFVP









Pt31
Pt31
SMARCA4
6597
19
11170804
11170804
Nonsense_










Mutation



SA9755
SA9755
SMARCA4
6597
19
11123685
11123685
Missense_
+









Mutation



SD1494
SD1494
SMARCA4
6597
19
11118614
11118614
Missense_
±









Mutation



HNSCC-181-Tumor-SM-
HNSCC-181-TP-NB-SM-
SMARCB1
6598
22
24129440
24129440
Silent



CK9X1
CK9X1-SM-AV34P









MEL-IPI_Pat110-Tumor-SM-
MEL-IPI_Pat110-TP-NT-SM-
SMARCB1
6598
22
24143148
24143148
Intron



4CU6X
4CU6X-SM-4MGPO









MEL-IPI_Pat110-Tumor-SM-
MEL-IPI_Pat110-TP-NT-SM-
SMARCB1
6598
22
24143149
24143149
Intron



4CU6X
4CU6X-SM-4MGPO









MEL-IPI_Pat130-Tumor-SM-
MEL-IPI_Pat130-TP-NT-SM-
SMARCB1
6598
22
24143281
24143281
Intron



5X2R8
5X2R8-SM-5X2RJ









MEL-IPI_Pat62-Tumor-SM-
MEL-IPI_Pat62-TP-NB-SM-
SMARCB1
6598
22
24145537
24145537
Silent



4DK2N
4DK2N-SM-4NFVT









Pt2
Pt2
SMARCB1
6598
22
24133958
24133958
Missense_
+









Mutation



Lung-DFCI-11-104-009-
Lung-DFCI-11-104-009-TM-
SMARCC1
6599
3
47823230
47823230
Missense_
+


Tumor-SM-5YS7O
NB-SM-5YS7O-SM-5YS7P





Mutation



MEL-IPI_Pat03-Tumor-SM-
MEL-IPI_Pat03-TP-NB-SM-
SMARCC1
6599
3
47680267
47680267
Missense_



4DJZY
4DJZY-SM-4NFU5





Mutation



MEL-IPI_Pat03-Tumor-SM-
MEL-IPI_Pat03-TP-NB-SM-
SMARCC1
6599
3
47787455
47787455
Missense_



4DJZY
4DJZY-SM-4NFU5





Mutation



MEL-IPI_Pat08-Tumor-SM-
MEL-IPI_Pat08-TP-NB-SM-
SMARCC1
6599
3
47777539
47777539
Silent



4DK14
4DK14-SM-4NFUA









MEL-IPI_Pat110-Tumor-SM-
MEL-IPI_Pat110-TP-NT-SM-
SMARCC1
6599
3
47632172
47632172
Silent



4CU6X
4CU6X-SM-4MGPO









MEL-IPI_Pat151-Tumor-SM-
MEL-IPI_Pat151-TP-NB-SM-
SMARCC1
6599
3
47787430
47787430
Silent



5VWJT
5VWJT-SM-5VWIB









MEL-IPI_Pat28-Tumor-SM-
MEL-IPI_Pat28-TP-NB-SM-
SMARCC1
6599
3
47742863
47742863
Missense_



4DK1O
4DK1O-SM-4NFUU





Mutation



MEL-IPI_Pat58-Tumor-SM-
MEL-IPI_Pat58-TP-NB-SM-
SMARCC1
6599
3
47651680
47651680
Silent



4DK2J
4DK2J-SM-4NFVP









MEL-IPI_Pat58-Tumor-SM-
MEL-IPI_Pat58-TP-NB-SM-
SMARCC1
6599
3
47770567
47770567
Silent



4DK2J
4DK2J-SM-4NFVP









Pt4
Pt4
SMARCC1
6599
3
47629788
47629788
Missense_
+









Mutation



CR04885
CR04885
SMARCC2
6601
12
56565627
56565627
Missense_
+









Mutation



MEL-IPI_Pat138-Tumor-SM-
MEL-IPI_Pat138-TP-NB-SM-
SMARCC2
6601
12
56558459
56558459
Missense_
+


5VWJG
5VWJG-SM-5VWHX





Mutation



MEL-IPI_Pat139-Tumor-SM-
MEL-IPI_Pat139-TP-NB-SM-
SMARCC2
6601
12
56558475
56558475
Missense_



5VWJH
5VWJH-SM-5VWHY





Mutation



MEL-IPI_Pat27-Tumor-SM-
MEL-IPI_Pat27-TP-NB-SM-
SMARCC2
6601
12
56578857
56578857
Missense_



4DK1N
4DK1N-SM-4NFUT





Mutation



MEL-IPI_Pat32-Tumor-SM-
MEL-IPI_Pat32-TP-NT-SM-
SMARCC2
6601
12
56572223
56572223
Silent



53U3T
53U3T-SM-53U67









MEL-IPI_Pat58-Tumor-SM-
MEL-IPI_Pat58-TP-NB-SM-
SMARCC2
6601
12
56563668
56563668
Missense_



4DK2J
4DK2J-SM-4NFVP





Mutation



MEL-IPI_Pat64-Tumor-SM-
MEL-IPI_Pat64-TP-NB-SM-
SMARCC2
6601
12
56563227
56563230
Intron



4DK2P
4DK2P-SM-4NFVV









MEL-IPI_Pat71-Tumor-SM-
MEL-IPI_Pat71-TP-NB-SM-
SMARCC2
6601
12
56566475
56566475
Missense_



4DK2W
4DK2W-SM-4NFW3





Mutation



MEL-IPI_Pat77-Tumor-SM-
MEL-IPI_Pat77-TP-NT-SM-
SMARCC2
6601
12
56575309
56575309
Missense_
+


4DK33
4DK33-SM-53U63





Mutation



MEL-IPI_Pat77-Tumor-SM-
MEL-IPI_Pat77-TP-NT-SM-
SMARCC2
6601
12
56575308
56575308
Missense_
+


4DK33
4DK33-SM-53U63





Mutation



MEL-IPI_Pat62-Tumor-SM-
MEL-IPI_Pat62-TP-NB-SM-
SMARCD1
6602
12
50480624
50480624
Missense_



4DK2N
4DK2N-SM-4NFVT





Mutation



Pt37
Pt37
SMARCD1
6602
12
50484135
50484135
Nonsense_
+









Mutation



LUAD-BS-13-J60666-
LUAD-BS-13-J60666-TP-NB-
SMARCD2
6603
17
61912836
61912836
Missense_
+


Tumor-SM-9J2YL
SM-9J2YL-SM-9HBZW





Mutation



MEL-IPI_Pat119-Tumor-SM-
MEL-IPI_Pat119-TP-NT-SM-
SMARCD2
6603
17
61914856
61914856
Nonsense_



7459N
7459N-SM-7459Q





Mutation



MEL-IPI_Pat119-Tumor-SM-
MEL-IPI_Pat119-TP-NT-SM-
SMARCD2
6603
17
61914857
61914857
Silent



7459N
7459N-SM-7459Q









MEL-IPI_Pat151-Tumor-SM-
MEL-IPI_Pat151-TP-NB-SM-
SMARCD2
6603
17
61912922
61912922
Silent



5VWJT
5VWJT-SM-5VWIB









MEL-IPI_Pat21-Tumor-SM-
MEL-IPI_Pat21-TP-NT-SM-
SMARCD2
6603
17
61911039
61911039
Missense_
+


4DK1H
4DK1H-SM-53U5G





Mutation



MEL-IPI_Pat38-Tumor-SM-
MEL-IPI_Pat38-TP-NT-SM-
SMARCD2
6603
17
61914827
61914827
Silent
+


53U3Z
53U3Z-SM-53U5L









Case3-BaselineTumor
Case3-TP-NB-Zaretsky
SMARCD3
6604
7
150939235
150939235
Silent
+


MEL-IPI_Pat11-Tumor-SM-
MEL-IPI_Pat11-TP-NB-SM-
SMARCD3
6604
7
150939045
150939045
Missense_



4DK17
4DK17-SM-4NFUD





Mutation



BLADDER-
BLADDER-
SMARCE1
6605
17
38793628
38793632
Intron
+


15330_CCPM_0700694-
15330_CCPM_0700694-TM-









Tumor-SM-AVI16
NB-SM-AVI16-SM-AVHZK









MEL-IPI_Pat123-Tumor-SM-
MEL-IPI_Pat123-TP-NB-SM-
SMARCE1
6605
17
38787856
38787856
Silent
+


5X2R1
5X2R1-SM-5VWHL









MEL-IPI_Pat132-Tumor-SM-
MEL-IPI_Pat132-TP-NB-SM-
SMARCE1
6605
17
38788513
38788513
Silent
+


5VWJA
5VWJA-SM-5VWHR









MEL-IPI_Pat138-Tumor-SM-
MEL-IPI_Pat138-TP-NB-SM-
SMARCE1
6605
17
38787103
38787103
Missense_
+


5VWJG
5VWJG-SM-5VWHX





Mutation



MEL-IPI_Pat138-Tumor-SM-
MEL-IPI_Pat138-TP-NB-SM-
SMARCE1
6605
17
38785098
38785098
Missense_
+


5VWJG
5VWJG-SM-5VWHX





Mutation



MEL-IPI_Pat70-Tumor-SM-
MEL-IPI_Pat70-TP-NB-SM-
SMARCE1
6605
17
38792665
38792665
Silent



4DK2V
4DK2V-SM-4NFW2









All samples in Table 4 were from broad.mit.edu with NCBI-build no. of 37 and can be further identified based on the following information: ##Oncotator v1.2.7.0 Flat File Reference hg19|GENCODE v19|UnProt_AAxform 2011_09|ClinVar 12.03.20|ESP 6500SI-V2|ORegAnno UCSC Track|dbSNP build 134|CCLE_By_GP 09292010|COSMIC v62_291112|1000Genome phase1|UniProt_AA 2011_09|dbNSFP v2.4|ESP 6500SI-V2|COSMIC_FusionGenes v62_291112|gencode_xref_refseq metadata v19|CCLE_By_Gene 09292010|ACHILLES_Lineage_Results 110303|CGC full_2012-03-15|UniProt 2011_09|HumanDNARepairGenes 20110905|HGNC Nov2013|COSMIC_Tissue 291112|Familial_Cancer_Genes 20110905|TUMORScape 20100104|Ensembl ICGC MUCOPA|TCGAScape 110405|MutSig Published Results 20110905.


For responses, “+” represents having clinical benefit; “±” represents having intermediate benefit; and “−” represents having no clinical benefit.















TABLE 5





Hugo_Symbol
n_cb_truncating
n_ncb_truncating
n_truncating
n_cb_nonsyn
n_ncb_nonsyn
n_nonsyn





















ARID1A
3
6
11
9
14
27


SMARCE1
0
0
0
2
0
2


ARID1B
0
0
0
11
3
17


SMARCA4
2
2
4
7
7
16


PBRM1
4
0
4
11
4
15


SMARCA2
1
1
2
9
2
12


ARID2
12
2
14
18
14
32


SMARCD3
0
0
0
0
1
1


ACTL6B
0
1
2
6
3
10


SMARCC2
0
0
0
4
4
8


DPF3
0
0
0
4
1
5


BRD7
0
1
1
1
3
4


SMARCB1
0
0
0
1
0
1


DPF2
0
0
0
1
1
2


SMARCD2
0
1
1
2
1
3


SMARCC1
0
0
0
2
3
5


DPF1
0
1
1
2
2
4


PHF10
0
2
2
2
3
6


ACTL6A
0
0
0
2
1
3


SMARCD1
1
0
1
1
1
2









All samples in Table 5 were taken from 98 patients with clinical benefit and 132 patients with no clinical benefit from immune checkpoint therapy “n_cb_truncating” refers to the total number of patients with truncating mutation in a given gene with clinical benefit from immune checkpoint therapy; “n_ncb_truncating” refers to the total number of patients with truncating mutation in a given gene with no clinical benefit from immune checkpoint therapy; “n truncating” refers to the total number of truncating mutations in a given gene in the cohort (includes patients with intermediate clinical benefit); “n_cb_nonsyn” refers to the total number of patients with nonsynonymous mutation in a given gene with clinical benefit from immune checkpoint therapy; “n_ncb_nonsyn” refers to the total number of patients with nonsynonymous mutation in a given gene with no clinical benefit from immune checkpoint therapy; and “n_nonsyn” refers to the total number of nonsynonymous mutations in a given gene in the cohort (includes patients with intermediate clinical benefit).


A summary of SWI/SNF complex is illustrated in FIG. 9. ARID2 and PBRM1 are two representative genes in the SWI/SNF complex, which were found in this study as relevant to sensitivity to immunotherapies such as those antagonizing immune checkpoints. SMARCA2 (also known as BRM) and ARID1B did not pass cohort-wide MutSig significance, but were mutated significantly more often in responders vs. non-responders (FIG. 10).


Alterations in PBRM1 are a common driver in clear-cell renal cell carcinoma (up to 40%), where it has a tumor suppressor function, but are rarer in other cancer types. This cohort contained 14 patients (8.3%) with nonsynonymous mutations in PBRM1 and 4 patients (1.5%, 2 with melanoma and 2 with non-small-cell lung cancer) with truncating alterations.


Similarly, ARID2 is a common driver mutation in hepatocellular carcinoma and melanoma. This cohort contained 26 patients (15.4%) with nonsynonymous mutations in ARID2 and 12 (7.1%, 10 with melanoma, 1 with head and neck squamous cell carcinoma, and 1 with non-small-cell lung cancer) with truncating alterations. Truncating (but not nonsynonymous) mutations in ARID2 were significantly associated with clinical benefit vs. no clinical benefit after controlling for nonsynonymous mutational load (p=0.0051; logistic regression) (FIG. 11). Nonsynonymous alterations in PBRM1 were marginally associated with clinical benefit (p=0.058) after controlling for mutational burden, while truncating mutations were not (p=0.98), perhaps due to the relative rarity of these events.


KDM6A encodes an enzyme called lysine-specific demethylase 6A that functions as a histone demethylase (FIG. 12). Truncating alterations in KDM6A were seen in 8 patients (4.8%, 5 with bladder cancer and 3 with melanoma) in this cohort. Truncating (but not nonsynonymous) alterations in KDM6A were marginally associated with clinical benefit (p=0.089; logistic regression) after controlling for mutational burden.


Immune checkpoint therapies can yield durable responses and long-lasting survival benefit across many cancer types, and checkpoint therapies have been approved for use in metastatic melanoma, non-small cell lung cancer, bladder cancer, and renal cell carcinoma, including as a first-line therapy for lung cancer. While past studies have highlighted mutational load, neoantigen presentation, transcriptomic signatures, microbiome features, and immune cell infiltration as correlated with response to immune checkpoint therapies in melanoma, non-small-cell lung cancer, and bladder cancer, the results described herein indicate that nonsynonymous alterations in the SWI/SNF chromatin remodeling complex has predictive value for patient response to immune checkpoint therapies. Moreover, other biomarkers described herein, such as additional chromatin modifying genes like KDM6A and EGFR (resistance) biomarkers, were identified. In particular, EGFR showed a strong trend with intrinsic resistance to immune checkpoint therapy in lung cancer (FIG. 6). In addition, as described further in Example 4 below, cancers with hotspot mutations in EGFR are significantly less likely to respond to immune checkpoint therapies.


Thus, these results are believed to have wide-ranging implications for patient stratification for immune checkpoint therapies and those treated with other therapies, such as EGFR signaling inhibitors. Additionally, this finding drew from the largest set of clinically annotated cancer types yet collected (>200 pre-treatment patient tumors) across both well-studied and more poorly understood cancer types, lending great statistical power to detect associations. Finally, these results provide biomarkers, drug design, and combination treatment strategies across cancer types.


Example 3: Meta-Analysis of Genomic Predictors of Response to Immune Checkpoint Therapy in Metastatic Melanoma

Since immune checkpoint therapies only benefit a subset of patients with metastatic melanoma and the ability to predict clinical outcomes is limited, a meta-analysis of genomic predictors of outcomes to anti-PD1 blockade and anti-CTLA4 blockade in melanoma combining 220 sequenced tumors from 3 published cohorts was conducted in order to validate existing hypotheses regarding response to immune checkpoint therapies and discover new relationships with greater power.


Nonsynonymous mutational burden was significantly higher in clinical benefit (CB) vs. no clinical benefit (NCB) using all 3 response metrics, though the significance was less pronounced when using PFS alone (p<0.01 vs. p<0.0001; Wilcoxon rank sum), partially due to 3 patients with high mutational burden who experienced PR lasting <6 months, potentially representing early acquired rather than intrinsic resistance. In order to assess the impact of mutational processes contributing to overall mutational burden, a non-negative matrix factorization framework was used to infer mutational activity in tumors from 6 signatures previously seen in melanoma: aging (S1), T>C substitutions (S5), UV (S7), mismatch repair (S6), alkylating agents (S11), and T>G substitutions (S17). Across all samples, the proportion of mutations in S7 or S11 was positively correlated with mutational burden (Spearman's rho=0.66), while S5 and S1 were anti-correlated (rho=−0.62). Additionally, in a multivariate logistic model, S7 and S11 activity were independent predictors of clinical benefit adjusting for mutational load (p<0.05), with the sum of S7 and S11 activity being a strong predictor (p<0.001). Of the patients with low mutational burden (<median) with CB, 79% had >1/2 of mutations in S7 or S11, compared to only 51% of NCB (p<0.01; Pearson's chi-squared). Neoantigen burden was strongly correlated with mutational burden, and did not improve ability to predict CB. In examining mutations in specific genes, >500 genes were mutated significantly more frequently in CB or NCB (p<0.05, Fisher's exact). Restricting analysis to recurrently mutated genes in cancer and correcting for patient mutational burden by permutation, nonsynonymous mutations in ACSL3 and MET and truncating alterations in ARID2 were significantly enriched in CB.


In this meta-analysis of 220 patients, harmonized clinical and whole exome analysis confirmed that mutational burden correlates with CB from anti-PD1 and anti-CTLA4 therapy, with mutational signatures and alterations in specific genes potentially providing additional predictive power.


Example 4: SU2C Cohort Study for Lung Cancer Immunotherapy

Analyse were also performed for a cohort of patients receiving lung cancer immunotherapy. For these patients with metastatic lung cancer treated with anti-PD1/PD-L1 therapies at the Dana-Farber Cancer Institute, whole exome sequencing was performed from the clinically annotated pre-treatment biopsies, including: 36 “pairs” of samples (pre-treatment tumor+matched germline normal tissue) and 3 “trios” of samples (LUAD-1020: 4 pre-treatment tumors (1 primary+3 metastases); LUAD-1007: 2 pre-treatment tumors; and LUAD-1011: 2 pre-treatment tumors). The baseline clinical characteristics and prior therapies is summarized in Table 6 below.












TABLE 6







Characteristic
Patients (N = 39)




















Age (years) - Median (range)
60
(32-83)



Age >75 - No.
3
(7.7)



Male sex - No. (%)
15
(38.5)



Smoking status - No. (%)



Current
11
(28.2)



Former
17
(43.6)



Never
11
(28.2)



No. of prior systemic regimens - No. (%)



0
3
(7.7)



1-2
19
(48.7)



3-4
16
(41.0)



5-6
1
(2.6)










The resulting Kaplan-Meier analysis is compared for baseline clinical variables as predictors of PFS for SU2C cohort (N=39) (FIG. 13A-13D). The corresponding quality control processes are summarized in FIG. 14. As for clinical stratification, patients were divided into three groups according to their response to immunotherapy. The definition of “clinical benefit,” as for the first group of patients, includes CR or PR by RECIST or SD with PFS>12 months. The definition of “no clinical benefit” includes PD by RECIST with PFS<3 months. The definition of “stable disease” (intermediate clinical benefit) includes SD with PFS<12 months or PD with PFS>3 months. A summary of different responses of 39 SU2C lung cancer patients to immunotherapy is shown in FIG. 15. Their mutational burden and response to immune checkpoint therapies is also compared (FIG. 16, N=31). Another cohort previously reported by Rizvi et al. (2015), supra was similarly analyzed (FIG. 17 and FIG. 18), showing that pre-treatment tumor mutational load was a strong predictor of response to immune checkpoint therapy in anti-PD1/PD-L1-treated lung cancer (FIG. 18). The current cohort of lung cancer patients were tested for any mutations to genes commonly mutated in lung cancers. As shown in FIG. 19, NF1 alterations were more frequent in responders (3/6 clinical benefit, 3/13 stable disease, 0/12 NCB). EGFR hotspot alterations were seen more frequently in nonresponders. KRAS hotspot alterations were observed more frequently in responders (1/6 clinical benefit, 4/13 SD, 1/12 NCB). The following provides additional genetic observations: SU2C-1006: splice site mutation in MET; missense mutation in LTBP1; SU2C-1066: 3 missense mutations in LEPR; SU2C-1068: 2 missense mutations in LEPR; SU2C-1067: missense mutations in STAG2 and SRCAP and an observed EGFR hotspot was L85. Sample SU2C-1066 may be excluded since its purity=0.36. A summary of significantly mutated genes in these patients is shown in FIG. 20. Patients with hotspot mutations in EGFR uniformly did not respond to immune checkpoint therapy (FIG. 21). SAFB2 indels were likely caused by sequencing artifacts (FIG. 22).


INCORPORATION BY REFERENCE

All publications, patents, and patent applications mentioned herein are hereby incorporated by reference in their entirety as if each individual publication, patent or patent application was specifically and individually indicated to be incorporated by reference. In case of conflict, the present application, including any definitions herein, will control.


Also incorporated by reference in their entirety are any polynucleotide and polypeptide sequences which reference an accession number correlating to an entry in a public database, such as those maintained by The Institute for Genomic Research (TIGR) on the world wide web and/or the National Center for Biotechnology Information (NCBI) on the world wide web.


EQUIVALENTS

Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific embodiments of the present invention described herein. Such equivalents are intended to be encompassed by the following claims.

Claims
  • 1. A method of identifying the likelihood of a cancer in a subject to be responsive to an immune checkpoint therapy, the method comprising: a) obtaining or providing a subject sample from a patient having cancer;b) measuring the amount or activity of at least one biomarker listed in Table 1 in the subject sample; andc) comparing said amount or activity of the at least one biomarker listed in Table 1 in a control sample,wherein the absence of or a significantly decreased amount or activity of the at least one biomarker listed in Table 1 in the subject sample and/or the presence of or a significantly increased amount or activity of the at least one biomarker listed in Table 1 having a loss of function mutation in the subject sample, relative to the control sample identifies the cancer as being more likely to be responsive to the immune checkpoint therapy; and wherein the presence of or a significantly increased amount or activity of the at least one biomarker listed in Table 1 in the subject sample and/or the absence of or a decreased amount or activity of the at least one biomarker listed in Table 1 having a loss of function mutation in the subject sample, relative to the control sample identifies the cancer as being less likely to be responsive to the immune checkpoint therapy.
  • 2. A method of identifying the likelihood of a cancer in a subject to be responsive to immune checkpoint therapy, the method comprising: a) obtaining or providing a subject sample from a patient having cancer, wherein the sample comprises nucleic acid molecules from the subject;b) determining the copy number of at least one biomarker listed in Table 1 in the subject sample; andc) comparing said copy number to that of a control sample,wherein a decreased copy number of the at least one biomarker listed in Table 1 in the in the subject sample and/or an increased copy number of the at least one biomarker listed in Table 1 having a loss of function mutation in the subject sample, relative to the control sample identifies the cancer as being more likely to be responsive to the immune checkpoint therapy; and wherein a wild type or increased copy number of the biomarker in the subject sample and/or or a decreased copy number of the at least one biomarker listed in Table 1 having a loss of function mutation in the sample relative to the control sample identifies the cancer as being less likely to be responsive to the immune checkpoint therapy.
  • 3. The method of claim 1, further comprising recommending, prescribing, or administering the immune checkpoint therapy if the cancer is determined likely to be responsive to the immune checkpoint therapy or administering an anti-cancer therapy other than the immune checkpoint therapy if the cancer is determined be less likely to be responsive to the immune checkpoint therapy, optionally wherein the anti-cancer therapy is selected from the group consisting of targeted therapy, chemotherapy, radiation therapy, and/or hormonal therapy.
  • 4. (canceled)
  • 5. The method of claim 1, wherein the control sample is determined from a cancerous or non-cancerous sample from either the patient or a member of the same species to which the patient belongs, optionally wherein the control sample is a cancerous or non-cancerous sample from the patient obtained from an earlier point in time than the patient sample, optionally wherein the control sample is obtained before the patient has received immune checkpoint therapy and the patient sample is obtained after the patient has received immune checkpoint therapy.
  • 6. (canceled)
  • 7. The method of claim 1, wherein the control sample comprises cells or does not comprise cells.
  • 8. The method of claim 1, wherein the control sample comprises cancer cells known to be responsive or non-responsive to the immune checkpoint therapy.
  • 9. A method of assessing the efficacy of an agent for treating a cancer in a subject that is unlikely to be responsive to an immune checkpoint therapy, comprising: a) detecting in a first subject sample and maintained in the presence of the agent the amount or activity of at least one biomarker listed in Table 1;b) detecting the amount or activity of the at least one biomarker listed in Table 1 in a second subject sample and maintained in the absence of the test compound; andc) comparing the amount or activity of the at least one biomarker listed in Table 1 from steps a) and b), wherein the presence of or a significantly increased amount or activity of the at least one biomarker listed in Table 1 in the first subject sample and/or the absence of or a decreased amount or activity of the at least one biomarker listed in Table 1 having a loss of function mutation in the first subject sample, relative to at least one subsequent subject sample, indicates that the agent treats the cancer in the subject.
  • 10. A method of assessing the efficacy of an agent for treating a cancer in a subject or prognosing progression of a cancer in a subject, comprising: a) detecting in a subject sample at a first point in time the amount or activity of at least one biomarker listed in Table 1;b) repeating step a) during at least one subsequent point in time after administration of the agent; andc) comparing the expression and/or activity detected in steps a) and b), wherein the presence of or a significantly increased amount or activity of the at least one biomarker listed in Table 1 in the first subject sample and/or the absence of or a decreased amount or activity of the at least one biomarker listed in Table 1 having a loss of function mutation in the first subject sample, relative to at least one subsequent subject sample, indicates that the cancer is unlikely to progress or that the agent treats the cancer in the subject.
  • 11. The method of claim 10, wherein a) between the first point in time and the subsequent point in time, the subject has undergone treatment, completed treatment, and/or is in remission for the cancer;b) the first and/or at least one subsequent sample is selected from the group consisting of ex vivo and in vivo samples;c) the first and/or at least one subsequent sample is obtained from an animal model of the cancer; and/ord) the first and/or at least one subsequent sample is a portion of a single sample or pooled samples obtained from the subject.
  • 12-14. (canceled)
  • 15. A cell-based assay for screening for agents that have a cytotoxic or cytostatic effect on a cancer cell that is unresponsive to an immune checkpoint therapy comprising, contacting the cancer cell with a test agent, and determining the ability of the test agent to decrease the amount or activity of at least one biomarker listed in Table 1 in the subject sample and/or increase the amount or activity of the at least one biomarker listed in Table 1 having a loss of function mutation, optionally wherein the step of contacting occurs in vivo, ex vivo, or in vitro.
  • 16. (canceled)
  • 17. The method of claim 1, wherein a) the subject sample and/or the control sample has not been contacted with a renal cell cancer treatment or inhibitor of an immune checkpoint;b) the subject has not been administered a renal cell cancer treatment or inhibitor of an immune checkpoint; and/orc) the subject sample is selected from the group consisting of serum, whole blood, plasma, urine, cells, cell lines, and biopsies.
  • 18. (canceled)
  • 19. The method of claim 1, further comprising recommending, prescribing, or administering at least one additional anti-cancer therapeutic agent, optionally wherein the at least one additional anti-cancer therapeutic agent is an anti-PD-1 antibody and/or an anti-CTLA4 antibody.
  • 20. (canceled)
  • 21. The method of claim 1, wherein the amount of the at least one biomarker listed in Table 1 is detected using a reagent which specifically binds with the protein, optionally wherein the reagent is selected from the group consisting of an antibody, an antibody derivative, and an antibody fragment.
  • 22. (canceled)
  • 23. The method of claim 1, wherein the at least one biomarker listed in Table 1 is assessed by detecting the presence in the sample of a transcribed polynucleotide or portion thereof, optionally wherein a) the transcribed polynucleotide is an mRNA or a cDNA;b) the step of detecting further comprises amplifying the transcribed polynucleotide; and/orc) the transcribed polynucleotide is detected by identifying a nucleic acid that anneals with the biomarker nucleic acid, or a portion thereof, under stringent hybridization conditions.
  • 24-26. (canceled)
  • 27. The method of claim 1, wherein the at least one biomarker listed in Table 1 is human PBRM1, ARID2, BRD7, PHF10, KDM6A, ARID1A, ARID1B, BRG1, BRM, CRB1, or EGFR, or a fragment thereof.
  • 28. The method of claim 1, wherein the immune checkpoint therapy comprises at least one antibody selected from the group consisting of anti-PD-1 antibodies, anti-CTLA-4 antibodies, anti-PD-L1 antibodies, anti-PD-L2 antibodies, and combinations thereof, optionally wherein the immune checkpoint therapy comprises an anti-PD-1 antibody and/or an anti-CTLA4 antibody.
  • 29. (canceled)
  • 30. The method of claim 1, wherein the likelihood of the cancer in the subject to be responsive to immune checkpoint therapy is the likelihood of at least one criteria selected from the group consisting of cellular proliferation, tumor burden, m-stage, metastasis, progressive disease, clinical benefit rate, survival until mortality, pathological complete response, semi-quantitative measures of pathologic response, clinical complete remission, clinical partial remission, clinical stable disease, recurrence-free survival, metastasis free survival, disease free survival, circulating tumor cell decrease, circulating marker response, and RECIST criteria.
  • 31. The method of claim 1, wherein the cancer is a solid tumor.
  • 32. The method of claim 1, wherein the cancer is selected from the group consisting of melanoma, lung cancer, head and neck squamous cell carcinoma (HNSCC), sarcoma, bladder cancer, and renal cell cancer, optionally wherein the cancer is melanoma and/or wherein the cancer is metastatic.
  • 33-34. (canceled)
  • 35. The method of claim 1, wherein the subject is a mammal, optionally wherein the mammal is an animal model of cancer, or a human.
  • 36-37. (canceled)
CROSS-REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application No. 62/445,105, filed on 11 Jan. 2017; the entire contents of said application are incorporated herein in their entirety by this reference.

Provisional Applications (1)
Number Date Country
62445105 Jan 2017 US
Divisions (1)
Number Date Country
Parent 16475577 Jul 2019 US
Child 17826477 US