The present invention provides methods and systems for making chemical intermediates from biomass.
Chemical intermediates are normally derived from fossil resources such as oil, natural gas, or coal in multi-step processes. In order to replace or supplement the production of chemical intermediates from fossil resources, it will be necessary to develop processes that originate from fresh (non-fossil) biological resources, i.e., biomass.
Using biomass-derived products as intermediates for making certain polymers has been proposed. For example, Kriegel et al in U.S. Publication No. 2010/0028512 suggest using biomass-derived ethylene to form polyethylene. Krieger et al in U.S. Publication Nos. 2009/0246430 and 2011/0262669 describe using biomass-derived ethylene glycol to form PET (polyethylene terephthalate polymer). Kriegel et al also suggest using biomass-derived terephthalic acid, isophthalic acid, or dimethyl terephthalate. Likewise, Cooper et al in U.S. Publication No. 2012/ 0046427 discuss routes for making polystyrene or PET from biomass-derived intermediates such as ethylene, benzene, and p-xylene.
Cortright et al in WO 2008/109877 discuss the use of oxygenated hydrocarbons to form a variety of chemical compounds. In some cases, the oxygenates could be derived from pyrolysis. Cortright et al propose the formation of a myriad of compounds including cyclohexane among thousands of other compounds.
A variety of biomass-derived polymeric materials such as lignin, cellulose, and hemi-cellulose, can be pyrolyzed to produce mixtures of aromatics, olefins, CO, CO2, water, and other products. A particularly desirable form of pyrolysis is known as catalytic fast pyrolysis (CFP), developed by Professor George Huber, and involves the conversion of biomass in a catalytic fluid bed reactor to a mixture of aromatics, olefins, CO, CO2, char, ash, and a variety of other organics. The aromatics include benzene, toluene, xylenes, and naphthalene (BTXN), among other aromatics. The olefins include ethylene (30%-60% of olefins), propylene (30%-50%), and lesser amounts of higher olefins. BTXN have high value and are easily transported.
It is an object of this invention to provide methods for the production of chemical intermediates from the primary products of CFP (i.e., aromatics, olefins, CO) that can be integrated with CFP in advantageous ways that improve the overall yield of intermediates, improve the thermal balance, generate useful and different by-products, and/or generate integrated processes for the production of chemicals from renewable resources. For example, it is an object of this invention to provide integrated processes for the production of styrene, cumene, acetone, acrylonitrile, acetonitrile, hydrogen cyanide, terephthalic acid, phthalic anhydride, ethylbenzene, polystyrene, acrylonitrile-butylene-styrene copolymer, acrylonitrile-styrene copolymer, polyethylene terephthalate, polybutylene terephthalate, and other polymers, and other chemical intermediates that are substantially biomass-derived by the conversion of benzene, toluene, xylenes, naphthalene, ethylene, propylene, and butylenes prepared by catalytic fast pyrolysis.
Generally, the invention includes any of the methods, apparatus and systems that are described herein; particularly involving pyrolysis of biomass and conversion of at least one pyrolysis product to another chemical compound.
In one aspect, the invention provides a method for producing substantially biomass derived xylenes, ethylbenzene, styrene, terephthalic acid, polyethylene terephthalate, polybutylene terephthalate, polystyrene, acrylonitrile-butadiene-styrene copolymer, styrene-acrylonitrile copolymer, or styrene-butadiene rubber from a hydrocarbonaceous material comprising feeding a hydrocarbonaceous material to a reactor, and pyrolyzing within the reactor at least a portion of the hydrocarbonaceous material under reaction conditions sufficient to produce one or more pyrolysis products, catalytically reacting at least a portion of the pyrolysis products, separating at least a portion of the hydrocarbon products, and reacting a portion of said hydrocarbon products to produce a chemical intermediate. Preferably, all of these steps are conducted within an integrated reactor system. An integrated reactor system is defined as comprising both apparatus and chemical composition(s) within the apparatus.
In another aspect of the invention, substantially biomass-derived polybutylene terephthalate (PBT) may be produced by the polymerization of biomass-derived terephthalic acid or one of its esters produced according to the instant invention with biomass-derived 1,4-butanediol or its esters. Biomass derived 1,4-butanediol can be obtained from a fermentation process as summarized, for example, in U.S. Pat. Nos. 8,067,214, and 8,969,054, and U.S. Publication No. 2015/0087034.
The invention can be further characterized by one or more (that is, any combination) of the following features: at least a portion of the by-products of the chemical intermediate production are returned to the pyrolysis reactor; at least a portion of one benzene-rich fraction separated from the hydrocarbon products is alkylated with a biomass-derived olefin to produce a chemical intermediate (in some preferred embodiments, an olefin produced from the catalytic fast pyrolysis process is used at least in part for the alkylation; in some preferred embodiments the olefin comprises ethylene and/or propylene; in some preferred embodiments the olefin is derived from biomass-derived ethanol); at least a portion of one toluene-rich fraction separated from the hydrocarbon products is subjected to a methylation reaction with one or more biomass-derived methylating agents to produce a xylenes-enriched product stream (in some preferred embodiments the methylating agent is methanol, in some preferred embodiments the methanol is biomass-derived methanol, and in some embodiments the methanol is derived from carbon monoxide produced as a product of the pyrolysis); at least a portion of one para-xylene-rich fraction separated from, or otherwise derived from, the hydrocarbon products is oxidized to produce terephthalic acid that, optionally is polymerized to polyethylene terephthalate (PET), polybutylene terephthalate (PBT), or polytrimethylene terephthalate (PTT) (in some embodiments the terephthalic acid is polymerized with biomass-derived ethylene glycol or monomethylethylene glycol and in some embodiments the terephthalic acid is polymerized with biomass-derived 1,4-butanediol); at least a portion of one ortho-xylene-rich fraction separated from the hydrocarbon products is oxidized to produce phthalic anhydride (in some embodiments, at least a portion of the phthalic anhydride is esterified to produce a phthalate diester); at least a portion of one ethylbenzene-rich fraction separated from, or otherwise derived from the hydrocarbon products is dehydrogenated to produce styrene that, optionally, is polymerized to polystyrene, acrylonitrile-butadiene-styrene copolymer, styrene-acrylonitrile, or styrene-butadiene rubber (in some embodiments the acrylonitrile is biomass-derived acrylonitrile, in some embodiments the butadiene is biomass-derived butadiene); the fluid hydrocarbon products comprise olefins (preferably combined with a step of polymerizing the olefins or reacting the olefins with aromatics); the fluid hydrocarbon products comprise aromatics (which may be alkylated) and the aromatics are subjected to one or more of the following: dehydrogenation (optionally followed by polymerization), hydrogenation to paraffins, or oxidation to acids, anhydrides, aldehydes, alcohols or epoxides (the epoxides may be subsequently polymerized).
The invention also provides a method for producing one or more fluid hydrocarbon products from a hydrocarbonaceous material comprising: feeding a hydrocarbonaceous material to a reactor; pyrolyzing within the reactor at least a portion of the hydrocarbonaceous material under reaction conditions sufficient to produce one or more pyrolysis products; catalytically reacting within the reactor at least a portion of the one or more pyrolysis products under reaction conditions sufficient to produce one or more fluid hydrocarbon products comprising olefins and aromatics; reacting at least a portion of the fluid hydrocarbon products to produce at least one chemical intermediate; and feeding at least a portion of the byproducts of the chemical intermediate production back to the pyrolysis reactor.
The invention provides for a method of ammoxidizing biomass-derived propylene to acrylonitrile and for the use of biomass-derived acrylonitrile to form polymers.
As in any of the inventive methods, the presence of biomass-derived materials can be confirmed by measuring the presence of 14C in the material. The invention includes methods, apparatus, and systems (which comprise apparatus plus process streams (that is, fluid compositions) and may further be characterized by conditions such as temperature or pressure). Thus, any of the descriptions herein apply to the inventive methods, apparatus and systems.
In one embodiment, the invention provides a method for producing chemical intermediates comprising feeding a hydrocarbonaceous material comprising biomass to a reactor, and pyrolyzing within the reactor at least a portion of the hydrocarbonaceous material to produce one or more pyrolysis products; catalytically reacting at least a portion of the pyrolysis products to produce hydrocarbon products comprising aromatic compounds selected from the group consisting of benzene, toluene and combinations thereof, and separating at least a portion of the hydrocarbon products comprising aromatic compounds selected from the group consisting of benzene, toluene and combinations thereof; and catalytically reacting at least a portion of the aromatic compounds selected from the group consisting of benzene, toluene and combinations thereof with methanol to produce xylenes, the methanol comprising at least in part the product of catalytically reacting at least a portion of biomass-derived carbon monoxide to produce methanol.
In some embodiments, the biomass-derived carbon monoxide is produced from gasification of biomass. In some embodiments, at least a portion of the produced methanol is recovered from the pyrolysis products. In some embodiments, the molar ratio (H2—CO2)/(CO+CO2) in the pyrolysis products is adjusted to at least 1.5, or at least 1.75, by a water gas shift reaction. In one embodiment the biomass-derived carbon monoxide of the pyrolysis products is mixed with biomass-derived carbon dioxide prior to producing methanol. In one embodiment the biomass-derived carbon monoxide is mixed with hydrogen from a dehydrogenation process prior to producing methanol. In one embodiment the hydrogen mixed with carbon monoxide to produce methanol is recovered from an ethylbenzene dehydrogenation process.
In one embodiment, a method for producing ethylbenzene from biomass-derived materials comprises: a) feeding a hydrocarbonaceous material comprising biomass to a reactor, and pyrolyzing within the reactor at least a portion of the hydrocarbonaceous material to produce one or more pyrolysis products; b) catalytically reacting at least a portion of the pyrolysis products of step a) to produce hydrocarbon products comprising benzene, and separating at least a portion of the benzene from the hydrocarbon products; c) catalytically reacting at least a portion of the benzene of step b) with ethylene recovered from an ethanol dehydration process to produce ethylbenzene; and d) recovering the ethylbenzene of step c).
Biomass-derived polyethylene terephthalate (PET) may be used to form biomass-derived resins, which may be further processed into biomass-derived containers, for example, bottles, using methods including, but not limited to, injection molding and stretch blow molding. Embodiments of the present invention encompass the process for producing biomass-derived containers that comprise the biomass-derived PET polymers of the above-described embodiments. In another embodiment, the PET polymer used for making the biomass-derived container that has an intrinsic viscosity from about 0.45 dL/g to about 1.0 dL/g is produced.
Other components may be added to the biomass-derived PET polymer. Selection of such components will depend on the type of application intended for the PET polymer. In a particular embodiment, the process for production of the biomass-derived PET polymer may further comprise incorporation of an additional component selected from at least one coloring agent, at least one fast reheat additive, at least one gas barrier additive, at least one UV blocking additive, and a combination thereof.
In one embodiment, a method for producing ethylbenzene from biomass-derived materials comprises: a) feeding a hydrocarbonaceous material comprising biomass to a reactor, and pyrolyzing within the reactor at least a portion of the hydrocarbonaceous material to produce one or more pyrolysis products; b) catalytically reacting at least a portion of the pyrolysis products of step a) to produce hydrocarbon products comprising benzene, and separating at least a portion of the benzene from the hydrocarbon products; c) catalytically reacting at least a portion of the benzene of step b) with ethylene recovered from an ethanol dehydration process to produce ethylbenzene; and d) recovering the ethylbenzene of step c). In one embodiment, the ethanol dehydration process of step c) comprises fermentation. In one embodiment, ethylbenzene of step d) is dehydrogenated to styrene. In one embodiment, at least a portion of the styrene is polymerized with at least one biomass-derived component selected from the group consisting of butadiene, acrylonitrile, and other olefins, to form a polymer.
In some embodiments, a method for producing one or more fluid chemical intermediates from a hydrocarbonaceous material, comprises: a) feeding a hydrocarbonaceous material comprising biomass to a reactor, and pyrolyzing within the reactor at least a portion of the hydrocarbonaceous material to produce one or more pyrolysis products; b) catalytically reacting at least a portion of the pyrolysis products of step a) to produce hydrocarbon products comprising benzene and ethylene, separating at least a portion of the hydrocarbon products to form benzene-rich and ethylene-rich fractions; c) recovering the benzene-rich and ethylene-rich fractions of step b); d) reacting at least a portion of the recovered benzene-rich fraction of step c) with at least a portion of the recovered ethylene-rich fraction of step c) to produce ethylbenzene; e) pyrolyzing at least a portion of the ethylbenzene of step d) to produce styrene; and f) polymerizing at least a portion of the styrene of step e) with at least one biomass-derived component selected from the group consisting of butadiene, acrylonitrile, and other olefins, to form a polymer. In one embodiment the butadiene of step f) is derived from biomass.
In some embodiments of the invention, a method for producing polyethylene terephthalate comprises: a) feeding a hydrocarbonaceous material comprising biomass to a reactor, and pyrolyzing within the reactor at least a portion of the hydrocarbonaceous material to produce one or more pyrolysis products; b) catalytically reacting at least a portion of the pyrolysis products of step a)to produce hydrocarbon products comprising aromatic compounds selected from the group consisting of benzene, toluene and combinations thereof, and separating at least a portion of the hydrocarbon products comprising aromatic compounds selected from the group consisting of benzene, toluene and combinations thereof; c) catalytically reacting at least a portion of the aromatic compounds selected from the group consisting of benzene, toluene and combinations thereof of step b) with methanol to produce xylenes, the methanol comprising at least in part the product of catalytically reacting at least a portion of biomass-derived carbon monoxide to produce methanol; d) recovering p-xylene from the xylenes of step c); e) oxidizing at least a portion of the p-xylene of step d) to produce terephthalic acid; and f) polymerizing at least a portion of the terephthalic acid of step e) with ethylene glycol or monomethylethylene glycol to form polyethylene terephthalate product. In one embodiment, the polymerization of step f) is a melt polymerization. In some embodiments the ethylene glycol or monomethylethylene glycol of step f) is produced from biomass-derived ethanol. In some embodiments about 25 wt % to 75 wt % of the polyethylene terephthalate is derived from biomass-derived terephthalic acid of step e). In one embodiment, the polyethylene terephthalate product of step f) comprises isophthalic acid. In one embodiment, the hydrocarbonaceous material of step a) is biomass. In one embodiment, m-xylene is recovered from the xylenes of step c); and at least a portion of the m-xylene is oxidized to produce isophthalic acid. One embodiment comprises the method for making a polyethylene terephthalate bottle by injection molding or stretch blow molding the polyethylene terephthalate product of step f). One embodiment further comprises adding one or more components selected from the group consisting of coloring agents, fast reheat additives, gas barrier additives, UV blocking additives, or a combination thereof, to the polyethylene terephthalate product used for making the bottle. In one embodiment the polyethylene terephthalate product of step f) has intrinsic viscosity from about 0.45 dL/g to about 1.0 dL/g.
In some embodiments of the invention, a method for producing polybutylene terephthalate comprises: a) feeding a hydrocarbonaceous material comprising biomass to a reactor, and pyrolyzing within the reactor at least a portion of the hydrocarbonaceous material to produce one or more pyrolysis products; b) catalytically reacting at least a portion of the pyrolysis products of step a)to produce hydrocarbon products comprising aromatic compounds selected from the group consisting of benzene, toluene and combinations thereof, and separating at least a portion of the hydrocarbon products comprising aromatic compounds selected from the group consisting of benzene, toluene and combinations thereof; c) catalytically reacting at least a portion of the aromatic compounds selected from the group consisting of benzene, toluene and combinations thereof of step b) with methanol to produce xylenes, the methanol comprising at least in part the product of catalytically reacting at least a portion of biomass-derived carbon monoxide to produce methanol; d) recovering p-xylene from the xylenes of step c); e) oxidizing at least a portion of the p-xylene of step d) to produce terephthalic acid; f) catalytically reacting at least a portion of the terephthalic acid produced in step e) or one of its esters with 1,4-butanediol obtained by fermentation of biomass to produce polybutylene terephthalate; and g) recovering the polybutylene terephthalate of step f).
In some embodiments, a method for producing acrylonitrile comprises: a) feeding a hydrocarbonaceous material comprising biomass to a reactor, and pyrolyzing within the reactor at least a portion of the hydrocarbonaceous material to produce one or more pyrolysis products; b) catalytically reacting at least a portion of the pyrolysis products of step a)to produce hydrocarbon products comprising propylene, and separating at least a portion of the propylene; c) recovering the propylene of step b); d) catalytically reacting at least a portion of the propylene of step c) to produce product comprising acrylonitrile; and e) recovering the acrylonitrile of step d). In some embodiments, the pyrolysis products of step a) are quenched with water prior to step b). In some embodiments, hydrogen cyanide is recovered from the product of step d). In some embodiments, acetonitrile is recovered from the product of step d). In some embodiments, the product of step d) is quenched with water prior to step e).
The hydrocarbonaceous material that is fed to the reactor typically comprises a solid hydrocarbonaceous material, often in the presence of a gas phase. In some preferred embodiments, the hydrocarbonaceous material is at least 90 mass % solids. In some embodiments, the hydrocarbonaceous material is in the gas and/or a liquid or slurry phase. In some embodiments, a recycle stream (preferably an aqueous recycle stream) can be contacted with the hydrocarbonaceous material before the hydrocarbonaceous material is fed to the reactor (the aqueous stream can be a portion of the aqueous products of the process).
In preferred embodiments of the inventive method, apparatus, and/or system, the pyrolysis reactor contains a solid catalyst (e.g. catalytic fast pyrolysis (CFP)). The solid catalyst preferably comprises a zeolite, more preferably a zeolite and a metal and/or a metal oxide. The solid catalyst in the CFP reactor may comprise elements such as, for example, silicon, aluminum, titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, gallium, platinum, palladium, silver, tin, phosphorus, sodium, potassium, magnesium, calcium, tungsten, zirconium, cerium, lanthanum, and combinations thereof. Additional catalyst materials or inert solids may also be present. In some preferred embodiments, the CFP reaction is catalyzed by a zeolite. In some embodiments, the zeolite comprises pore sizes in the range of 5.0 Angstroms to 6.5 Angstroms. In some preferred embodiments, the catalyst comprises zeolite having the structure of ZSM-5. In some preferred embodiments, the mass ratio of catalyst fed to the reactor to hydrocarbonaceous material fed to the reactor is between 0.1 and 20.
In some embodiments, an aqueous phase is recovered from the CFP reactor and carbonaceous material is removed from the aqueous phase and at least a portion of the separated carbonaceous materials is recycled to the CFP reactor. Preferably, the separated carbonaceous phase comprises olefins, aromatics, or oxygenates, or a mixture of these, and at least a portion of these are fed to the CFP reactor. This can be done, for example, by a stripping process in which a liquid phase is contacted with a gas (such as by bubbling a gas through the liquid) and the resulting gas phase, which is enriched with at least one component from the liquid phase, is passed into the reactor. Alternatively, the liquid phase can be stripped and then the liquid phase, now at least partly depleted of at least one component, is recycled to the reactor. As with any of the recycle steps, the return flow may be directly into the reactor or at any stage in a flow path prior to the reactor stage.
In preferred embodiments, the CFP reactor is a fluidized bed, circulating bed, or riser reactor. In some preferred embodiments, the temperature within the reactor is between 300 and 1000° C.
The hydrocarbonaceous material fed to the reactor comprises a biomass material; or plastic waste, recycled plastics, agricultural and municipal solid waste, food waste, animal waste, carbohydrates, or lignocellulosic materials; or the hydrocarbonaceous material can comprise xylitol, glucose, cellobiose, cellulose, hemi-cellulose, or lignin; or the hydrocarbonaceous material may comprise sugar cane bagasse, glucose, wood, or corn stover, or any of these materials in any combination.
In any of the inventive aspects, the pyrolysis step (and/or any selected process step) may preferably be conducted at a pressure (absolute) of 30 atm or less, more preferably of less than 10 atm, in some embodiments less than 1 atm; and in some embodiments in the range of 0.1 to 10 atm.
As used herein, the terms “aromatics” or “aromatic compound” are used to refer to a hydrocarbon compound or compounds comprising one or more aromatic groups such as, for example, single aromatic ring systems (e.g., benzyl, phenyl, etc.) and fused polycyclic aromatic ring systems (e.g. naphthyl, 1,2,3,4-tetrahydronaphthyl, etc.). Examples of aromatic compounds include, but are not limited to, benzene, toluene, indane, indene, 2-ethyl toluene, 3-ethyl toluene, 4-ethyl toluene, trimethylbenzene (e.g., 1,3,5-trimethyl benzene, 1,2,4-trimethyl benzene, 1,2,3-trimethyl benzene, etc.), ethylbenzene, styrene, cumene, methylbenzene, propylbenzene, xylenes (e.g., p-xylene, m-xylene, o-xylene, etc.), naphthalene, methyl-naphthalene (e.g., 1-methyl naphthalene, anthracene, 9.10-dimethylanthracene, pyrene, phenanthrene, dimethylnaphthalene (e.g., 1,5-dimethylnaphthalene, 1,6-dimethylnaphthalene, 2,5-dimethylnaphthalene, etc.), ethylnaphthalene, hydrindene, methylhydrindene, and dimethylhydrindene. Single-ring and/or higher ring aromatics may also be produced in some embodiments. Aromatics also include single and multiple ring compounds that contain heteroatom substituents, i.e. phenol, cresol, benzofuran, etc.
As used herein, the term “biomass” is given its conventional meaning in the art and is used to refer to any organic source of energy or chemicals that is renewable. Its major components can be: (1) trees (wood) and all other vegetation; (2) agricultural products and wastes (corn, fruit, garbage ensilage, etc.); (3) algae and other marine plants; (4) metabolic wastes (manure, sewage), and (5) cellulosic urban waste. Examples of biomass materials are described, for example, in Huber, G. W. et al, “Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysts, and Engineering,” Chem. Rev. 106, (2006), pp. 4044-4098.
Biomass is conventionally defined as the living and recently dead biological material that can be converted for use as fuel or for industrial production. The criterion as biomass is that the material should be recently participating in the carbon cycle so that the release of carbon in the combustion process results in no net increase averaged over a reasonably short period of time (for this reason, fossil fuels such as peat, lignite and coal are not considered biomass by this definition as they contain carbon that has not participated in the carbon cycle for a long time so that their combustion results in a net increase in atmospheric carbon dioxide). Most commonly, biomass refers to plant matter grown for use as biofuel, but it also includes plant or animal matter used for production of fibers, chemicals or heat. Biomass may also include biodegradable wastes or byproducts that can be burnt as fuel or converted to chemicals, including municipal wastes, green waste (the biodegradable waste comprised of garden or park waste, such as grass or flower cuttings and hedge trimmings), byproducts of farming including animal manures, food processing wastes, sewage sludge, and black liquor from wood pulp or algae. Biomass excludes organic material which has been transformed by geological processes into substances such as coal, oil shale or petroleum. Biomass is widely and typically grown from plants, including miscanthus, spurge, sunflower, switchgrass, hemp, corn (maize), poplar, willow, sugarcane, and oil palm (palm oil) with the roots, stems, leaves, seed husks and fruits all being potentially useful. The particular plant or other biomass source used is not important to the product chemical or fuel although the processing of the raw material for introduction to the processing unit will vary according to the needs of the unit and the form of the biomass.
Any of the products, processes, and/or systems described herein may be additionally characterized by the fact that they are biomass-derived, meaning that the products are at least partly derived from biomass, and, in most cases are 100% derived from biomass. As is well-known, the presence of biomass-derived material can be readily ascertained by the presence of 14C, which is present in very significantly lower concentrations in fossil fuels.
Biomass pyrolysis liquid or bio-oil is the liquid fraction that can be isolated from a pyrolysis reaction of biomass. Biomass pyrolysis liquid is usually dark brown and approximates to biomass in elemental composition. It is composed of a very complex mixture of oxygenated hydrocarbons with an appreciable proportion of water from both the original moisture and reaction product. Compositionally, the biomass pyrolysis oil will vary with the type of biomass, but is known to consist of oxygenated low molecular weight alcohols (e.g., furfuryl alcohol), aldehydes (aromatic aldehydes), ketones (furanone), phenols (methoxy phenols) and water. Solid char may also be present, suspended in the oil. The liquid is formed by rapidly quenching the intermediate products of flash pyrolysis of hemicellulose, cellulose, and lignin in the biomass. Chemically, the oil contains several hundred different chemicals in widely varying proportions, ranging from formaldehyde and acetic acid to complex, high molecular weight phenols, anhydrosugars and other oligosaccharides. It has a distinctive odor from low molecular weight aldehydes and acids, is usually acidic with a pH of 1.5-3.8, and can be an irritant.
Catalyst components useful in the context of this invention can be selected from any catalyst known in the art, or as would be understood by those skilled in the art. Catalysts promote and/or effect reactions. Thus, as used herein, catalysts lower the activation energy (increase the rate) of a chemical process, and/or improve the distribution of products or intermediates in a chemical reaction (for example, a shape selective catalyst). Examples of reactions that can be catalyzed include: dehydration, dehydrogenation, isomerization, hydrogen transfer, aromatization, decarbonylation, decarboxylation, aldol condensation, and combinations thereof. Catalyst components can be considered acidic, neutral or basic, as would be understood by those skilled in the art.
For fast catalytic pyrolysis, particularly advantageous catalysts include those containing internal porosity selected according to pore size (e.g., mesoporous and pore sizes typically associated with zeolites), e.g., average pore sizes of less than about 100 Angstroms, less than about 50 Angstroms, less than about 20 Angstroms, less than about 10 Angstroms, less than about 5 Angstroms, or smaller. In some embodiments, catalysts with average pore sizes of from about 5 Angstroms to about 100 Angstroms may be used. In some embodiments, catalysts with average pore sizes of between about 5.5 Angstroms and about 6.5 Angstroms, or between about 5.9 Angstroms and about 6.3 Angstroms may be used. In some cases, catalysts with average pore sizes of between about 7 Angstroms and about 8 Angstroms, or between about 7.2 Angstroms and about 7.8 Angstroms may be used.
In some preferred embodiments of CFP, the catalyst may be selected from naturally occurring zeolites, synthetic zeolites and combinations thereof. In certain embodiments, the catalyst may have the structure of ZSM-5 zeolite. Optionally, such a catalyst can comprise acidic sites. Other types of zeolite catalysts include: ferrierite, zeolite Y, zeolite beta, mordenite, MCM-22, ZSM-23, ZSM-57, SUZ-4, EU-1, ZSM-11, SAPO-31, SSZ-23, among others. In other embodiments, non-zeolite catalysts may be used; for example, WOx/ZrO2, aluminum phosphates, etc. In some embodiments, the catalyst may comprise a metal and/or a metal oxide. Suitable metals and/or oxides include, for example, nickel, palladium, platinum, titanium, vanadium, chromium, manganese, iron, cobalt, zinc, copper, gallium, and/or any of their oxides, among others. In some cases promoter elements chosen from among the rare earth elements, i.e., elements 57-71, cerium, zirconium or their oxides for combinations of these may be included to modify activity or structure of the catalyst. In addition, in some cases, properties of the catalysts (e.g., pore structure, type and/or number of acid sites, etc.) may be chosen to selectively produce a desired product.
Catalysts for other processes, such as alkylation of olefins, can be selected for the treatment processes described herein.
The term “fluid” refers to a gas, a liquid, a mixture of a gas and a liquid, or a gas or a liquid containing dispersed solids, liquid droplets and/or gaseous bubbles. The terms “gas” and “vapor” have the same meaning and are sometimes used interchangeably. In some embodiments, it may be advantageous to control the residence time of the fluidization fluid in the reactor. The fluidization residence time of the fluidization fluid is defined as the volume of the reactor divided by the volumetric flow rate of the fluidization fluid under process conditions of temperature and pressure.
As used herein, the term “fluidized bed reactor” is given its conventional meaning in the art and is used to refer to reactors comprising a vessel that can contain a granular solid material (e.g., silica particles, catalyst particles, etc.), in which a fluid (e.g., a gas or a liquid) is passed through the granular solid material at velocities sufficiently high as to suspend the solid material and cause it to behave as though it were a fluid. The term “circulating fluidized bed reactor” is also given its conventional meaning in the art and is used to refer to fluidized bed reactors in which the granular solid material is passed out of the reactor, circulated through a line in fluid communication with the reactor, and recycled back into the reactor.
Bubbling fluidized bed reactors and turbulent fluidized bed reactors are also known to those skilled in the art. In bubbling fluidized bed reactors, the fluid stream used to fluidize the granular solid material is operated at a sufficiently low flow rate such that bubbles and voids are observed within the volume of the fluidized bed during operation. In turbulent fluidized bed reactors, the flow rate of the fluidizing stream is higher than that employed in a bubbling fluidized bed reactor, and hence, bubbles and voids are not observed within the volume of the fluidized bed during operation.
Examples of fluidized bed reactors, circulating fluidized bed reactors, bubbling and turbulent fluidized bed reactors are described in Kirk-Othmer Encyclopedia of Chemical Technology (online), Vol. 11, Hoboken, N.J.: Wiley-Interscience, c2001-, pages 791-825, and in “Fluidization Engineering”, 2nd Edition, by D. Kunii and O. Levenspiel, Butterworth-Heinemann, 1991, Newton, Mass., both of which are incorporated herein by reference.
As used herein, the terms “olefin” or “olefin compound” (a.k.a. “alkenes”) are given their ordinary meaning in the art, and are used to refer to any unsaturated hydrocarbon containing one or more pairs of carbon atoms linked by a double bond. Olefins include both cyclic and acyclic (aliphatic) olefins, in which the double bond is located between carbon atoms forming part of a cyclic (closed-ring) or of an open-chain grouping, respectively. In addition, olefins may include any suitable number of double bonds (e.g., mono olefins, diolefins, triolefins, etc.). Examples of olefin compounds include, but are not limited to, ethene, propene, allene (propadiene), 1-butene, 2-butene, isobutene (2-methyl propene), butadiene, and isoprene, among others. Examples of cyclic olefins include cyclopentene, cyclohexene, and cycloheptene, among others. Aromatic compounds such as toluene are not considered olefins; however, olefins that include aromatic moieties are considered olefins, for example, benzyl acrylate or styrene.
As used herein, the terms “pyrolysis” and “pyrolyzing” are given their conventional meaning in the art and are used to refer to the transformation of a compound, e.g., a solid hydrocarbonaceous material, into one or more other substances, e.g., volatile organic compounds, gases, and coke, by heat, preferably without the addition of, or in the absence of, O2. Preferably, the volume fraction of O2 present in a pyrolysis reaction chamber is 0.5% or less, or from 0.001% to 0.5%. Pyrolysis may take place with or without the use of a catalyst. “Catalytic pyrolysis” refers to pyrolysis performed in the presence of a catalyst, and may involve steps as described in more detail below. Example of catalytic pyrolysis processes are outlined, for example, in Huber, G. W. et al, “Synthesis of Transportation Fuels from Biomass: Chemistry, Catalysts, and Engineering,” Chem. Rev. 106, (2006), pp. 4044-4098.
The term “comprising” means “including” and does not exclude additional components. Any of the inventive aspects described in conjunction with the term “comprising” also include narrower embodiments in which the term “comprising” is replaced by the narrower terms “consisting essentially of” or “consisting of.” As used in this specification, the terms “includes” or “including” should not be read as limiting the invention but, rather, listing exemplary components.
In some embodiments, the feed composition (e.g., in feed stream 6 of
In some embodiments, for example when solid hydrocarbonaceous materials are used, moisture may optionally be removed from the feed composition prior to being fed to the reactor, e.g., by an optional dryer 10. Removal of moisture from the feed stream may be advantageous for several reasons. For example, the moisture in the feed stream may require additional energy input in order to heat the feed to a temperature sufficiently high to achieve pyrolysis. Variations in the moisture content of the feed may lead to difficulties in controlling the temperature of the reactor. In addition, removal of moisture from the feed can reduce or eliminate the need to process the water during later processing steps.
In some embodiments, the feed composition may be dried until the feed composition comprises less than 10%, less than 5%, less than 2%, or less than 1%, or from 0.1% to 10%, or from 0.1% to 5%, or from 0.1% to 2% water by weight. Suitable equipment capable of removing water from the feed composition is known to those skilled in the art. As an example, in one set of embodiments, the dryer comprises an oven heated to a particular temperature (e.g., at least 80° C., at least 100° C., at least 150° C., or higher, or from 80° C. to 200° C., or from 100° C. to 200° C.) through which the feed composition is continuously, semi-continuously, or periodically passed. In some cases, the dryer may comprise a vacuum chamber into which the feed composition is processed as a batch. Other embodiments of the dryer may combine elevated temperatures with vacuum operation. The dryer may be integrally connected to the reactor or may be provided as a separate unit from the reactor.
In some instances, the particle size of the feed composition may be reduced in an optional grinding system 12 prior to passing the feed to the reactor. In some embodiments, the average diameter of the ground feed composition exiting the grinding system may comprise no more than about 50%, not more than about 25%, no more than about 10%, no more than about 5%, no more than about 2% of the average diameter of the feed composition fed to the grinding system. Large-particle feed material may be more easily transportable and less difficult to process than small-particle feed material. On the other hand, in some cases it may be advantageous to feed small particles to the reactor (as discussed below). The use of a grinding system allows for the transport of large-particle feed between the source and the process, while enabling the feed of small particles to the reactor.
Suitable equipment capable of grinding the feed composition is known. For example, the grinding system may comprise an industrial mill (e.g., hammer mill, ball mill, etc.), a unit with blades (e.g., chipper, shredder, etc.), or any other suitable type of grinding system. In some embodiments, the grinding system may comprise a cooling system (e.g., an active cooling systems such as a pumped fluid heat exchanger, a passive cooling system such as one including fins, etc.), which may be used to maintain the feed composition at relatively low temperatures (e.g., ambient temperature) prior to introducing the feed composition to the reactor. The grinding system may be integrally connected to the reactor or may be provided as a separate unit from the reactor. While the grinding step is shown following the drying step in
In some cases, grinding and cooling of the hydrocarbonaceous material may be achieved using separate units. Cooling of the hydrocarbonaceous material may be desirable, for example, to reduce or prevent unwanted decomposition of the feed material prior to passing it to the reactor. In one set of embodiments, the hydrocarbonaceous material may be passed to a grinding system to produce a ground hydrocarbonaceous material. The ground hydrocarbonaceous material may then be passed from the grinding system to a cooling system and cooled. The hydrocarbonaceous material may be cooled to a temperature of lower than about 300° C., lower than about 200° C., lower than about 100° C., lower than about 75° C., lower than about 50° C., lower than about 35° C., or lower than about 20° C. prior to introducing the hydrocarbonaceous material into the reactor. In embodiments that include the use of a cooling system, the cooling system includes an active cooling unit (e.g., a heat exchanger) capable of lowering the temperature of the biomass. In some embodiments, two or more of the drier, grinding system, and cooling system unit operations may be combined into a single unit. The cooling system may be, in some embodiments, directly integrated with one or more reactors.
As illustrated in
The reactor may be used, in some instances, to perform catalytic pyrolysis of hydrocarbonaceous material. In the illustrative embodiment of
In the embodiments illustrated in
In one set of embodiments, an oxidizing agent is fed to the regenerator via a stream 32, e.g., as shown in
The regenerator may be of any suitable size mentioned above in connection with the reactor or the solids separator. In addition, the regenerator may be operated at elevated temperatures in some cases (e.g., at least 300° C., or at least 400° C., or at least 500° C., or at least 600° C., or at least 700° C., or at least 800° C., or higher, or from 300° C. to 800° C., or from 400° C. to 700° C., or from 600° C. to 650° C.). The residence time of the catalyst in the regenerator may also be controlled using known methods, including those outlined above. In some instances, the mass flow rate of the catalyst through the regenerator will be coupled to the flow rate(s) in the reactor and/or solids separator in order to preserve the mass balance, or heat balance, or both heat and mass balance in the system.
As shown in the illustrative embodiment of
Referring to solids separator 40 in
The condenser may also, in some embodiments, make use of pressure change to condense portions of the product stream. In
Other products (e.g., excess gas) may be transported to optional compressor 100 via stream 76, where they may be compressed and used as fluidization gas in the reactor and/or where they may assist in transporting the hydrocarbonaceous material to the reactor.
In some embodiments, the liquid fraction is further processed to separate the water phase from the organic phase in separator 60 in
Organic phase 64 may optionally be fed to a product separator 90. Product separation in 90 can separate the organic materials into a crude product 92 that is enriched in the desired components for transport to further purification or processing, and a crude material 94 that is relatively depleted of useful materials. Stream 94 can be recycled back to reactor 20 for further upgrading via catalytic fast pyrolysis to produce additional useful products or it can be used as fuel or otherwise disposed.
As shown in
It should be understood that while the set of embodiments described by
In general, the invention can be any apparatus, process, or integrated system having one or any combination of the features discussed in this specification.
Condensation of condensable materials from the pyrolysis products occurs by passing them through a condensation train to condense and collect the desired products as liquid phases. Typically, the condensation train will comprise one or more chilled water condensers, one or more electrostatic precipitator and one or more coalescence filter, as are well known in the art, all of which will be connected in series. While the order of the condensers can be varied, it is typical that the first condenser is a water cooled condenser with temperatures on the water side of 15° C. to 35° C. Additional condensers can be used that are chilled to lower temperatures, for example, from −10° C. to 15° C. Condensation can also be effected by quenching the product mixture with a liquid quench stream, typically water or an organic phase such as a heavy organic, for example, the less valuable reaction products. All gases that pass through the condensation train may also be collected at the end of the train.
In most embodiments, two liquid phases are condensed from a pyrolysis reactor, an aqueous phase and an organic phase. The aqueous phase comprises a significant fraction of the condensed phases, for example, the condensed aqueous phase may comprise 20 mass % to 80 mass % of the condensed phases, in some embodiments, 35 mass % to 65 mass % of the condensed phases. The organic phase may (and typically does) comprise small amounts of dissolved water as well. The percent water in a liquid phase can be measured by known methods such as NMR (nuclear magnetic resonance), HPLC (high performance liquid chromatography), gas chromatography, or by fractional distillation. Preferably, the mass % water in an organic phase is determined by Karl Fisher titration.
In some embodiments, the aqueous liquid phase is treated such that one or more organic components are removed, and the resulting liquid, now enriched in water, is recycled to a pyrolysis reactor. More preferably, water is removed from the aqueous phase and a water-depleted stream is recycled to the pyrolysis reactor. In some preferred embodiments, the aqueous phase is treated to have at least 10 mass % less water, in some embodiments at least 30% less water, in some embodiments at least 50% less water, and in some embodiments from 10% to 80%, or from 30% to 80% less water. Water can be removed from the aqueous phase by any suitable method including distillation, absorption, filtration, osmosis, membrane separation, or any other process.
In some embodiments the liquid organic phase is separated into a crude fraction enriched in useful products and a second fraction relatively depleted in useful products. Separations of organic liquids can be accomplished by distillation, adsorption, membrane separation, osmosis or any other process. The fraction that is relatively depleted in useful products can be optionally recycled to the pyrolysis reactor.
The distillation of either the water or organic phases can be accomplished by conventional methods using conventional distillation equipment such astray, bubble cap, packed columns or the like. Distillation may be carried out at subatmospheric pressures or at atmospheric pressures. Ordinarily, this distillation will be carried out at subatmospheric pressures with pressures of 1 kPa to 75 kPa being preferred. Where separations of the carbonaceous product or the recycle stream are made to narrow the recycle stream by excluding water, the above preferred pressures may be somewhat less preferred. The method of distillation, as well as pressures and other conditions are not to be held limiting to the present invention since the choice of such methods to provide the desired splits in the catalytically pyrolyzed products are well within the ability of those skilled in the art. In some cases the heavier products will be recycled; in other cases the lighter products will be recycled. With these teachings, one skilled in the art will find little difficulty in providing the equipment and conditions for obtaining these recycle fractions by distillation.
Adsorption of the organics dissolved in or suspended in an aqueous phase can be accomplished by passing the aqueous phase through a bed of organic materials such as solid biomass, coked catalyst, char, or the like. The organics in the aqueous phase are preferentially adsorbed on the bed of organic materials and the water-enriched aqueous phase passes through. The organics-enriched biomass or other organics adsorbent can be fed back to the pyrolysis reactor.
Adsorption of the water dissolved in or suspended in an organic phase can be accomplished by contacting the organic phase with a bed of water adsorbent materials or passing the organic phase through a bed of water adsorbent materials such as silica gel, magnesium sulfate, clays, zeolites or the like at modest temperatures, i.e. less than 200, or less than 100, or less than 50° C., or from 15° C. to 200° C. , or from 20° C. to 50° C., to remove the water. The organic-enriched phase passes through the adsorbent or remains above the adsorbent. The organic phase can be fed back to the pyrolysis reactor.
A filtration process can be used to separate suspended solids from an aqueous or organic phase before, after, or independent of any adsorption process to remove suspended solids or adsorbent materials. Filtration techniques are well known to those skilled in the art. Membrane separation of the organic and aqueous materials in the aqueous or organic phases can be accomplished by contacting the liquid phase with a permselective membrane in a batch or continuous process. Continuous processing according to the invention is achievable wherein an aqueous solution feed stream containing organic components is passed on one side and in contact with a hydrophobic, polymeric membrane having selectivity for the organic components, while a solution sink or vapor vacuum is in contact with the permeate side of the membrane. The lower chemical potential of, for example, the organic component solution sink together with counter current relationship of the organic aqueous solution feed stream, provides driving force for permeating organics through these selective membranes into the organic solution sink. The organic enriched solution sink or vapor can be swept or moved by physical means to suitable processing which promotes the recycling of the organics and any complexing solutions. Suitable complexing solutions could be derived from organic fractions of the reaction product including aromatics, phenols, olefins or the like. The membrane permeation step is preferably operated under ambient conditions of temperature which can vary over a wide range from about −50° C. to about 250° C. depending upon the selection of the sweep liquid and the thermal condition of the feed mixture. Higher operating temperatures are frequently desirable because of the increased rates of permeation; however, lower temperatures may be desired to reduce energy input.
The permeation membrane is nonporous, that is, free from holes and tears and the like, which destroy the continuity of the membrane surface. Useful membranes are typically organic, polymeric materials. The membranes are preferably in as thin a form as possible which permits sufficient strength and stability for use in the permeation process. Generally separation membranes from about 0.1 mil to about 15 mils or somewhat more are utilized. High rates of permeation are obtained with thinner membranes which can be supported with structures such as fine mesh wire, screen, porous metals, and ceramic materials. The membrane may be a simple disc or sheet of the membrane substance which is suitably mounted in a duct or pipe, or mounted in a plate and framed filter press. Other forms of membrane may also be employed such as hollow tubes and fibers through which or around which the feed is applied or is recirculated with the permeate being removed at the other side of the tube as a sweep liquid phase. Various other useful shapes and sizes readily adaptable to commercial installations are known to those skilled in the art. A particularly advantageous method of separating and concentrating water soluble organics is to filter the aqueous solution through a layer of biomass so that the organics are absorbed by the biomass. The organics-impregnated biomass can be further dried or otherwise treated and fed to the reactor for CFP upgrading. In this way the organics from the water soluble fraction are converted to valuable products, including aromatics (BTXN), olefins, CO, CO2, phenol and other valuable materials. After filtering through the biomass, the aqueous solution can be discarded or passed to a water treatment process. The organics-impregnated biomass that has been dried has an increased mass compared to the same portion of dried fresh biomass before it has been treated with the water containing water soluble organics.
Functionally, catalysts for the CFP process may be limited only by the capability of any such material to promote and/or effect dehydration, dehydrogenation, isomerization, hydrogen transfer, aromatization, decarbonylation, decarboxylation, aldol condensation and/or any other reaction or process associated with or related to the pyrolysis of a hydrocarbonaceous material. Catalyst components can be considered acidic, neutral or basic.
The invention is generally applicable to any biomass pyrolysis reaction. Preferably, the biomass feedstock comprises a solid hydrocarbonaceous material. The biomass feedstock may comprise, for example, any one or combination of the biomass sources that are mentioned above. The pyrolysis reactor can be without a solid catalyst; however, preferably, the pyrolysis reactor comprises a solid catalyst for catalytic fast pyrolysis (CFP). The type of reactor and the type of solid catalyst (if present) are not limited, and can be generally of the type known for conversion of biomass to fluid hydrocarbonaceous streams. Examples of suitable apparatus and process conditions for CFP are described in U.S. Pat. No. 8,277,643 of Huber et al, U.S. Pat. No. 8,864,984 of Huber et al, U.S. Patent Application 20120203042A1, and in the U.S. Patent Application 20130060070A1 of Huber et al that are fully incorporated herein by reference. Conditions for CFP of biomass can be selected from any one or any combination of the following features (which are not intended to limit the broader aspects of the invention): a zeolite catalyst, a ZSM-5 catalyst; a zeolite catalyst comprising one or more of the following metals: titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper, zinc, gallium, platinum, palladium, silver, phosphorus, sodium, potassium, magnesium, calcium, tungsten, zirconium, cerium, lanthanum, and combinations thereof; a fluidized bed, circulating bed, or riser reactor; an operating temperature in the range of 300° C. to 1000° C.; and/or a solid catalyst-to-biomass mass ratio of between 0.1 and 20.
In some embodiments a benzene-rich fraction is separated from the catalytic fast pyrolysis process and upgraded in a primary product upgrading process comprising the catalytic alkylation of benzene with ethylene to produce ethylbenzene, or the catalytic alkylation of benzene with propylene to produce cumene, or some combination of these, wherein the ethylene or propylene are separated from the CFP product mixture. A benzene-rich fraction is one that contains at least 20%, or at least 40%, or at least 60%, or at least 80%, or at least 90%, up to 100%, or from 60% to 100%, or from 80% to 99.9% benzene by weight. In some embodiments an ethylene-rich fraction is used for the alkylation. An ethylene-rich fraction is one that contains at least at least 60, or at least 80, or at least 90, or at least 95, up to 100%, or from 60% to 100%, or from 80% to 99.9% ethylene by weight. In practicing some embodiments of this invention, a portion of the effluent of the alkylation reaction zone is reintroduced into the alkylation reaction zone to enhance the yield of useful products via transalkylation. A polyethylbenzene, such as diethylbenzene, triethylbenzene, and so forth up to even hexaethylbenzene, is a preferred transalkylating agent because each may transalkylate to ethylbenzene, regardless of whether each is alkylated by ethylene. It would be preferred to not recycle to the alkylation reaction zone a stream containing more than 75 wt % ethylbenzene, such as the product stream produced by an ethylbenzene column of the product separation zone.
In embodiments that include the alkylation of benzene by olefins, the ratio of the weight of the olefin entering the alkylation catalyst bed in the olefinic feed stream per unit time to the sum of the weights of compounds entering the alkylation catalyst bed per the same unit time, multiplied by 100, is generally less than 1.88, preferably less than 1.3, and more preferably less than 0.01. This ratio is sometimes referred to herein as the olefin ratio. The alkylation conditions may comprise a maximum olefin concentration based on the weight of compounds entering the alkylation catalyst bed of preferably less than 1.88 wt %, most preferably less than 1.3 wt %, and still more preferably less than 0.01 wt %.
The aromatic feed stream and the olefinic feed stream are preferably combined upstream of the alkylation catalyst bed. The alkylation reaction zone can comprise one or more alkylation catalyst beds and/or one or more alkylation catalyst reactors, and each reactor may contain one or more alkylation catalyst beds. A common configuration of an alkylation zone employs two alkylation reactors, each of which has two alkylation catalyst beds. The number of alkylation reactors is typically less than eight, and the number of catalyst beds in a given alkylation reactor is typically less than six.
Alkylation conditions for this invention include a molar ratio of phenyl group per alkyl group of typically from 25:1 to about 1:1. In some embodiments, the molar ratio may be less than 1:1, and may be down to 0.75:1 or lower. Preferably, the molar ratio of phenyl group per ethyl group (or per propyl group, in cumene production) is below 6:1, and in some embodiments, in the range of 4:1 to 2:1.
In general, for a given molar ratio of alkylation substrate per alkylation agent, especially an olefinic alkylation agent, the greater the molar ratio of phenyl group to alkyl group in the feed stream, the less is the rise in temperature in the reaction zone that occurs as a result of the alkylation reactions. Although the reactor may have indirect heat exchange means to remove the heat as it is produced, the reactor is preferably adiabatic, and so the outlet temperature of the effluent stream is higher than the inlet temperature of the reactants. The appropriate reaction temperature may be preferably from 100° C. to the critical temperature of the alkylation substrate, which may be 475° C. or even higher, the inlet temperature in the reaction zone is generally from 200° C. to 260° C. and preferably from 230° C. to 250° C. The temperature rise is typically from 5° C. to 50° C., and preferably less than 20° C. The temperature rise in the reaction zone may be controlled by adjusting the molar ratio of phenyl group to alkyl group in the feed stream, for example by recycling portions of the reactor effluent. Recycling reactor effluent to the reaction zone of the alkylation reactor does not interfere in a significant way with the extent of the alkylation or transalkylation reactions, and recycling reactor effluent may be employed for the purpose of controlling reaction zone temperatures.
Alkylation is preferably performed in the liquid phase. Consequently, reaction pressure needs to be sufficiently high to ensure at least a partial liquid phase. Where ethylene is the olefin, the pressure range for the reactions is usually from about 200 psig to about 1000 psig (1379 to 6985 kPa(g)), more commonly from about 300 psig to about 600 psig (2069 to 4137 kPa(g)), and even more commonly from about 450 psig to about 600 psig (3103 to 4137 kPa(g)). Preferably, the reaction conditions are sufficient to maintain benzene in a liquid phase and are supercritical conditions for ethylene. For olefins other than ethylene, this invention may be practiced generally at a pressure of from 50 psig to 1000 psig (345 to 6985 kPa(g)).
The weight hourly space velocity (WHSV) of ethylene preferably ranges from 0.01 hr−1 to 2.0 hr−1. The WHSV of aromatics, including benzene and a polyalkylaromatic having at least two C2+ groups, if any, preferably ranges from 0.3 hr−1 to 480 hr−1. In a preferred embodiment, in which the polyalkylaromatic is a diethylbenzene or a triethylbenzene, the molar ratio of benzene per ethylene is from 2:1 to 6:1, the WHSV of ethylene is from 0.1 hr−1 to 1.0 hr−1, and the WHSV of aromatics, including benzene and the polyethylbenzenes is from 0.5 hr−1 to 19 hr−1.
In practicing some embodiments of this invention, the alkylation reactor effluent stream is separated into at least two portions, in order that one portion can be recycled and passed to the alkylation reaction zone. In some embodiments a portion of the alkylation effluent is recycled to the catalytic fast pyrolysis reactor along with, or separate from, any primary products of the fast catalytic pyrolysis process.
In some embodiments, when one portion of the alkylation effluent is recycled to and introduced into an alkylation reaction zone or the CFP reactor, at least one other portion of the alkylation effluent passes to a separation zone for recovering the monoalkylaromatic. The separation zone may comprise a benzene fractionation column in order to recycle unreacted benzene to the alkylation zone, and an ethylbenzene fractionation column in order to recover ethylbenzene as product from the heavier polyalkylbenzenes. A polyalkylbenzene fractionation column may also be used in order to separate diethylbenzenes and triethylbenzenes from the other higher mass polyalkylbenzenes, particularly where the polyalkylbenzene that is present in the feed stream is a diethylbenzene or a triethylbenzene. The separation zone preferably does not comprise a deethanizer unless the concentrations of unreacted ethylene, ethane, or light C3− paraffins in the reactor effluent are high enough to justify a step of separating these components from the alkylation reactor effluent stream.
In addition to producing a fraction comprising the monoalkylaromatic, the separation zone may also produce one or more other fractions of the alkylation effluent from a portion of the alkylation effluent. Accordingly, as an alternative to, or in addition to recycling a portion of the alkylation effluent to the alkylation reaction zone, some or all of at least one of these other fractions recovered from the separation zone can also passed to the alkylation reaction zone or to the CFP process. These other recovered fractions can comprise polyethylbenzenes, which in turn can be recycled to the alkylation reaction zone as transalkylation agents. In some embodiments, several process streams produced by the separation zone can be used to supply such polyethylbenzenes to the alkylation reaction zone.
The catalyst for the alkylation process may be any alkylation catalyst that is not deactivated rapidly as a consequence of recycling the polyalkylaromatic to the alkylation reactor. The catalyst for the alkylation process may comprise one or more aluminosilicate molecular sieves known as zeolites. Zeolite molecular sieves suitable for use in the present invention are crystalline aluminosilicates which in the calcined form typically may be represented by the general formula:
M(n/2 O)xSiO2yAl2O3
where M is a cation, n is the valence of the cation, x has a value of from about 5 to 200, and y has a value of from about 2 to 10. The above formula is merely a typical representation; however, less common zeolite formulations, such as those having lower proportions of aluminum or the presence of additional elements, may also be used. Detailed descriptions of zeolites may be found in D. W. Breck, Zeolite Molecular Sieves, John Wiley and Sons, New York 1974, and in other standard references.
The preferred alkylation catalyst for use in the alkylation process is a zeolitic catalyst. Suitable zeolites include zeolite beta, Zeolite Y, ZSM-5, PSH-3, MCM-22, MCM-36, MCM-49, and MCM-56. Zeolite beta is described in U.S. Pat. No. 3,308,069 and Re 28,341. The topology of zeolite beta and the three zeolite beta polytypes are described in the article by Higgins et al, in Zeolites, Vol. 8, November 1988, starting at page 446; and in the letter by M. M. J. Treacy et al, in Nature, Vol. 332, Mar. 17, 1988, starting at page 249. Suitable zeolite betas include, but are not limited to, the naturally occurring mixture of the three polytypes, any one of the three polytypes, or any combination of the three polytypes. The use of zeolite beta in alkylation and transalkylation is disclosed in U.S. Pat. Nos. 4,891,458 and 5,081,323, and the use of pristine zeolite beta in alkylation is disclosed in European Pat. EP 432,814 B1. Suitable zeolite betas include, but are not limited to, pristine zeolite beta in which the H+ ion has at least partially replaced the contained metal cation, as disclosed in European Pat. EP 432,814 B1; and zeolite beta into which certain quantities of alkaline, alkaline earth, or metallic cations have been introduced by ion exchange, as disclosed in U.S. Pat. No. 5,672,799. Various modifications of zeolite beta are also suitable for use in this invention. Suitable modified zeolite betas include, but are not limited to, zeolite beta which has been modified by steam treatment and ammonium ion treatment, as disclosed in U.S. Pat. No. 5,522,984; and zeolite beta in which the H+ ion has at least partially replaced the contained metal cation, with the zeolite beta being modified by isomorphous substitution of aluminum by boron, gallium, or iron, as disclosed in European Pat. EP 432,814 B1.
It is believed that mordenite zeolite and omega zeolite can also be suitable catalysts for the alkylation process. Suitable zeolites are zeolite beta as disclosed in U.S. Pat. Nos. 4,891,458 and 5,081,323, and a steamed and ammonium-exchanged zeolite beta as disclosed in U.S. Pat. No. 5,522, 984. A preferred zeolite beta for use in alkylation process in this invention is disclosed in U.S. Pat. No. 5,723,710. The U.S. patents mentioned herein are incorporated herein by reference.
The olefin for the reaction can come partly or entirely from the pyrolysis reaction. In this way, it is possible to synthesize styrene in an integrated process using exclusively or primarily (at least 50% by mass, more preferably at least 90% and still more preferably at least 95%, or from 50% to 100%, or from 90 to 99.9% by mass) biomass-derived materials.
In one embodiment, the biomass feed for the CFP process that produces benzene for the alkylation is bagasse from a sugar cane fermentation process, and at least a portion of the ethylene used for the alkylation is derived from ethanol produced by sugarcane fermentation. In another embodiment the feed for the CFP process that produces benzene for the alkylation is corn stover and at least a portion of the ethylene used for the alkylation is derived from ethanol produced by corn fermentation.
Recently, processes have been developed to produce ethylene from renewable, non-petroleum sources. One such process relies on the dehydration of ethanol to ethylene, exemplified as follows:
CH3CH2OH→C2H4+H2O
The ethanol for the process may be made by the fermentation of sugar using yeasts, as practiced for centuries in alcohol production for human consumption, and more recently on an industrial scale for fuel ethanol. Ethanol solutions may be concentrated to provide ethanol-rich feed for the dehydration process by distillation, membrane separation, solvent extraction, or other known processes. An ethanol-rich fraction is one that contains at least 80%, or at least 90%, or at least 95%, up to 100%, or from 80% to 100%, or from 90% to 99.9% ethanol by weight.
An alternative method to make ethylene from renewable sources is to feed bio-oil to a steam cracker in a bio-oil pyrolysis process, exemplified as follows:
Bio-oil+H2O+heat→ethylene+propylene+pyrolysis liquids
Any source of renewable ethylene can be used in a process to alkylate benzene or other aromatics. In these embodiments an alkylated aromatic may be made from renewable sources of both the aromatic, i.e. benzene from the CFP process, and olefin, i.e. ethylene from fermentation or bio-oil pyrolysis. In one embodiment the biomass is sugarcane or sorghum that is treated to provide the sugar feed to the fermentation process and the bagasse that remains comprises the feed to the CFP process. A simplified schematic process for producing alkyl benzenes by alkylation of CFP derived benzene with bio-derived ethylene is presented in
Toluene and xylenes can also be produced from biomass derived materials from the CFP process and biomass derived methanol. For example, xylenes can be made from toluene by the toluene methylation process (TMP). In this process toluene is alkylated with methanol according to the following stoichiometry:
toluene+methanol→xylenes+water
or
C6H5CH3+CH3OH→CH3—C6H4—CH3+H2O
In some cases benzene or toluene can be alkylated with methanol, or mixtures of toluene and benzene can be alkylated with methanol to produce xylenes. Renewable toluene, benzene, or toluene and benzene can be supplied by the CFP process. Renewable methanol can be produced from carbon monoxide, carbon dioxide, or a mixture of carbon monoxide and carbon dioxide obtained from CFP or other processes. Renewable methanol produced by dry distillation of wood, so-called wood alcohol, can be used in the inventive process.
The CFP process produces substantial amounts of biomass derived CO-rich gas product that also contains some CO2. Preferably the methanol of the inventive process is produced in part from the conversion of CFP produced CO, CO2, or CO and CO2 to methanol. The CO and CO2 can be made into renewable methanol in a two-step process.
The optimal H/Csyn ratio for methanol synthesis is about 2, where
H/Csyn=(H2—CO2)/(CO+CO2)
If the H/Csyn ratio of the available CO-containing mixture is far from 2, as it is in the product from a CFP process, the first step is the water gas shift reaction to make a syngas having suitable H/Csyn of about 2. Renewable CO from the CFP or other bio-based process can be reacted with water over various known high or low temperature water gas shift (WGS) catalysts to produce the appropriate stoichiometry, exemplified as follows:
CO+H2O⇄CO2+H2 (WGS)
The reaction is equilibrium limited and controlled by the water, CO, CO2, and H2 partial pressures and temperature. For a typical CFP product gas that has a high CO/CO2 ratio, partial conversion of CO by WGS is required to provide the H/Csyn ratio desired for methanol synthesis. Excess water and CO2 can be removed by conventional means such as cooling, compression, and absorption to remove CO2. The ratio H/Csyn [(H2—CO2)/(CO+CO2)] produced by WGS is preferably at least 1.5, or at least 1.75, or at least 1.9, or at least 1.95, or from 1.5 to 3.0, or from 1.75 to 2.75, or from 1.9 to 2.25.
Another option is to co-feed some CO2 to the methanol reactor where it can also be converted to methanol with additional H2 feed. The CO2 can come from the WGS reaction or it could be CO2 produced first by CFP or it could be CO2 recovered from other biomass conversion processes, e.g. fermentation. Catalysts, process conditions, and reactor configurations for the WGS reaction are known.
An advantage of integrating a WGS reaction with CFP is that the heat needed to drive the WGS reaction can be provided by heat recovered from the CFP process, e.g. from the catalyst regenerator 30 in
In the second step, methanol synthesis occurs by the reaction of CO/CO2 mixtures and H2 by some combination of the following reactions:
CO+2 H2→CH3OH
CO2+3 H2→CH3OH+H2O
The conditions, catalysts, and processes for methanol synthesis are summarized in “Methanol Synthesis” by K. Klier, Advances in Catalysis, Volume 31, 1982, Pages 243-313, and in “Fundamentals of Industrial Catalytic Processes,” by C. H. Bartholomew and R. J. Farrauto, John Wiley & Sons, 2011. Methanol for the inventive process can also be supplied from the gasification of biomass and conversion of the product syngas to methanol.
Reaction of renewable methanol with renewable toluene, benzene, or toluene/benzene mixtures by the TMP process produces additional renewable xylenes. Preferably the feed is toluene with much less benzene such as a toluene-rich feed so that the major product of the reaction is xylenes and there is relatively little benzene by-product. An advantage of integrating methanol synthesis into a process to produce xylenes by CFP is that the heat from the exothermic methanol synthesis process can be used to heat process streams or separation processes in CFP or to drive the WGS reaction or both.
In embodiments where benzene is contained in the feed to the xylenes production, the separation of methanol from benzene is complicated by azeotrope formation. In these embodiments a distillation column is added downstream of the alkylation reactor to separate unreacted methanol and benzene from the toluene and xylenes. The unreacted methanol-benzene overhead product mixture can be recycled back to the alkylation reactor for further conversion. Toluene and xylene products are returned to the CFP main separation train for recovery of toluene and the mixed xylenes stream. Optionally the toluene can be recycled to the TMP reactor or to the CFP process.
In some embodiments, the alkylation is conducted in the same process stream as the CFP reaction but at a later stage where alkylation catalyst is present; and in some embodiments, the alkylation is conducted in the same process stream with olefin added in stages along the length of the CFP reaction process stream. In some embodiments, alkylation is conducted in a separate reactor, and occurs after the steps of a CFP reaction and solids removal (such as in a cyclone) and the catalyst for the CFP reaction and the alkylation reaction can be combined and regenerated together.
An additional advantage to combining the CFP process with an alkylation process is that relatively small amounts of olefin can be used (for example, less than 2%, less than 1% or less than 0.5% by mass of the CFP product stream), thus reducing undesired side products, such as 1,1-diphenylethane, and the remaining CFP products collected. The overall result is upgrading the value of products from the CFP process without significantly increasing the amount of undesired by-products. In some cases a desired alkylated product, such as ethylbenzene, is produced while fewer undesired by products are produced. Yet another option may be that the ethylene may be introduced into a process stream of the CFP reaction, such as the process stream in an upper portion (for example, above the bottom half) of the fluidized bed CFP reactor, or before any separation, or after partial separation (such as after removing solids, or after removing solids and separating an aqueous phase, or after quenching with an aqueous or organic phase) which will result in little or no increase in undesired product since any so-called side products (such as 1,1-diphenylethane, DPE) can be separated and recovered with an aromatic fraction for use as a fuel or recycled to the CFP reactor. Thus, several potential advantages are created by combining alkylation with the CFP process in an integrated system.
An integrated process may also involve staged addition of an olefin along the upward direction of a fluidized bed reactor where one or more trays of catalyst comprise a mixture of catalyst, with some catalyst selected to increase conversion of biomass or biomass-derived components (such as cellulose or cellulose fragments) into smaller molecules and some catalyst selected to increase the alkylation of aromatics with olefin; thus, in some preferred embodiments, a fluidized bed reactor comprises a plurality of trays distributed along the length of the reactor (typically oriented perpendicular to gravity) with catalyst composition varying between one or more trays; in some embodiments with a relatively higher percentage of alkylation catalyst nearer the top of the reactor. Although it is recognized that there is often a similarity between CFP catalyst and alkylation catalyst, one can easily identify catalysts that are relatively superior for alkylation.
Alkylbenzenes produced by the alkylation of benzene derived from the CFP process can be further upgraded to styrene. Examples of these alkyl benzenes are ethylbenzene, cumene (isopropyl benzene), n-propyl benzene, secondary butyl benzene, isobutyl benzene, tertiary butyl benzene, n-butyl benzene, the amyl benzenes, the hexylbenzenes, the heptylbenzenes, the octylbenzenes, and the nonylbenzenes. Higher alkyl benzenes are also obtainable from the alkylation of benzene with the corresponding olefin. The higher alkylated products also can either be straight or branched chain. In general, the alkylated benzenes having more than 4 carbon atoms in their side chains are less desirable as feed stocks since a large proportion of such compounds are converted to cracked gases which require separation and recovery. Cumene is particularly desirable as is secondary butyl benzene. The latter compound produces two useful products, namely, styrene and ethylene. The cracking is preferably carried out at temperatures in the range of from 600° C. to 850° C., and preferably from 700° C. to 800° C. Pressure preferably ranges from 0.25 to 10 atmospheres absolute pressure (i.e., ata), with 0.5 ata to 5 ata being preferred, and 0.5 ata to 1 ata being most preferred.
The dehydrogenation of ethylbenzene to styrene in a fluid bed or fixed bed reactor/regenerator system, in the presence of a catalyst based on an iron oxide and further promoters, selected, e.g., from metal oxides such as alkaline oxides, alkaline earth metal oxides and/or oxides of the metals of the group of lanthanides, supported on a modified alumina is envisioned as part of an integrated reactor system.
The dehydrogenation reaction of ethylbenzene to styrene is carried out at temperatures generally ranging from 540° C. to 630° C. A typical styrene production unit comprises several adiabatic reactors in series, with intermediate heating steps at a temperature ranging from 540° C. to 630° C. and with contact times in the order of tenths of a second; a radial flow reactor which operates under vacuum at a pressure ranging from 30.39 kPa to 50.65 kPa (absolute Pascal) (0.3 to 0.5 ata); and water vapor which is fed with the charge to be dehydrogenated. One advantage of integrating styrene production with CFP is that the heat needed to drive the dehydrogenation process can be provided by the heat generated in the catalyst regenerator (30 in
The hydrogen by-product from the dehydrogenation of ethylbenzene can be used in the CFP product recovery and purification section of the plant. Hydrogen can be used to hydrogenate organo-sulfur, nitrogen, oxygen, and olefin and diene unsaturated compounds in the aromatic products prior to ethylbenzene manufacture. In some embodiments the hydrogen produced from the dehydrogenation process can be recovered and returned to the CFP process or utilized to hydrogenate or purify portions of the CFP products. In one embodiment the hydrogen recovered from the dehydrogenation process can be used to hydrogenate nitrogen-containing, or sulfur-containing, or both nitrogen- and sulfur-containing products in the aromatic CFP products to purify the aromatic stream and remove sulfur and nitrogen impurities. In another embodiment the hydrogen recovered from the dehydrogenation process can be used to hydrogenate olefins, diolefins, or olefins and diolefins in the liquid product stream recovered from the CFP process. Preferably the olefins and diolefins that are hydrogenated contain at least 3 carbon atoms.
A benzene-enriched stream obtained from the CFP process can be converted to cyclohexane by the catalytic hydrogenation of benzene with biomass derived hydrogen, either through liquid phase hydrogenation, catalyzed, for example, with Raney Nickel at 150° C. and about 15 atmospheres pressure, or through a process wherein benzene and hydrogen-rich gas is fed to a liquid-phase reactor containing Raney nickel catalyst. The nickel suspension is circulated to improve heat removal, the benzene being completely hydrogenated in a second fixed-bed reactor. The catalytic hydrogenation of benzene can also be carried out by hydrogenation in the gas phase, catalyzed with noble metals, mainly platinum supported on alumina, at 200° C. temperature and about 30 kPa pressure. Benzene purity of over 99% can be obtained. Hence, cyclohexane could have similar purity levels. In an integrated process that converts biomass to chemicals, byproducts such as methylcyclopentane can be recycled to the CFP reactor for upgrading to additional aromatics and olefins.
In a subsequent step in the process, cyclohexane may be oxidized in the presence of a cobalt salt, such as the salt of an organic acid to form adipic acid. Preferably at least about 0.025 mole of cobalt is present per mole of cyclohexane in the process and the temperature is in the range of from 85° C. to about 105° C., oxygen partial pressure is at least 150 psia (1000 kPa), preferably for a period of about 0.5 hours to about 3 hours. Chromium, manganese, and/or copper may also be used in place of, or in addition to the cobalt catalyst. In some cases, cyclohexane is first converted to cyclohexanone and cyclohexanol, and nitric acid can be used to convert these to adipic acid. Adipic acid is recovered from the product mixture.
Dehydrogenation of ethylbenzene to styrene can also be conducted in an oxidative process in the presence of oxygen containing feed to aid in the removal of the hydrogen as water or other material and shift the equilibrium towards the production of styrene. The oxygen containing feed can be oxygen gas, nitrogen oxides, hydrogen peroxide, CO2, air, sulfur oxide(s), or various oxygenated hydrocarbon compounds (acids, esters, alcohols, ketones).
Thus, the invention can include the synthesis of styrene and, optionally, the use of styrene for the production of polystyrenes (GPPS crystals, high impact HIPS and expandable EPS), acrylonitrile-styrene-butadiene (ABS) and styrene-acrylonitrile (SAN) copolymers and styrene-butadiene rubbers (SBR) is envisioned as part of the integrated reactor system. In some embodiments the butadiene used to produce ABS or SBR is biomass-derived butadiene, and in some embodiments the butadiene is produced in the pyrolysis process of the present invention. In some embodiments the acrylonitrile used to produce ABS or SAN polymers is biomass-derived acrylonitrile and in some embodiments the acrylonitrile is produced from the ammoxidation of propylene produced in a CFP process.
In some embodiments, the styrene reactor is in thermal contact with the catalyst regeneration reactor for the CFP process so that some heat from the catalyst regeneration is transferred to the process of dehydrogenating an alkylbenzene. In some embodiments, a hot product stream from the CFP reaction is passed over a dehydrogenation catalyst (preferably iron oxide) and a portion of the alkylbenzenes in the CFP stream are converted to styrene; preferably, ethylbenzene is added to the stream prior to or during passage over the dehydrogenation catalyst—this can create a variety of advantages such as cooling the product stream (thus reducing the need for heat exchanging condensers), extending catalyst life with no or a reduced need to heat added steam, and increasing the efficiency and decreasing the size of apparatus.
Polystyrene polymerization is typically carried out in an inert organic solvent environment, which provides the reaction medium for this cationic polymerization reaction. Polystyrene polymerization utilizes initiators, a suspending agent, a stabilizing agent, and a catalyst. The initiators generally used are benzoyl peroxide and t-butylhydroperoxide. The suspending agents that control droplet size in the suspension can be chosen from among methylcellulose, ethylcellulose, and polyacrylic acids at concentrations between 0.01% and 0.5% of the monomer charged. A stabilizing agent is added to keep the drops at proper size. Stabilizing agents are often insoluble inorganic materials such as calcium carbonate, calcium phosphates, or bentonite clay. Catalysts are usually peroxides such as benzoyl, diacetyl, lauroyl, caproyl, and tert-butyl peroxides. The catalyst concentration ranges from 0.1% to 0.5% of the monomer charged, and the concentration of monomer in the dispersing medium is between 10% and 40% by weight. The polymerization of styrene is typically carried out within a temperature range of 90° C. to 95° C.
Styrene can also be co-polymerized with butadiene to produce styrene-butadiene rubber (SBR), wherein the butadiene is separated from the CFP product mixture. An emulsion process uses free-radical initiation while a solution process uses anion initiation. Styrene can be co-polymerized with acrylonitrile and butadiene to form acrylonitrile-butadiene-styrene (ABS) that is used as housings for refrigerators and other applications where a stiff material is required.
A toluene-rich fraction separated from the primary product mixture may be disproportionated to provide a higher value mixture of xylenes and benzene. A toluene-rich fraction is one that contains at least 20%, or at least 40%, or at least 60%, or at least 80%, or at least 90%, up to 100%, or from 20% to 100%, or from 40% to 99%, or from 80% to 95% toluene by weight. The xylene product produced has the calculated equilibrium composition of approximately 24% of 1,4-isomer (para-xylene), 54% of 1,3-isomer (meta-xylene), and 22% of 1,2-isomer (ortho-xylene). Of the xylene isomers, meta-xylene is normally the least desired product, with ortho- and para-xylene being the more useful products. Para-xylene is of particular value, being useful in the manufacture of terephthalic acid which is an intermediate in the manufacture of synthetic fibers such as polyesters, i.e. polyethylene terephthalate ester (PET). Selectivity to p-xylene can be enhanced by selection of an appropriate catalyst such as modified ZSM-5, see U.S. Pat. No. 6,133,470, and can generally be obtained by treatment of a molecular sieve type catalyst such as a zeolite, ALPO, or SAPO with an organosilicon modifying agent. The disproportionation of a toluene-rich fraction may be carried out at temperatures ranging from about 200° C. to about 600° C. or above, and at pressures ranging from atmospheric to about 100 atmospheres or above. The toluene-rich feedstock may be supplied to the reaction zone containing the zeolite catalyst at rates providing relatively high space velocities. The toluene weight hourly space velocity (WHSV) may be greater than 1 hr−1. Hydrogen is supplied to the reaction zone at a hydrogen/toluene mole ratio in the range of 3 to 6. The hydrogen pressure may be 500 psi or more. The toluene feedstock need not be rigorously dried before supplying it to the reaction zone, and water content may exceed 100 ppm.
The proportion of p-xylene in the CFP process can be increased by using a p-xylene selective catalyst in the CFP reactor. This may be done either in a primary reactor that directly pyrolyzes biomass or in a secondary reactor that treats at least a portion of the products from the primary reactor. This catalyst may have dual functionality, catalyzing both the conversion of biomass and enhancing the proportion of p-xylene.
A p-xylene-rich fraction separated from the primary product mixture or a subsequent product mixture, or some combination of these can be integrated with a process for producing terephthalic acid (TPA) wherein the p-xylene rich fraction is oxidized to produce terephthalic acid. The TPA thus produced may also be esterified, e.g., to dimethyl terephthalate in the same or separate reactor.
The intermediate product stream containing p-xylene is oxidized to terephthalic acid in a secondary process with a second catalyst. There is no need for purification of the intermediate product stream to remove o-xylene or ethylbenzene. The second catalyst is any catalyst which catalyzes oxidation of p-xylene to terephthalic acid, e.g., heavy metal catalyst such as cobalt and/or manganese, and which optionally may include a catalyst for esterification to dimethyl terephthalate. Advantageously, a costly xylene separation step may be eliminated and the product stream of the first contacting can be directly integrated with the oxidation process to pure terephthalic acid or dimethyl terephthalate.
The production of terephthalic acid can be integrated with a CFP process that produces a p-xylene rich stream or with the p-xylene separated from a toluene disproportion process in an integrated system, or both. One process for producing terephthalic acid is the so-called Amoco process described, e.g., in U.S. Pat. No. 2,833,816. This process involves liquid phase air oxidation of p-xylene using multivalent (heavy) metals, particularly cobalt and manganese as catalyst in an acetic acid solvent and with bromine as a renewable source of free radicals. The terephthalic acid product crystals are recovered, e.g., by centrifugation, and purified by dissolving the crystals in water contacting with a hydrogenation catalyst, e.g., noble metal on a carbon support, and again recovering the crystals. Dimethyl terephthalate can be produced by liquid phase esterification of the terephthalic acid using metal catalysts such as zinc, molybdenum, antimony and tin with a large excess of methanol.
In another process for producing terephthalic acid, four steps are used, alternating oxidation and esterification to produce dimethyl terephthalate, as described, e.g., in British Patent Specification Nos. 727,989 and 809,730. First, p-xylene is oxidized with a molecular oxygen-containing gas (air) in a liquid phase in the presence of a heavy metal catalyst such as cobalt, manganese, or mixture of both to produce p-toluic acid (PTA) which is esterified with methanol to produce methyl p-toluate (MPT). A second oxidation of the MPT with the same catalyst and molecular oxygen yields in a liquid phase yields monomethyl terephthalate which is esterified to the diester dimethyl terephthalate.
Both terephthalic acid and dimethyl terephthalate are used in the production of polyethylene terephthalate (PET) or other polyesters through a reaction with glycol, e.g., ethylene glycol or tetramethylene glycol. Reaction of biomass derived terephthalic acid or dimethyl terephthalate with biomass derived glycol or glycol ester can be utilized to produce a PET that is virtually 100% biomass derived or wherein from 25 to 75 wt % of the polyethylene terephthalate is derived from biomass-derived terephthalic acid produced from products of the CFP process. Biomass derived ethylene glycol can be obtained by the oxidation of ethanol, and biomass derived 1,4-butanediol may be obtained by the oxidation of butadiene recovered from the CFP process. Esters of these diols may be obtained by reaction of the diol with biomass derived alcohols, such as methanol produced from CO separated from the CFP process.
PET produced from biomass by the inventive process can be further formed into synthetic fibers; beverage, food and other liquid containers, for example bottles; thermoform plastic materials; and engineering resins in combination with glass or other fiber.
By-products of the terephthalic acid production processes, or of the polymerization processes to produce PET, can be recycled to the CFP reactor to produce additional aromatics, olefins, or both olefins and aromatics, thus greatly increasing the carbon efficiency of the integrated process.
Phenol is a basic commodity chemical with many end uses that can be separated from the product mixture of the CFP process or prepared from the cumene derived from products of CFP benzene alkylation with propylene produced in the CFP process, as described above, or both. Phenol is among the primary products of the CFP process for converting biomass to useful chemical intermediates. Separation of phenol from the product mixture can be accomplished by a range of techniques including distillation, solvent extraction, extractive distillation, crystallization, membrane separation, or other processes well known to those skilled in the art, or some combination of these.
Cumene may be oxidized in air or with another oxidizing agent to produce cumene hydroperoxide, which is subsequently cleaved by acid to provide phenol and acetone. The phenol and acetone are separated and each one purified to the degree necessary to satisfy its ultimate use. An integrated process from biomass may optionally include the recycle of byproducts of phenol production such as acetone to the CFP process wherein they can be converted to additional aromatics, or olefins, or both, or the acetone can be recovered.
Phenol can be further upgraded into a self-hardening phenolic resin by reacting phenol and formaldehyde. The formaldehyde used for the process can be produced by oxidizing methanol that has been synthesized from biomass derived CO, such as that recovered from the CFP process, to produce a fully bio-derived resin. Phenol derivatives can be made by reaction with a wide range of aldehydes. Phenol resin byproducts can be recycled to the CFP process to improve overall process efficiency, thereby producing an integrated reactor process that includes CFP and several subsequent processes.
Biomass derived acrylonitrile is produced by passing biomass derived propylene, ammonia, and air (oxidizer) through a fluidized catalyst bed at 400-510° C. and 50-200 kPa(g). The products are quenched in aqueous solution optionally comprising sulfuric acid. Excess propylene, carbon monoxide, carbon dioxide, and dinitrogen that do not dissolve are incinerated or recycled. The aqueous solution of acrylonitrile, acetonitrile, hydrocyanic acid, and ammonium sulfate (from excess ammonia) is separated by distillation. Catalysts typically comprise bismuth molybdate and other phases supported on silica. The biomass derived propylene can be recovered from the products of catalytic fast pyrolysis or from other biomass sources.
Any of the processes described herein for making intermediates can be conducted in a multistage reactor. Thus, the invention includes any selected process conducted in a multistage reactor. For example, the process can be conducted with the CFP process conducted in the first stage(s) of a multistage, fluidized bed reactor with catalyzed disproportion of toluene to p-xylene occurring in a later stage. Such a configuration can reduce cost, energy, and/or size of the process. The integration within a single process stream without product separation may also increase yield of desired products, for example by utilizing unstable compounds or other intermediates that would not be available after a separation step.
This application is related to Provisional Patent Application No. 62/148,440, filed in the United States Patent and Trademark Office on Apr. 16, 2015.
Number | Date | Country | |
---|---|---|---|
62148440 | Apr 2015 | US |