The present invention relates generally to methods and apparatus for improving the performance of file management within nonvolatile memory devices and particularly to increasing the speed of writing or storing information to such nonvolatile memory devices.
Various prior art methods and techniques were used to manage files, i.e. store data and read back data, within nonvolatile memory devices. Generally, a host device commands a controller, coupled between the host device and nonvolatile memory, to store certain information within nonvolatile memory and later to read the same. Such information depends on the application of the nonvolatile memory device. For example, in the case of digital cameras, digital pictures or photos is the information stored and retrieve from nonvolatile memory. In the case of Personal Computers (PCs), information is stored and retrieved from hard disk.
Since information is typically organized in sectors, each sector including a predetermined number of user data and a predetermined number of overhead data, the host commands the controller to store sector information by referencing addresses associated with particular sectors. For example, there may be sectors 0 through N and each a group of sectors may define a block which would also have an address associated therewith for identifying the same. The controller uses sector addresses to organize digital information within the nonvolatile memory device.
In one prior art technique, as a part of file management of nonvolatile memory, when the host device commands the controller to write or store information to one or more particular sectors, identified by logical block addresses (LBAs), the controller writes to physical block addresses (PBAs) in the nonvolatile memory. Each block includes a very large amount of nonvolatile memory space, for example, 64 Kbytes. When a particular sector is updated or rewritten thereto in nonvolatile memory, the controller writes the updated sector information to another location within the 64 Kbyte block space. To keep track of the current sector information, flags and address information are utilized and are updated by the controller to reflect the status of the sector. U.S. Pat. No. 5,341,330, issued on Aug. 23, 1994 to Wells et al. and entitled “Method For Writing to a Flash Memory Array During Erase Suspend Intervals” is an example of the teachings of such prior art technique. In the case where a particular sector is updated within a block, the sector location including previous information is marked ‘old’ utilizing a flag and the new or current sector location is marked ‘new’. Finally, when the block is full, i.e. no free or available location remains, a new block is used to store further updates to sectors and the old block is eventually erased prior to being re-utilized.
An example of the above discussion is perhaps better shown by reference to the example of
Referring still to
The scenario described above applies to the writing or updating of all other sectors. By brief way of example, sector information identified by LBA 1, is initially written at 16 and the next time it is written, it is written to the next available location in Block 10 which is location 30 and the following time after that when it is written by the host, it is written at 36 and the flags of 16, 30 and 36 are updated as describe above. This process continues until the block 10 becomes full at which time a new, or available, or free block is found by the controller, in this case, block 12. From thereon, updated sector information is written to the block 12, not only this, but at some point, if necessary, all sector locations including current sector information are moved to the block 12, as explained in U.S. Pat. No. 5,341,330.
For example, in
The above prior art technique is described in further detail in U.S. patent application having Ser. No. 09/620,544 filed on Jul. 21, 2000 and entitled “Moving Sectors Within a Block of Information In a Flash Memory Mass Storage Architecture”, the disclosure of which is incorporated herein by reference as though set forth in full. The problem with this technique is that to move all of the sectors including current information to another new block is time consuming and therefore a performance hindrance. This problem is even further exaggerated when using smaller block sizes as there are more numerous move operations with smaller block sizes and smaller block sizes are more prevalent by today's users of nonvolatile memory devices, particularly by users of nonvolatile memory devices.
In the patent document referred to hereinabove, a method and apparatus is introduced for improving the performance of managing files or data within nonvolatile memory by organizing the memory into smaller block sizes and introducing a virtual logical block address (VLBA) to PBA relationship and a unique VLBA was assigned to each block and within each VLBA were sectors arranged in sequential order for decreasing the number of moves to expedite or improve the performance of the system through the use of mapping of PBAs to VLBAs. This VLBA to PBA mapping caused the size of the space manager within the controller device to decrease thereby resulting in a less expensive manufacturing of the controller device. However, in this method, it is presumed that sectors are written in sequential order by the host, if this is not the case, there is much wasted memory space.
In further explanation of prior art techniques,
In yet another prior art technique, sectors are not moved necessarily right away after every sector information update, rather, re-writes and move operations are kept track thereof and when a block is full or nearly full of mostly old sector information, its current sector information is then moved to a new block. For example, as shown in
Thus, the need arises for a system and method for file or data management of information that is organized into sectors within nonvolatile memory devices while improving the performance for doing the same in an inexpensive manner.
a) shows another example of a prior art technique for moving sector information upon re-write or updating operations.
b) shows yet another example of a prior art technique for moving sector information upon re-write or updating operations.
Referring now to
In one embodiment of the present invention, each block includes 8 sectors but again, any number of sectors may be assigned to a block without departing from the scope and spirit of the present invention. Thus, in
In this example, the next time the host rewrites to or updates the sector identified by LBA 0, this information is stored in Block N+M, at its first sector location, 116 and at such time, the information at 102 in Block N is designated as being ‘old’ through the use of a flag or other means while the sector information at 117 is designated as ‘new’. The same events occur when the scenario repeats itself for the updating of sector 1 where the location at 104 in Block N is designated as being ‘old’ and the location at 118 in Block N+M is designated as ‘new’ through the use of their respective flags.
The following sectors to be written, namely the sectors identified by LBAs 2, 3, 50, 496, 497 and 498, are also stored in Block N+M at 120-130, respectively. As shown, the sector identified by LBA 50 was previously written by the host and stored at 110 in Block N so that when it is updated, the new sector information is stored at 124 in Block N+M and the flag at 110 is modified to indicate ‘old’ whereas the flag at 124 is modified to indicate ‘new’.
In the example of
At a time when all of the blocks 100 are filled with sector information or at the right time, the controller performs a ‘clean-up’ operation, arranging the sectors in sequential order within blocks other than those included with the blocks 100 thus enabling the space manager within the controller device to avoid maintaining track of information stored within nonvolatile memory on a sector-by-sector basis thereby improving manufacturing costs associated with the controller device by the latter having a smaller space manager requirement. Additionally, as will be evident, the number of move operations of sectors is reduced thereby increasing system performance.
Referring now to
In
During ‘clean-up’, the sectors of
The following eight sectors are sequentially placed within the block identified by VLBA 1 in
In
Referring back to
Although the present invention has been described in terms of specific embodiments it is anticipated that alterations and modifications thereof will no doubt become apparent to those skilled in the art. It is therefore intended that the following claims be interpreted as covering all such alterations and modification as fall within the true spirit and scope of the invention.
This application is a continuation of U.S. patent application Ser. No. 12/773,187, filed on May 4, 2010, now U.S. Pat. No. 8,019,932, titled “Block Management For Mass Storage” which is a continuation of U.S. patent application Ser. No. 11/652,727, filed on Jan. 11, 2007, now U.S. Pat. No. 7,734,862, issued on Jun. 8, 2010, which is a continuation of U.S. patent application Ser. No. 10/455,550, filed on Jun. 4, 2003, now U.S. Pat. No. 7,167,944 issued on Jan. 23, 2007, which is a continuation-in part of U.S. patent application Ser. No. 09/620,544, filed on Jul. 21, 2000, now U.S. Pat. No. 6,978,342 issued on Dec. 20, 2005 titled “Moving Sectors Within a Block of Information In a Flash Memory Mass Storage Architecture”, the disclosures of which are incorporated herein by reference as though set forth in full.
Number | Name | Date | Kind |
---|---|---|---|
4099069 | Cricchi et al. | Jul 1978 | A |
4130900 | Watanabe | Dec 1978 | A |
4210959 | Wozniak | Jul 1980 | A |
4309627 | Tabata | Jan 1982 | A |
4355376 | Gould | Oct 1982 | A |
4398248 | Hsia et al. | Aug 1983 | A |
4405952 | Slakmon | Sep 1983 | A |
4414627 | Nakamura | Nov 1983 | A |
4450559 | Bond et al. | May 1984 | A |
4456971 | Fukuda et al. | Jun 1984 | A |
4468730 | Dodd et al. | Aug 1984 | A |
4473878 | Zolnowsky et al. | Sep 1984 | A |
4476526 | Dodd | Oct 1984 | A |
4498146 | Martinez | Feb 1985 | A |
4525839 | Nozawa et al. | Jun 1985 | A |
4532590 | Wallach et al. | Jul 1985 | A |
4609833 | Guterman | Sep 1986 | A |
4616311 | Sato | Oct 1986 | A |
4654847 | Dutton | Mar 1987 | A |
4710871 | Belknap et al. | Dec 1987 | A |
4746998 | Robinson et al. | May 1988 | A |
4748320 | Yorimoto et al. | May 1988 | A |
4757474 | Fukushi et al. | Jul 1988 | A |
4774700 | Satoh et al. | Sep 1988 | A |
4780855 | Iida et al. | Oct 1988 | A |
4788665 | Fukuda et al. | Nov 1988 | A |
4797543 | Watanabe | Jan 1989 | A |
4800520 | Iijima | Jan 1989 | A |
4829169 | Watanabe | May 1989 | A |
4843224 | Ohta et al. | Jun 1989 | A |
4896262 | Wayama et al. | Jan 1990 | A |
4914529 | Bonke | Apr 1990 | A |
4920518 | Nakamura et al. | Apr 1990 | A |
4924331 | Robinson et al. | May 1990 | A |
4943745 | Watanabe et al. | Jul 1990 | A |
4953122 | Williams | Aug 1990 | A |
4970642 | Yamamura | Nov 1990 | A |
4970727 | Miyawaki et al. | Nov 1990 | A |
5070474 | Tuma et al. | Dec 1991 | A |
5093785 | Iijima | Mar 1992 | A |
5168465 | Harari | Dec 1992 | A |
5198380 | Harari | Mar 1993 | A |
5200959 | Gross et al. | Apr 1993 | A |
5218695 | Noveck et al. | Jun 1993 | A |
5220518 | Haq | Jun 1993 | A |
5226168 | Kobayashi et al. | Jul 1993 | A |
5227714 | Lou | Jul 1993 | A |
5253351 | Yamamoto et al. | Oct 1993 | A |
5267218 | Elbert | Nov 1993 | A |
5268318 | Harari | Dec 1993 | A |
5268870 | Harari | Dec 1993 | A |
5270979 | Harari et al. | Dec 1993 | A |
5293560 | Harari | Mar 1994 | A |
5297148 | Harari et al. | Mar 1994 | A |
5303198 | Adachi et al. | Apr 1994 | A |
5305276 | Uenoyama | Apr 1994 | A |
5305278 | Inoue | Apr 1994 | A |
5315541 | Harari et al. | May 1994 | A |
5315558 | Hag | May 1994 | A |
5329491 | Brown et al. | Jul 1994 | A |
5337275 | Garner | Aug 1994 | A |
5341330 | Wells et al. | Aug 1994 | A |
5341339 | Wells | Aug 1994 | A |
5341341 | Fukuzo | Aug 1994 | A |
5353256 | Fandrich et al. | Oct 1994 | A |
5357475 | Hasbun et al. | Oct 1994 | A |
5359569 | Fujita et al. | Oct 1994 | A |
5365127 | Manley | Nov 1994 | A |
5369615 | Harari et al. | Nov 1994 | A |
5371702 | Nakai et al. | Dec 1994 | A |
5381539 | Yanai et al. | Jan 1995 | A |
5382839 | Shinohara | Jan 1995 | A |
5384743 | Rouy | Jan 1995 | A |
5388083 | Assar et al. | Feb 1995 | A |
5396468 | Harari et al. | Mar 1995 | A |
5404485 | Ban | Apr 1995 | A |
5406527 | Honma | Apr 1995 | A |
5418752 | Harari et al. | May 1995 | A |
5422842 | Cernea et al. | Jun 1995 | A |
5422856 | Sasaki et al. | Jun 1995 | A |
5428621 | Mehrotra et al. | Jun 1995 | A |
5430682 | Ishikawa et al. | Jul 1995 | A |
5430859 | Norman et al. | Jul 1995 | A |
5431330 | Wieres | Jul 1995 | A |
5434825 | Harari | Jul 1995 | A |
5438573 | Mangan et al. | Aug 1995 | A |
5465235 | Miyamoto | Nov 1995 | A |
5465338 | Clay | Nov 1995 | A |
5471478 | Mangan et al. | Nov 1995 | A |
5473765 | Gibbons et al. | Dec 1995 | A |
5479638 | Assar et al. | Dec 1995 | A |
5485595 | Assar et al. | Jan 1996 | A |
5490117 | Oda et al. | Feb 1996 | A |
5495442 | Cernea et al. | Feb 1996 | A |
5504760 | Harari et al. | Apr 1996 | A |
5508971 | Cernea et al. | Apr 1996 | A |
5513138 | Manabe et al. | Apr 1996 | A |
5515333 | Fujita et al. | May 1996 | A |
5519847 | Fandrich et al. | May 1996 | A |
5523980 | Sakui et al. | Jun 1996 | A |
5524230 | Sakaue et al. | Jun 1996 | A |
5530673 | Tobita et al. | Jun 1996 | A |
5530828 | Kaki et al. | Jun 1996 | A |
5530938 | Akasaka et al. | Jun 1996 | A |
5532962 | Auclair et al. | Jul 1996 | A |
5532964 | Cernea et al. | Jul 1996 | A |
5534456 | Yuan et al. | Jul 1996 | A |
5535328 | Harari et al. | Jul 1996 | A |
5541551 | Brehner et al. | Jul 1996 | A |
5544118 | Harari | Aug 1996 | A |
5544356 | Robinson et al. | Aug 1996 | A |
5552698 | Tai et al. | Sep 1996 | A |
5554553 | Harari | Sep 1996 | A |
5563825 | Cernea et al. | Oct 1996 | A |
5566314 | DeMarco et al. | Oct 1996 | A |
5568439 | Harari | Oct 1996 | A |
5572466 | Sukegawa | Nov 1996 | A |
5579502 | Konishi et al. | Nov 1996 | A |
5581723 | Hasbun et al. | Dec 1996 | A |
5583812 | Harari | Dec 1996 | A |
5592415 | Kato et al. | Jan 1997 | A |
5592420 | Cernea et al. | Jan 1997 | A |
5596526 | Assar et al. | Jan 1997 | A |
5598370 | Niijima et al. | Jan 1997 | A |
5602987 | Harari et al. | Feb 1997 | A |
5603001 | Sukegawa et al. | Feb 1997 | A |
5606660 | Estakhri et al. | Feb 1997 | A |
5611067 | Okamoto et al. | Mar 1997 | A |
5640528 | Harney et al. | Jun 1997 | A |
5642312 | Harari | Jun 1997 | A |
5648929 | Miyamoto | Jul 1997 | A |
5663901 | Wallace et al. | Sep 1997 | A |
5693570 | Cernea et al. | Dec 1997 | A |
5712819 | Harari | Jan 1998 | A |
5719808 | Harari et al. | Feb 1998 | A |
5723990 | Roohparvar | Mar 1998 | A |
5734567 | Griffiths et al. | Mar 1998 | A |
5745418 | Ma et al. | Apr 1998 | A |
5754567 | Norman | May 1998 | A |
5757712 | Nagel et al. | May 1998 | A |
5758100 | Odisho | May 1998 | A |
5761117 | Uchino et al. | Jun 1998 | A |
5768190 | Tanaka et al. | Jun 1998 | A |
5768195 | Nakamura et al. | Jun 1998 | A |
5773901 | Kantner | Jun 1998 | A |
5778418 | Auclair et al. | Jul 1998 | A |
5781478 | Takeuchi et al. | Jul 1998 | A |
5787445 | Daberko | Jul 1998 | A |
5787484 | Norman | Jul 1998 | A |
RE35881 | Barrett et al. | Aug 1998 | E |
5799168 | Ban | Aug 1998 | A |
5802551 | Komatsu et al. | Sep 1998 | A |
5809515 | Kaki et al. | Sep 1998 | A |
5809558 | Matthews et al. | Sep 1998 | A |
5809560 | Schneider | Sep 1998 | A |
5818350 | Estakhri et al. | Oct 1998 | A |
5818781 | Estakhri et al. | Oct 1998 | A |
5822245 | Gupta et al. | Oct 1998 | A |
5822252 | Lee et al. | Oct 1998 | A |
5822781 | Wells et al. | Oct 1998 | A |
5831929 | Manning | Nov 1998 | A |
5835935 | Estakhri et al. | Nov 1998 | A |
5838614 | Estakhri et al. | Nov 1998 | A |
5845313 | Estakhri et al. | Dec 1998 | A |
5847552 | Brown | Dec 1998 | A |
5860083 | Sukegawa | Jan 1999 | A |
5860124 | Matthews et al. | Jan 1999 | A |
5862099 | Gannage et al. | Jan 1999 | A |
5890192 | Lee et al. | Mar 1999 | A |
5901086 | Wang et al. | May 1999 | A |
5907856 | Estakhri et al. | May 1999 | A |
5909586 | Anderson | Jun 1999 | A |
5920884 | Jennings, III et al. | Jul 1999 | A |
5924113 | Estakhri et al. | Jul 1999 | A |
5928370 | Asnaashari | Jul 1999 | A |
5930815 | Estakhri et al. | Jul 1999 | A |
5933368 | Ma et al. | Aug 1999 | A |
5933846 | Endo | Aug 1999 | A |
5936971 | Harari et al. | Aug 1999 | A |
5937425 | Ban | Aug 1999 | A |
5953737 | Estakhri et al. | Sep 1999 | A |
5956473 | Ma et al. | Sep 1999 | A |
5959926 | Jones et al. | Sep 1999 | A |
5966727 | Nishino | Oct 1999 | A |
5986933 | Takeuchi et al. | Nov 1999 | A |
5987563 | Itoh et al. | Nov 1999 | A |
5987573 | Hiraka | Nov 1999 | A |
5991849 | Yamada et al. | Nov 1999 | A |
6011322 | Stumfall et al. | Jan 2000 | A |
6011323 | Camp | Jan 2000 | A |
6018265 | Keshtbod | Jan 2000 | A |
6021408 | Ledain et al. | Feb 2000 | A |
6026020 | Matsubara et al. | Feb 2000 | A |
6026027 | Terrell, II et al. | Feb 2000 | A |
6034897 | Estakhri et al. | Mar 2000 | A |
6035357 | Sakaki | Mar 2000 | A |
6040997 | Estakhri | Mar 2000 | A |
6041001 | Estakhri | Mar 2000 | A |
6047352 | Lakhani et al. | Apr 2000 | A |
6055184 | Acharya et al. | Apr 2000 | A |
6055188 | Takeuchi et al. | Apr 2000 | A |
6069827 | Sinclair | May 2000 | A |
6072796 | Christensen et al. | Jun 2000 | A |
6076137 | Asnaashari | Jun 2000 | A |
6081447 | Lofgren et al. | Jun 2000 | A |
6081878 | Estakhri et al. | Jun 2000 | A |
6084483 | Keshtbod | Jul 2000 | A |
6097666 | Sakui et al. | Aug 2000 | A |
6115785 | Estakhri et al. | Sep 2000 | A |
6122195 | Estakhri et al. | Sep 2000 | A |
6125424 | Komatsu et al. | Sep 2000 | A |
6125435 | Estakhri et al. | Sep 2000 | A |
6128695 | Estakhri et al. | Oct 2000 | A |
6134145 | Wong | Oct 2000 | A |
6134151 | Estakhri et al. | Oct 2000 | A |
6141249 | Estakhri et al. | Oct 2000 | A |
6145051 | Estakhri et al. | Nov 2000 | A |
6151247 | Estakhri et al. | Nov 2000 | A |
6172906 | Estakhri et al. | Jan 2001 | B1 |
6173362 | Yoda | Jan 2001 | B1 |
6181118 | Meehan et al. | Jan 2001 | B1 |
6182162 | Estakhri et al. | Jan 2001 | B1 |
6202138 | Estakhri et al. | Mar 2001 | B1 |
6223308 | Estakhri et al. | Apr 2001 | B1 |
6226708 | McGoldrick et al. | May 2001 | B1 |
6230234 | Estakhri et al. | May 2001 | B1 |
6262918 | Estakhri et al. | Jul 2001 | B1 |
6272610 | Katayama et al. | Aug 2001 | B1 |
6275436 | Tobita et al. | Aug 2001 | B1 |
6279069 | Robinson et al. | Aug 2001 | B1 |
6279114 | Toombs et al. | Aug 2001 | B1 |
6285607 | Sinclair | Sep 2001 | B1 |
6327639 | Asnaashari | Dec 2001 | B1 |
6345367 | Sinclair | Feb 2002 | B1 |
6374337 | Estakhri | Apr 2002 | B1 |
6385667 | Estakhri et al. | May 2002 | B1 |
6393513 | Estakhri et al. | May 2002 | B2 |
6397314 | Estakhri et al. | May 2002 | B1 |
6411546 | Estakhri et al. | Jun 2002 | B1 |
6467021 | Sinclair | Oct 2002 | B1 |
6490649 | Sinclair | Dec 2002 | B2 |
6567307 | Estakhri | May 2003 | B1 |
6578127 | Sinclair | Jun 2003 | B1 |
6587382 | Estakhri et al. | Jul 2003 | B1 |
6711059 | Sinclair et al. | Mar 2004 | B2 |
6721819 | Estakhri et al. | Apr 2004 | B2 |
6721843 | Estakhri | Apr 2004 | B1 |
6725321 | Sinclair et al. | Apr 2004 | B1 |
6728851 | Estakhri et al. | Apr 2004 | B1 |
6751155 | Gorobets | Jun 2004 | B2 |
6757800 | Estakhri et al. | Jun 2004 | B1 |
6772274 | Estakhri | Aug 2004 | B1 |
6813678 | Sinclair et al. | Nov 2004 | B1 |
6898662 | Gorobets | May 2005 | B2 |
6912618 | Estakhri et al. | Jun 2005 | B2 |
6950918 | Estakhri | Sep 2005 | B1 |
6957295 | Estakhri | Oct 2005 | B1 |
6973519 | Estakhri et al. | Dec 2005 | B1 |
6978342 | Estakhri et al. | Dec 2005 | B1 |
7000064 | Payne et al. | Feb 2006 | B2 |
20030033471 | Lin et al. | Feb 2003 | A1 |
Number | Date | Country |
---|---|---|
0 557 723 | Jan 1987 | AU |
0 220 718 | May 1987 | EP |
0 243 503 | Nov 1987 | EP |
0 392 895 | Oct 1990 | EP |
0 424 191 | Apr 1991 | EP |
0 489 204 | Jun 1992 | EP |
0 522 780 | Jan 1993 | EP |
0 544 252 | Jun 1993 | EP |
0 613 151 | Aug 1994 | EP |
0 617 363 | Sep 1994 | EP |
0 619 541 | Oct 1994 | EP |
0 663 636 | Jul 1995 | EP |
0 686 976 | Dec 1995 | EP |
0 691 008 | Jan 1996 | EP |
0 722 585 | Jul 1996 | EP |
0 852 765 | Jul 1998 | EP |
0 852 766 | Jul 1998 | EP |
0 861 468 | Sep 1998 | EP |
0 891 580 | Jan 1999 | EP |
0 896 699 | Feb 1999 | EP |
0 897 579 | Feb 1999 | EP |
0 910 826 | Apr 1999 | EP |
0 978 040 | Feb 2000 | EP |
1 157 328 | Nov 2001 | EP |
93 01908 | Aug 1993 | FR |
2 251 323 | Jul 1992 | GB |
2 291 990 | Feb 1996 | GB |
2 291 991 | Feb 1996 | GB |
2 297 637 | Aug 1996 | GB |
2 304 428 | Mar 1997 | GB |
2 348 991 | Oct 2000 | GB |
2 351 822 | Jan 2001 | GB |
2 384 072 | Jul 2003 | GB |
2 384 337 | Jul 2003 | GB |
2 384 338 | Jul 2003 | GB |
2 384 883 | Aug 2003 | GB |
2 411 499 | Aug 2005 | GB |
117881 | May 2003 | IS |
58-215794 | Dec 1983 | JP |
58-215795 | Dec 1983 | JP |
59-045695 | Mar 1984 | JP |
59-162695 | Sep 1984 | JP |
60-212900 | Oct 1985 | JP |
61-096598 | May 1986 | JP |
62-283496 | Dec 1987 | JP |
62-283497 | Dec 1987 | JP |
63-183700 | Jul 1988 | JP |
1-138694 | May 1989 | JP |
3-228377 | Sep 1991 | JP |
4-057295 | Feb 1992 | JP |
4-254994 | Sep 1992 | JP |
4-268284 | Sep 1992 | JP |
4-278297 | Oct 1992 | JP |
4-332999 | Nov 1992 | JP |
5-128877 | May 1993 | JP |
5-282883 | Oct 1993 | JP |
6-036578 | Feb 1994 | JP |
6-124175 | May 1994 | JP |
6-124231 | May 1994 | JP |
6-131889 | May 1994 | JP |
6-132747 | May 1994 | JP |
6-149395 | May 1994 | JP |
6-266596 | Sep 1994 | JP |
7-093499 | Apr 1995 | JP |
7-311708 | Nov 1995 | JP |
8-018018 | Jan 1996 | JP |
8-069696 | Mar 1996 | JP |
9-147581 | Jun 1997 | JP |
1388877 | Apr 1988 | SU |
1408439 | Jul 1988 | SU |
1515164 | Oct 1989 | SU |
1541619 | Feb 1990 | SU |
1573458 | Jun 1990 | SU |
1686449 | Oct 1991 | SU |
WO 8400628 | Feb 1984 | WO |
WO 9420906 | Sep 1994 | WO |
Number | Date | Country | |
---|---|---|---|
20110307682 A1 | Dec 2011 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12773187 | May 2010 | US |
Child | 13216291 | US | |
Parent | 11652727 | Jan 2007 | US |
Child | 12773187 | US | |
Parent | 10455550 | Jun 2003 | US |
Child | 11652727 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 09620544 | Jul 2000 | US |
Child | 10455550 | US |