Atrial fibrillation (“AF”) of the human heart is a common arrhythmia which is estimated to affect anywhere from 2.2 million to about 5.1 million Americans, as well as approximately 5% of the elderly population over 69 years of age. Theoretically, the AF mechanism involves two main processes: (1) higher automaticity in one or more rapidly depolarizing foci and (2) reentry of conduction involving one or more circuits. Rapid atrial foci, often located in at least one of the superior pulmonary veins, can begin AF in predisposed patients. In addition, the “multiple-wavelet hypothesis” has been proposed as a potential mechanism for AF caused by conduction reentry. According to the hypothesis, normal conduction wave fronts break up, resulting in a number of self-perpetuating “daughter” wavelets that spread through the atria causing abnormal contraction of the myocardium.
Surgical treatment of AF requires the construction of barriers to conduction within the right atrium and left atrium to restrict the amount of myocardium available to spread reentrant wave fronts, thereby inhibiting sustained AF. By making incisions in the myocardium, conduction is interrupted. Since it has been demonstrated that the pulmonary veins often contain the specific rapidly-depolarizing loci, incisions encircling the pulmonary veins can help prevent AF. Similarly, potentially arrhythmogenic foci close to the pulmonary veins, as well as specific atrial regions with the shortest refractory periods, may be isolated from the rest of the atria by strategically placed incisions. Although the risk of such surgery alone is typically less than 1%, the need for median sternotomy and the use of cardiopulmonary bypass, as well as a risk of short-term fluid retention, make this procedure less than ideal.
As an alternative to surgery, catheter ablation has evolved as a standard therapy for patients at high risk for ventricular and supraventricular tachyarrhythmia. The recognition that foci triggering AF frequently initiate within the pulmonary veins has led to ablation strategies that target this zone or that electrically isolate the pulmonary veins from the left atrium. In the superior vena cava, the right atrium, left atrium, and coronary sinus were found as other sites of arrhythmogenic foci. The frequency of recurrent AF has been reduced in more than 60% of patients by the ablation of the foci (superior vena cava, the right and left atria, and the coronary sinus). However, the risk of recurrent AF following a focal ablation procedure is still between 30% to 50% over the first year and is even higher when the ablation involves an attempt to isolate more than one pulmonary vein.
In most circumstances, the cardiac ablation catheter is inserted into a blood vessel (artery or vein), usually through an entry site located in the upper leg or neck. Under fluoroscopy, the tube is navigated through the blood vessels until it reaches the heart. In the heart, electrodes at the catheter tip gather data that pinpoint the location of faulty tissue in the heart (electrical mapping). Once the site is identified, the device delivers either radiofrequency energy (RF ablation) or intense cold (cryoablation) to destroy the small section of tissue. The major goal of this procedure is segmental pulmonary vein isolation and circumferential pulmonary vein ablation. The circumferential ablation strategy yields either an atriovenous electrical disconnection, as demonstrated by elimination of pulmonary vein ostial potentials and absence of discrete electrical activity inside the lesion during pacing from outside the ablation line, or a profound atrial electroanatomical remodeling as expressed by voltage abatement inside and around the encircled areas involving to some extent the posterior wall of the left atrium. The endpoint is the electrical isolation of the pulmonary veins from the left atrium, as they house foci triggering AF in about 80% to about 95% of cases and seem to play a key role in arrhythmia maintenance.
Possible complications of catheter ablation for AF include systemic embolism, pulmonary vein stenosis, pericardial effusion, cardiac tamponade, and phrenic nerve paralysis. The majority of these risks stem from the ablation of an incorrect region. Hence, proper navigation during cardiac ablation is one of the greatest challenges for the electrophysiologist performing the procedure.
Visualization of endocardial structure and ablation lesions through flowing blood has been an obstacle for proper navigation during cardiac ablation. Currently, clinicians perform cardiac ablation using intracardiac echo based on ultrasound. A catheter is advanced from the femoral vein into the heart, thereby allowing the clinician to observe the heart from the inside. This method enables good anatomy imaging, and the clinician can view the electrode-tissue interface during the ablation. Despite this technology, however, the clinician cannot have complete certainty after the ablation procedure that the procedure created a permanent lesion that has destroyed only the targeted tissue and nothing more.
Another method used to determine the accuracy of the ablation is to compare the electrical signals in the heart before and after the procedure to determine whether certain arrhythmogenic signals have been eliminated. However, this method does not always provide sufficient evidence that a permanent lesion has been created as a result of the ablation.
Thus, these approaches fall short of providing optimum clarity and accuracy regarding the ablation. Furthermore, conventional technologies do not combine the function of direct visualization and ablation into one catheter, but instead require the use and coordination of multiple catheters, thereby inherently increasing the risks to the patient.
A new technique has emerged that allows an electrophysiologist to create a real-time 3-D electroanatomical cardiac map using GPS-like technology called CARTO™. The created map is then merged with CT or MRI images providing detailed structures of the chambers of the heart. Real-time intracardiac echocardiography, along with fluoroscopy, is also used to enhance the safety and efficacy of the procedure. Another system, called the LOCALISA®. Intracardiac Navigation System, allows a user to continuously monitor mapping and ablation catheter positions, thus facilitating pulmonary vein isolation procedures and reducing radiation exposure to the patient and medical personnel.
Although these newer systems have significant potential, they are generally unavailable to the typical electrophysiology laboratory because of cost. Thus, there is a need for an efficient, easy to use, and reasonably priced technique for localization and ablation that can be adapted for use in virtually any clinic.
Various embodiments of devices, systems, and methods for localization of body lumen junctures are disclosed herein. At least some of the disclosed embodiments allow a clinician to identify a body lumen junction, such as a pulmonary vein-atrial junction, or other desired anatomical structures, to a higher spatial resolution than with conventional techniques. Thus, subsequent ablation may be performed using the same device that presented a visual signal of the junction, thereby decreasing the tools required for proper location and ablation of the junction and targeted tissue.
Some embodiments disclosed herein include systems for localizing a body lumen junction or other intraluminal structure. These systems comprise a catheter having a proximal end and a distal end for placement into a body lumen. The catheter may comprise a first electrode and a second electrode, and each of the first and second electrodes have a proximal end and a distal end; the distal ends of the first and second electrodes are located between the proximal and distal ends of the catheter. The system further comprises a processor connected to the first and second electrodes of the catheter. The processor is capable of collecting conductance data to determine a profile of the body lumen. The conductance data is collected at a plurality of locations within the body lumen and determined at each of the plurality of locations when the distal ends of the first and second electrodes are immersed in a fluid within the body lumen. In some embodiments, the processor is also capable of calculating a cross-sectional area of the body lumen at each of the plurality of locations within the body lumen using the conductance data.
For certain embodiments of such systems, the relevant body lumen comprises at least a portion of an atrium, a pulmonary vein-atrial junction, a blood vessel, a biliary tract, or an esophagus. Indeed, many embodiments may be used in connection with any other body lumen that is suitable for access and localization.
The body lumen may have at least some fluid inside, and the fluid may comprise blood or another suitable fluid, such as a solution of NaCl having a known conductivity. Certain embodiments of the catheter have a passageway for passing fluid through the catheter to the location of the distal ends of the first and second electrodes, such that the fluid passing through the passageway comes in contact with the distal ends of the first and second electrodes. For some embodiments, the conductance data is determined at each of a plurality of locations within the lumen when the distal ends of the first and second electrodes are immersed in a first fluid having a first conductivity and then a second fluid having a second conductivity. The conductance data may comprise a first conductance value determined at each of the plurality of locations when the distal ends of the first and second electrodes are immersed in the first fluid and a second conductance value determined at each of the plurality of locations when the distal ends of the first and second electrodes are immersed in the second fluid. The profile of the body lumen is therefore determined from the first and second conductance values collected from each of the plurality of locations, the first conductivity of the first fluid, and the second conductivity of the second fluid. The profile may consist of actual or relative values for cross-sectional areas or conductances.
Many embodiments disclosed herein have a catheter with at least four electrodes, including at least two excitation electrodes and at least two detection electrodes. Each of the electrodes has a proximal end and a distal end, wherein the proximal ends of the electrodes may be connected to the processor directly or indirectly. In at least some embodiments, the distal ends of the excitation electrodes are located between the proximal and distal ends of the catheter, and the distal ends of the detection electrodes are located between the distal ends of the excitation electrodes.
Certain of the disclosed embodiments have at least one ablation contact positioned at the distal end of the catheter, enabling the clinician to perform an ablation immediately following localization without having to change catheters. The one or more ablation contacts are configured to remove or destroy a targeted tissue within the body lumen, such as by heating the tissue, freezing the tissue using cryoablation, mechanically destroying or removing the tissue, or by delivering an electrical charge to the tissue. With respect to embodiments using electricity for ablation, an adhesive grounding pad may be attached to the outside of the patient's body in order to conduct the electrical charge from the targeted tissue.
The targeted tissue may include tissue that is located at, or adjacent to, a pulmonary vein-atrial junction. Such tissue may at least partially surround the junction, and may substantially surround the junction. For proper location of the ablation, the ablation contact may be positioned circumferentially around a substantially circular portion of the catheter. In some embodiments the catheter includes more than one ablation contact.
Certain embodiments disclosed herein include a number of steps for localizing a junction or other structure within a body lumen, including providing an embodiment of a system as disclosed herein; introducing the catheter into the body lumen; providing electrical current flow to the body lumen through the catheter; measuring a first conductance value at a first location in the body lumen; moving the catheter to a second location in the body lumen; measuring a second conductance value at a second location in the body lumen; and determining a profile of the body lumen based on the first conductance value of the first location and the second conductance value of the second location. The profile of the body lumen resulting from such embodiments may include relative conductances and/or relative cross-sectional areas.
For other embodiments, the actual values for the lumen conductance or cross-sectional area are determined by further injecting a known volume of a first solution having a first conductivity into the body lumen; injecting a second solution having a second conductivity into the body lumen, wherein the second solution has a second volume and wherein the second conductivity does not equal the first conductivity; measuring a second conductance value at the first location in the body lumen; calculating the conductance at the first location in the body lumen; measuring a first conductance value at a second location in the body lumen; and calculating the conductance at the second location in the body lumen. The determination of the profile of the body lumen may be based on the conductance of the first location, the conductance of the second location, and the conductivities of the first and second solutions. In addition, in some embodiments, the tissue is ablated after localization using the same catheter for both aspects of the procedure.
It will be appreciated by those of skill in the art that the following detailed description of the disclosed embodiments is merely exemplary in nature and is not intended to limit the scope of the appended claims.
During various medical procedures involving intraluminal insertion of catheters or other devices, proper navigation of the device through body lumens, such as blood vessels or the heart, is critical to the success of the procedure. Indeed, unless the tissue targeted for treatment or diagnosis during the procedure is properly located, the procedure can be ineffective or, even worse, damaging to nearby healthy tissue. Therefore, a number of the embodiments disclosed herein permit a clinician to readily locate a catheter, such as an ablation catheter, or other medical device within a body lumen in relation to body lumen junctions or other anatomical structures within the lumen. This leads to proper localization of targeted tissue and increased favorable outcomes.
Some of the disclosed embodiments measure electrical conductance within the body lumen and display a profile of relative conductance values, while other embodiments use conductance data to calculate luminal cross-sectional areas and display a profile of relative cross-sectional areas along a portion of the lumen. These profiles enable the clinician to readily locate the targeted tissue for further treatment, such as ablation. In some embodiments, the conductance catheter and the ablation catheter is combined into one device so that ablation can occur immediately following localization, without requiring a change of catheters.
Many of the disclosed embodiments do not calculate an absolute value for a lumen's cross-sectional area, but instead measure electrical conductance through a portion of the lumen to form a profile of the lumen. Often, the profile comprises relative conductances taken along the lumen. However, because conductance is proportional to cross-sectional area, as explained herein, the profile can comprise relative cross-sectional areas that have been determined from the conductances taken along the lumen.
By monitoring the profile during catheterization, the clinician can visualize the anatomical structure of the lumen. For example, using a push through or a pull back of a disclosed embodiment of a catheter through a lumen, a clinician is able to localize a junction or other architectural marker in the body lumen. Such a push through or pull back will reflect, in relative terms, the lumen's changes in conductance, and therefore its changes in cross-sectional area, as the catheter moves, thereby depicting changes in lumen structure across a distance. Based on such changes in lumen structure, a clinician can determine the locations of various anatomical markers of the lumen, as well as the location of the catheter in relation to those markers. For example, localization of the junction between the relatively small pulmonary veins and the significantly larger atrium is possible by assessing the change in conductance (and therefore in cross-sectional area) of the lumen as the catheter is pushed through the vein into the atrium.
Once a specific lumen junction or other anatomical structure is localized, the clinician can better treat a targeted tissue at or near that identifying structure. Such treatment may include, for example, ablation, localized drug delivery, angioplasty, or stent delivery. One common use of ablation is to electrically isolate arrhythmogenic foci, which are often found in the superior pulmonary veins, from the left atrium to prevent atrial fibrillation in at-risk patients. To isolate the vein and prevent further arrhythmogenic conduction from the foci, the cardiac tissue surrounding the pulmonary vein at or adjacent to the pulmonary vein-atrial junction is ablated. Ablation can be performed in a number of ways, including mechanically, electrically, using heat, or using cryoablation. Regardless of the method for removing or destroying the targeted tissue, the clinician preparing to ablate an area of cardiac tissue surrounding a pulmonary vein must direct the ablation device, often a catheter configured for ablation, to the targeted tissue surrounding the pulmonary vein-atrial junction.
Various devices, systems, and methods for localization of body lumen junctures disclosed herein permit the clinician to accurately locate the pulmonary vein-atrial junction, as well as confirm the location of the ablation catheter with respect to the junction (and, therefore, the targeted tissue). Indeed, localization using the disclosed embodiments will minimize undesired ablation into the pulmonary veins, which causes shrinkage of collagen and hence pulmonary vein stenosis. It will also minimize the ablation of the atrium too far from the pulmonary vein, where the ablation circumference is too large and isolation of conductance is unlikely.
Experiments have demonstrated the ability of the disclosed embodiments to provide accurate and reliable feedback as to the location of a catheter within a body lumen. For instance, a surgical glove was filled with saline to simulate a left atrium (the palm) and pulmonary veins (the fingers). A catheter configured for localization as described herein was pulled back from inside a finger to the palm, thereby simulating the transition from a pulmonary vein to the atrium.
A similar pullback experiment was carried out in a heart. Starting from the pulmonary vein, a catheter configured for localization as described herein was pulled back from the pulmonary vein into the left atrium and ventricle.
Using conductance data like that shown in
A conductance or impedance catheter measures conductance within a body lumen using a number of electrodes. Referring now to
As shown in
Many embodiments disclosed herein, such as the embodiment shown in
Although the embodiments shown in
Although at least some embodiments can properly measure lumen conductance in the presence of a bodily fluid (such as blood) within the lumen, certain other embodiments may use fluids injected into the body lumen to properly calculate lumen conductance and/or cross-sectional area, as explained herein. Therefore, some embodiments include a channel through which fluid is injected into the body lumen. In the embodiment shown in
Referring again to
Referring now to
In addition, catheter 22 possesses an optional infusion passageway 35 located proximal to excitation electrode 25, as well as optional ports 36 for suction of contents of the body lumen or for infusion of fluid. The fluid to inject through passageway 35 or ports 36 can be any biologically compatible fluid, but, for some circumstances disclosed herein, the conductivity of the fluid is selected to be different from that of blood.
In various embodiments, including for example the embodiment shown in
In addition to localization and ablation, some embodiments disclosed herein provide other functionality.
With reference to the embodiment shown in
Detection electrodes 26 and 28 are spaced 1 mm apart, while excitation electrodes 25 and 27 are spaced 4 mm to 5 mm from either side of the detection electrodes. The excitation and detection electrodes typically surround the catheter as ring electrodes, but they may also be point electrodes or have other suitable configurations. These electrodes may be made of any conductive material, such as platinum iridium or a material with a carbon-coated surface to avoid fibrin deposits. In at least one embodiment, the detection electrodes are spaced with 0.5 mm to 1 mm between them and with a distance of between 4 mm and 7 mm to the excitation electrodes on small catheters. On large catheters, for use in larger vessels and other larger body lumens, the electrode distances may be larger. The dimensions of the catheter selected for a treatment depend on the size of the vessel or other body lumen and are preferably determined in part on the results of finite element analysis.
In one approach, dimensions of a catheter to be used for any given application depend on the optimization of the potential field using finite element analysis described below. For small organs or in pediatric patients, the diameter of the catheter may be as small as 0.3 mm. In large organs, the diameter may be significantly larger depending on the results of the optimization based on finite element analysis. The balloon will typically be sized according to the preferred dimension of the organ after the distension. The balloon may be made of materials suitable for the function, such as, for example, polyethylene, latex, polyestherurethane, or combinations thereof. The thickness of the balloon will typically be on the order of a few microns. The catheter will typically be made of PVC or polyethylene, though other materials may be used equally well. The tip of the catheter can be straight, curved, or angled to facilitate insertion into the coronary arteries or other body lumens, such as, for example, the biliary tract.
Referring again to
In at least one embodiment, a fluid-filled silastic pressure-monitoring catheter is connected to a pressure transducer. Luminal pressure can be monitored by a low compliance external pressure transducer coupled to the infusion channel of the catheter. Pressure transducer calibration was carried out by applying 0 and 100 mmHg of pressure by means of a hydrostatic column.
In another embodiment, shown in
In various embodiments, the conductance may be measured using a two-electrode system (see
In another embodiment, shown in
With reference to the embodiment shown in
Referring now to the embodiment shown in
Many of the embodiments described herein may be used as part of a system, which includes suitable connections between the system's various parts. As described below with reference to
Pressure conduits for perfusion manometry connect pressure ports 90, 91 to transducers included in the data processor system 100. As shown in
With reference to
In at least one embodiment, the system is pre-calibrated and a catheter is available in a package. The package also may contain sterile syringes with fluids to be injected. The syringes are attached to the machine, and after heating of the fluid by the machine and placement of the catheter in the body lumen of interest, the user presses a button that initiates the injection with subsequent computation of the desired parameters. The CSA, parallel conductance, and/or other relevant measures, such as distensibility, tension, etc., will typically appear on the display panel in the PC module 160. The user can then remove the stenosis by distension or by placement of a stent.
If more than one CSA is measured at the same time, the system can contain a multiplexer unit or a switch between CSA channels. In at least one embodiment, each CSA measurement or pressure measurement will be through separate amplifier units.
In at least one embodiment, the impedance and pressure data are analog signals which are converted by analog-to-digital converters 150 and transmitted to a computer 160 for on-line display, on-line analysis, and storage. In other embodiments, all data handling is done on an entirely analog basis.
The processor system includes software programs for analyzing the conductance data. Additional software calculates cross-sectional areas based on a number of categories of data, as disclosed herein. However, as discussed in more detail below, to calculate for absolute cross-sectional values, certain errors must be reduced or eliminated. The software can be used to reduce the error in CSA values due to conductance of current in the lumen wall and surrounding tissue and to display the two-dimensional or three-dimensional geometry of the CSA distribution along the length of the vessel (and, optionally, along with the pressure gradient). In one embodiment of the software, a finite element approach or a finite difference approach is used to derive the CSA of organ stenosis, taking parameters such as conductivities of the fluid in the lumen and of the lumen wall and surrounding tissue into consideration.
In another embodiment, simpler circuits are used. As explained herein, absolute cross-sectional values may be calculated based on two or more injections of different NaCl solutions, which varies the conductivity of fluid in the lumen. In other embodiments, the software contains the code for reducing the error in luminal CSA measurement by analyzing signals during interventions, such as infusion of a fluid into the lumen or by changing the amplitude or frequency of the current from the current amplifier. The software chosen for a particular application may allow for computation of the CSA with only a small error instantly or within acceptable time during the medical procedure.
Referring now to
Thus, the change in voltage, ΔV, is equal to the magnitude of the current, I, multiplied by the distance between the detection electrodes, L, divided by the conductivity of the fluid in the lumen, C, and divided by the cross-sectional area, CSA. Because the current (I), the distance (L), and the conductivity (C) normally can be regarded as calibration constants during a localization procedure, an inversely proportional relationship exists between the voltage difference and the CSA, as shown by the following equation:
In other words, as the cross-sectional area of the lumen decreases, the change in voltage measured by catheter 22 increases. As discussed earlier, conductance and cross-sectional area are proportional. Thus, this equation permits the relative conductances or cross-sectional areas of various intralumen anatomical structures to be determined from measurement of the change in voltage across the lumen using at least one excitation electrode and one detection electrode.
This measurement, however, does not produce accurate, or absolute, values of conductance or cross-sectional area because of the loss of current in the wall of the lumen and surrounding tissue. Although relying on the relative conductances or cross-sectional areas is sufficient for the localization of intraluminal structures, other embodiments for other purposes may require the accurate determination of absolute values for cross-sectional areas.
For example, accurate measures of the luminal cross-sectional area of organ stenosis within acceptable limits enables accurate and scientific stent sizing and placement. Proper stent implantation improves clinical outcomes by avoiding under or over deployment and under or over sizing of a stent, which can cause acute closure or in-stent re-stenosis. In at least one embodiment disclosed herein, an angioplasty or stent balloon includes impedance electrodes supported by the catheter in front of the balloon. These electrodes enable the immediate determination of the cross-sectional area of the vessel during the balloon advancement. This provides a direct measurement of non-stenosed area and allows the selection of the appropriate stent size. In one approach, error due to the loss of current in the wall of the organ and surrounding tissue is corrected by injection of two solutions of NaCl or other solutions with known conductivities. In another embodiment, impedance electrodes are located in the center of the balloon in order to deploy the stent to the desired cross-sectional area. These embodiments and procedures substantially improve the accuracy of stenting and the outcome of such stenting, as well as reduce overall costs.
Other embodiments make diagnosis of valve stenosis more accurate and more scientific by providing a direct, accurate measurement of cross-sectional area of the valve annulus, independent of the flow conditions through the valve. Thus, in such embodiments, the excitation and detection electrodes are embedded within a catheter to measure the valve area directly, independent of cardiac output or pressure drop, and therefore errors in the measurement of valve area are minimized. Further, pressure sensors may be mounted proximal and distal to the impedance electrodes to provide simultaneous pressure gradient recording.
Other embodiments improve evaluation of cross-sectional area and flow in organs like the gastrointestinal tract and the urinary tract
At least some of the disclosed embodiments overcome the problems associated with determination of the size (cross-sectional area) of luminal organs, such as, for example, in the coronary arteries, carotid, femoral, renal and iliac arteries, aorta, gastrointestinal tract, urethra, and ureter. In addition, at least some embodiments also provide methods for registration of acute changes in wall conductance, such as, for example, due to edema or acute damage to the tissue, and for detection of muscle spasms/contractions.
The operation of catheter 20, shown in
where Gp(z,t) is the effective conductance of the structure outside the bodily fluid (organ wall and surrounding tissue); Cb is the specific conductivity of the bodily fluid, which for blood generally depends on the temperature, hematocrit and orientation and deformation of blood cells; and L is the distance between the detection electrodes. This equation shows that conductance, G(z,t), is proportional to the cross-sectional area, CSA(z,t). Thus, a larger conductance will reflect a larger cross-sectional area, and vice versa.
Equation [2a] can be rearranged to solve for cross sectional area CSA(z,t), with a correction factor, α, if the electric field is non-homogeneous, as
where α would be equal to 1 if the field were completely homogeneous. The parallel conductance, Gp, is an offset error that results from current leakage. Gp would equal 0 if all of the current were confined to the blood and hence would correspond to the cylindrical model given by Equation [1a]. In one approach, finite element analysis is used to properly design the spacing between detection and excitation electrodes relative to the dimensions of the body lumen to provide a nearly homogenous field such that a can be considered equal to 1. Simulations show that a homogenous or substantially homogenous field is provided by (1) the placement of detection electrodes substantially equidistant from the excitation electrodes and (2) maintaining the distance between the detection and excitation electrodes substantially comparable to the body lumen diameter. In one approach, a homogeneous field is achieved by taking steps (1) and/or (2) described above so that a is equals 1 in the foregoing analysis.
Gp is a constant at any given position, z, along the long axis of a body lumen, and at any given time, t, in the cardiac cycle. Hence, two injections of different concentrations (and therefore conductivities) of NaCl solution give rise to two equations:
C1·CSA(z,t)+L·Gp(z,t)=L·G1(z,t) [3a]
and
C2·CSA(z,t)+L·Gp(z,t)=L·G2(z,t) [3b]
which can be solved simultaneously for CSA and Gp as
where subscript “1” and subscript “2” designate any two injections of different NaCl concentrations (and conductivities). For each injection k, Ck gives rise to Gk which is measured as the ratio of the root mean square of the current divided by the root mean square of the voltage. The Ck is typically determined through in vitro calibration for the various NaCl concentrations. The concentration of NaCl used is typically on the order of 0.45 to 1.8%. The volume of NaCl solution is typically about 5 ml, but the amount of solution should be sufficient to momentarily displace the entire local vascular blood volume or other body lumen fluid. The values of CSA(t) and Gp(t) can be determined at end-diastole or end-systole (i.e., the minimum and maximum values) or the mean thereof. The value of CSA would vary through the cardiac cycle, but Gp(t) does not vary significantly.
Once the CSA and Gp of the body lumen are determined according to the above embodiment, rearrangement of Equation [2a] allows the calculation of the specific electrical conductivity of bodily fluid in the presence of fluid flow as
In this way, Equation [2b] can be used to calculate the CSA continuously (temporal variation, as for example through the cardiac cycle) in the presence of bodily fluid.
In one approach, a pull or push through is used to reconstruct the body lumen CSA along its length. During a long injection (e.g., 10 s to 15 s), the catheter can be pulled back or pushed forward at constant velocity, U. Equation [2a] can be expressed as
where the axial position, z, is the product of catheter velocity, U, and time, t; i.e., z=U·t.
For the two injections, denoted by subscript “1” and subscript “2”, respectively, different time points T1, T2, etc., may be considered such that Equation [8] can be written as
and so on. Each set of Equations [9a], [9b] and [10a], [10b], etc. can be solved for CSA1, Gp1 and CSA2, Gp2, respectively. Hence, one can measure the CSA at various time intervals and therefore at different positions along the body lumen to reconstruct the length of the lumen. In at least one embodiment, the data on the CSA and parallel conductance as a function of longitudinal position along the body lumen can be exported from an electronic spreadsheet, such as, for example, a Microsoft Excel file, to diagramming software, such as AutoCAD®, where the software uses the coordinates to render a three-dimensional depiction of the lumen on the monitor.
For example, in one exemplary approach, the pullback reconstruction was made during a long injection where the catheter was pulled back at constant rate by hand. The catheter was marked along its length such that the pullback was made at 2 mm/sec. Hence, during a 10-second injection, the catheter was pulled back about 2 cm. The data was continuously measured and analyzed at every two second interval; i.e., at every 4 mm. Thus, six different measurements of CSA and Gp were taken which were used to reconstruct the CSA and Gp along the length of the 2 cm segment.
In one approach, the wall thickness is determined from the parallel conductance for those body lumens that are surrounded by air or non-conducting tissue. In such cases, the parallel conductance is equal to
where CSAw is the CSA of the lumen wall and Cw is the electrical conductivity of the wall. This equation can be solved for CSAw as
For a cylindrical body lumen, the wall thickness, h, can be expressed as
where D is the diameter of the lumen, which can be determined from the circular CSA(D=[CSA/π]1/2).
When the CSA, pressure, wall thickness, and flow data are determined according to the embodiments outlined above, it is possible to compute the compliance (e.g., ΔCSA/ΔP), tension (e.g., P*r, where P and r are the intraluminal pressure and radius of a cylindrical organ), stress (e.g., P*r/h where h is the wall thickness of the cylindrical organ), strain (e.g., (C-Cd)/Cd where C is the inner circumference and Cd is the circumference in diastole) and wall shear stress (e.g., 4 μQ/r3 where μ, Q and r are the fluid viscosity, flow rate and radius of the cylindrical organ, respectively, for a fully developed flow). These quantities can be used in assessing the mechanical characteristics of the system in health and disease.
In at least one approach for localization or measuring the conductance (and determining the cross-sectional area) of a body lumen, a catheter is introduced from an exteriorly accessible opening (for example, the mouth, nose, or anus for GI applications, or the mouth or nose for airway applications) into the targeted body lumen. For cardiovascular applications, the catheter can be inserted into the lumens in various ways, such as, for example, those used in conventional angioplasty. In at least one embodiment, an 18 gauge needle is inserted into the femoral artery followed by an introducer. A guide wire is then inserted into the introducer and advanced into the lumen of the femoral artery. A 4 or 5 Fr. conductance catheter is then inserted into the femoral artery via wire, and the wire is subsequently retracted. The catheter tip containing the conductance electrodes can then be advanced to the region of interest by use of x-ray (e.g., fluoroscopy). In another approach, this methodology is used on small to medium size vessels (e.g., femoral, coronary, carotid, iliac arteries).
In at least one example of a clinical application, obtaining an accurate measurement (within acceptable limits) of the luminal cross-sectional area of an aortic aneurysm enables accurate and scientific stent sizing and placement. Proper stent implantation improves clinical outcomes by avoiding under or over deployment and under or over sizing of a stent, which can cause acute closure or in-stent re-stenosis. In at least one embodiment, an angioplasty or stent balloon includes impedance electrodes supported by the catheter in front of the balloon. As described herein, these electrodes enable the immediate, or real-time determination of the cross-sectional area of the vessel during the balloon advancement. This provides a direct measurement of non-stenosed area and allows for the appropriate stent size to be selected. In one approach, impedance electrodes are located in the center of the balloon in order to deploy the stent to the desired cross-sectional area. Such embodiments and procedures substantially improve the accuracy of stenting and the outcome of such stenting, as well as reduce overall costs.
In one approach, a minimum of two injections with different concentrations of NaCl (and, therefore, different conductivities) are required to solve for the two unknowns, CSA and Gp. However, in other embodiments disclosed herein, only relative values for conductance or cross-sectional area are necessary, so the injection of two solutions is not necessary. In another approach, three injections will yield three sets of values for CSA and Gp (although not necessarily linearly independent), while four injections would yield six sets of values. In one approach, at least two solutions (e.g., 0.5% and 1.5% NaCl solutions) are injected in the targeted vessel or other lumen. Studies indicate that an infusion rate of approximately 1 ml/s for a five second interval is sufficient to displace the blood volume and results in a local pressure increase of less than 10 mmHg in the coronary artery. This pressure change depends on the injection rate which should be comparable to the lumen flow rate.
In at least one approach, involving the application of Equations [5] and [6], the vessel is under identical or very similar conditions during the two injections. Hence, some variables, such as the infusion rate, bolus temperature, etc., are similar for the two injections. Typically, a short time interval is to be allowed (1 to 2 minute period) between the two injections to permit the vessel to return to homeostatic state. This can be determined from the baseline conductance as shown in
In one approach, the NaCl solution is heated to body temperature prior to injection since the conductivity of current is temperature dependent. In another approach, the injected bolus is at room temperature, but a temperature correction is made since the conductivity is related to temperature in a linear fashion.
In one approach, a sheath is inserted through either the femoral artery or the carotid artery in the direction of flow. To access the lower anterior descending (“LAD”) artery, the sheath is inserted through the ascending aorta. For the carotid artery, where the diameter is typically on the order of 5 mm to 5.5 mm, a catheter having a diameter of 1.9 mm can be used, as determined from finite element analysis, discussed further below. For the femoral and coronary arteries, where the diameter is typically in the range from 3.5 mm to 4 mm, so a catheter of about 0.8 mm diameter would be appropriate. The catheter can be inserted into the femoral, carotid, or LAD artery through a sheath appropriate for the particular treatment. Measurements for all three vessels can be made similarly.
Described here are the protocol and results for one approach that is generally applicable to most arterial vessels. The conductance catheter was inserted through the sheath for a particular vessel of interest. A baseline reading of voltage was continuously recorded. Two containers containing 0.5% and 1.5% NaCl were placed in temperature bath and maintained at 37° C. A 5 ml to 10 ml injection of 1.5% NaCl was made over a 5 second interval. The detection voltage was continuously recorded over a 10 second interval during the 5 second injection. Several minutes later, a similar volume of 1.5% NaCl solution was injected at a similar rate. The data was again recorded. MATLAB® was used to analyze the data including filtering with high pass and with low cut off frequency (1200 Hz). The data was displayed using MATLAB®, and the mean of the voltage signal during the passage of each respective solution was recorded. The corresponding currents were also measured to yield the conductance (G=I/V). The conductivity of each solution was calibrated with six different tubes of known CSA at body temperature. A model using Equation [1a] was fitted to the data to calculate conductivity C. The analysis was carried out with SPSS statistical software using the non-linear regression fit. Given C and G for each of the two injections, an Excel spreadsheet file was formatted to calculate the CSA and Gp as per equations [5] and [6], respectively. These measurements were repeated several times to determine the reproducibility of the technique. The reproducibility of the data was within 5%. Ultrasound was used to measure the diameter of the vessel simultaneous with our conductance measurements. The detection electrodes were visualized with ultrasound, and the diameter measurements was made at the center of the detection electrodes. The maximum differences between the conductance and ultrasound measurements were within 10%.
With reference to
The voltage signals are ideal since the difference between the baseline and the injected solution is apparent and systematic. Furthermore, the pulsation of vessel diameter can be seen in the 0.5% and 1.5% NaCl injections (
The NaCl solution can be injected by hand or by using a mechanical injector to momentarily displace the entire volume of blood or bodily fluid in the lumen segment of interest. For example, in a blood vessel, the pressure generated by the injection will not only displace the blood in the antegrade direction (in the direction of blood flow) but also in the retrograde direction (by momentarily pushing the blood backwards). In other visceral organs which may be normally collapsed, the NaCl solution will not displace blood as in the vessels but will merely open the organs and create a flow of the fluid. In one approach, after injection of a first solution into the treatment or measurement site, sensors monitor and confirm baseline of conductance prior to injection of a second solution into the treatment site.
The injections described above are preferably repeated at least once to reduce errors associated with the administration of the injections, such as, for example, where the injection does not completely displace the blood or where there is significant mixing with blood. It will be understood that any bifurcation(s) (with branching angle near 90 degrees) near the targeted lumen can cause an overestimation of the calculated CSA. Hence, generally the catheter should be slightly retracted or advanced and the measurement repeated. An additional application with multiple detection electrodes or a pull back or push forward during injection will accomplish the same goal. Here, an array of detection electrodes can be used to minimize or eliminate errors that would result from bifurcations or branching in the measurement or treatment site.
In one approach, error due to the eccentric position of the electrode or other imaging device can be reduced by inflation of a balloon on the catheter. The inflation of the balloon during measurement will place the electrodes or other imaging device in the center of the vessel away from the wall. In the case of impedance electrodes, the inflation of the balloon can be synchronized with the injection of a bolus such that the balloon inflation would immediately precede the bolus injection. Our results, however, show that the error due to catheter eccentricity is small.
The CSA predicted by Equation [5] corresponds to the area of the vessel or other lumen external to the catheter (i.e., CSA of vessel minus CSA of catheter). If the conductivity of the NaCl solutions is determined by calibration from Equation [1a] with various tubes of known CSA, then the calibration accounts for the dimension of the catheter and the calculated CSA corresponds to that of the total vessel lumen. In at least one embodiment, the calibration of the CSA measurement system will be performed at 37° C. by applying 100 mmHg in a solid polyphenolenoxide block with holes of known CSA ranging from 7.065 mm2 (3 mm in diameter) to 1017 mm2 (36 mm in diameter). If the conductivity of the solutions is obtained from a conductivity meter independent of the catheter, however, then the CSA of the catheter is generally added to the CSA computed from Equation [5] to give the total CSA of the vessel.
The signals are generally non-stationary, nonlinear, and stochastic. To deal with non-stationary stochastic functions, one can use a number of methods, such as the Spectrogram, the Wavelet's analysis, the Wigner-Ville distribution, the Evolutionary Spectrum, Modal analysis, or the intrinsic model function (“IMF”) method. The mean or peak-to-peak values can be systematically determined by the aforementioned signal analysis and used in Equation [5] to compute the CSA.
For the determination of conductance or cross-sectional area of a heart valve, it is generally not feasible to displace the entire volume of the heart. Hence, the conductivity of the blood is transiently changed by injection of a hypertonic NaCl solution into the pulmonary artery. If the measured total conductance is plotted versus blood conductivity on a graph, the extrapolated conductance at zero conductivity corresponds to the parallel conductance. In order to ensure that the two inner electrodes are positioned in the plane of the valve annulus (2 mm to 3 mm), in one embodiment, two pressure sensors 36 are placed immediately proximal and distal to (1 mm to 2 mm above and below, respectively) the detection electrodes or sets of detection electrodes (see, e.g.,
In one approach, for the esophagus or the urethra, the procedures can conveniently be done by swallowing fluids of known conductivities into the esophagus and infusion of fluids of known conductances into the urinary bladder followed by voiding the volume. In another approach, fluids can be swallowed or urine voided followed by measurement of the fluid conductivities from samples of the fluid. The latter method can be applied to the ureter where a catheter can be advanced up into the ureter and fluids can be injected from a proximal port on the probe (will also be applicable in the intestines) or urine production can be increased and samples taken distal in the ureter during passage of the bolus or from the urinary bladder.
In one approach, concomitant with measuring the conductance, cross-sectional area, and/or pressure gradient at the treatment or measurement site, a mechanical stimulus is introduced by way of inflating the balloon or by releasing a stent from the catheter, thereby facilitating flow through the stenosed part of the lumen. In another approach, concomitant with measuring the conductance, cross-sectional area, and/or pressure gradient at the treatment site, one or more pharmaceutical substances for diagnosis or treatment of stenosis is injected into the treatment site. For example, in one approach, the injected substance can be a smooth muscle agonist or antagonist. In yet another approach, concomitant with measuring the conductance, cross-sectional area, and/or pressure gradient at the treatment site, an inflating fluid is released into the treatment site for release of any stenosis or materials causing stenosis in the lumen or treatment site.
Again, it will be noted that the methods, systems, and catheters described herein can be applied to any body lumen or treatment site. For example, the methods, systems, and catheters described herein can be applied to any one of the following hollow bodily systems: the cardiovascular system including the heart; the digestive system; the respiratory system; the reproductive system; and the urogenital tract.
Finite Element Analysis: In one preferred approach, finite element analysis (FEA) is used to verify the validity of Equations [5] and [6]. There are two major considerations for the model definition: geometry and electrical properties. The general equation governing the electric scalar potential distribution, V, is given by Poisson's equation as:
∇·(C∇V)=−I [13]
where C, I, and ∇ are the conductivity, the driving current density, and the del operator, respectively. Femlab or any standard finite element package can be used to compute the nodal voltages using Equation [13]. Once V has been determined, the electric field can be obtained from E=−∇V.
The FEA allows the determination of the nature of the field and its alteration in response to different electrode distances, distances between driving electrodes, wall thicknesses, and wall conductivities. The percentage of total current in the lumen of the vessel (% I) can be used as an index of both leakage and field homogeneity. Hence, the various geometric and electrical material properties can be varied to obtain the optimum design, i.e., minimizing the non-homogeneity of the field. Furthermore, the experimental procedure was simulated by injection of the two solutions of NaCl to verify the accuracy of Equation [5]. Finally, the effect of the presence of electrodes and the catheter in the lumen of vessel was assessed. The error terms representing the changes in measured conductance due to the attraction of the field to the electrodes and the repulsion of the field from the resistive catheter body were quantified.
Poisson's equation was solved for the potential field, which takes into account the magnitude of the applied current, the location of the current driving and detection electrodes, and the conductivities and geometrical shapes in the model including the vessel wall and surrounding tissue. This analysis suggests that the following conditions are optimal for the cylindrical model: (1) the placement of detection (voltage sensing) electrodes equidistant from the excitation (current driving) electrodes; (2) the distance between the excitation electrodes should be much greater than the distance between the detection electrodes; and (3) the distance between the detection and excitation electrodes is comparable to the vessel diameter, or the diameter of the vessel is small relative to the distance between the driving electrodes. If these conditions are satisfied, the equipotential contours more closely resemble straight lines perpendicular to the axis of the catheter and the voltage drop measured at the wall will be nearly identical to that at the center. Since the curvature of the equipotential contours is inversely related to the homogeneity of the electric field, it is possible to optimize the design to minimize the curvature of the field lines. Consequently, in one approach, one or more of conditions (1)-(3) described above are met to increase the accuracy of the cylindrical model.
Theoretically, it is impossible to ensure a completely homogeneous field given the current leakage through the lumen wall into the surrounding tissue. It was found that the iso-potential line is not constant as one moves out radially along the vessel as stipulated by the cylindrical model.
Thus, a number of the embodiments disclosed herein accurately calculate lumen cross-sectional area by measuring conductance and correcting for various errors inherent in such measurements. However, at least some of the disclosed embodiments provide for the localization of body lumen junctions and other intraluminal anatomical structures using relative conductances and/or cross-sectional areas. Because only relative differences in conductance or cross-sectional area are necessary for accurate localization, the calculation of absolute values for various locations within the body lumen may be skipped in most instances.
While various embodiments of devices, systems, and methods for localization of body lumen junctures have been described in considerable detail herein, the embodiments are merely offered by way of non-limiting examples of the invention described herein. Many variations and modifications of the embodiments described herein will be apparent to one of ordinary skill in the art in light of the disclosure. It will therefore be understood by those skilled in the art that various changes and modifications may be made, and equivalents may be substituted for elements thereof, without departing from the scope of the invention. Indeed, this disclosure is not intended to be exhaustive or to limit the scope of the invention. The scope of the invention is to be defined by the appended claims, and by their equivalents.
Further, in describing representative embodiments, the disclosure may have presented a method and/or process as a particular sequence of steps. However, to the extent that the method or process does not rely on the particular order of steps set forth herein, the method or process should not be limited to the particular sequence of steps described. As one of ordinary skill in the art would appreciate, other sequences of steps may be possible. Therefore, the particular order of the steps disclosed herein should not be construed as limitations on the claims. In addition, the claims directed to a method and/or process should not be limited to the performance of their steps in the order written, and one skilled in the art can readily appreciate that the sequences may be varied and still remain within the spirit and scope of the present invention.
It is therefore intended that the invention will include, and this description and the appended claims will encompass, all modifications and changes apparent to those of ordinary skill in the art based on this disclosure.
This application is a division of U.S. patent application Ser. No. 14/010,169, filed Aug. 26, 2013, now U.S. Pat. No. 10,172,538, which is a continuation U.S. patent application Ser. No. 12/305,520, filed Dec. 18, 2008, now U.S. Pat. No. 9,974,459, which is a § 371 application of International Patent Application No. PCT/US2007/015239, filed Jun. 29, 2007, which claims priority to U.S. Provisional Patent Application No. 60/817,422, filed Jun. 30, 2006, and which also claims priority to and is a continuation-in-part of U.S. patent application Ser. No. 11/063,836, filed Feb. 23, 2005, now U.S. Pat. No. 7,818,053, which is a continuation-in-part of U.S. patent application Ser. No. 10/782,149, filed Feb. 19, 2004, now U.S. Pat. No. 7,454,244, which claims priority to U.S. Provisional Patent Application No. 60/449,266, filed Feb. 21, 2003; U.S. Provisional Patent Application No. 60/493,145, filed Aug. 7, 2003; and U.S. Provisional Patent Application No. 60/502,139, filed Sep. 11, 2003. The contents of each of these applications are hereby incorporated by reference in their entirety into this disclosure.
Number | Name | Date | Kind |
---|---|---|---|
3896373 | Zelby | Jul 1975 | A |
3986373 | Goodlaxson | Oct 1976 | A |
4327723 | Frankhouser | May 1982 | A |
4365639 | Goldreyer | Dec 1982 | A |
4380237 | Newbower | Apr 1983 | A |
4417886 | Frankhouser et al. | Nov 1983 | A |
4562843 | Djordjevich et al. | Jan 1986 | A |
4587975 | Salo et al. | May 1986 | A |
4644960 | Johans | Feb 1987 | A |
4660571 | Hess et al. | Apr 1987 | A |
4840182 | Carlson | Jun 1989 | A |
4841977 | Griffith et al. | Jun 1989 | A |
4873987 | Djordjevich et al. | Oct 1989 | A |
4899759 | Pederson et al. | Feb 1990 | A |
4911174 | Pederson et al. | Mar 1990 | A |
4957110 | Vogel et al. | Sep 1990 | A |
5004456 | Botterbusch et al. | Apr 1991 | A |
5058583 | Geddes et al. | Oct 1991 | A |
5078678 | Katims | Jan 1992 | A |
5121750 | Katims | Jun 1992 | A |
5125410 | Misono et al. | Jun 1992 | A |
5174299 | Nelson | Dec 1992 | A |
5205830 | Dassa et al. | Apr 1993 | A |
5233994 | Shmulewitz | Aug 1993 | A |
5243995 | Maier | Sep 1993 | A |
5246426 | Lewis et al. | Sep 1993 | A |
5275162 | Edwards et al. | Jan 1994 | A |
5366443 | Eggers et al. | Nov 1994 | A |
5417208 | Winkler | May 1995 | A |
5453576 | Krivitski | Sep 1995 | A |
5522880 | Barone et al. | Jun 1996 | A |
5536248 | Weaver et al. | Jul 1996 | A |
5555618 | Winkler | Sep 1996 | A |
5599299 | Weaver et al. | Feb 1997 | A |
5603333 | Konings | Feb 1997 | A |
5634465 | Schmiesing et al. | Jun 1997 | A |
5665103 | Lafontaine et al. | Sep 1997 | A |
5702433 | Taylor et al. | Dec 1997 | A |
5769786 | Wiegel | Jun 1998 | A |
RE35924 | Winkler | Oct 1998 | E |
5827192 | Gopakumaran et al. | Oct 1998 | A |
5836875 | Webster, Jr. | Nov 1998 | A |
5842998 | Gopakumaran et al. | Dec 1998 | A |
5971933 | Gopakumaran et al. | Oct 1999 | A |
6011988 | Lynch et al. | Jan 2000 | A |
6080149 | Huang et al. | Jun 2000 | A |
6081737 | Shah | Jun 2000 | A |
6112115 | Feldman et al. | Aug 2000 | A |
6165977 | Mochly-Rosen | Dec 2000 | A |
6187744 | Rooney | Feb 2001 | B1 |
6190370 | Tsui | Feb 2001 | B1 |
6191136 | Marban | Feb 2001 | B1 |
6231518 | Grabek et al. | May 2001 | B1 |
6233994 | Roy et al. | May 2001 | B1 |
6258035 | Hoeksel et al. | Jul 2001 | B1 |
6270493 | Lalonde et al. | Aug 2001 | B1 |
6273855 | Schmid et al. | Aug 2001 | B1 |
6287260 | Hascoet et al. | Sep 2001 | B1 |
6324416 | Seibert | Nov 2001 | B1 |
6325762 | Tjin | Dec 2001 | B1 |
6354999 | Dgany et al. | Mar 2002 | B1 |
6360123 | Kimchi et al. | Mar 2002 | B1 |
6398738 | Millar | Jun 2002 | B1 |
6406422 | Landesberg | Jun 2002 | B1 |
6456874 | Hafer et al. | Sep 2002 | B1 |
6471656 | Shalman et al. | Oct 2002 | B1 |
6471658 | Daniels et al. | Oct 2002 | B1 |
6477402 | Lynch et al. | Nov 2002 | B1 |
6494832 | Feldman et al. | Dec 2002 | B1 |
6503202 | Hossack et al. | Jan 2003 | B1 |
6506159 | Hascoet et al. | Jan 2003 | B2 |
6511413 | Landesberg | Jan 2003 | B2 |
6514226 | Levin et al. | Feb 2003 | B1 |
6545678 | Ohazama | Apr 2003 | B1 |
6569103 | Hoeksel et al. | May 2003 | B2 |
6569862 | Marban | May 2003 | B1 |
6652505 | Tsugita | Nov 2003 | B1 |
6663661 | Boneau | Dec 2003 | B2 |
6666828 | Greco et al. | Dec 2003 | B2 |
6711429 | Gilboa et al. | Mar 2004 | B1 |
6799064 | Hassett | Sep 2004 | B1 |
6887206 | Hoeksel et al. | May 2005 | B2 |
6905469 | Hascoet et al. | Jun 2005 | B2 |
6922579 | Taimisto et al. | Jul 2005 | B2 |
6926674 | Fenerz et al. | Aug 2005 | B2 |
6939313 | Saadat et al. | Sep 2005 | B2 |
6986744 | Krivitski | Jan 2006 | B1 |
7065403 | Mouchawar et al. | Jun 2006 | B1 |
7069072 | Jansen et al. | Jun 2006 | B2 |
7128734 | Wilson et al. | Oct 2006 | B1 |
7141019 | Pearlman | Nov 2006 | B2 |
7169107 | Jersey-Willuhn et al. | Jan 2007 | B2 |
7169109 | Jansen et al. | Jan 2007 | B2 |
7189205 | McMorrow et al. | Mar 2007 | B2 |
7189208 | Beatty et al. | Mar 2007 | B1 |
7236820 | Mabary et al. | Jun 2007 | B2 |
7270662 | Visram et al. | Sep 2007 | B2 |
7300430 | Wilson et al. | Nov 2007 | B2 |
7311702 | Tallarida et al. | Dec 2007 | B2 |
7326241 | Jang | Feb 2008 | B2 |
7381204 | Wilson et al. | Jun 2008 | B2 |
7454244 | Kassab et al. | Nov 2008 | B2 |
7519424 | Dennis et al. | Apr 2009 | B2 |
7599730 | Hunter et al. | Oct 2009 | B2 |
7601138 | Goebel et al. | Oct 2009 | B2 |
7616992 | Dennis et al. | Nov 2009 | B2 |
7627376 | Dennis et al. | Dec 2009 | B2 |
7640053 | Verin | Dec 2009 | B2 |
7697972 | Verard et al. | Apr 2010 | B2 |
7715925 | Hafer et al. | May 2010 | B2 |
7763196 | Goebel et al. | Jul 2010 | B2 |
7774055 | Min | Aug 2010 | B1 |
7775986 | Roeher et al. | Aug 2010 | B2 |
7833214 | Wilson et al. | Nov 2010 | B2 |
7846157 | Kozel | Dec 2010 | B2 |
7854740 | Carney | Dec 2010 | B2 |
7917193 | Crane | Mar 2011 | B2 |
7967782 | Laufer et al. | Jun 2011 | B2 |
8046052 | Verard et al. | Oct 2011 | B2 |
8060185 | Hunter et al. | Nov 2011 | B2 |
8078274 | Kassab | Dec 2011 | B2 |
8078279 | Dennis et al. | Dec 2011 | B2 |
8082032 | Kassab et al. | Dec 2011 | B2 |
8099161 | Kassab | Jan 2012 | B2 |
8114143 | Kassab et al. | Feb 2012 | B2 |
8133698 | Silver | Mar 2012 | B2 |
8185205 | Ben-David et al. | May 2012 | B2 |
8204582 | Zantos et al. | Jun 2012 | B2 |
8221402 | Francischelli et al. | Jul 2012 | B2 |
8241274 | Keogh et al. | Aug 2012 | B2 |
8244339 | Shen et al. | Aug 2012 | B2 |
8280477 | Lau et al. | Oct 2012 | B2 |
8303505 | Webler et al. | Nov 2012 | B2 |
8326419 | Rosenberg et al. | Dec 2012 | B2 |
8343096 | Kirschenman et al. | Jan 2013 | B2 |
8374689 | Gopinathan et al. | Feb 2013 | B2 |
8388541 | Messerly et al. | Mar 2013 | B2 |
8388546 | Rothenberg | Mar 2013 | B2 |
8401616 | Verard et al. | Mar 2013 | B2 |
8409103 | Grunwald et al. | Apr 2013 | B2 |
8494794 | Dutta et al. | Jul 2013 | B2 |
8521249 | O'Dea | Aug 2013 | B2 |
8597193 | Grunwald et al. | Dec 2013 | B2 |
8632469 | Kassab | Jan 2014 | B2 |
8798712 | Gopinathan et al. | Aug 2014 | B2 |
8825151 | Gopinathan et al. | Sep 2014 | B2 |
9006708 | Bennett et al. | Apr 2015 | B2 |
9066708 | Kassab | Jun 2015 | B2 |
10172538 | Kassab | Jan 2019 | B2 |
10413211 | Kassab | Sep 2019 | B2 |
10524685 | Kassab | Jan 2020 | B2 |
20010012934 | Chandrasekaran et al. | Aug 2001 | A1 |
20020049488 | Boneau | Apr 2002 | A1 |
20020087089 | Ben-Haim | Jul 2002 | A1 |
20020129952 | Matsudate et al. | Sep 2002 | A1 |
20020165537 | Kelley et al. | Nov 2002 | A1 |
20020177783 | Khalil | Nov 2002 | A1 |
20030013986 | Saadat | Jan 2003 | A1 |
20030130711 | Pearson et al. | Jul 2003 | A1 |
20030149368 | Hennemann et al. | Aug 2003 | A1 |
20030163128 | Patil et al. | Aug 2003 | A1 |
20030171894 | Giovanni Battista Mancini et al. | Sep 2003 | A1 |
20030195433 | Turovskiy et al. | Oct 2003 | A1 |
20040019447 | Shachar | Jan 2004 | A1 |
20040024329 | Jansen et al. | Feb 2004 | A1 |
20040116816 | Tenerz et al. | Jun 2004 | A1 |
20040122421 | Wood | Jun 2004 | A1 |
20040167426 | Vantrappen | Aug 2004 | A1 |
20040220562 | Garabedian et al. | Nov 2004 | A1 |
20040230131 | Kassab et al. | Nov 2004 | A1 |
20040243116 | Joye et al. | Dec 2004 | A1 |
20040254495 | Mabary et al. | Dec 2004 | A1 |
20050010110 | Black et al. | Jan 2005 | A1 |
20050096647 | Steinke et al. | May 2005 | A1 |
20050119647 | He et al. | Jun 2005 | A1 |
20050240147 | Makower et al. | Oct 2005 | A1 |
20050256521 | Kozel | Nov 2005 | A1 |
20060009759 | Chrisitian et al. | Jan 2006 | A1 |
20060116633 | Shachar | Jun 2006 | A1 |
20060149166 | Zvuloni | Jul 2006 | A1 |
20060173251 | Govari et al. | Aug 2006 | A1 |
20060206106 | Scholl et al. | Sep 2006 | A1 |
20070016007 | Govari et al. | Jan 2007 | A1 |
20070016069 | Grunwald et al. | Jan 2007 | A1 |
20070016070 | Grunwald et al. | Jan 2007 | A1 |
20070016072 | Grunwald et al. | Jan 2007 | A1 |
20070062547 | Pappone | Mar 2007 | A1 |
20070083194 | Kunis et al. | Apr 2007 | A1 |
20070161914 | Zdeblick et al. | Jul 2007 | A1 |
20070232896 | Gilboa et al. | Oct 2007 | A1 |
20070255270 | Carney | Nov 2007 | A1 |
20080004652 | Abboud et al. | Jan 2008 | A1 |
20080033316 | Kassab et al. | Feb 2008 | A1 |
20080033350 | Wilson et al. | Feb 2008 | A1 |
20080176271 | Silver et al. | Jul 2008 | A1 |
20080188830 | Rosenblatt et al. | Aug 2008 | A1 |
20080190438 | Harlev et al. | Aug 2008 | A1 |
20080194996 | Kassab | Aug 2008 | A1 |
20080255475 | Kondrosky et al. | Oct 2008 | A1 |
20080269581 | Wood et al. | Oct 2008 | A1 |
20080269611 | Pedrizzetti et al. | Oct 2008 | A1 |
20080294041 | Kassab | Nov 2008 | A1 |
20080319350 | Wallace et al. | Dec 2008 | A1 |
20090005674 | Saadat et al. | Jan 2009 | A1 |
20090005675 | Grunwald et al. | Jan 2009 | A1 |
20090062664 | Chang et al. | Mar 2009 | A1 |
20090062684 | Gregersen et al. | Mar 2009 | A1 |
20090118612 | Grunwald et al. | May 2009 | A1 |
20090118637 | Kassab et al. | May 2009 | A1 |
20090143640 | Saadat et al. | Jun 2009 | A1 |
20090177090 | Grunwald et al. | Jul 2009 | A1 |
20090182287 | Kassab | Jul 2009 | A1 |
20090209872 | Pop | Aug 2009 | A1 |
20090209950 | Starksen | Aug 2009 | A1 |
20090216133 | Kassab | Aug 2009 | A1 |
20090259124 | Rothenberg | Oct 2009 | A1 |
20090262982 | Markowitz et al. | Oct 2009 | A1 |
20090262992 | Markowitz et al. | Oct 2009 | A1 |
20090264778 | Markowitz et al. | Oct 2009 | A1 |
20090270729 | Corbucci et al. | Oct 2009 | A1 |
20090270746 | Min | Oct 2009 | A1 |
20100010355 | Kassab | Jan 2010 | A1 |
20100010612 | Gelbart et al. | Jan 2010 | A1 |
20100036227 | Cox et al. | Feb 2010 | A1 |
20100041984 | Shapland et al. | Feb 2010 | A1 |
20100049062 | Ziv | Feb 2010 | A1 |
20100076328 | Matsumura et al. | Mar 2010 | A1 |
20100198346 | Keogh et al. | Aug 2010 | A1 |
20100210938 | Verard et al. | Aug 2010 | A1 |
20100222786 | Kassab | Sep 2010 | A1 |
20100268059 | Ryu et al. | Oct 2010 | A1 |
20100291521 | Simon | Nov 2010 | A1 |
20110015533 | Cox et al. | Jan 2011 | A1 |
20110034823 | Gelbart et al. | Feb 2011 | A1 |
20110196255 | Kassab | Aug 2011 | A1 |
20110245662 | Eggers et al. | Oct 2011 | A1 |
20110270237 | Werneth et al. | Nov 2011 | A1 |
20110306867 | Gopinathan et al. | Dec 2011 | A1 |
20120053441 | Kassab | Mar 2012 | A1 |
20120059249 | Verard et al. | Mar 2012 | A1 |
20120071782 | Patil et al. | Mar 2012 | A1 |
20120078342 | Vollkron et al. | Mar 2012 | A1 |
20120108950 | He et al. | May 2012 | A1 |
20120136242 | Qi et al. | May 2012 | A1 |
20120143029 | Silverstein et al. | Jun 2012 | A1 |
20120143078 | Kassab et al. | Jun 2012 | A1 |
20120169712 | Hill et al. | Jul 2012 | A1 |
20120172746 | Kassab | Jul 2012 | A1 |
20120226148 | Jaggi et al. | Sep 2012 | A1 |
20120302869 | Koyrakh et al. | Nov 2012 | A1 |
20130041269 | Stahmann et al. | Feb 2013 | A1 |
20130267835 | Edwards | Oct 2013 | A1 |
20130338468 | Kassab | Dec 2013 | A1 |
20140066738 | Kassab | Mar 2014 | A1 |
20140275913 | Hill et al. | Sep 2014 | A1 |
20150080762 | Kassab et al. | Mar 2015 | A1 |
20150297113 | Kassab et al. | Oct 2015 | A1 |
20170071501 | Kassab | Mar 2017 | A1 |
20190110844 | Misener et al. | Apr 2019 | A1 |
20200069217 | Kassab | Mar 2020 | A1 |
20220151709 | Misener et al. | May 2022 | A1 |
Number | Date | Country |
---|---|---|
102118994 | Jul 2011 | CN |
0486979 | May 1992 | EP |
0596344 | May 1994 | EP |
0786266 | Jul 1997 | EP |
0988827 | Mar 2000 | EP |
1025805 | Aug 2000 | EP |
2061532 | May 2009 | EP |
2134403 | Dec 2009 | EP |
1998035611 | Aug 1998 | WO |
2002019905 | Mar 2002 | WO |
2002085442 | Oct 2002 | WO |
2003092495 | Nov 2003 | WO |
2004004828 | Jan 2004 | WO |
2004075928 | Sep 2004 | WO |
2006005985 | Jan 2006 | WO |
2007015239 | Feb 2007 | WO |
2008000833 | Jan 2008 | WO |
2008031821 | Mar 2008 | WO |
2008126074 | Oct 2008 | WO |
2009003138 | Dec 2008 | WO |
2010124169 | Oct 2010 | WO |
2010130723 | Nov 2010 | WO |
2011023911 | Mar 2011 | WO |
2011024961 | Mar 2011 | WO |
2011026337 | Mar 2011 | WO |
2012110955 | Aug 2012 | WO |
2012173697 | Dec 2012 | WO |
2013152335 | Oct 2013 | WO |
2016040394 | Mar 2016 | WO |
Entry |
---|
U.S. Appl. No. 14/010,202, filed Aug. 26, 2013 Non-Final Office Action dated Dec. 15, 2016. |
U.S. Appl. No. 14/010,202, filed Aug. 26, 2013 Non-Final Office Action dated Dec. 29, 2017. |
U.S. Appl. No. 14/010,202, filed Aug. 26, 2013 Non-Final Office Action dated Jan. 13, 2016. |
U.S. Appl. No. 14/394,204, filed Oct. 13, 2014 Advisory Action dated Jul. 24, 2018. |
U.S. Appl. No. 14/394,204, filed Oct. 13, 2014 Advisory Action dated Oct. 31, 2016. |
U.S. Appl. No. 14/394,204, filed Oct. 13, 2014 Advisory Action dated Sep. 13, 2017. |
U.S. Appl. No. 14/394,204, filed Oct. 13, 2014 Final Action dated May 8, 2018. |
U.S. Appl. No. 14/394,204, filed Oct. 13, 2014 Final Office Action dated Aug. 16, 2016. |
U.S. Appl. No. 14/394,204, filed Oct. 13, 2014 Final Office Action dated Jun. 21, 2017. |
U.S. Appl. No. 14/394,204, filed Oct. 13, 2014 Non-Final Action dated Dec. 11, 2017. |
U.S. Appl. No. 14/394,204, filed Oct. 13, 2014 Non-Final Office Action dated Dec. 22, 2016. |
U.S. Appl. No. 14/394,204, filed Oct. 13, 2014 Non-Final Office Action dated Feb. 24, 2016. |
U.S. Appl. No. 14/394,204, filed Oct. 13, 2014 Non-Final Office Action dated Nov. 20, 2018. |
U.S. Appl. No. 14/752,697, filed Jun. 26, 2015 Advisory Action dated Oct. 6, 2017. |
U.S. Appl. No. 14/752,697, filed Jun. 26, 2015 Advisory Action dated Oct. 9, 2018. |
U.S. Appl. No. 14/752,697, filed Jun. 26, 2015 Final Office Action dated Jul. 21, 2017. |
U.S. Appl. No. 14/752,697, filed Jun. 26, 2015 Final Office Action dated Jul. 24, 2018. |
U.S. Appl. No. 14/752,697, filed Jun. 26, 2015 Non-Final Office Action dated Feb. 7, 2017. |
U.S. Appl. No. 14/752,697, filed Jun. 26, 2015 Non-Final Office Action dated Jan. 31, 2018. |
U.S. Appl. No. 14/848,331, filed Sep. 8, 2015 Non-Final Office Action dated Feb. 6, 2018. |
U.S. Appl. No. 14/848,331, filed Sep. 8, 2015 Notice of Allowance dated Aug. 1, 2018. |
U.S. Appl. No. 14/848,331, filed Sep. 8, 2015 Restriction Requirement dated Nov. 22, 2017. |
U.S. Appl. No. 14/394,204, filed Oct. 13, 2014 Notice of Allowance dated Jan. 22, 2021. |
U.S. Appl. No. 14/394,204, filed Oct. 13, 2014 Patent Board Decision dated Nov. 3, 2020. |
U.S. Appl. No. 14/752,697, filed Jun. 26, 2015 Examiner's Answer dated Apr. 17, 2020. |
U.S. Appl. No. 14/752,697, filed Jun. 26, 2015 Patent Board Decision dated May 3, 2021. |
U.S. Appl. No. 16/219,806, filed Dec. 13, 2018 Non-Final Office Action dated May 4, 2021. |
AU 2013243252 filed Aug. 13, 2014 Examination Report dated Nov. 9, 2016. |
AU 2013243252 filed Aug. 13, 2014 Notice of Acceptance dated Mar. 23, 2017. |
CN 201380018999.6 filed Oct. 8, 2014 First Office Action dated Feb. 14, 2016. |
CN 201380018999.6 filed Oct. 8, 2014 Office Action dated Aug. 30, 2016. |
CN 201380018999.6 filed Oct. 8, 2014 Office Action dated Mar. 30, 2017. |
CO 14.244.362 filed Nov. 5, 2016 Office Action dated Jan. 23, 2017. |
CO 14.244.362 filed Nov. 5, 2016 Office Action dated Nov. 7, 2016. |
CO 14244362 filed Nov. 5, 2016 Office Action dated Feb. 5, 2018. |
Douglas A. Hettrick, et al. “Finite Element Model Determination of . . . ” Annals of Biomedical Engineering, vol. 27, pp. 151-159, 1999. |
Douglas A. Hettrick, et al. “In Vivo Measurement of Real-Time Aortic Segmental Volume . . . ” Annals of Biomedical Engineering. vol. 26, pp. 431-440, 1998. |
EP 13772981.0 filed Apr. 5, 2013 Extended European Search Report dated Oct. 14, 2015. |
Hoekstein and Inbar, “Cardiac Stroke Volume Estimation . . . ” Technion Department of Electrical Engineering Publication EE PUB No. 991, Feb. 1994. |
International Searching Authority, International Preliminary Report on Patentability, PCT/US1 0/32178, dated Nov. 3, 2011. |
International Searching Authority, PCT Search Report and Written Opinion, PCT/US04/04828, dated Jul. 6, 2005. |
International Searching Authority, PCT Search Report and Written Opinion, PCT/US06/05985, dated Aug. 8, 2007. |
International Searching Authority, PCT Search Report and Written Opinion, PCT/US11/23911, dated Apr. 4, 2011. |
International Searching Authority, PCT Search Report and Written Opinion, PCT/US11/24961, dated Aug. 30, 2012. |
International Searching Authority, PCT Search Report and Written Opinion, PCT/US11/26337, dated Sep. 7, 2012. |
Konings, M. K. et al. “Correct positioning of central venous catheters using a new electric method,” J Vasc Access Mar. 9, 2015; 16 (4): 327-332. |
L. Kornet, et al. “Conductance Method for the Measurement of . . . ” Annals of Biomedical Engineering, vol. 27. pp. 141-150, 1999. |
MX/a/2014/011884 filed Oct. 1, 2014 Office Action dated Feb. 20, 2018. |
MX/a/2014/011884 filed Oct. 1, 2014 Office Action dated Jan. 30, 2017. |
MX/a/2014/011884 filed Oct. 1, 2014 Office Action dated Oct. 3, 2017. |
PCT/US07/15239 filed Jun. 29, 2007 International Search Report dated Jun. 5, 2008. |
PCT/US2008/000833 filed Jan. 23, 2008 International Search Report dated Nov. 6, 2008. |
PCT/US2013/035527 filed Apr. 5, 2013 International Preliminary Report on Patentability dated Oct. 16, 2014. |
PCT/US2015/049043 filed Sep. 8, 2015 International Search Report and Written Opinion dated Feb. 1, 2016. |
Supplementary European Search Report for EP Application Serial No. 04 71 2383 to Electro-Cat, LLC, dated Aug. 6, 2007. |
Svendsen, Mark C. et al., “Accurate nonfluoroscopic guidance and tip location of peripherally inserted central catheters using a conductance guidewire system,” Journal of Vascular Surgery: Venous and Lymphatic Disorders, vol. 1, Issue 2, pp. 202-208. (Jan. 5, 2013). |
U.S. Appl. No. 14/010,139, filed Aug. 26, 2013 Advisory Action dated Oct. 29, 2015. |
U.S. Appl. No. 14/010,139, filed Aug. 26, 2013 Final Office Action dated Aug. 20, 2015. |
U.S. Appl. No. 14/010,139, filed Aug. 26, 2013 Non-Final Office Action dated Dec. 15, 2015. |
U.S. Appl. No. 14/010,139, filed Aug. 26, 2013 Non-Final Office Action dated Mar. 26, 2015. |
U.S. Appl. No. 14/010,139, filed Aug. 26, 2013 Notice of Allowance dated May 20, 2016. |
U.S. Appl. No. 14/010,169, filed Aug. 26, 2013 Advisory Action dated Jan. 17, 2018. |
U.S. Appl. No. 14/010,169, filed Aug. 26, 2013 Advisory Action dated Jan. 25, 2017. |
U.S. Appl. No. 14/010,169, filed Aug. 26, 2013 Advisory Action dated Jun. 7, 2016. |
U.S. Appl. No. 14/010,169, filed Aug. 26, 2013 Final Office Action dated Mar. 22, 2016. |
U.S. Appl. No. 14/010,169, filed Aug. 26, 2013 Final Office Action dated Nov. 17, 2016. |
U.S. Appl. No. 14/010,169, filed Aug. 26, 2013 Final Office Action dated Oct. 30, 2017. |
U.S. Appl. No. 14/010,169, filed Aug. 26, 2013 Non-Final Action dated Feb. 28, 2018. |
U.S. Appl. No. 14/010,169, filed Aug. 26, 2013 Non-Final Office Action dated Aug. 18, 2016. |
U.S. Appl. No. 14/010,169, filed Aug. 26, 2013 Non-Final Office Action dated Dec. 7, 2015. |
U.S. Appl. No. 14/010,169, filed Aug. 26, 2013 Non-Final Office Action dated Jul. 7, 2017. |
U.S. Appl. No. 14/010,202, filed Aug. 26, 2013 Advisory Action dated Jun. 20, 2017. |
U.S. Appl. No. 14/010,202, filed Aug. 26, 2013 Advisory Action dated Nov. 28, 2018. |
U.S. Appl. No. 14/010,202, filed Aug. 26, 2013 Advisory Action dated Oct. 12, 2016. |
U.S. Appl. No. 14/010,202, filed Aug. 26, 2013 Final Office Action dated Jul. 26, 2016. |
U.S. Appl. No. 14/010,202, filed Aug. 26, 2013 Final Office Action dated Mar. 29, 2017. |
U.S. Appl. No. 14/010,202, filed Aug. 26, 2013 Non-Final Office Action dated Apr. 15, 2016. |
CA 2864860 filed Aug. 15, 2014 Office Action dated Jan. 30, 2019. |
U.S. Appl. No. 14/010,202, filed Aug. 26, 2013 Notice of Allowance dated May 15, 2019. |
U.S. Appl. No. 14/394,204, filed Oct. 13, 2014 Final Office Action dated Apr. 15, 2019. |
U.S. Appl. No. 14/752,697, filed Jun. 26, 2015 Non-Final Office Action dated Mar. 12, 2019. |
U.S. Appl. No. 15/269,767, filed Sep. 19, 2016 Non-Final Office Action dated Mar. 13, 2019. |
U.S. Appl. No. 14/394,204, filed Oct. 13, 2014 Examiner's Answer dated Dec. 12, 2019. |
U.S. Appl. No. 14/752,697, filed Jun. 26, 2015 Final Office Action dated Sep. 11, 2019. |
U.S. Appl. No. 15/269,767, filed Sep. 19, 2016 Notice of Allowance dated Aug. 30, 2019. |
U.S. Appl. No. 14/752,697, filed Jun. 26, 2015 Notice of Allowance dated Jul. 26, 2021. |
U.S. Appl. No. 16/565,161, filed Sep. 9, 2019 Non-Final Office Action dated Mar. 17, 2022. |
Number | Date | Country | |
---|---|---|---|
20190133489 A1 | May 2019 | US |
Number | Date | Country | |
---|---|---|---|
60817422 | Jun 2006 | US | |
60502139 | Sep 2003 | US | |
60493145 | Aug 2003 | US | |
60449266 | Feb 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 14010169 | Aug 2013 | US |
Child | 16241730 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12305520 | US | |
Child | 14010169 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 11063836 | Feb 2005 | US |
Child | 12305520 | US | |
Parent | 10782149 | Feb 2004 | US |
Child | 11063836 | US |