Bollard wall system

Information

  • Patent Grant
  • 11499339
  • Patent Number
    11,499,339
  • Date Filed
    Monday, August 30, 2021
    3 years ago
  • Date Issued
    Tuesday, November 15, 2022
    2 years ago
Abstract
A bollard wall system for efficiently assembling a bollard wall. The bollard wall system generally includes a support structure having a plurality of sleeves adapted to be positioned within a trench filled with concrete, and a plurality of bollards positioned within the plurality of sleeves in a vertical manner. Each of the plurality of bollards are lifted and lowered into a corresponding one of the plurality of sleeves by a crane vehicle to form a bollard wall.
Description
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT

Not applicable to this application.


BACKGROUND
Field

Example embodiments in general relate to a bollard wall system for efficiently assembling a bollard wall.


Related Art

Any discussion of the related art throughout the specification should in no way be considered as an admission that such related art is widely known or forms part of common general knowledge in the field.


Bollard walls are used to provide a physical barrier that prevents passage of humans, animals and vehicles while still allowing visibility through the wall. One example of bollard walls in use today is for border protection between adjacent countries.


SUMMARY

An example embodiment is directed to a bollard wall system. An example embodiment of the bollard wall system generally includes a support structure having a plurality of sleeves adapted to be positioned within a trench filled with concrete, and a plurality of bollards positioned within the plurality of sleeves in a vertical manner. Each of the plurality of bollards are lifted and lowered into a corresponding one of the plurality of sleeves by a crane vehicle to form a bollard wall.


There has thus been outlined, rather broadly, some of the embodiments of the bollard wall system in order that the detailed description thereof may be better understood, and in order that the present contribution to the art may be better appreciated. There are additional embodiments of the bollard wall system that will be described hereinafter and that will form the subject matter of the claims appended hereto. In this respect, before explaining at least one embodiment of the bollard wall system in detail, it is to be understood that the bollard wall system is not limited in its application to the details of construction or to the arrangements of the components set forth in the following description or illustrated in the drawings. The bollard wall system is capable of other embodiments and of being practiced and carried out in various ways. Also, it is to be understood that the phraseology and terminology employed herein are for the purpose of the description and should not be regarded as limiting.





BRIEF DESCRIPTION OF THE DRAWINGS

Example embodiments will become more fully understood from the detailed description given herein below and the accompanying drawings, wherein like elements are represented by like reference characters, which are given by way of illustration only and thus are not limitative of the example embodiments herein.



FIG. 1 is a perspective partial cutaway view of a bollard wall system in accordance with an example embodiment.



FIG. 2 is a perspective view of a bollard wall system in accordance with an example embodiment.



FIG. 3 is an exploded perspective view of a bollard wall system in accordance with an example embodiment.



FIG. 4 is a top view of a bollard support structure in accordance with an example embodiment.



FIG. 5 is a side view of a bollard support structure in accordance with an example embodiment.



FIG. 6 is a cross sectional view taken along line 6-6 of FIG. 2.



FIG. 7 is a top view of a bollard wall system in accordance with an example embodiment.



FIG. 8 is a side view of a bollard support structure for a ground surface having a grade in accordance with an example embodiment.



FIG. 9A is a cutaway view of a trench created within a ground surface in accordance with an example embodiment.



FIG. 9B is a cutaway view of rebar positioned within the trench of FIG. 9A.



FIG. 9C is a cutaway view of a base level of concrete within the trench of FIG. 98.



FIG. 9D is a cutaway view of the bollard support structure positioned in the trench of FIG. 9C.



FIG. 9E is a cutaway view of the trench of FIG. 9D filled with concrete in accordance with an example embodiment.



FIG. 9F is an exploded cutaway view of a bollard positioned above a sleeve of the bollard support structure in accordance with an example embodiment.



FIG. 9G is a cutaway view of a bollard positioned within a sleeve of the bollard support structure in accordance with an example embodiment.



FIG. 10 is a cross sectional view taken along line 10-10 of FIG. 2.



FIG. 11 is a cross sectional view of the bollard support structure taken along line 11-11 of FIG. 4.





DETAILED DESCRIPTION
A. Overview

An example embodiment of a bollard wall generally comprises a support structure 20 having a plurality of sleeves 22 adapted to be positioned within a trench 12 filled with concrete 18, and a plurality of bollards 30 positioned within the plurality of sleeves 22 in a vertical manner. Each of the plurality of bollards 30 are lifted and lowered into a corresponding one of the plurality of sleeves 22 by a crane vehicle 11 to form a bollard 30 wall.


B. Trench


FIGS. 1, 3, 7, 9A and 9B illustrate an exemplary trench 12 within a ground surface 10 suitable for use with the various embodiments disclosed herein. FIG. 9A illustrates a generally rectangular shaped cross section for the trench 12 with vertical sidewalls and a horizontal floor in one embodiment. The trench 12 may have various other shapes such as angled sidewalls and a non-horizontal floor. The trench 12 may be dug into the ground surface 10 using various types of trench 12ing machines.


The trench 12 may have various depths and widths suitable for providing support to the wall formed by the plurality of bollards 30. In one example embodiment, the trench 12 is between three feet to four feet in depth, but the trench 12 may alternatively have greater depths or shallower depths depending on the wall to be installed, ground conditions and environmental conditions. The trench 12 may have various lengths and may extend for miles to allow for assembly of the wall formed by a plurality of bollards 30. The trench 12 may be dug in front of the installation of the support structure 20 and bollards 30.


In one embodiment, the trench 12 may be dug into the ground surface 10 prior to forming one or more roads 16 along the wall formed by the plurality of bollards 30 as shown in FIGS. 1, 7 and 9A of the drawings. In another embodiment, the trench 12 may be dug into the ground surface 10 after forming one or more roads 16 along the wall as shown in FIG. 2 of the drawings.


After the trench 12 is formed into the ground surface 10, a plurality of rebar 14 may be positioned within the trench 12 prior to or after inserting the support structure 20 into the trench 12 to provide additional support to the concrete 18 within the trench 12. In one embodiment, a plurality of U-shaped rebar 14 are positioned within the trench 12 prior to inserting the support structure 20 as shown in FIGS. 1, 3, 7 and 9B of the drawings. The U-shaped rebar 14 may have flanged upper ends that extend parallel with the ground surface 10 as best illustrated in FIG. 9B of the drawings.


C. Support Structure

The support structure 20 is positioned at least partially within the trench 12 before or after insertion of the rebar 14 within the trench 12 (if rebar 14 is used). The support structure 20 is configured to support the plurality of bollards 30 in a vertical and parallel manner adjacent to one another as illustrated in FIGS. 1 through 3 of the drawings.


The support structure 20 includes a plurality of sleeves 22 connected together in series as shown in FIGS. 1 through 4 of the drawings. The support structure 20 may have one row of sleeves 22 as shown in FIGS. 1 through 4 or a plurality of rows that are parallel to one another (not shown). The support structure 20 is constructed of a rigid material capable of receiving and supporting the bollards 30 such as but not limited to steel.


Each of the plurality of sleeves 22 includes a lumen and an upper opening 23 connected to the lumen for receiving one of the plurality of bollards 30 as shown in FIGS. 3 and 4 of the drawings. The upper opening 23 and the lumen of each of the sleeves 22 are sized and shaped to snugly receive the outer surface of each bollard 30 as illustrated in FIG. 10 of the drawings. The bottom end of the sleeves 22 may be open, partially closed or fully closed.


The sleeves 22 are preferably consistent in shape and size as illustrated in FIGS. 3 through 5 of the drawings, however the sleeves 22 may be different from one another. In one embodiment shown in FIG. 4 of the drawings, the sleeves 22 each have a rectangular cross sectional area to receive a bollard 30 having a similar cross sectional area but various other shapes may be used. In one embodiment, the length of the sleeves 22 are approximately two feet to provide sufficient support for the bollards 30 but the length of the sleeves 22 may be greater than or less than two feet. The sleeves 22 are further preferably parallel to one another as illustrated in FIGS. 5 and 8 of the drawings, but the sleeves 22 may alternatively not be parallel to one another.


Each of the plurality of sleeves 22 are preferably vertically orientated and parallel to one another as shown in FIGS. 5 and 8 of the drawings. The plurality of sleeves 22 are preferably connected along a longitudinal axis as shown in FIG. 4 of the drawings, but the plurality of sleeves 22 may be connected in a non-longitudinal manner. The plurality of sleeves 22 are further preferably equidistantly spaced along a longitudinal axis as further shown in FIG. 4 but may be spaced apart at different distances.


In one embodiment shown in FIG. 5, the plurality of sleeves 22 may be aligned with the upper opening 23 of each of the plurality of sleeves 22 positioned along a horizontal plane which is suitable for flat grade ground surface 10 that is substantially horizontal. In another embodiment shown in FIG. 8, the plurality of sleeves 22 may be aligned with the upper the upper opening 23 of each of the plurality of sleeves 22 positioned along an angled plane having an angle with respect to a horizontal plane for use on angled ground surface 10. In another embodiment, the upper opening 23 of each of the plurality of sleeves 22 may not be aligned along a common plane and may have differing positions.


In one embodiment, the support structure 20 includes a lower support member 26 attached to the lower portion of each of the plurality of sleeves 22 to provide support for the sleeves 22. In another embodiment, the lower support member 26 is attached to and encloses a lower end of each of the plurality of sleeves 22. The lower support member 26 is attached to the plurality of sleeves 22. In one embodiment, the lower support member 26 is comprised of a length of channel iron. In another embodiment, a bottom end (or bottom portion) of each of the plurality of sleeves 22 is welded to the length of channel iron and positioned within a channel of the length of channel iron. The lower support member 26 may be comprised of various other structures than channel iron such as a flat piece of iron or angle iron. The lower support member 26 is preferably elongated and straight as illustrated in the various embodiments, but the lower support member 26 may have various other shapes and structures other than shown in the figures.


In another embodiment, the support structure 20 includes an upper support member 24 attached to an upper portion 34 (or top end) of each of the plurality of sleeves 22 to provide support for the sleeves 22. In one embodiment as shown in FIGS. 1, 5 and 8 of the drawings, the upper support member 24 is attached to the sleeves 22 in combination with the lower support member 26. In an alternative embodiment, the support structure 20 may only include the upper support member 24 or a middle support member attached to a central portion of the sleeves 22 (not shown). In one embodiment, the upper support member 24 is a flat piece of elongated straight metal that is flat as illustrated in FIGS. 3 through 6 of the drawings. Alternatively, the upper support member 24 may be various other structures such as but not limited to one or more pieces of angle iron attached to the sleeves 22.


D. Adjustment Members

In one alternative embodiment shown in FIGS. 3 through 6 and 8, a plurality of adjustment members 28 attached to the support structure 20 to provide for adjustment of the position and attitude of the support structure 20 within the trench 12 prior to filling the trench 12 with concrete 18 or other material. Because the ground surface 10 is rarely perfectly flat and horizontal, the adjustment members 28 allow for adjustment of the position of the support structure 20 to align the top ends of the sleeves 22 with a desired elevation and angle.


In one embodiment shown in FIG. 4 of the drawings, a first pair of adjustment members 28 are connected on opposing sides near a first end of the support structure 20 and a second pair of adjustment members 28 are connected on opposing sides near a second end of the support structure 20. Various other configurations and locations may be used for the plurality of adjustment members 28.


The plurality of adjustment members 28 extend downwardly below the support structure 20 in an adjustable manner to engage a base level of concrete 18 within the trench 12 as shown in FIG. 9D of the drawings or the floor of the trench 12. In one embodiment, each of the plurality of adjustment members 28 are comprised of a threaded member (e.g. exteriorly threaded bolt) threadably connected to the support structure 20 either threadably through the lower support member 26 or by an interiorly threaded member (e.g. a threaded nut) attached to the support structure 20 to threadably receive the threaded member. In another embodiment not shown, the adjustment members 28 may be comprised of a telescoping device such as an actuator (e.g. electric actuator, hydraulic actuator). In another embodiment, the adjustment members 28 may be secured to the support structure 20 at a desired static position after the support structure 20 is moved to a desired position with lifting equipment (e.g. a crane vehicle 11).


The users adjust the position of the support structure 20 within the trench 12 by adjusting the position of one or more of the adjustment members 28 (e.g. by rotating with a wrench) with respect to the support structure 20 thereby lifting or lowering one or more portions of the support structure 20 within the trench 12. Once the support structure 20 is at a desired position within the trench 12, no further adjustment of the adjustment members 28 is needed.


After the support structure 20 is properly positioned within the trench 12, a volume of concrete 18 is poured within the trench 12 to fill the trench 12 and surround the support structure 20 with the exception of the upper openings 23 within the sleeves 22 which are exposed through an upper surface of the volume of concrete 18 as shown in FIGS. 1 and 2 of the drawings. Various types of concrete 18 or other non-concrete 18 material may be used to secure the support structure 20 within the trench 12. After the concrete 18 has hardened, the bollards 30 may be installed within the sleeves 22 as shown in FIGS. 1 through 3 of the drawings.


E. Bollards


FIGS. 1 through 3, 6, 9F and 9G illustrate a plurality of exemplary bollards 30 that are suitable for use with the various embodiments disclosed herein. Various shapes (e.g. rectangular, tapering, etc.), sizes and lengths may be used for the plurality of bollards 30. For example, each of the bollards 30 may have a length of 24 feet with approximately two feet of the lower part of the bollards 30 positioned within the sleeves 22. Various other lengths may be used for the bollards 30 depending upon the application of the wall. The bollards 30 are preferably straight and parallel to one another in an equidistantly spaced manner as shown in FIGS. 1 and 2 of the drawings. After the bollards 30 are installed within the sleeves 22 of the support structure 20, corresponding vertical spaces exist between the bollards 30 as shown in FIGS. 1 and 2 of the drawings.


Each of the plurality of bollards 30 has a lower portion 32 that is positionable within a corresponding one of the plurality of sleeves 22 as shown in FIGS. 1 through 3 of the drawings. The lower portion 32 of the bollard 30 may be approximately two feet in length but may be greater or less than two feet depending upon various factors for the wall.


Each of the bollards 30 is preferably constructed of tubular metal but various other types of bollards 30 and structures may be used. In one embodiment shown in FIG. 10, the bollard 30 is at least partially filled with concrete 18 from the lower end to a defined point for added strength of the bollards 30 and to increase the weight (e.g. 1,000 pounds or more in some embodiments to prevent easy removal of the bollards 30 from the sleeves 22). In another embodiment, the bollards 30 are at least partially filled with concrete 18 and rebar 14. In another embodiment, the bollards 30 are not filled with concrete 18. The bollards 30 are preferably filled with concrete 18 off-site prior to installation of the bollards 30 within the support structure 20, but the bollards 30 may be filled with concrete 18 at the installation site of the wall.


F. Roads

In one embodiment, one or more roads 16 are formed on opposing sides of the support structure 20 and the wall formed by the plurality of bollards 30 to allow for vehicles 11 to travel along the wall for various reasons. FIGS. 1 and 2 illustrate in one embodiment the usage of a first road 16 and a second road 16 on opposing sides of the plurality of bollards 30, wherein the first road 16 is parallel to the second road 16. It can be appreciated that no roads 16 are formed near the wall. The roads 16 are preferably constructed of concrete 18 but various other materials (e.g. asphalt, gravel) may be used. The roads 16 may be formed concurrently with the filling of the trench 12 with concrete 18 with a concrete 18 paving machine (e.g. GOMACO® brand concrete 18 paving machine) as shown in FIG. 1 or alternatively the roads 16 may be formed with a space (e.g. approximately four feet) between them prior to digging the trench 12 so that a trench 12 may then be dug between the roads 16 as shown in FIG. 2 of the drawings.


G. Operation of Preferred Embodiment

In one preferred embodiment for assembling the wall of bollards 30, the ground surface 10 is graded to a desired level along the area to assemble the wall. The trench 12 may be dug by a trench 12ing machine (e.g. excavator, trench 12er, etc.) prior to paving the roads 16 on opposite sides of the wall as shown in FIGS. 1 and 9A. Alternatively, the trench 12 may be dug by the trench 12ing machine after paving the roads 16 on opposite sides of the wall where a space is left exposed in the ground surface 10 between the two roads 16 (e.g. four feet) as shown in FIG. 2 of the drawings. The roads 16 may be constructed using concrete 18, asphalt or other material suitable for constructing a road 16.


After the trench 12 is created, rebar 14 may be positioned within the trench 12 for added support for the concrete 18 or other material used to fill the trench 12 as shown in FIGS. 1 through 3 and 9B of the drawings. In one embodiment, a base level of concrete 18 (e.g. 10 inches in depth) may be first poured into the trench 12 and allowed to cure to provide support for the support structure 20 as shown in FIG. 9C of the drawings. Alternatively, a base level of concrete 18 is not poured prior to inserting the support structure 20 into the trench 12.


The support structure 20 is at least partially positioned within the trench 12 with the sleeves 22 oriented upwardly in a vertical manner by a crane vehicle 11 or other device capable of lifting/lowering the support structure 20 into the trench 12 as shown in FIGS. 1 through 3 and 9D of the drawings. As shown in FIG. 9D, the upper ends of the sleeves 22 preferably extend upwardly above the ground surface 10 to compensate for the level of concrete 18 to be poured into the trench 12 and onto the surrounding ground surface 10. However, the upper ends of the sleeves 22 may be positioned parallel to or below the ground surface 10 in some embodiments.


After the support structure 20 is positioned within the trench 12, the adjustment members 28 are adjusted so that the sleeves 22 of the support structure 20 are properly aligned in a vertical manner so that the plurality of bollards 30 are vertically aligned after being installed within the sleeves 22. For example, if the first side of the support structure 20 is lower than the opposite second side of the support structure 20, the adjustment members 28 on first side could be extended downwardly to raise the first side of the support structure 20 and/or the adjustment members 28 on the second side could be raised upwardly to lower the second side of the support structure 20. As another example, if the first end of the support structure 20 is lower than the opposite second end of the support structure 20, the adjustment members 28 on first end could be extended downwardly to raise the first end of the support structure 20 and/or the adjustment members 28 on the second end could be raised upwardly to lower the second end of the support structure 20.


After the support structure 20 is properly aligned so that the sleeves 22 are vertically aligned, concrete 18 is poured into the trench 12 to at least partially surround the support structure 20 as shown in FIGS. 1, 2 and 9E of the drawings. If the roads 16 are installed prior to the trench 12 (or installed around the trench 12), the concrete 18 will fill the trench 12 to approximately the level of the roads 16. If the roads 16 are not installed prior to digging the trench 12, the roads 16 may be paved with concrete 18 concurrently with filling the trench 12 by a concrete 18 paving machine. The upper openings 23 within the sleeves 22 are not filled with concrete 18 by either having the upper openings 23 of the sleeves 22 positioned above the upper level of the concrete 18 or by removable inserts being positioned within the upper openings 23 to prevent concrete 18 from entering the sleeves 22. The concrete 18 is allowed to cure thereby securing the support structure 20 within the trench 12 in a manner capable of supporting the plurality of bollards 30.


After the concrete 18 within the trench 12 has cured sufficiently, the crane vehicle 11 (e.g. mobile crane, carry deck crane, crawler crane, rough terrain crane, truck-mounted crane, boom lift, etc.) or other vehicle 11 capable of lifting a heavy bollard 30 (e.g. tractor with loader attachment, telehandler, excavator, etc.) is connected to the first bollard 30 and then lifts the first bollard 30 above a first sleeve 22 in vertical alignment with the upper opening 23 and lumen of the first sleeve 22 as shown in FIGS. 2, 3 and 9F of the drawings. The vehicle 11 may be connected to the bollards 30 in various manners (e.g. fasteners, cable loops, etc.) capable of lifting and lowering the bollards 30 in a vertical manner above the sleeves 22. After the first bollard 30 is aligned with the first sleeve 22, the vehicle 11 then lowers the first bollard 30 so that at least a portion of the lower portion 32 of the bollard 30 is lowered into and positioned within the lumen of the first sleeve 22. The bottom end of the first bollard 30 is stopped from further vertical movement by the lower support member 26 or other structure within the first sleeve 22 as shown in FIGS. 9G and 10 of the drawings.


After the first bollard 30 is positioned within the first sleeve 22, the process is then repeated for the second bollard 30 to be positioned in the second sleeve 22 and so forth to construct the wall of bollards 30 are shown in FIGS. 1 and 2 of the drawings. It can be appreciated that one or more vehicles 11 may be used simultaneously to position the bollards 30 within the sleeves 22.


The bollards 30 may be permanently attached to the sleeves 22 by welding or other permanent fasting method. The bollards 30 may be removably positioned within the sleeves 22 to allow for removal of one or more bollards 30 for various reasons (e.g. repair, temporary access, etc.) using a crane vehicle 11. If the bollards 30 are removably positioned within the sleeves 22, the weight of the bollards 30 (typically 1,000 pounds or more) would make it difficult for anyone to intentionally remove the bollards 30 without using a crane vehicle 11.


The above process may be continued in series along a length of where the wall of bollards 30 is to be constructed. The above process may be performed by one or many different crews in different locations along where the wall of bollards 30 is to be constructed to help expedite construction.


Unless otherwise defined, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although methods and materials similar to or equivalent to those described herein can be used in the practice or testing of the bollard wall system, suitable methods and materials are described above. All patent applications, patents, and printed publications cited herein are incorporated herein by reference in their entireties, except for any definitions, subject matter disclaimers or disavowals, and except to the extent that the incorporated material is inconsistent with the express disclosure herein, in which case the language in this disclosure controls. The bollard wall system may be embodied in other specific forms without departing from the spirit or essential attributes thereof, and it is therefore desired that the present embodiment be considered in all respects as illustrative and not restrictive. Any headings utilized within the description are for convenience only and have no legal or limiting effect.

Claims
  • 1. A bollard wall system, comprising: a support structure positioned at least partially within a trench of a ground surface, wherein the support structure includes a plurality of sleeves connected together, wherein each of the plurality of sleeves includes a lumen and an upper opening connected to the lumen, and wherein each of the plurality of sleeves are vertically orientated;a plurality of bollards, wherein each of the plurality of bollards have a lower portion positioned within a corresponding one of the plurality of sleeves; anda volume of concrete within the trench and surrounding at least a portion of the support structure, wherein the upper opening for each of the plurality of sleeves is exposed through an upper surface of the volume of concrete.
  • 2. The bollard wall system of claim 1, wherein the plurality of sleeves are connected along a longitudinal axis.
  • 3. The bollard wall system of claim 1, wherein each of the plurality of sleeves has a rectangular cross sectional area.
  • 4. The bollard wall system of claim 1, wherein each of the plurality of sleeves are spaced apart equidistantly along a longitudinal axis.
  • 5. The bollard wall system of claim 1, wherein the support structure includes a lower support member attached to a lower portion of each of the plurality of sleeves.
  • 6. The bollard wall system of claim 5, wherein the lower support member encloses a lower end of each of the plurality of sleeves.
  • 7. The bollard wall system of claim 5, wherein the lower support member is comprised of a length of channel iron.
  • 8. The bollard wall system of claim 7, wherein a lower end of each of the plurality of sleeves is welded to the length of channel iron and positioned within a channel of the length of channel iron.
  • 9. The bollard wall system of claim 5, wherein the support structure includes an upper support member attached to an upper portion of each of the plurality of sleeves.
  • 10. The bollard wall system of claim 1, wherein the support structure includes an upper support member attached to an upper portion of each of the plurality of sleeves.
  • 11. The bollard wall system of claim 1, wherein the plurality of sleeves are parallel to one another.
  • 12. The bollard wall system of claim 1, wherein the plurality of sleeves are aligned with the upper opening of each of the plurality of sleeves positioned along a horizontal plane.
  • 13. The bollard wall system of claim 1, wherein the plurality of sleeves are aligned with the upper opening of each of the plurality of sleeves positioned along an angled plane having an angle with respect to a horizontal plane.
  • 14. The bollard wall system of claim 1, including a plurality of U-shaped rebar within the trench surrounding the support structure.
  • 15. The bollard wall system of claim 1, including a plurality of adjustment members attached to the support structure, wherein the plurality of adjustment members extend downwardly below the support structure in an adjustable manner to allow for adjustment of an attitude of the support structure within the trench.
  • 16. The bollard wall system of claim 15, wherein each of the plurality of adjustment members are comprised of a threaded member threadably connected to the support structure.
  • 17. The bollard wall system of claim 1, including a first road and a second road on opposing sides of the plurality of bollards.
  • 18. A bollard wall system, comprising: a support structure positioned at least partially within a trench of a ground surface, wherein the support structure includes a plurality of sleeves connected together, wherein each of the plurality of sleeves includes a lumen and an upper opening connected to the lumen, and wherein each of the plurality of sleeves are vertically orientated;wherein the plurality of sleeves are connected along a longitudinal axis;wherein each of the plurality of sleeves are spaced apart equidistantly along the longitudinal axis;wherein the plurality of sleeves are parallel to one another;a plurality of bollards, wherein each of the plurality of bollards have a lower portion positioned within a corresponding one of the plurality of sleeves;wherein the support structure includes a lower support member attached to a lower portion of each of the plurality of sleeves;wherein the support structure includes an upper support member attached to an upper portion of each of the plurality of sleeves; anda volume of concrete within the trench and surrounding at least a portion of the support structure, wherein the upper opening for each of the plurality of sleeves is exposed through an upper surface of the volume of concrete.
  • 19. A bollard wall system, comprising: a support structure positioned at least partially within a trench of a ground surface, wherein the support structure includes a plurality of sleeves connected together, wherein each of the plurality of sleeves includes a lumen and an upper opening connected to the lumen, and wherein each of the plurality of sleeves are vertically orientated; anda plurality of bollards, wherein each of the plurality of bollards have a lower portion positioned within a corresponding one of the plurality of sleeves;wherein the support structure includes a support member attached to each of the plurality of sleeves.
  • 20. The bollard wall system of claim 19, wherein the support member is comprised of an upper support member attached to an upper portion of each of the plurality of sleeves.
  • 21. The bollard wall system of claim 19, wherein the plurality of sleeves are connected along a longitudinal axis.
  • 22. The bollard wall system of claim 19, wherein each of the plurality of sleeves has a rectangular cross sectional area.
  • 23. The bollard wall system of claim 19, wherein each of the plurality of sleeves are spaced apart equidistantly along a longitudinal axis.
  • 24. The bollard wall system of claim 19, wherein the plurality of sleeves are parallel to one another.
  • 25. The bollard wall system of claim 19, wherein the plurality of sleeves are aligned with the upper opening of each of the plurality of sleeves positioned along a horizontal plane.
  • 26. The bollard wall system of claim 19, wherein the plurality of sleeves are aligned with the upper opening of each of the plurality of sleeves positioned along an angled plane having an angle with respect to a horizontal plane.
  • 27. The bollard wall system of claim 19, including a plurality of U-shaped rebar within the trench surrounding the support structure.
  • 28. The bollard wall system of claim 19, including a plurality of adjustment members attached to the support structure, wherein the plurality of adjustment members extend downwardly below the support structure in an adjustable manner to allow for adjustment of an attitude of the support structure within the trench.
  • 29. The bollard wall system of claim 19, including a first road and a second road on opposing sides of the plurality of bollards.
CROSS REFERENCE TO RELATED APPLICATIONS

The present application is a continuation of U.S. application Ser. No. 17/205,806 filed on Mar. 18, 2021 which issues as U.S. Pat. No. 11,105,116 on Aug. 31, 2021. Each of the aforementioned patent applications is herein incorporated by reference in their entirety.

US Referenced Citations (142)
Number Name Date Kind
1629899 Wustholz May 1927 A
1721816 Glazer Jul 1929 A
1925689 Dietrich Sep 1933 A
2049916 Lingle Aug 1936 A
2164592 Pilj Jul 1939 A
2172461 Whitescarver Sep 1939 A
2173698 Schenk Sep 1939 A
2395204 Symons Feb 1946 A
2497887 Meier Feb 1950 A
2614801 Mazzei Oct 1952 A
2659125 Williams Nov 1953 A
2717801 Neil Sep 1955 A
2902311 Reel Sep 1959 A
3163904 Ziolkowski Jan 1965 A
3209933 Barnes Oct 1965 A
3220760 Buchik Nov 1965 A
3298541 Alexon Jan 1967 A
3432041 van Huet Mar 1969 A
3464667 Sledz Sep 1969 A
3478396 Drouillard Nov 1969 A
3635613 Marsh Jan 1972 A
3647099 Carriere Mar 1972 A
3676031 Stinton Jul 1972 A
3687597 Lavergne, Jr. Aug 1972 A
3693931 Holt Sep 1972 A
3760966 Jones, Jr. Sep 1973 A
3801061 Holt Apr 1974 A
3833706 Edwards Sep 1974 A
3844697 Edwards Oct 1974 A
3910546 Connors Oct 1975 A
3926318 Kister Dec 1975 A
3954189 Sherritt May 1976 A
3965542 Gregory Jun 1976 A
4003543 Doubleday Jan 1977 A
4006878 Dawson Feb 1977 A
4023771 Walchek May 1977 A
4044986 Strickland Aug 1977 A
4098045 Astor Jul 1978 A
4158452 Gates Jun 1979 A
4186906 Koga Feb 1980 A
4192481 Durbin Mar 1980 A
4218039 Gates Aug 1980 A
4221357 Bowden Sep 1980 A
4231541 Strickland Nov 1980 A
4254932 Durbin Mar 1981 A
4290246 Hilsey Sep 1981 A
4314775 Johnson Feb 1982 A
4384739 Gustavsson May 1983 A
4405262 Nagashima Sep 1983 A
4417425 Case Nov 1983 A
4441685 Greeson Apr 1984 A
4453861 Bretz Jun 1984 A
4481743 Jellen Nov 1984 A
4611784 Gallis Sep 1986 A
4671724 Bolton Jun 1987 A
4676713 Voelpel Jun 1987 A
4700979 Courtois Oct 1987 A
4708315 Carlson Nov 1987 A
4726562 Courtois Feb 1988 A
4795136 Haefner Jan 1989 A
4807843 Courtois Feb 1989 A
4812113 Jantzen Mar 1989 A
4846433 Courtois Jul 1989 A
4899978 Gates Feb 1990 A
4924641 Gibbar, Jr. May 1990 A
4927317 Acosta May 1990 A
5038541 Gibbar, Jr. Aug 1991 A
5050365 Edgar Sep 1991 A
5073077 Attman Dec 1991 A
RE33881 Courtois Apr 1992 E
5114294 Attman May 1992 A
5127791 Attman Jul 1992 A
5224808 Macris Jul 1993 A
5351456 Paine, Jr. Oct 1994 A
5364050 Smith Nov 1994 A
5425213 Abe Jun 1995 A
5441379 Gilbert, Jr. Aug 1995 A
5537797 Harkenrider Jul 1996 A
5624222 Hiatt Apr 1997 A
5643488 Lee Jul 1997 A
5799399 Schultz Sep 1998 A
5857296 Niday Jan 1999 A
5922236 Zuhl Jul 1999 A
5956922 Liuska Sep 1999 A
6513785 Worley Feb 2003 B1
6523323 Worley Feb 2003 B2
6729079 Francies, III May 2004 B2
6755385 Lancelot, III Jun 2004 B2
6935607 Ward Aug 2005 B2
7004443 Bennett Feb 2006 B2
7051988 Shaw May 2006 B2
7144186 Nolte Dec 2006 B1
7222460 Francies, III May 2007 B2
7596923 Thomas Oct 2009 B1
7775500 Vegsund Aug 2010 B1
7819388 McCallion Oct 2010 B2
7828263 Bennett Nov 2010 B2
7874053 Stangel Jan 2011 B2
8186645 Shaw May 2012 B2
8272824 Putney Sep 2012 B1
8317502 Grey Nov 2012 B1
8365485 Reyneveld Feb 2013 B2
8464996 Spindler Jun 2013 B2
8820007 Knudsen Sep 2014 B2
9033619 Riggle, Jr. May 2015 B2
9212462 Borel Dec 2015 B2
9297179 Smith Mar 2016 B2
9347231 Cormier May 2016 B2
9611670 Pacheco Apr 2017 B1
9988823 Fisher Jun 2018 B1
10427916 Fisher Oct 2019 B1
10633887 Fisher Apr 2020 B1
10662046 Engebretson May 2020 B1
20030057747 Johnston Mar 2003 A1
20040218997 Neubauer Nov 2004 A1
20050218291 Musk Oct 2005 A1
20050220597 Burkett Oct 2005 A1
20060062655 Harrelson Mar 2006 A1
20060242921 Massie Nov 2006 A1
20080050213 Kundel Feb 2008 A1
20090057518 Russell Mar 2009 A1
20090107065 LeBlang Apr 2009 A1
20090267320 Phillips Oct 2009 A1
20110011018 Johnson Jan 2011 A1
20110033232 Adler Feb 2011 A1
20110057090 Spude Mar 2011 A1
20110305529 Riggle, Jr. Dec 2011 A1
20120131870 deMaere May 2012 A1
20130020732 Jentsch Jan 2013 A1
20130248680 Fergeson Sep 2013 A1
20130269284 Hovenier Oct 2013 A1
20140263942 Ciuperca Sep 2014 A1
20150052839 Rice Feb 2015 A1
20150081178 Billaud Mar 2015 A1
20160161047 Kaytee Jun 2016 A1
20160201408 Little Jul 2016 A1
20170218614 Ciuperca Aug 2017 A1
20180071949 Giles Mar 2018 A1
20180112389 Lake Apr 2018 A1
20180347213 Clevenger Dec 2018 A1
20180347227 Neusch Dec 2018 A1
20190301118 Neusch Oct 2019 A1
Foreign Referenced Citations (12)
Number Date Country
2923047 Sep 2017 CA
2657111 Jun 1977 DE
29915801 Oct 2000 DE
102012206353 Oct 2013 DE
2308790 Apr 2011 EP
3179010 Jun 2017 EP
2951149 Apr 2011 FR
2973360 Oct 2012 FR
3032953 Aug 2016 FR
3045692 Jun 2017 FR
11309687 Nov 1999 JP
903530 Feb 1982 SU
Non-Patent Literature Citations (15)
Entry
http://www.daytonsuperior.com/search#?sections=products&productlines=forming; Dayton Product Search Website Page.
http://www.aluminumconcreteforms.com/concrete_forming_systems.htm; Wall-Ties & Forms Concrete Forming Systems and Formwork Website Page.
http://www.aluminumconcreteforms.com/crane_set_concrete_forms.htm; Wall-Ties & Forms Concrete Big Panel Concrete Forms Website Page.
Harsco LOGIK Forming System Manual.
Dayton Steel Ply System Manual.
Dayton Rapid Clamp System Manual.
Dayton Forming Accessories Handbook.
PCT International Search Report and Written Opinion for PCT application PCT/US2018/062473.
MeadowBurke Sure-Lock Strand Chucks Publication; Oct. 2008.
PCT International Search Report and Written Opinion for PCT Application PCT/US2018/20499.
PCT International Search Report and Written Opinion for PCT Application PCT/US2019/051220.
http://theminiaturespage.com/boards/msg.mv?id=452833; The Miniatures Page Message Board Bollard Wall Thread; May 5, 2017.
https://www.businessinsider.com/trump-border-wall-construction-photos-new-mexico-2018-4;Trump Administration Releases New Photos of Border Wall Article; Apr. 11, 2018.
https://www.nogalesinternational.com/News/Bollard-Border-Fence-Draws-Good-Reviews-On-First-Anniversary/Article_3c0e21c6-E884-11e1-Aedc-001a4bcf887a.html; “Bollard Border Fence Draw Good Review On First Anniversary”; Brenna Goth; Aug. 17, 2012.
https://www.nationalreview.com/The-Morning-Jolt/Trumps-Great-Wall-Isnt-Whats-Being-Built/; National Review Website Article Trumps Great Wall Isn't What's Being Built; Dec. 12, 2018.
Related Publications (1)
Number Date Country
20220298827 A1 Sep 2022 US
Continuations (1)
Number Date Country
Parent 17205806 Mar 2021 US
Child 17460590 US