This invention relates to rifles for military and civilian sporting use.
Modern sporting rifles as well as military rifles and carbines must be robust for reliable operation, and lightweight to permit carry without excessive fatigue. Significant reduction in rifle weight has been previously achieved by replacing wood with polymer material for components such as the shoulder stock and fore stock. Such designs have been successful because the use of polymer material for these elements does not compromise the robustness or reliable operation of modern firearms.
However, components such as the receiver and its associated assemblies such as the bolt carrier and barrel still account for a significant portion of the weight of a firearm, as it has not been thought feasible to substitute polymer for such parts which experience heat, pressure and wear from reciprocating motion. To meet the harsh requirements of operation many receiver designs are machined from a solid aluminum billet, and thus represent, in addition to significant weight, a significant production cost, as the machining is complex and constrained by tight tolerance requirements. There is clearly a need to further reduce rifle weight and simplify production without compromising the performance of the modern combat or sporting rifle.
The invention concerns a bearing for a bolt carrier in an upper receiver of a firearm having a charging handle, a fire control mechanism and a magazine. In one example embodiment the bearing comprises a tube positionable within the upper receiver. The tube has a sidewall defining an inner surface supporting the bolt carrier and motion thereof between an open position and a battery position. A first opening in the sidewall defines an ejector port. A second opening in the sidewall is positioned to permit engagement between the bolt carrier and the charging handle. A third opening in the sidewall receives the fire control mechanism or the magazine.
By way of example a fourth opening in the sidewall receives the fire control mechanism or the magazine. In an example embodiment, the tube has a buffer tube radius for attaching a buffer tube to the tube. In a specific example the second opening is positioned diametrically opposite to the third opening. In a further specific example the second opening is positioned diametrically opposite to the fourth opening. In another example the first opening is positioned angularly offset from the second opening about a longitudinal axis of the tube. In an example embodiment the second opening comprises a slot extending lengthwise along the tube, one end of the slot being open. In a further example the third and fourth openings are contiguous with one another. In another example the fourth opening is wider than the third opening.
By way of example one end of the tube comprises screw threads. In a particular example the screw threads are positioned on the inner surface. In another example the screw threads are positioned on an outer surface of the tube. An example embodiment further comprises an aperture in the sidewall for permitting engagement between the bolt carrier and a forward assist button.
The invention also encompasses an upper receiver of a firearm having a bolt carrier, a charging handle, a fire control mechanism and a magazine. In this example embodiment the upper receiver comprises a metal tube having a sidewall defining an inner surface supporting the bolt carrier and motion thereof between an open position and a battery position. A polymer shroud surrounds at least a portion of the metal tube. A first opening, positioned in the sidewall and a first opening, positioned in the polymer shroud overlying the first opening in the sidewall define an ejector port.
By way of example the invention further comprises a second opening in the sidewall and a second opening in the polymer shroud overlying the second opening in the sidewall. The second openings are positioned to permit engagement between the bolt carrier and the charging handle.
An example embodiment further comprises a third opening in the sidewall for receiving the fire control mechanism or the magazine. Another example comprises a fourth opening in the sidewall for receiving the fire control mechanism or the magazine. Another example embodiment comprises a rail mounted on the shroud. The rail and extends lengthwise along the tube and comprises a plurality of ribs oriented transversely to a longitudinal axis of the tube. Further by way of example the shroud comprises an outwardly projecting surface positioned adjacent to the ejector port. Another example further comprises a housing extending from the shroud for receiving a forward assist button. In this example the metal tube comprises an aperture aligned with the housing for permitting engagement between the bolt carrier and the forward assist button.
By way of example the invention further comprises first and second lugs positioned at opposite ends of the shroud for attaching the shroud to a lower receiver. Another example embodiment of the invention comprises a buffer tube radius for attaching a buffer tube to the metal tube.
By way of example, the first openings are positioned angularly offset from the second openings about a longitudinal axis of the metal tube. In a further example, the second opening in the sidewall of the metal tube comprises a slot extending lengthwise along the metal tube, one end of the slot being open.
In an example embodiment, one end of the metal tube comprises screw threads. In a specific example the screw threads are positioned on the inner surface of the metal tube. In another example embodiment, the screw threads are positioned on an outer surface of the metal tube.
The invention also encompasses firearm having a bolt carrier, a charging handle, a fire control mechanism and a magazine. In an example embodiment the firearm comprises an upper receiver comprising a metal tube having a sidewall defining an inner surface supporting the bolt carrier and motion thereof between an open position and a battery position. A polymer shroud surrounds at least a portion of the metal tube. A first opening is positioned in the sidewall and a first opening in the polymer shroud overlies the first opening in the sidewall. The first openings define an ejector port.
In an example embodiment a second opening in the sidewall and a second opening in the polymer shroud overlying the second opening in the sidewall are positioned to permit engagement between the bolt carrier and the charging handle.
In another example a third opening in the sidewall receives the fire control mechanism or the magazine. In a further example the invention comprises a fourth opening in the sidewall for receiving the fire control mechanism or the magazine. In a specific example embodiment a rail is mounted on the shroud and extends lengthwise along the tube. The rail comprises a plurality of ribs oriented transversely to a longitudinal axis of the tube. By way of example the shroud further comprises an outwardly projecting surface positioned adjacent to the ejector port.
In an example embodiment the firearm further comprises a housing extending from the shroud for receiving a forward assist button. The metal tube comprises an aperture aligned with the housing for permitting engagement between the bolt carrier and the forward assist button.
By way of further example, first and second lugs are positioned at opposite ends of the shroud for attaching the shroud to a lower receiver. A particular example comprises a buffer tube radius for attaching a buffer tube to the metal tube. In a specific example the first openings are positioned angularly offset from the second openings about a longitudinal axis of the metal tube. In another example the second opening in the sidewall of the metal tube comprises a slot extending lengthwise along the metal tube, one end of the slot being open. By way of example, one end of the metal tube comprises screw threads. In a specific example the screw threads are positioned on the inner surface of the metal tube. In another example, the screw threads are positioned on an outer surface of the metal tube.
During operation of the rifle 10, the bolt carrier 24 (see
Thus the upper receiver 20 must support the bolt carrier 24 as it moves between battery and the open position but also allow the various components, including the fire control mechanism 14, the magazine 18, the charging handle 22, and the forward assist button 26 (when present) to interact with the bolt carrier. The upper receiver 20 must also provide an ejection port 32 to permit ejection of the spent cartridge. In the upper receiver 20 according to the invention the bolt carrier 24 is supported by a bearing 34, shown in
As shown in
As shown by way of example in
The simplicity of the bearing 34 allows the various openings to be conveniently formed by laser machining techniques. Traditional machining techniques are of course also feasible.
As further shown in
Another part of the upper receiver according to the invention is the polymer shroud 58, an example being shown in
Injection molding also allows openings to be formed in the shroud 58 that correspond to openings in the tube 36. As shown in
A rifle having a polymer upper receiver co-molded with a tube comprising a bearing for supporting and guiding a bolt carrier provides numerous advantages over traditional rifles wherein the receiver is machined from a billet. Such rifles will have reduced weight and more economical and rapid production without sacrificing reliability or robustness.