Technical Field
The present invention relates to a bolted telescopic rod-type defense spray apparatus, and more particularly to a defense spray apparatus in which at least two sections may be pushed to each other to spray contents of an irritant gas can and may be positioned relative to each other to be locked into a function application having a rod-type member.
Related Art
A conventional umbrella or staff is easy to carry and can be used for defense; however, in a sudden strike of an armed villain, during a fierce fight, it is still possible that the villain causes death or injuries with a strike by using a bladed weapon.
In addition, a conventional device such as a gas pistol and a self-defense spray device can be used to spurt high-pressure self-defense spray at a villain at a long distance greater than 3 meters to 4 meters before the villain approaches; however, for a function or a dosage of the device, an irritant gas or liquid can only be spurted at the face of the villain for a very few seconds to take away the vision of the villain, and if the villain closes the eyes and covers the mouth and nose and keeps slashing wildly with a weapon, the gas pistol and the self-defense spray are basically useless to stop the villain. Moreover, for the purpose of portability, a self-defense spray can is generally small and has a small volume, and a dosage of an irritant gas in the self-defense spray can support only a limited quantity of times of spurting. When the self-defense spray can is emptied after several times of spurting, if a danger still exists, an article such as an umbrella needs to be used for defense to resist an attack.
An objective of the present invention is to provide a bolted telescopic rod-type defense spray apparatus. In the bolted telescopic rod-type defense spray apparatus, two sectioned tube pieces and a spring pin component and a push joint component that are between the two tube pieces are applied to lock and unlock a relative position relationship between the two tube pieces, so that the defense spray apparatus has composite functions of a rod-piece additional function of a locking configuration of relative positions of the two tube pieces and a press-lever spray irritant gas can of an unlocking configuration of the relative positions of the two tube pieces.
To achieve the foregoing objective, the present invention provides a bolted telescopic rod-type defense spray apparatus, comprising: a first tube body, having a head-end portion and a tail-end portion, the head-end portion having a receiving chamber, having a relatively large diameter, of an intra-tube space, an opening being provided on an end surface of the receiving chamber, a neck-portion structure being provided in the intra-tube space, a first pinhole being formed on a surface of the tube body between the neck-portion structure and the tail-end portion; a cap, covering the opening of the receiving chamber, a recessed seat being provided at a center of a surface, facing the receiving chamber, of the cap, a through hole being provided at a center of the recessed seat, a press-ring portion of an irritant gas can corresponding to the recessed seat, and an output tube being aligned with the through hole; a compression elastic piece, disposed and kept between the recessed seat and the irritant gas can; a second tube body, a top rod structure being disposed at a head end of the second tube body, a sheath structure being disposed at a tail end of the second tube body, a hole being provided on an end surface of the sheath structure, a second pinhole being provided at a body portion of the second tube body, and the second tube body being partially placed inside the first tube body; an anti-extraction element, fixed on a surface of the second tube body, and stopped at the neck-portion structure; a spring pin component, placed inside the second tube body, comprising a shell body having a recessed seat and a slot, an insertion pin placed at the recessed seat, and a compression elastic body placed between the recessed seat and the insertion pin, the insertion pin being axially aligned with the second pinhole, and a body portion of the insertion pin having a groove; and a push joint component, placed inside the second tube body, and having a fingering element, a hook rod, a pulling rod switch, and a pulling rod switch locking structure, the fingering element having a pivotal hole, a tail hole, and a fingering rod, the fingering rod being inserted in the groove of the body portion of the insertion pin, the fingering element being pivotally disposed in the recessed seat and the slot by using the pivotal hole, the pulling rod switch sequentially having a switch button, a shaft-neck portion and a shaft-tail portion, the switch button passing through the hole on the end surface of the sheath structure via the shaft-neck portion and being exposed from the sheath structure, a joint being provided on an end surface of the shaft-tail portion, a hook portion being formed at an end of the hook rod, the hook portion being hooked in the tail hole of the fingering element, a flange portion being formed at the other end of the hook rod and entering the joint, and the pulling rod switch locking structure being disposed between the end surface of the sheath structure and the pulling rod switch, so that after the pulling rod switch is extracted, the pulling rod switch may be kept at an extracted position. In addition, the pulling rod switch is extracted outward, so that an external thread and a threaded hole are engaged with each other. The switch button is rotated, so that the insertion pin is completely extracted from the first pinhole and the second pinhole to release a locking state between the first tube body and the second tube body, the sheath structure of the second tube body is held and pushed toward the first tube body, and the top rod structure may push a bottom portion behind the irritant gas can, to press the press-ring portion to spray contents.
An advantage of the present invention lies in: In the present invention, a self-defense spray can and a rod-type umbrella or staff are combined, so that an irritant gas may be sprayed first and a rod-type object such as the umbrella and the staff may then be used to resist an attack of a villain, thereby improving an effect of safety protection. In addition, during walking in a mountain region or an uninhabited region, when there is a villain, a stray dog or an animal that attacks people, in a case of a headwind, if self-defense pepper spray is sprayed immediately, the spray may affect the one who sprays, so that for the rod-type structure of the umbrella of the present invention, the umbrella may be used first for defense against an attack of the villain or to drive away the animal that attacks people, and at a position of a tailwind, an irritant gas can be used to spray an irritant gas at the villain or the animal that attacks people, so that a double protection effect is achieved. Moreover, in the present invention, when a rod-type object is formed, the rod-type object itself also has a function of defense. For example, a rod piece such as a stick and an umbrella rod is used for strikes, and an extended cloth confuses the sight of the villain or the animal that attacks people or blocks a dangerous liquid sprayed by the villains. Therefore, an advanced apparatus that combines various defense functions is implemented.
The disclosure will become more fully understood from the detailed description given herein below for illustration only, and thus are not limitative of the disclosure, and wherein:
The embodiments of the present invention are described below in detail with reference to the accompanying drawings. The accompanying drawings are simplified schematic views, and a basic structure of the present invention is described in a schematic manner. Therefore, only elements related to the present invention are labeled in the accompanying drawings, and the shown elements are not drawn according to quantities, shapes, sizes, proportions, and the like during implementation. Specifications and sizes during actual implementation of the elements are actually an optional design, and the layout and forms of the elements may be more complex.
First, please refer to
The defense spray apparatus 1 includes: a first tube body 10, a cap 20, a compression elastic piece 30, a second tube body 40, an anti-extraction element 50, a spring pin component 60, and a push joint component 70. The first tube body 10 has a head-end portion 11 and a tail-end portion 12 away from the head-end portion 11. The head-end portion 11 has a receiving chamber 111, having a relatively large diameter, formed of an intra-tube space. An opening 112 is provided on an end surface of the receiving chamber 111 and is used to provide a position where the irritant gas can A is placed and received in the receiving chamber 111. A neck-portion structure 122 is provided in the intra-tube space. The neck-portion structure 122 may be an inward turning surface 1222 of a small inner diameter space 1221 whose diameter is less than the diameter of the intra-tube space, so that when a runner 85 and a runner locking structure 88 pass through, an insertion pin 613 is not touched, and the insertion pin 613 can be retracted into the second tube body 40, to achieve unlocking. A first pinhole 13 is formed on a surface of the tube body between the neck-portion structure 112 and the tail-end portion 12, and the first pinhole 13 is connected to the intra-tube space. The cap 20 tightly covers the opening 112 of the receiving chamber 111 (specifically, the cap 20 covers the opening 112 of the receiving chamber 111 in many manners; in practice, an external thread may be disposed on an outer side of an end surface of the opening 112, a corresponding inner thread is disposed on an inner edge of the cap 20, the cap 20 then covers the opening 112 in a threaded manner, or an L groove is provided on the outer side of the end surface of the opening 112, a corresponding convex end is disposed on the inner edge of the cap 20, the cap 20 is then pressed and rotated by a rotating angle to clamp the convex end in the L groove, to cover the opening 112), so as to close the receiving chamber 111. A recessed seat 21 is provided at a center of a surface, facing the receiving chamber 111, of the cap 20. A through hole 211 is provided at a center of the recessed seat 21, the press-ring portion A2 of the irritant gas can A corresponds to the recessed seat 21, and the output tube A1 is aligned with the through hole 211. The compression elastic piece 30 is disposed and kept between the recessed seat 21 and a can body top portion A4 of the irritant gas can A, and because of an elastic force of extension of the compression elastic piece 30, it may be avoided that after an umbrella is used in a rainy day, during an action of shaking off rainwater, the press-ring portion A2 is shaken, a centrifugal force is generated in the first tube body 10, and the recessed seat 21 is pressed accidentally to trigger spraying of the irritant gas can A. The second tube body 40 has a head end 41 and a tail end 42 opposite the head end 41, where a hole 4111 is provided on an end surface of the head end 41. A top rod structure 412 is disposed on the end surface of the head end 41. A sheath structure 421 is disposed at the tail end 42, a hole 42111 is provided on an end surface 4211 of the sheath structure 421, a second pinhole 43 corresponding to the first pinhole 13 is disposed at a body portion of the second tube body 40, the second tube body 40 is partially placed in the intra-tube space of the first tube body 10, and when the second pinhole 43 is aligned with the first pinhole 13, the body portion to the tail end 42 of the second tube body 40 are exposed from the tail-end portion 12 of the first tube body 10. The anti-extraction element 50 has a stopping surface 51, the stopping surface 51 has an inner diameter 511, the inner diameter 511 is over a surface of the second tube body 40 and is fixedly connected thereto. The stopping surface 51 is in a direction opposite the head-end portion 11 of the first tube body 10, and the stopping surface 51 faces and is stopped at the neck-portion structure 122. The spring pin component 60 is placed inside the second tube body 40, the spring pin component 60 includes a shell body 61, the shell body 61 has a recessed seat 611, a slot 612 connected to a space of the recessed seat 611, the insertion pin 613 placed inside the recessed seat 611, and a compression elastic body 614 placed between a bottom surface of the recessed seat 611 and a bottom surface, facing the recessed seat 611, of the insertion pin 613. The insertion pin 613 is axially aligned with the second pinhole 43, and a groove 6131 is provided at a body portion of the insertion pin 613. The push joint component 70 is placed inside the second tube body 40. The push joint component 70 has a fingering element 71, a hook rod 72, a pulling rod switch 73, and a pulling rod switch locking structure 74. The fingering element 71 has a pivotal hole 711 and a tail hole 712 and a fingering rod 713 that are separately located on two sides of the pivotal hole 711. The fingering rod 713 is inserted in the groove 6131 of the body portion of the insertion pin 613. The fingering element 71 is pivotally disposed in the slot 612 of the recessed seat 611 by using the pivotal hole 711, so that the fingering element 71 uses the pivotal hole 711 as an axial center, and inside the recessed seat 611, the fingering rod 713 drives the insertion pin 613 to swing back and fro toward the inside of the recessed seat 611. The pulling rod switch 73 sequentially has a switch button 731, a shaft-neck portion 732, a shaft-tail portion 733, and a compression spring 734. The switch button 731 passes through the hole 42111 on the end surface 4211 of the sheath structure 421 via the shaft-neck portion 732 and is then exposed from the sheath structure 421. A joint 7331 is provided on an end surface of the shaft-tail portion 733. The compression spring 734 is sleeved over the shaft-neck portion 732, and two ends of the compression spring 734 is kept between the shaft-tail portion 733 and an inner side of the end surface 4211 of the sheath structure 421. A hook portion 721 is formed at an end of the hook rod 72, the hook portion 721 is hooked at the tail hole 712 of the fingering element 71, and a flange portion 722 is formed at the other end of the hook rod 72 and is locked in the joint 7331 (the flange portion 722 is received inside the joint 7331, and is freely rotatable relative to the joint 7331, as shown in
Continue to refer to
As shown in
In an embodiment, as shown in
In another embodiment (as shown in
Please continue to refer to
It should be noted that, in the foregoing embodiment, the top rod structure 412 may be directly implemented by using the end surface 411 of the head end 41 of the second tube body 40, to push a concave area of a can body bottom portion A5 to form sealing, or, in this embodiment, a hole 4111 is provided on the end surface 411 of the head end 41 of the second tube body 40, and the top rod structure 412 is disposed inside the second tube body 40 and sequentially includes a convex-type element 4121 having a top rod 41211, a compression spring 4122, and a fixing element 4123. The fixing element 4123 is fixedly screwed on an inner wall of the second tube body 40 by applying a screw 41231 to support the compression spring 4122, so that the convex-type element 4121 is pushed upward by the compression spring 4122, the top rod 41211 protrudes from the hole 4111, and a shortened travel length after the compression spring 4122 is pressed is less than a length by which the top rod 41211 protrudes from the hole 4111. In other words, when position locking between the first tube body 10 and the second tube body 40 is released, and the sheath structure 421 is held and pushed toward the first tube body 10, after the top rod 41211 of the convex-type element 4121 pushes the can body bottom portion A5 of the irritant gas can A, the convex-type element 4121 stops pushing temporarily; instead, the compression spring 4122 absorbs a pushing force from the sheath structure 421, and when the compression spring 4122 is shortened to a limit, the convex-type element 4121 may be pushed again to enable the end surface 411 of the second tube body 40 and the top rod 41211 to push the can body bottom portion A5 of the irritant gas can A, so that the recessed seat 21 presses the press-ring portion A2 to spray the contents A3. That is, the press-ring portion A2 in front is subject to a pushing force from behind and a blocking limit of the recessed seat 21 in front, and the can body top portion A4 compresses the compression elastic piece 30 to a limit, so as to spray the contents A3 from the output tube A1.
In addition, to keep a spray path of the irritant gas can A unobstructed, when a defense spray function is not used, an end plug 22 (the end plug 22 has a water-proof function) inserted in the through hole 211 is further included on a surface, opposite the receiving chamber 111, of the cap 20; however, before the defense spray function is used, the end plug 22 must be removed.
Please continue to refer to
As shown in
It should be noted that, in addition to the foregoing integration of a function of a staff, a cane or an umbrella into a defense spray apparatus, the present invention can further shorten the second tube body 40, so as to greatly reduce a volume and achieve higher portability.
In conclusion, the foregoing implementation manners or embodiments of the adopted technical means of the present invention are not used to limit the patent scope of the present invention. That is, all equivalent changes and modifications that conform to the meaning of the claims of the present invention or that are made according to the claims of the present invention shall fall within the patent scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
104205713 U | Apr 2015 | TW | national |
Number | Name | Date | Kind |
---|---|---|---|
3038483 | Altsheler | Jun 1962 | A |
3241259 | McBride | Mar 1966 | A |
3432077 | Voll | Mar 1969 | A |
4093969 | Maynor, Jr. | Jun 1978 | A |
4252137 | Cohen | Feb 1981 | A |
4819137 | Hamilton | Apr 1989 | A |
4860776 | McQuain | Aug 1989 | A |
5065904 | McCaffrey | Nov 1991 | A |
5282332 | Philips | Feb 1994 | A |
5529215 | Banks | Jun 1996 | A |
5842601 | Pierpoint | Dec 1998 | A |
5901723 | Ames | May 1999 | A |
5986872 | Chaput | Nov 1999 | A |
6091597 | Lin | Jul 2000 | A |
6386726 | Macierowski | May 2002 | B1 |
6499855 | Kukuk | Dec 2002 | B1 |
6957750 | Trudell | Oct 2005 | B1 |
7421933 | Pearson | Sep 2008 | B1 |
7525786 | Douglas | Apr 2009 | B1 |
8375967 | Stratton | Feb 2013 | B1 |
9257026 | Kalina | Feb 2016 | B2 |
9345296 | Lanear | May 2016 | B1 |
20040264098 | Eccles | Dec 2004 | A1 |
20070167241 | Stethem | Jul 2007 | A1 |
20090038664 | Juslin | Feb 2009 | A1 |
20090199884 | Lessing | Aug 2009 | A1 |
20130015203 | Zuloff | Jan 2013 | A1 |
20130150167 | Pelkey | Jun 2013 | A1 |
20140256452 | Cheng | Sep 2014 | A1 |
20150038239 | Parsons | Feb 2015 | A1 |
20150038240 | Parsons | Feb 2015 | A1 |
20160298939 | Kuo | Oct 2016 | A1 |
20160305747 | Kuo | Oct 2016 | A1 |
Number | Date | Country | |
---|---|---|---|
20160305747 A1 | Oct 2016 | US |