The field relates to bonded optical devices and, in particular, to bonded optical devices for use in wearable electronics.
In some types of display devices, a very small and extremely high resolution device is desirable. Examples include directly viewed display screens, such as smart watches and cell phone displays, as well as applications with projected images from small screens, such as heads-up displays (HUDs) and smart glasses. For example, in wearable smart glasses, such as augmented reality (AR) glasses, or other eyewear that includes electronic circuitry and a display, the image may be positioned less than 1-2 cm (e.g., 1-1.2 cm) from the user's eye. In such devices, it can be desirable to utilize a pitch for the display pixels that are as small as possible (e.g., less than 5-6 μm), for example, in order to provide a desired quality of image. Some technologies, such as liquid crystal-on-silicon (LCoS) may be able to provide pixels with low pitches, but are inefficient in that an insignificant amount of optical energy (e.g., light) is lost, may have low manufacturing yield, lower resolution and may be expensive.
Other technologies such as micro light emitting diodes (microLED) are capable of providing very bright images for AR/MR (Mixed Reality) applications because they can provide a sufficient amount of optical energy (e.g., brightness) to provide, e.g., a clear image visible in well-lit ambiance. Light Emitting Diode (LED) wafers can be processed for one wavelength of light at a time (red “R”, green “G” or blue “B”), and making a multi-colored display still poses a challenge against providing a desired level of image quality in the aforementioned applications.
Accordingly, there remains a continuing need for improved optical devices, for example to create a colored image from monochromatic LED displays and integrate these monochromatic microLED displays for applications such as AR smart glasses, projection systems, car HUDs, smart watch displays, cell phone displays, etc.
Specific implementations will now be described with reference to the following drawings, which are provided by way of example, and not limitation.
Various embodiments disclosed herein relate to bonded optical devices 200, 300a-c (shown in, e.g.,
In some microLED displays, each pixel 704 (shown in, e.g.,
Embodiments disclosed herein can enable displays having a fine pixel pitch by bonding (e.g., directly bonding or hybrid bonding) an optical element 202a-c, 302a-c (shown in, e.g.,
In other embodiments, the carrier 304a-c can be singulated to form a plurality of bonded optical devices 300a-c, as shown in
The optical element(s) 202a-c, 302a-c can be directly bonded (e.g., using dielectric-to-dielectric bonding techniques, such as the ZiBond®, DBI or DBI Ultra techniques used by Xperi Corporation of San Jose, Calif.) to the at least one carrier 204, 304a-c (such as a processor element) without an adhesive. For example, the dielectric-to-dielectric bonds may be formed without an adhesive using the direct bonding techniques disclosed at least in U.S. Pat. Nos. 9,391,143 and 10,434,749, the entire contents of each of which are incorporated by reference herein in their entirety and for all purposes.
In various embodiments, the direct bonds can be formed without an intervening adhesive. For example, dielectric bonding surfaces 206, 306a-c can be polished to a high degree of smoothness. The bonding surfaces 206, 306a-c can be cleaned and exposed to a plasma and/or etchants to activate the surfaces. In some embodiments, the surfaces can be terminated with a species after activation or during activation (e.g., during the plasma and/or etch processes). In various embodiments, the terminating species can comprise nitrogen. Further, in some embodiments, the bonding surfaces can be exposed to fluorine. For example, there may be one or multiple fluorine peaks near layer and/or bonding interfaces. Without being limited by theory, in some embodiments, the activation process can be performed to break chemical bonds at the bonding surface, and the termination process can provide additional chemical species at the bonding surface that improves the bonding energy during direct bonding. Thus, in the directly bonded structures, the bonding interface between two dielectric materials can comprise a very smooth interface with higher nitrogen content and/or fluorine peaks at the bonding interface.
In various embodiments, conductive contact pads 208a-c, 308a-c of the optical element 202a-c, 302a-c or LED element can be directly bonded to corresponding conductive contact pads 210a-c, 310a-c of the carrier 204, 304a-c (e.g., a processor element). One LED pixel within an LED chip may have two contact pads or electrodes (positive electrode and negative electrode) in various embodiments. In various embodiments, the carrier 204, 304a-c (e.g., processor element) can create identical images on the optical corresponding elements 302a-c. As explained herein, each optical element 302a-302c can comprise a monochromatic light emitting element, and can create identical images, such that, when the images are superimposed, a multi-colored image can be viewed. For example, a hybrid bonding technique can be used to provide conductor-to-conductor direct bonds along a bond interface 206, 306a-c that includes covalently direct bonded dielectric-to-dielectric surfaces. In various embodiments, the conductor-to-conductor (e.g., contact pad to contact pad) direct bonds and the dielectric-to-dielectric bonds can be formed using the direct bonding techniques disclosed at least in U.S. Pat. Nos. 9,716,033 and 9,852,988, the entire contents of each of which are incorporated by reference herein in their entirety and for all purposes.
For example, dielectric bonding surfaces 206, 306a-c can be prepared and directly bonded to one another without an intervening adhesive. Conductive contact pads 208a-c, 210a-c, 308a-c, 310a-c (which may be surrounded by nonconductive dielectric field regions) may also directly bond to one another without an intervening adhesive. In some embodiments, the respective contact pads 208a-c, 210a-c, 308a-c, 310a-c can be recessed below the dielectric field regions, for example, recessed by less than 20 nm, less than 15 nm, or less than 10 nm, for example, recessed in a range of 2 nm to 20 nm, or in a range of 4 nm to 10 nm. The dielectric field regions can be directly bonded to one another without an adhesive at room temperature in some embodiments and, subsequently, the bonded structure can be annealed. Upon annealing, the contact pads 208a-c, 210a-c, 308a-c, 310a-c can expand and contact one another to form a metal-to-metal direct bond. Beneficially, the use of Direct Bond Interconnect, or DBI®, and/or ZiBond techniques can enable fine pixel pitches as explained above. In some embodiments, the pitch of the bonding pads 208a-c, 210a-c, 308a-c, 310a-c may be less than 300 microns, less than 40 microns or less than 10 microns, or even less than 2 microns. For some applications the ratio of the pitch of the bonding pads 208a-c, 210a-c, 308a-c, 310a-c to one of the dimensions of the bonding pad 208a-c, 210a-c, 308a-c, 310a-c is less than 5, or less than 3 and sometimes desirably less than 2. In various embodiments, the contact pads 208a-c, 210a-c, 308a-c, 310a-c can comprise copper, although other metals may be suitable.
The embodiments disclosed herein can also be used in combination with the devices and methods disclosed throughout U.S. patent application Ser. No. 15/919,570 (which issued as U.S. Pat. No. 10,629,577 on Apr. 21, 2020); Ser. No. 16/219,693; and Ser. No. 16/176,191, the entire contents of each of which are incorporated by reference herein in their entirety and for all purposes. U.S. patent application Ser. No. 15/919,570, for example, teaches methods for direct hybrid bonding of CMOS logic wafers or dies to LED wafers or dies for direct control of the emitters (active matrix driving). U.S. application Ser. No. 16/176,191 teaches direct bonding of optically transparent substrates.
The embodiments disclosed herein can further be used in combination with the devices and methods (which describe how an optical element can be bonded to a processor die) disclosed throughout U.S. Pat. No. 10,629,577, the entire contents of which are incorporated by reference herein in their entirety and for all purposes. U.S. Pat. No. 10,629,577 teaches direct-bonded arrays of optical elements such as for example direct-bonded LED arrays.
Thus, in direct bonding processes, a first element (e.g., an optical element 202a-c, 302a-c) can be directly bonded to a second element (e.g., a carrier 204, 304a-c such as a processor die) without an intervening adhesive. In some arrangements, the first element can comprise a singulated element, such as a singulated optical device die. In other arrangements, the first element can comprise a carrier or substrate (e.g., a wafer) that includes a plurality (e.g., tens, hundreds, or more) of device regions that, when singulated, form a plurality of integrated device dies. Similarly, the second element can comprise a singulated element, such as a singulated integrated device die (e.g., a processor die). In other arrangements, the second element can comprise a substrate (e.g., a wafer).
As explained herein, the first and second elements (e.g., the optical element 202a-c, 302a-c and the carrier 204, 304a-c or processor die) can be directly bonded to one another without an adhesive, which is different from a deposition process. The first and second elements can accordingly comprise non-deposited elements. Further, directly bonded structures, unlike deposited layers, can include a defect region (not shown) along the bond interface 206, 306a-c in which nanovoids are present. The nanovoids may be formed due to activation of the bonding surfaces (e.g., exposure to a plasma). As explained above, the bond interface 206, 306a-c can include concentration of materials from the activation and/or last chemical treatment processes. For example, in embodiments that utilize a nitrogen plasma for activation, a nitrogen peak can be formed at the bond interface 206, 306a-c. In embodiments that utilize an oxygen plasma for activation, an oxygen peak can be formed at the bond interface 206, 306a-c. In some embodiments, the bond interface 206, 306a-c can comprise silicon oxide, silicon nitride, silicon oxynitride, silicon oxycarbonitride, or silicon carbonitride. As explained herein, the direct bond can comprise a covalent bond, which is stronger than van Der Waals bonds. The bonding layers can also comprise polished surfaces that are planarized to a high degree of smoothness.
In various embodiments, the metal-to-metal bonds between the contact pads 208a-c, 210a-c or 308a-c, 310a-c can be joined such that copper grains grow into each other across the bond interface 206, 306a-c. In some embodiments, the copper can have grains oriented along the crystal plane for improved copper diffusion across the bond interface 206, 306a-c. The bond interface 206, 306a-c can extend substantially entirely to at least a portion of the bonded contact pads 208a-c, 210a-c, 308a-c, 310a-c, such that there is substantially no gap between the nonconductive bonding regions at or near the bonded contact pads 208a-c, 210a-c, 308a-c, 310a-c. In some embodiments, a barrier layer (not shown) may be provided under the contact pads 208a-c, 210a-c, 308a-c, 310a-c (e.g., which may include copper). In other embodiments, however, there may be no barrier layer under the contact pads 208a-c, 210a-c, 308a-c, 310a-c, for example, as described in U.S. Patent Application Publication No. US 2019/0096741, which is incorporated by reference herein in its entirety and for all purposes.
Although the illustrated embodiments show directly bonded optical elements, in other embodiments, the optical devices can be attached to the carrier(s) with an adhesive, e.g., a transparent adhesive.
As illustrated and described herein, in some embodiments, the bonded optical device 200, 300a-c can comprise an optical element 202a-c, 302a-c that includes a plurality of image regions or display regions (e.g., pixels 602a-c as shown in
The optical element 202a-c, 302a-c can be bonded, e.g., directly bonded without an intervening adhesive, to at least one carrier 204, 304a-c (for example, at least one processor element) that has active circuitry for controlling operation of pixels of the optical element 202a-c, 302a-c. The at least one carrier 204, 304a-c can comprise a semiconductor element, such as silicon, in various arrangements. For example, the carrier 204, 304a-c can serve as a silicon-based backplane in some embodiments. The carrier 204, 304a-c can comprise a processor die having driver circuitry electrically connected to the optical emitters by way of the contact pads 208a-c, 210a-c, 308a-c, 310a-c. The driver circuitry can control the emission of light from the plurality of optical emitters of the optical element 202a-c, 302a-c.
As explained herein, the plurality of image regions (such as the pixels 602a-c shown in
In various embodiments, the superposition of light from multiple monochromatic image regions can provide redundancy in case one image region is damaged or unused. In such cases, light from the other pixels can compensate for the color of light in the damaged image region.
Beneficially, the embodiments disclosed herein can utilize bonded optical elements 202a-c, 302a-c that include an array or pixels of multiple LEDs, without separately singulating and repopulating the singulated LEDs on a substrate. The array of LED chips can be directly bonded to an array of processing elements configured to control operation of the LEDs. By contrast, in other methods, each LED pixel can be singulated and stacked on a substrate at higher pitches, which can complicate assembly processes. The use of directly bonded optical elements including an array of LEDs can accordingly improve manufacturability of display devices. In one example the array of red (R), Green (G) and Blue (B) LED wafers are each separately direct or hybrid bonded to silicon (Si) backplane or imager wafers. These stacks can then be singulated to form red, green and blue monochromatic imagers, which could be combined to form a multi-colored image. In another example, red, green, and blue LED wafers can be separately singulated to form R, G, B LED chips and can be direct bonded to one silicon backplane or imager. Elements in a silicon backplane can be electrically connected to LED pixels within R, G, B chips to achieve pixel level control. Although LED wafers can be direct or hybrid bonded to a silicon backplane, any other suitable backplane (e.g., a Thin Film Transistor, or TFT) backplane may also be used. In some embodiments, as explained herein, an optical assembly can comprise at least one red LED chip, at least one green LED chip, and at least one blue LED chip. In some embodiments, an optical system can comprise a plurality or an array of multiple such optical assemblies to direct image data to the user.
In some embodiments, the monochromatic image regions can be oriented parallel to one another. For example, in some embodiments, the image regions can be positioned laterally side-by-side on a waveguide. Light from the image regions can be coupled into the waveguide, and the waveguide can transmit a superimposed image of multiple colors to the user. In other embodiments, the image regions can be positioned non-parallel to one another (e.g., perpendicular to one another), and combiner optics can be provided to transmit a superimposed image of multiple colors to the user.
In one embodiment, the optical devices 400a-c (including the optical elements 402a-c (e.g., monochromatic LED chips, for example, for R, G, B, respectively) with corresponding carrier elements 404a-c (e.g., silicon backplane) can be combined to form a colored image or portion of a colored image. That is, instead of for example RGB microLED displays, separate monochromatic LED chips can be combined as shown in
In one implementation, the bonded optical devices 400a-c can be oriented at an angle relative to one another. For example, the optical elements 402a-c can be approximately perpendicular to one another. In another implementation, the optical elements 402a-c can form a prescribed angle that is greater or less than 90° relative to one another. The optical devices 400a-c can each be mounted on a frame or other structure (not shown) and aligned relative to one or more mirroring apparatus 406a-b (which can be for example beam splitters for redirecting light). As shown in
In one implementation, hybrid direct bonding (such as DBI®) can be implemented to bond the carrier elements 404a-c (e.g., CMOS circuit) to control each pixel/diode at ˜5 μm pitch with the optical elements 402a-c such as large R, G and B chips based on the size of the display.
In another implementation, the colors as produced by the optical elements 402a-c as driven by the carrier elements 404a-c can be used to deliver an image or portion of an image to the user's eye by the optical combiner apparatus 408 (such as via curved combiners or waveguides).
In other implementations, D2D, W2W or D2W bonding can be used, based on the application.
As shown, the individual optical elements (such as for example R, G, B wafers) 502a-c can be stacked on carrier elements 504a-c and singulated to form three (3) large optical devices such as monochromatic display chips with for example size of 5 mm×8 mm.
In one embodiment, the optical elements 502a-c can be placed side-by-side. In some embodiments, the optical elements 502a-c can be mounted on a common carrier (not shown). In other embodiments, the optical elements 502a-502c can be mounted on separate carrier elements 504a-c to form the optical devices 500a-c.
In one implementation, the optical devices 500a-c can be arranged (e.g., mounted on a frame or structure) so as to be laterally offset by a predetermined amount. In such arrangement, the optical elements 502a-c are laterally offset from one another by a predetermined distance, along a direction that is parallel to a major surface of at least one carrier element 504a-c. Here, the emission surfaces can also be parallel to one another. In another implementation, the emission surfaces may not be parallel to one another, but may instead be angled relative to one another.
As shown, the light from each optical element 502a-c can be redirected by the corresponding mirroring apparatus 506a-c, so as to superimpose the image data, which can be collected via the optical combiner apparatus 508 (e.g., combiner optics such as a lens) to produce various colors. The light from each optical element 502a-c can be varied based on the control via the carrier elements 504a-c, so as to produce different colors based on how much of each color from each optical element 502a-c is emitted and then combined.
In various embodiments, each pixel 602a-c (e.g., monochromatic image region) can comprise one or a plurality of optical physical isolation or pixel isolation structures configured to limit crosstalk between neighboring regions of the optical element 610. For example, the isolation structures can comprise trenches formed through at least a portion of the optical element 610. The isolation structures may be similar to the deep trench isolation structures implemented in back side illuminated image sensors.
As shown, in one embodiment, the physical separation 606 between pixels 602a-c within an optical element 610, such as a chip, can comprise deep trench isolation features for integrated microLED arrays. Such deep trench isolation features can prevent light received by one pixel from going into another, microLEDs can also be fabricated such that light 604 generated by one diode/pixel is not scattered internally to the neighboring pixel/diode, based for example on the physical separation 606. Based on such individually controllable pixel 602a-c, light emitted via the emitter 614 (which can be configured to emit light of a single prescribed color, and make up or define at least a part of the pixel 602a-c) from for example one pixel 602c is physically isolated from the adjacent pixel 602b by the physical separation 606.
In one embodiment, the optical assemblies 400 and/or 500 such as with the optical assemblies of combined LED-CMOS structure (including monochromatic microLED display) described herein can be attached as separate units or mounted directly (for example via a plurality of input couplings 802) on the waveguide 804 in direct, side or angular configuration. In one or more implementations, this can be implemented in for example projectors (projection systems), car HUDs, smart watch displays, and cell phone displays, which include a plurality of output couplings 806, used to transmit the image data to the user's eye 102.
The input coupling 904, 1004 allows the image data from the optical assembly 902, 1002 to enter the waveguide 906, 1006 (for example made of dielectric material), which is used to transfer the image data via light (including superimposed light emitted from the optical assembly 902, 1002 via for example a corresponding array of emitters) travelling through the waveguide 906, 1006 by for example total internal reflection (TIR) and to the user's eye 102 via the output coupling 908, 1008.
In one embodiment, as shown in
In one embodiment, the plurality of optical elements 1102a-c can emit, via a plurality of emitters (not shown) monochromatic light, which can travel through the corresponding optical combining element 1108 and connecting waveguide 1110, to be reflected by the corresponding mirroring apparatus 1112a-c. As shown, the plurality of optical elements 1102a-c can be disposed between the carrier element 1104 and the waveguide 1116. The optical elements 1102a-c can be directly bonded to the carrier element 1104 without an intervening adhesive. Furthermore, the mirroring apparatus 1112a-c can be arranged at an angle relative to connecting waveguides 1110, so as to direct the incoming lights through the optical combiner apparatus 1114 and the waveguide 1116 to the user's eye (not shown).
In one embodiment, the carrier element 1104 is a silicon/glass carrier, or an active silicon die driving the pixels 1106 and the optical elements (such as for example LED die) 1102a-c in another embodiment. In some embodiments, the optical elements can be directly bonded to the waveguide, e.g., to the connecting waveguide 1110, without an intervening adhesive. In other embodiments, the optical elements can be attached to the waveguide with a transparent adhesive.
Thus, in various embodiments, a bonded optical device is disclosed. The bonded optical device can include a first optical element having a first array of optical emitters configured to emit light of a first color. The first optical element can be bonded to at least one processor element, the at least one processor element comprising active circuitry configured to control operation of the first optical element. The bonded optical device can include a second optical element having a second array of optical emitters configured to emit light of a second color different from the first color. The second optical element can be bonded to the at least one processor element. The at least one processor element can comprise active circuitry configured to control operation of the second optical element. The bonded optical device can include an optical pathway optically coupled with the first and second optical elements, the optical pathway configured to transmit a superposition of light from the first and second optical emitters to an optical output to be viewed by a user.
In some embodiments, the first optical element is directly bonded to the at least one processor element without an intervening adhesive, and the second optical element is directly bonded to the at least one processor element without an intervening adhesive. Respective dielectric bonding surfaces of the first optical element and the at least one processor element can be directly bonded to one another without an intervening adhesive. Respective conductive contact pads of the first optical element and the at least one processor element can be directly bonded to one another without an intervening adhesive. Each optical emitter of the first and second arrays of optical emitters can be electrically connected to a corresponding driver circuit on the at least one processor element.
In some embodiments, a first optical emitter of the first array of optical emitters and a second optical emitter of the second array of optical emitters at least partially define a pixel, and the optical pathway can be configured to transmit a superposition of the light from the first and second optical emitters of the pixel. The at least one processor element can comprise a first processor element and a second processor element separate from the first processor element. The first optical element can be bonded to the first processor element and the second optical element can be bonded to the second processor element. In some embodiments, the at least one processor element comprises a common carrier.
In various embodiments, the optical pathway comprises an optical waveguide. The first optical element can be disposed between the optical waveguide and the first processor element. The second optical element can be disposed between the optical waveguide and the second processor element. In some embodiments, the first and second optical elements are directly bonded to the optical waveguide without an intervening adhesive. In some embodiments, the first and second optical elements are bonded with one or more adhesives transparent to the respective first and second colors of light.
In some embodiments, the first and second optical elements can be laterally offset from one another along a direction parallel to a major surface of the at least one processor element. In some embodiments, respective emission surfaces of the first and second optical elements can be generally parallel to one another. In some embodiments, respective emission surfaces of the first and second optical elements can be disposed non-parallel to one another.
The bonded optical device can include one or a plurality of optical isolation structures in the first optical element. The optical isolation structures can be configured to limit crosstalk between adjacent optical emitters.
In some embodiments, the first color has a first peak at a first wavelength, the second color has a second peak at a second wavelength. A difference between the first and second wavelengths can be at least 25 nm. Thus, in various embodiments, the wavelengths can be separated by a sufficient amount such that the colors emitted by the optical elements can be distinguishable from one another. In some embodiments, the optical pathway can include one or more redirection elements (e.g., mirrors, beamsplitters, etc.) to redirect light from the first and second image regions. In some embodiments, the optical pathway comprises a lens configured to act upon the superimposed light.
The bonded optical device can include a third optical element optically coupled with the optical pathway and bonded to the at least one processor element. The third optical element can be configured to emit light of a third color that is different from the first and second colors. The first, second, and third colors can comprise red, green, and blue, respectively. In various embodiments, the optical emitters of the first array are independently controllable. The first and second arrays of optical emitters can comprise respective arrays of light emitting diodes (LEDs). A pitch of the optical emitters of the first array can be less than 50 microns. A pitch of the optical emitters of the first array can be less than 10 microns.
In another embodiment, a bonded optical device is disclosed. The bonded optical device can include a first optical element directly bonded to at least one carrier without an adhesive, the first optical element configured to emit light of a first color. The bonded optical device can include a second optical element directly bonded to the at least one carrier without an adhesive. The second optical element can be configured to emit light of a second color different from the first color. The first and second optical elements can be laterally offset from one another along a direction parallel to a major surface of the at least one carrier. The bonded optical device can include an optical pathway optically coupled with the first and second optical elements, the optical pathway configured to transmit a superposition of light from the first and second optical elements to an optical output to be viewed by a user.
In some embodiments, the at least one carrier comprises a first carrier and a second carrier separate from the first carrier. In some embodiments, the at least one carrier comprises at least one processor element comprising active circuitry configured to control operation of at least one of the first and second optical elements. In some embodiments, the first optical element can be directly bonded to the at least one carrier without an intervening adhesive, and the second optical element can be directly bonded to the at least one carrier without an intervening adhesive. In some embodiments, respective dielectric bonding surfaces of the first optical element and the at least one carrier are directly bonded to one another without an intervening adhesive. In some embodiments, respective conductive contact pads of the first optical element and the at least one carrier are directly bonded to one another without an intervening adhesive. In various embodiments, the at least one carrier comprises at least one of silicon or glass. In some embodiments, the at least one carrier can have a coefficient of thermal expansion (CTE) less than 7 ppm.
In some embodiments, the optical pathway can comprise an optical waveguide. In some embodiments, a third optical element can be optically coupled with the optical pathway. The third optical element can be directly bonded to the at least one carrier without an adhesive. The third optical element can be configured to emit light of a third color that is different from the first and second colors.
In some embodiments, the first, second, and third colors comprise red, green, and blue, respectively. The first and second optical elements can comprise respective arrays of optical emitters. The optical emitters can be independently controllable. The optical emitters can comprise light emitting diodes (LEDs).
In another embodiment, a method of bonding at least one optical element with at least one processor element is disclosed. The method can include bonding a first optical element with to at least one processor element, wherein the first optical element comprises a first array of optical emitters configured to emit light of a first color, and the at least one processor element comprises active circuitry configured to control operation of the first optical element; bonding a second optical element with to the at least one processor element, wherein the second optical element comprises a second array of optical emitters configured to emit light of a second color different from the first color, and the at least one processor element comprises active circuitry further configured to control operation of the second optical element; and coupling the first and second optical elements with an optical pathway, the optical pathway configured to transmit a superposition of light from the first and second optical emitters to an optical output to be viewed by a user. In some embodiments, the at least one carrier comprises a processor die.
Although disclosed in the context of certain embodiments and examples, it will be understood by those skilled in the art that the present invention extends beyond the specifically disclosed embodiments to other alternative embodiments and/or uses and obvious modifications and equivalents thereof. Further, unless otherwise noted, the components of an illustration may be the same as or generally similar to like-numbered components of one or more different illustrations. In addition, while several variations have been shown and described in detail, other modifications, which are within the scope of this disclosure, will be readily apparent to those of skill in the art based upon this disclosure. It is also contemplated that various combinations or sub-combinations of the specific features and aspects of the embodiments may be made and still fall within the scope of the present disclosure. It should be understood that various features and aspects of the disclosed embodiments can be combined with, or substituted for, one another in order to form varying modes of the disclosed invention. Thus, it is intended that the scope of the present invention herein disclosed should not be limited by the particular disclosed embodiments described above, but should be determined only by a fair reading of the aspects that follow.
This application claims priority to U.S. Provisional Patent Application No. 62/949,312, filed Dec. 17, 2019, the entire contents of which are hereby incorporated by reference in their entirety and for all purposes.
Number | Name | Date | Kind |
---|---|---|---|
4998665 | Hayashi | Mar 1991 | A |
5015052 | Ridgway et al. | May 1991 | A |
5087585 | Hayashi | Feb 1992 | A |
5225797 | Schary et al. | Jul 1993 | A |
5322593 | Hasegawa et al. | Jun 1994 | A |
5363464 | Way et al. | Nov 1994 | A |
5408053 | Young | Apr 1995 | A |
5471090 | Deutsch et al. | Nov 1995 | A |
5753536 | Sugiyama et al. | May 1998 | A |
5771555 | Eda et al. | Jun 1998 | A |
5785874 | Eda | Jul 1998 | A |
5818631 | Askinazi et al. | Oct 1998 | A |
5985739 | Plettner et al. | Nov 1999 | A |
5998808 | Matsushita | Dec 1999 | A |
6008126 | Leedy | Dec 1999 | A |
6080640 | Gardner et al. | Jun 2000 | A |
6084714 | Ushiyama et al. | Jul 2000 | A |
6108472 | Rickman et al. | Aug 2000 | A |
6115264 | Nosaka | Sep 2000 | A |
6265775 | Seyyedy | Jul 2001 | B1 |
6300161 | Goetz et al. | Oct 2001 | B1 |
6374770 | Lee | Apr 2002 | B1 |
6404550 | Yajima | Jun 2002 | B1 |
6418029 | McKee et al. | Jul 2002 | B1 |
6423640 | Lee et al. | Jul 2002 | B1 |
6429532 | Han et al. | Aug 2002 | B1 |
6442321 | Berini | Aug 2002 | B1 |
6465892 | Suga | Oct 2002 | B1 |
6614960 | Berini | Sep 2003 | B2 |
6638808 | Ochi | Oct 2003 | B1 |
6713871 | Searls et al. | Mar 2004 | B2 |
6759692 | Ochi | Jul 2004 | B1 |
6782179 | Bozhevolnyi et al. | Aug 2004 | B2 |
6801691 | Berini | Oct 2004 | B2 |
6868258 | Hayata et al. | Mar 2005 | B2 |
6887769 | Kellar et al. | May 2005 | B2 |
6908027 | Tolchinsky et al. | Jun 2005 | B2 |
6908832 | Farrens et al. | Jun 2005 | B2 |
6936854 | Iwasaki et al. | Aug 2005 | B2 |
6962835 | Tong et al. | Nov 2005 | B2 |
7010183 | Estes et al. | Mar 2006 | B2 |
7045453 | Canaperi et al. | May 2006 | B2 |
7078811 | Suga | Jul 2006 | B2 |
7105980 | Abbott et al. | Sep 2006 | B2 |
7126212 | Enquist et al. | Oct 2006 | B2 |
7193423 | Dalton et al. | Mar 2007 | B1 |
7339798 | Chakravorty | Mar 2008 | B2 |
7354798 | Pogge et al. | Apr 2008 | B2 |
7355836 | Radhakrishnan et al. | Apr 2008 | B2 |
7614771 | McKechnie et al. | Nov 2009 | B2 |
7626216 | McKinzie, III | Dec 2009 | B2 |
7705691 | Lu et al. | Apr 2010 | B2 |
7736945 | Schiaffino et al. | Jun 2010 | B2 |
7741724 | Morikawa et al. | Jun 2010 | B2 |
7746663 | Hashimoto | Jun 2010 | B2 |
7750488 | Patti et al. | Jul 2010 | B2 |
7791429 | Chen et al. | Sep 2010 | B2 |
7803693 | Trezza | Sep 2010 | B2 |
8009763 | Risk et al. | Aug 2011 | B2 |
8130821 | Hopkins et al. | Mar 2012 | B2 |
8153505 | Tong et al. | Apr 2012 | B2 |
8183127 | Patti et al. | May 2012 | B2 |
8211722 | Lu | Jul 2012 | B2 |
8241961 | Kim et al. | Aug 2012 | B2 |
8300312 | Kobayashi et al. | Oct 2012 | B2 |
8314007 | Vaufredaz | Nov 2012 | B2 |
8349635 | Gan et al. | Jan 2013 | B1 |
8357931 | Schieck et al. | Jan 2013 | B2 |
8377798 | Peng et al. | Feb 2013 | B2 |
8436457 | Crisp et al. | May 2013 | B2 |
8441111 | Crisp et al. | May 2013 | B2 |
8441131 | Ryan | May 2013 | B2 |
8476146 | Chen et al. | Jul 2013 | B2 |
8476165 | Trickett et al. | Jul 2013 | B2 |
8482132 | Yang et al. | Jul 2013 | B2 |
8483253 | Budd et al. | Jul 2013 | B2 |
8501537 | Sadaka et al. | Aug 2013 | B2 |
8524533 | Tong et al. | Sep 2013 | B2 |
8558636 | Shin et al. | Oct 2013 | B2 |
8620164 | Heck et al. | Dec 2013 | B2 |
8647987 | Yang et al. | Feb 2014 | B2 |
8697493 | Sadaka | Apr 2014 | B2 |
8698323 | Mohammed et al. | Apr 2014 | B2 |
8716105 | Sadaka et al. | May 2014 | B2 |
8802538 | Liu | Aug 2014 | B1 |
8809123 | Liu et al. | Aug 2014 | B2 |
8841002 | Tong | Sep 2014 | B2 |
8865489 | Rogers et al. | Oct 2014 | B2 |
8916448 | Cheng et al. | Dec 2014 | B2 |
8929077 | Gouramanis | Jan 2015 | B2 |
8988299 | Kam et al. | Mar 2015 | B2 |
9093350 | Endo et al. | Jul 2015 | B2 |
9142517 | Liu | Sep 2015 | B2 |
9171756 | Enquist et al. | Oct 2015 | B2 |
9179584 | La Porta et al. | Nov 2015 | B2 |
9184125 | Enquist et al. | Nov 2015 | B2 |
9224704 | Landru | Dec 2015 | B2 |
9230941 | Chen et al. | Jan 2016 | B2 |
9257399 | Kuang et al. | Feb 2016 | B2 |
9263186 | Li et al. | Feb 2016 | B2 |
9299736 | Chen et al. | Mar 2016 | B2 |
9312229 | Chen et al. | Apr 2016 | B2 |
9331149 | Tong et al. | May 2016 | B2 |
9337235 | Chen et al. | May 2016 | B2 |
9368866 | Yu | Jun 2016 | B2 |
9385024 | Tong et al. | Jul 2016 | B2 |
9391143 | Tong et al. | Jul 2016 | B2 |
9394161 | Cheng et al. | Jul 2016 | B2 |
9431368 | Enquist et al. | Aug 2016 | B2 |
9434145 | Erdogan et al. | Sep 2016 | B2 |
9437572 | Chen et al. | Sep 2016 | B2 |
9443796 | Chou et al. | Sep 2016 | B2 |
9461007 | Chun et al. | Oct 2016 | B2 |
9496202 | Hashimoto | Nov 2016 | B2 |
9496239 | Edelstein et al. | Nov 2016 | B1 |
9536848 | England et al. | Jan 2017 | B2 |
9537199 | Dang et al. | Jan 2017 | B2 |
9559081 | Lai et al. | Jan 2017 | B1 |
9620481 | Edelstein et al. | Apr 2017 | B2 |
9625713 | Helie et al. | Apr 2017 | B2 |
9656852 | Cheng et al. | May 2017 | B2 |
9671572 | Decker et al. | Jun 2017 | B2 |
9711694 | Robin et al. | Jul 2017 | B2 |
9723716 | Meinhold | Aug 2017 | B2 |
9728521 | Tsai et al. | Aug 2017 | B2 |
9741620 | Uzoh et al. | Aug 2017 | B2 |
9744754 | Wakamatsu et al. | Aug 2017 | B2 |
9799587 | Fujii et al. | Oct 2017 | B2 |
9847458 | Lee et al. | Dec 2017 | B2 |
9852988 | Enquist et al. | Dec 2017 | B2 |
9881882 | Hsu et al. | Jan 2018 | B2 |
9893004 | Yazdani | Feb 2018 | B2 |
9899442 | Katkar | Feb 2018 | B2 |
9929050 | Lin | Mar 2018 | B2 |
9935088 | Budd et al. | Apr 2018 | B2 |
9941241 | Edelstein et al. | Apr 2018 | B2 |
9941243 | Kim et al. | Apr 2018 | B2 |
9953941 | Enquist | Apr 2018 | B2 |
9960142 | Chen et al. | May 2018 | B2 |
9960152 | Bono et al. | May 2018 | B2 |
10002844 | Wang et al. | Jun 2018 | B1 |
10026605 | Doub et al. | Jul 2018 | B2 |
10075657 | Fahim et al. | Sep 2018 | B2 |
10204893 | Uzoh et al. | Feb 2019 | B2 |
10269756 | Uzoh | Apr 2019 | B2 |
10276619 | Kao et al. | Apr 2019 | B2 |
10276909 | Huang et al. | Apr 2019 | B2 |
10418277 | Cheng et al. | Sep 2019 | B2 |
10446487 | Huang et al. | Oct 2019 | B2 |
10446532 | Uzoh et al. | Oct 2019 | B2 |
10475778 | Pfeuffer et al. | Nov 2019 | B2 |
10508030 | Katkar et al. | Dec 2019 | B2 |
10522499 | Enquist et al. | Dec 2019 | B2 |
10571699 | Parsons et al. | Feb 2020 | B1 |
10707087 | Uzoh et al. | Jul 2020 | B2 |
10784191 | Huang et al. | Sep 2020 | B2 |
10790262 | Uzoh et al. | Sep 2020 | B2 |
10840135 | Uzoh | Nov 2020 | B2 |
10840205 | Fountain, Jr. et al. | Nov 2020 | B2 |
10854578 | Morein | Dec 2020 | B2 |
10879212 | Uzoh et al. | Dec 2020 | B2 |
10886177 | DeLaCruz et al. | Jan 2021 | B2 |
10892246 | Uzoh | Jan 2021 | B2 |
10923408 | Huang et al. | Feb 2021 | B2 |
10923413 | DeLaCruz | Feb 2021 | B2 |
10950547 | Mohammed et al. | Mar 2021 | B2 |
10964664 | Mandalapu et al. | Mar 2021 | B2 |
10985133 | Uzoh | Apr 2021 | B2 |
10991804 | DeLaCruz et al. | Apr 2021 | B2 |
10998292 | Lee et al. | May 2021 | B2 |
11004757 | Katkar et al. | May 2021 | B2 |
11011494 | Gao et al. | May 2021 | B2 |
11011503 | Wang et al. | May 2021 | B2 |
11031285 | Katkar et al. | Jun 2021 | B2 |
11056348 | Theil | Jul 2021 | B2 |
11088099 | Katkar et al. | Aug 2021 | B2 |
11127738 | DeLaCruz et al. | Sep 2021 | B2 |
11158606 | Gao et al. | Oct 2021 | B2 |
11171117 | Gao et al. | Nov 2021 | B2 |
11176450 | Teig et al. | Nov 2021 | B2 |
11256004 | Haba et al. | Feb 2022 | B2 |
11264357 | DeLaCruz et al. | Mar 2022 | B1 |
11276676 | Enquist et al. | Mar 2022 | B2 |
11296044 | Gao et al. | Apr 2022 | B2 |
11329034 | Tao et al. | May 2022 | B2 |
11348898 | DeLaCruz et al. | May 2022 | B2 |
11355443 | Huang et al. | Jun 2022 | B2 |
20020000328 | Motomura et al. | Jan 2002 | A1 |
20020003307 | Suga | Jan 2002 | A1 |
20020025101 | Kaatz | Feb 2002 | A1 |
20020131715 | Brady | Sep 2002 | A1 |
20030081906 | Filhaber et al. | May 2003 | A1 |
20030168716 | Lee et al. | Sep 2003 | A1 |
20040071424 | Hiraka et al. | Apr 2004 | A1 |
20040084414 | Sakai et al. | May 2004 | A1 |
20040149991 | Won | Aug 2004 | A1 |
20040155692 | Ochi | Aug 2004 | A1 |
20040157407 | Tong et al. | Aug 2004 | A1 |
20040207043 | Matsunaga et al. | Oct 2004 | A1 |
20040022691 | Chatterjee et al. | Nov 2004 | A1 |
20050063134 | Kim et al. | Mar 2005 | A1 |
20050135041 | Kang et al. | Jun 2005 | A1 |
20050190808 | Yonekura et al. | Sep 2005 | A1 |
20050226299 | Horng et al. | Oct 2005 | A1 |
20050231303 | Chang et al. | Oct 2005 | A1 |
20060012966 | Chakravorty | Jan 2006 | A1 |
20060017144 | Uematsu et al. | Jan 2006 | A1 |
20060057945 | Hsu et al. | Mar 2006 | A1 |
20060145778 | Pleva et al. | Jul 2006 | A1 |
20070045814 | Yamamoto et al. | Mar 2007 | A1 |
20070085165 | Oh et al. | Apr 2007 | A1 |
20070096130 | Schiaffino et al. | May 2007 | A1 |
20070096294 | Ikeda et al. | May 2007 | A1 |
20070111386 | Kim et al. | May 2007 | A1 |
20070147014 | Chang et al. | Jun 2007 | A1 |
20070222048 | Huang | Sep 2007 | A1 |
20070295456 | Gudeman et al. | Dec 2007 | A1 |
20080124835 | Chen et al. | May 2008 | A1 |
20080150821 | Koch et al. | Jun 2008 | A1 |
20090009103 | McKechnie et al. | Jan 2009 | A1 |
20090052827 | Durfee et al. | Feb 2009 | A1 |
20090206962 | Chou et al. | Aug 2009 | A1 |
20090242252 | Tanaka | Oct 2009 | A1 |
20100317132 | Rogers et al. | Dec 2010 | A1 |
20110018657 | Cheng et al. | Jan 2011 | A1 |
20110024918 | Brunnbauer et al. | Feb 2011 | A1 |
20110059275 | Stark | Mar 2011 | A1 |
20110113828 | Matsumoto | May 2011 | A1 |
20110115579 | Rofougaran | May 2011 | A1 |
20110290552 | Palmateer et al. | Dec 2011 | A1 |
20110294242 | Lu | Dec 2011 | A1 |
20120013499 | Hayata | Jan 2012 | A1 |
20120100318 | Danzl et al. | Apr 2012 | A1 |
20120147516 | Kim et al. | Jun 2012 | A1 |
20120168217 | Hsu et al. | Jul 2012 | A1 |
20120189317 | Heck et al. | Jul 2012 | A1 |
20120212384 | Kam et al. | Aug 2012 | A1 |
20130009183 | Han | Jan 2013 | A1 |
20130009325 | Mori et al. | Jan 2013 | A1 |
20130063863 | Timler et al. | Mar 2013 | A1 |
20130072011 | Zhang et al. | Mar 2013 | A1 |
20130105943 | Lai et al. | May 2013 | A1 |
20130122617 | Lott et al. | May 2013 | A1 |
20130170145 | Gouramanis | Jul 2013 | A1 |
20130207234 | Ikeda et al. | Aug 2013 | A1 |
20130250430 | Robbins et al. | Sep 2013 | A1 |
20130265733 | Herbsommer et al. | Oct 2013 | A1 |
20130286544 | Azais | Oct 2013 | A1 |
20140001568 | Wang et al. | Jan 2014 | A1 |
20140048908 | Chen et al. | Feb 2014 | A1 |
20140071519 | Chen et al. | Mar 2014 | A1 |
20140116761 | Lee et al. | May 2014 | A1 |
20140145338 | Fujii et al. | May 2014 | A1 |
20140175629 | Sun et al. | Jun 2014 | A1 |
20140175655 | Chen et al. | Jun 2014 | A1 |
20140177189 | Liu et al. | Jun 2014 | A1 |
20140184351 | Bae et al. | Jul 2014 | A1 |
20140225795 | Yu | Aug 2014 | A1 |
20140252635 | Tran et al. | Sep 2014 | A1 |
20140264751 | Chen et al. | Sep 2014 | A1 |
20140264948 | Chou et al. | Sep 2014 | A1 |
20140294342 | Offriein et al. | Oct 2014 | A1 |
20140370658 | Tong et al. | Dec 2014 | A1 |
20140377946 | Cha et al. | Dec 2014 | A1 |
20150021626 | Nakamura et al. | Jan 2015 | A1 |
20150064498 | Tong | Mar 2015 | A1 |
20150097298 | Chen et al. | Apr 2015 | A1 |
20150194379 | Chen et al. | Jul 2015 | A1 |
20150206902 | Cheng et al. | Jul 2015 | A1 |
20150221571 | Chaparala et al. | Aug 2015 | A1 |
20150235952 | Pan et al. | Aug 2015 | A1 |
20150270209 | Woychik et al. | Sep 2015 | A1 |
20150318618 | Chen et al. | Nov 2015 | A1 |
20150328875 | Hattori et al. | Nov 2015 | A1 |
20160027765 | von Malm et al. | Jan 2016 | A1 |
20160077294 | Jou et al. | Mar 2016 | A1 |
20160111404 | Sanders et al. | Apr 2016 | A1 |
20160141469 | Robin et al. | May 2016 | A1 |
20160155677 | Bonart et al. | Jun 2016 | A1 |
20160181477 | Lee et al. | Jun 2016 | A1 |
20160197630 | Kawasaki | Jul 2016 | A1 |
20160233195 | Nagai | Aug 2016 | A1 |
20160254345 | Singh et al. | Sep 2016 | A1 |
20160291265 | Kinghorn et al. | Oct 2016 | A1 |
20160309578 | Park | Oct 2016 | A1 |
20160343682 | Kawasaki | Nov 2016 | A1 |
20160372449 | Rusu et al. | Dec 2016 | A1 |
20170019086 | Dueweke | Jan 2017 | A1 |
20170062409 | Basker et al. | Mar 2017 | A1 |
20170148777 | Bono et al. | May 2017 | A1 |
20170179029 | Enquist et al. | Jun 2017 | A1 |
20170186670 | Budd et al. | Jun 2017 | A1 |
20170194271 | Hsu et al. | Jul 2017 | A1 |
20170207600 | Klamkin et al. | Jul 2017 | A1 |
20170315299 | Mathai et al. | Nov 2017 | A1 |
20170338214 | Uzoh et al. | Nov 2017 | A1 |
20170343498 | Kalnitsky et al. | Nov 2017 | A1 |
20180120568 | Miller | May 2018 | A1 |
20180156965 | El-Ghoroury et al. | Jun 2018 | A1 |
20180175012 | Wu et al. | Jun 2018 | A1 |
20180182639 | Uzoh et al. | Jun 2018 | A1 |
20180182666 | Uzoh et al. | Jun 2018 | A1 |
20180190580 | Haba et al. | Jul 2018 | A1 |
20180190583 | DeLaCruz et al. | Jul 2018 | A1 |
20180191047 | Huang et al. | Jul 2018 | A1 |
20180219038 | Gambino et al. | Aug 2018 | A1 |
20180261645 | Na et al. | Sep 2018 | A1 |
20180273377 | Katkar et al. | Sep 2018 | A1 |
20180277523 | Ahmed et al. | Sep 2018 | A1 |
20180323177 | Yu et al. | Nov 2018 | A1 |
20180323227 | Zhang et al. | Nov 2018 | A1 |
20180331000 | DeLaCruz et al. | Nov 2018 | A1 |
20180331066 | Uzoh et al. | Nov 2018 | A1 |
20180358332 | Kim | Dec 2018 | A1 |
20190018245 | Cheng | Jan 2019 | A1 |
20190088633 | Tao et al. | Mar 2019 | A1 |
20190096741 | Uzoh et al. | Mar 2019 | A1 |
20190115277 | Yu et al. | Apr 2019 | A1 |
20190131277 | Yang et al. | May 2019 | A1 |
20190198409 | Katkar et al. | Jun 2019 | A1 |
20190227320 | Bonar et al. | Jul 2019 | A1 |
20190265411 | Huang et al. | Aug 2019 | A1 |
20190309936 | Kondo et al. | Oct 2019 | A1 |
20190333550 | Fisch | Oct 2019 | A1 |
20190385935 | Gao et al. | Dec 2019 | A1 |
20190385966 | Gao et al. | Dec 2019 | A1 |
20200013637 | Haba | Jan 2020 | A1 |
20200013765 | Fountain, Jr. et al. | Jan 2020 | A1 |
20200035641 | Fountain, Jr. et al. | Jan 2020 | A1 |
20200043817 | Shen et al. | Feb 2020 | A1 |
20200075553 | DeLaCruz et al. | Mar 2020 | A1 |
20200118973 | Wang et al. | Apr 2020 | A1 |
20200126906 | Uzoh et al. | Apr 2020 | A1 |
20200194396 | Uzoh | Jun 2020 | A1 |
20200194614 | Pares | Jun 2020 | A1 |
20200194635 | Yuasa et al. | Jun 2020 | A1 |
20200227367 | Haba et al. | Jul 2020 | A1 |
20200235085 | Tao et al. | Jul 2020 | A1 |
20200243380 | Uzoh et al. | Jul 2020 | A1 |
20200279821 | Haba et al. | Sep 2020 | A1 |
20200294908 | Haba et al. | Sep 2020 | A1 |
20200321307 | Uzoh | Oct 2020 | A1 |
20200328162 | Haba et al. | Oct 2020 | A1 |
20200328164 | DeLaCruz et al. | Oct 2020 | A1 |
20200328165 | DeLaCruz et al. | Oct 2020 | A1 |
20200335408 | Gao et al. | Oct 2020 | A1 |
20200365575 | Uzoh et al. | Nov 2020 | A1 |
20200371154 | DeLaCruz et al. | Nov 2020 | A1 |
20200395321 | Katkar et al. | Dec 2020 | A1 |
20200411483 | Uzoh et al. | Dec 2020 | A1 |
20200411587 | Pezeshki | Dec 2020 | A1 |
20210098412 | Haba et al. | Apr 2021 | A1 |
20210118864 | DeLaCruz et al. | Apr 2021 | A1 |
20210143125 | DeLaCruz et al. | May 2021 | A1 |
20210193603 | Katkar et al. | Jun 2021 | A1 |
20210193624 | DeLaCruz et al. | Jun 2021 | A1 |
20210193625 | DeLaCruz et al. | Jun 2021 | A1 |
20210242152 | Fountain, Jr. et al. | Aug 2021 | A1 |
20210265331 | Wang et al. | Aug 2021 | A1 |
20210288037 | Tao et al. | Sep 2021 | A1 |
20210296282 | Gao et al. | Sep 2021 | A1 |
20210305202 | Uzoh et al. | Sep 2021 | A1 |
20210366820 | Uzoh | Nov 2021 | A1 |
20210407941 | Haba | Dec 2021 | A1 |
20220043209 | Huang et al. | Feb 2022 | A1 |
20220077063 | Haba | Mar 2022 | A1 |
20220077087 | Haba | Mar 2022 | A1 |
20220139867 | Uzoh | May 2022 | A1 |
20220139869 | Gao et al. | May 2022 | A1 |
20220155490 | Haba et al. | May 2022 | A1 |
20220208650 | Gao et al. | Jun 2022 | A1 |
20220208702 | Uzoh | Jun 2022 | A1 |
20220208723 | Katkar et al. | Jun 2022 | A1 |
20220246497 | Fountain, Jr. et al. | Aug 2022 | A1 |
20220285303 | Mirkarimi et al. | Sep 2022 | A1 |
20220319901 | Suwito et al. | Oct 2022 | A1 |
20220320035 | Uzoh et al. | Oct 2022 | A1 |
20220320036 | Gao et al. | Oct 2022 | A1 |
20230005850 | Fountain, Jr. | Jan 2023 | A1 |
20230019869 | Mirkarimi et al. | Jan 2023 | A1 |
20230036441 | Haba et al. | Feb 2023 | A1 |
20230067677 | Lee et al. | Mar 2023 | A1 |
20230069183 | Haba | Mar 2023 | A1 |
Number | Date | Country |
---|---|---|
106206872 | Dec 2016 | CN |
1 441 410 | Apr 2006 | EP |
60-257413 | Dec 1985 | JP |
10-189671 | Jul 1998 | JP |
2000-100679 | Apr 2000 | JP |
2001-102479 | Apr 2001 | JP |
2002-353416 | Dec 2002 | JP |
2003-043281 | Feb 2003 | JP |
2006-276313 | Oct 2006 | JP |
2007-041117 | Feb 2007 | JP |
2008-258258 | Oct 2008 | JP |
2010-276940 | Dec 2010 | JP |
2013-33786 | Feb 2013 | JP |
2017-177519 | Oct 2017 | JP |
2018-160519 | Oct 2018 | JP |
10-2006-0105797 | Oct 2006 | KR |
10-2015-0097798 | Aug 2015 | KR |
WO 02075387 | Sep 2002 | WO |
WO 2005043584 | May 2005 | WO |
WO 2005064646 | Jul 2005 | WO |
WO 2006100444 | Sep 2006 | WO |
WO 2012125237 | Sep 2012 | WO |
WO 2016057259 | Apr 2016 | WO |
WO-2017089676 | Jun 2017 | WO |
WO 2017151442 | Sep 2017 | WO |
WO 2018223150 | Dec 2018 | WO |
Entry |
---|
Amirfeiz et al., “Formation of silicon structures by plasma-activated wafer bonding,” Journal of The Electrochemical Society, 2000, vol. 147, No. 7, pp. 2693-2698. |
Chung et al., “Room temperature GaAseu + Si and InPeu + Si wafer direct bonding by the surface activate bonding method,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Jan. 2, 1997, vol. 121, Issues 1-4, pp. 203-206. |
Chung et al., “Wafer direct bonding of compound semiconductors and silicon at room temperature by the surface activated bonding method,” Applied Surface Science, Jun. 2, 1997, vols. 117-118, pp. 808-812. |
Farrens et al., “Chemical free room temperature wafer to wafer direct bonding,” J. Electrochem. Soc., The Electrochemical Society, Inc., Nov. 1995, vol. 142, No. 11. pp. 3949-3955. |
Farrens et al., “Chemical free wafer bonding of silicon to glass and sapphire,” Electrochemical Society Proceedings vol. 95-7, 1995, pp. 72-77. |
Gösele et al., “Semiconductor Wafer Bonding: a flexible approach to materials combinations in microelectronics; micromechanics and optoelectronics,” IEEE, 1997, pp. 23-32. |
Hosoda et al., “Effect of the surface treatment on the room-temperature bonding of Al to Si and SiO2,” Journal of Materials Science, Jan. 1, 1998, vol. 33, Issue 1, pp. 253-258. |
Hosoda et al., “Room temperature GaAs—Si and InP—Si wafer direct bonding by the surface activated bonding method,” Nuclear Inst. and Methods in Physics Research B, 1997, vol. 121, Nos. 1-4, pp. 203-206. |
Howlader et al., “A novel method for bonding of ionic wafers,” Electronics Components and Technology Conference, 2006, IEEE, pp. 7-pp. |
Howlader et al., “Bonding of p-Si/n-InP wafers through surface activated bonding method at room temperature,” Indium Phosphide and Related Materials, 2001, IEEE International Conference on, pp. 272-275. |
Howlader et al., “Characterization of the bonding strength and interface current of p-Si/ n-InP wafers bonded by surface activated bonding method at room temperature,” Journal of Applied Physics, Mar. 1, 2002, vol. 91, No. 5, pp. 3062-3066. |
Howlader et al., “Investigation of the bonding strength and interface current of p-SionGaAs wafers bonded by surface activated bonding at room temperature,” J. Vac. Sci. Technol. B 19, Nov./Dec. 2001, pp. 2114-2118. |
Itoh et al., “Characteristics of fritting contacts utilized for micromachined wafer probe cards,” 2000 American Institute of Physics, AIP Review of Scientific Instruments, vol. 71, 2000, pp. 2224. |
Itoh et al., “Characteristics of low force contact process for MEMS probe cards,” Sensors and Actuators A: Physical, Apr. 1, 2002, vols. 97-98, pp. 462-467. |
Itoh et al., “Development of MEMS IC probe card utilizing fritting contact,” Initiatives of Precision Engineering at the Beginning of a Millennium: 10th International Conference on Precision Engineering (ICPE) Jul. 18-20, 2001, Yokohama, Japan, 2002, Book Part 1, pp. 314-318. |
Itoh et al., “Room temperature vacuum sealing using surface activated bonding method,” the 12th International Conference on Solid State Sensors, Actuators and Microsystems, Boston, Jun. 8-12, 2003, 2003 IEEE, pp. 1828-1831. |
Jeon, Y. et al., “Design of an on-interposer passive equalizer for high bandwidth memory (HBM) with 30Gbps data transmission,” Electronic Components and Technology Conference (ECTC), 2016 IEEE 66th, Aug. 18, 2016. |
Ker, Ming-Dou et al., “Fully process-compatible layout design on bond pad to improve wire bond reliability in CMOS lcs,” IEEE Transactions on Components and Packaging Technologies, Jun. 2002, vol. 25, No. 2, pp. 309-316. |
Kim et al., “Low temperature direct Cu—Cu bonding with low energy ion activation method,” Electronic Materials and Packaging, 2001, IEEE, pp. 193-195. |
Kim et al., “Room temperature Cu—Cu direct bonding using surface activated bonding method,” J. Vac. Sci. Technol., 2003 American Vacuum Society, Mar./Apr. 2003, vol. 21, No. 2, pp. 449-453. |
Kim et al., “Wafer-scale activated bonding of Cu—CU, Cu—Si, and Cu—SiO2 at low temperature,” Proceedings—Electrochemical Society, 2003, vol. 19, pp. 239-247. |
Kim, H. et al., “A wideband on-interposer passive equalizer design for chip-to-chip 30-GB/s serial data transmission,” IEEE Transactions on Components, Packaging and Manufacturing Technology, Jan. 2015, vol. 5, Issue 1, pp. 28-39. |
Lee, H. et al., “Signal integrity of bump-less high-speed through silicon via channel for terabyte/s bandwidth 2.5D IC,” 2016 IEEE 66th Electronic Components and Technology Conference, Aug. 18, 2016. |
Matsuzawa et al., “Room-temperature interconnection of electroplated Au microbump by means of surface activated bonding method,” Electornic Components and Technology Confererence, 2001, 51st Proceedings, IEEE, pp. 384-387. |
Moriceau, H. et al., “Overview of recent direct wafer bonding advances and applications,” Advances in Natural Sciences—Nanoscience and Nanotechnology, 2010, 11 pages. |
Nakanishi, H. et al., “Studies on SiO2—SiO2 bonding with hydrofluoric acid. Room temperature and low stress bonding technique for MEMS,” Sensors and Actuators, 2000, vol. 79, pp. 237-244. |
Oberhammer, J. et al., “Sealing of adhesive bonded devices on wafer level,” Sensors and Actuators A, 2004, vol. 110, No. 1 -3, pp. 407-412, see pp. 407-412, and Figures 1(a)-1(I), 6 pages. |
Onodera et al., “The effect of prebonding heat treatment on the separability of Au wire from Ag-plated Cu alloy substrate,” Electronics Packaging Manufacturing, IEEE Transactions, Jan. 2002, vol. 25, Issue 1, pp. 5-12. |
Plobi, A. et al., “Wafer direct bonding: tailoring adhesion between brittle materials,” Materials Science and Engineering Review Journal, 1999, R25, 88 pages. |
Reiche et al., “The effect of a plasma pretreatment on the Si/Si bonding behaviouir,” Electrochemical Society Proceedings, 1998, vol. 97-36, pp. 437-444. |
Roberds et al., “Low temperature , in situ, plasma activated wafer bonding,” Electrochecmical Society Proceedings, 1997, vol. 97-36, pp. 598-606. |
Shigetou et al., “Room temperature bonding of ultra-fine pitch and low-profiled Cu electrodes for bump-less interconnect,” 2003 Electronic Components and Technology Conference, pp. 848-852. |
Shigetou et al., “Room-temperature direct bonding of CMP-Cu film for bumpless interconnection,” Electronic Components and Technology Confererence, 51st Proceedings, 2001, IEEE, pp. 755-760. |
Shingo et al., “Design and fabrication of an electrostatically actuated MEMS probe card,” Tranducers, Solid-State Sensors, Actuators and Microsystems, 12th International Conference, Jun. 8-12, 2003, vol. 2, pp. 1522-1525. |
Suga et al., “A new approach to Cu—Cu direct bump bonding,” IEMT/IMC Symposium, 1997, Joint International Electronic Manufacturing Symposium and the International Microelectronics Conference, Apr. 16-18, 1997, IEEE, pp. 146-151. |
Suga et al., “A new bumping process using lead-free solder paste,” Electronics Packaging Manufacturing, IEEE Transactions on (vol. 25, Issue 4), IEEE, Oct. 2002, pp. 253-256. |
Suga et al., “A new wafer-bonder of ultra-high precision using surface activated bonding (SAB) concept,” Electronic Components and Technology Conference, 2001, IEEE, pp. 1013-1018. |
Suga et al., “Bump-less interconnect for next generation system packaging,” Electronic Components and Technology Conference, 2001, IEEE, pp. 1003-1008. |
Suga, T., “Feasibility of surface activated bonding for ultra-fine pitch interconnection—a new concept of bump-less direct bonding for system level packaging,” The University of Tokyo, Research Center for Science and Technology, 2000 Electronic Components and Technology Conference, 2000 IEEE, pp. 702-705. |
Suga, T., “Room-temperature bonding on metals and ceramics,” Proceedings of the Second International Symposium on Semiconductor Wafer Bonding: Science, Technology and Applications, the Electrochemical Society Proceedings, vol. 93-29 (1993), pp. 71-80. |
Suga et al., “Surface activated bonding—an approach to joining at room temperature,” Ceramic Transactions: Structural Ceramics Joining II, the American Ceramic Society, 1993, pp. 323-331. |
Suga et al., “Surface activated bonding for new flip chip and bumpless interconnect systems,” Electronic Components and Technology Conference, 2002, IEEE, pp. 105-111. |
Suga, “UHV room temperature joining by the surface activated bonding method,” Advances in science and technology, Techna, Faenza, Italie, 1999, pp. C1079-C1089. |
Takagi et al., “Effect of surface roughness on room-temperature wafer bonding by Ar beam surface activation,” Japanese Journal of Applied Physics, 1998, vol. 37, Part 1, No. 1, pp. 4197. |
Takagi et al., “Low temperature direct bonding of silicon and silicon dioxide by the surface activation method,” Solid State Sensors and Actuators, 1997, Transducers '97 Chicago, 1997 International Conference, vol. 1, pp. 657-660. |
Takagi et al., “Room-temperature bonding of lithium niobate and silicon wafers by argon-beam surface activation,” Appl. Phys. Lett., 1999. vol. 74, pp. 2387. |
Takagi et al., “Room temperature silicon wafer direct bonding in vacuum by Ar beam irradiation,” Micro Electro Mehcanical Systems, MEMS '97 Proceedings, 1997, IEEE, pp. 191-196. |
Takagi et al., “Room-temperature wafer bonding of Si to LiNbO3, LiTaO3 and Gd3Ga5O12 by Ar-beam surface activation,” Journal of Micromechanics and Microengineering, 2001, vol. 11, No. 4, pp. 348. |
Takagi et al., “Room-temperature wafer bonding of silicon and lithium niobate by means of arbon-beam surface activation,” Integrated Ferroelectrics: an International Journal, 2002, vol. 50, Issue 1, pp. 53-59. |
Takagi et al., “Surface activated bonding silicon wafers at room temperature,” Appl. Phys. Lett. 68, 2222 (1996). |
Takagi et al., “Wafer-scale room-temperature bonding between silicon and ceramic wafers by means of argon-beam surface activation,” Micro Electro Mechanical Systems, 2001, MEMS 2001, The 14th IEEE International Conference, Jan. 25, 2001, IEEE, pp. 60-63. |
Takagi et al., “Wafer-scale spontaneous bonding of silicon wafers by argon-beam surface activation at room temperature,” Sensors and Actuators A: Physical, Jun. 15, 2003, vol. 105, Issue 1, pp. 98-102. |
Tong et al., “Low temperature wafer direct bonding,” Journal of Microelectomechanical systems, Mar. 1994, vol. 3, No. 1, pp. 29-35. |
Topol et al., “Enabling technologies for wafer-level bonding of 3D MEMS and integrated circuit structures,” 2004 Electronics Components and Technology Conference, 2004 IEEE, pp. 931-938. |
Wang et al., “Reliability and microstructure of Au—Al and Au—Cu direct bonding fabricated by the Surface Activated Bonding,” Electronic Components and Technology Conference, 2002, IEEE, pp. 915-919. |
Wang et al., “Reliability of Au bump—Cu direct interconnections fabricated by means of surface activated bonding method,” Microelectronics Reliability, May 2003, vol. 43, Issue 5, pp. 751-756. |
Weldon et al., “Physics and chemistry of silicon wafer bonding investigated by infrared absorption spectroscopy,” Journal of Vacuum Science & Technology B, Jul./Aug. 1996, vol. 14, No. 4, pp. 3095-3106. |
Westphal, W.B. et al., “Dielectric constant and loss data,” Air Force Materials Laboratory, Apr. 1972. |
Xu et al., “New Au—Al interconnect technology and its reliability by surface activated bonding,” Electronic Packaging Technology Proceedings, Oct. 28-30, 2003, Shanghai, China, pp. 479-483. |
Ceramic Microstructures: Control at the Atomic Level, Recent Progress in Surface Activated Bonding, 1998, pp. 385-389. |
International Search Report and Written Opinion dated Apr. 26, 2021, issued in International Application No. PCT/US2020/065544, 11 pages. |
Number | Date | Country | |
---|---|---|---|
20210181510 A1 | Jun 2021 | US |
Number | Date | Country | |
---|---|---|---|
62949312 | Dec 2019 | US |