Bone fixation with a bone plate attached to a fastener assembly

Abstract
System, including methods, apparatus, and kits, for bone fixation with a bone plate attached to a fastener assembly including a first fastener disposed in threaded engagement with the bone plate and a second fastener disposed in threaded engagement with the first fastener.
Description
INTRODUCTION

The human skeleton is composed of 206 individual bones that perform a variety of important functions, including support, movement, protection, storage of minerals, and formation of blood cells. To ensure that the skeleton retains its ability to perform these functions, and to reduce pain and disfigurement, bones that become damaged should be repaired promptly and properly. Typically, a fractured or cut bone is treated using a fixation device, which reinforces the bone and keeps it aligned during healing. Fixation devices may include external fixation devices (such as casts and fixators) and/or internal fixation devices (such as bone plates, rods, and/or bone screws), among others.


Bone plates are sturdy internal devices, usually made of metal, that mount directly to the bone adjacent a fracture (or other bone discontinuity). To use a bone plate to repair a discontinuity of a bone, a surgeon typically (1) selects an appropriate plate, (2) reduces the discontinuity (e.g., sets the fracture), and (3) fastens the plate to bone fragments disposed on opposite sides of the discontinuity using suitable fasteners, such as screws and/or wires, so that the bone plate spans the discontinuity and the bone fragments are fixed in position. Each fastener generally is placed through an opening in the bone plate and then into bone.


The radius is one of two long bones found in the human forearm. The radius, like other bones, is susceptible to a variety of fractures and other dislocations. For example, distal fractures of the radius are a common result of forward falls, with the palms facing downward, particularly among the elderly. In such falls, force exerted on the distal radius at impact frequently produces dorsal displacement of one or more bone fragments created distal to the fracture site. Internal fixation of such dorsally displaced bone fragments using bone plates has proved problematic.


Internal fixation may be performed dorsally. In this approach, a surgeon may apply a reducing force on the fracture by attaching a bone plate to the dorsal side of the radius. However, unless the bone plate has a very low profile, dorsal tendons overlying the bone plate may rub against it, producing tendon irritation or even tendon rupture.


Alternatively, internal fixation may be performed volarly. In this approach, a surgeon may attach a bone plate to the volar side of the radius. The volar side of the radius may be more accessible surgically and defines a distal pocket in which the distal portion of the bone plate may be disposed. Accordingly, the bone plate may be less obtrusive and may produce less tendon irritation after placement, even if the bone plate is thicker and sturdier.


Despite the potential advantages of volar fixation, attachment of the bone plate to the volar side of the fractured radius may complicate reduction of the fracture. The distal radius of elderly patients in particular generally contains porous bone of poor quality. Accordingly, bone screws inserted into the distal radius from openings in the bone plate may not achieve adequate purchase in the bone to hold distal bone fragments in position against the bone plate. Moreover, these bone screws may be unable to gain sufficient purchase in bone to pull bone fragments volarly toward the plate to aid in reduction of the fracture.


SUMMARY

The present teachings provide a system, including methods, apparatus, and kits, for bone fixation with a bone plate attached to a fastener assembly including a first fastener disposed in threaded engagement with the bone plate and a second fastener disposed in threaded engagement with the first fastener.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a lateral view of the bones of the right hand and distal forearm in which the radius has suffered a Colles' fracture, displacing a distal fragment of the radius dorsally.



FIG. 2 is a lateral view of an exemplary system for fixing the Colles' fracture of FIG. 1 utilizing a bone plate secured to the radius with forward fasteners and a retrograde fastener, in accordance with aspects of the present teachings.



FIG. 3 is a volar view of the system of FIG. 2.



FIG. 4 is a sectional view of the system of FIG. 2, taken generally along line 4-4 of FIG. 3 in the absence of the retrograde fastener, with the system configured to form of an exemplary guide path extending through the radius, in accordance with aspects of the present teachings.



FIG. 5 is a sectional view of the system of FIG. 2, taken generally as a fragment of FIG. 4, after exemplary guide path formation by insertion of a guide member through the bone and with an exemplary measuring device positioned to measure a portion of the guide member disposed outside the bone, in accordance with aspects of the present teachings.



FIG. 6 is a sectional view of the system of FIG. 2, taken generally as in FIG. 5, with another exemplary measuring device positioned to measure a different portion of the guide member disposed outside the bone, in accordance with aspects of the present teachings.



FIG. 7 is a sectional view of the system of FIG. 2, taken generally as in FIG. 4, with an exemplary drill bit received over the guide member and positioned to form a hole in the bone, in accordance with aspects of the present teachings.



FIG. 8 is a sectional view of the system of FIG. 2, taken generally as in FIG. 4, with an exemplary retrograde fastener received in the bone and engaged with the bone plate through a leading region of the retrograde fastener, in accordance with aspects of the present teachings.



FIG. 9 is a fragmentary view of an exemplary retrograde fastener, in accordance with aspects of the present teachings.



FIG. 10 is a fragmentary view of another exemplary retrograde fastener, in accordance with aspects of the present teachings.



FIG. 11 is a fragmentary view of yet another exemplary retrograde fastener coupled to an implant with an exemplary bridge fastener, in accordance with aspects of the present teachings.



FIG. 12 a view of an exemplary guide device coupled to the bone plate of FIG. 3, in accordance with aspects of the present teachings.



FIG. 13 is a volar view of another exemplary configuration of the system of FIG. 2, with a retrograde fastener extending to the bone plate from a styloid fragment of the radius bone, in accordance with aspects of the present teachings.



FIG. 14 is a view of the bone plate and fasteners of FIG. 13, in the absence of the radius bone, taken generally from the inner surface of the bone plate, in accordance with aspects of the present teachings.





DETAILED DESCRIPTION

The present teachings provide a system, including methods, apparatus, and kits, for bone fixation with a bone plate attached to a fastener assembly including a first fastener disposed in threaded engagement with the bone plate and a second fastener disposed in threaded engagement with the first fastener.


A method of attaching a fastener assembly to a bone plate is provided. In the method, a bone plate may be disposed adjacent a bone, with the bone plate defining an opening. A channel may be formed through the bone, coaxial to the opening. A fastener assembly may be installed in the channel, such that a first fastener of the fastener assembly is in threaded engagement with the bone plate at the opening, a second fastener of the fastener assembly is in threaded engagement with the first fastener, and a head of the second fastener is disposed at least generally across the bone from the bone plate.


The present teachings also provide a system, including methods, apparatus, and kits, for retrograde placement of fasteners into bone. The retrograde placement of each fastener may be along a guide path that extends through bone and may be in a direction opposite to that in which the guide path was formed. The guide path may be formed, for example, by placement of a guide member, such as wire, into the bone. In some examples, the guide member may be inserted through bone, from an entry or start site adjacent and/or defined by an implant, such as a bone plate, disposed adjacent the bone, to an exit or end site spaced from the implant. The fastener, such as a bone screw, thus may enter the bone along the guide path, adjacent the exit or end site, from a position outside a footprint defined by the implant on bone. The fastener after entering bone, then may approach the implant from an inner surface of the implant and enter an opening of the implant from adjacent the inner surface, for coupling to the implant, such as through threaded engagement between a leading region of the fastener and an internal thread of the implant. In some examples, retrograde placement may position a head of the fastener in a spaced relation to the implant, such as in engagement with a bone surface region (natural or engineered) that generally opposes the implant on the bone. Overall, retrograde placement of one or more fasteners to couple bone to an implant may provide a number of advantages over placement only in a forward direction, such as (1) more options for fracture reduction, (2) better fixation of poor quality bone, (3) improved bone healing, and/or (4) better compression of bone against the implant, among others.


The following sections describe further aspects of the present teachings, including, among others, (I) overview of an exemplary system for retrograde fastener placement, (II) overview of an exemplary method of retrograde fastener placement, (III) guide paths and formation of guide paths, (IV) fasteners and fastener placement, (V) orthopedic implants, (VI) kits, and (VII) examples.


I. Overview of an Exemplary System for Retrograde Fastener Placement


This section describes an exemplary system for retrograde (and/or forward) placement of fasteners into bone, to (and/or from) an implant; see FIGS. 1-3.



FIG. 1 shows an upper right extremity 20 exhibiting a Colles' fracture 22, which is a common fracture of a distal region of a radius bone 24. Colles' fracture is an exemplary fracture that may be treated with an implantable fixation device, such as a bone plate, coupled to a fastener(s) disposed in a retrograde orientation in the radius bone. The position of the fracture is indicated relative to the skin, shown in phantom outline, of the distal forearm 26 and hand 28. In Colles' fracture 22, a smaller, distal bone fragment 30 may be displaced dorsally from a larger, proximal bone fragment 32 of the radius. Colles' fracture 22 may be reduced and then fixed, for example, by installation of a bone plate on the volar (anterior or palm-side) surface 34 and/or on the dorsal (posterior or back-side) surface 36 of the radius.



FIG. 2 shows an exemplary system 40 for fixing a fractured bone, such a radius 24 with Colles' fracture 22, using retrograde fastener placement. The system may include an implant 42, such as a bone plate 44, disposed on an exterior surface of the bone and secured to the bone using one or more “forward” (bone-oriented) fasteners 46, and/or one or more “retrograde” (implant-oriented) fasteners 48. The terms “forward” and “retrograde” are used herein to indicate the head-to-tip direction in which a fastener is oriented (and/or placed) relative to the implant and bone. Forward fasteners may have a head 50 disposed adjacent and/or engaged with the implant and a leading end region 52 spaced from the implant. Forward placement of a fastener may advance the leading end region of the fastener through an opening 54 in the implant and then into the bone. Retrograde fasteners may have a head 56 spaced from the implant, generally across a bone, and a leading end region 58 disposed adjacent and/or engaged with the implant. Retrograde placement of a fastener may advance the leading end region of the fastener through the bone and then into an opening 60 of the implant. In some examples, the same opening(s) of an implant may be configured to be used alternatively for forward placement or retrograde placement of fasteners in opposite directions to achieve opposite fastener orientations.



FIG. 3 shows bone plate 44 from an outer surface 62 of the bone plate. The bone plate may include a body portion 70 joined to a head portion 72. The body portion may be disposed, for example, in a generally longitudinal orientation on the volar surface of the radius. The body portion may include one or more openings, such a circular openings 74 and/or elongate opening 76 that receive fasteners, such as bone screws 78, to secure the body portion to a proximal fragment of the radius bone (also see FIG. 2). The openings of the body portion may include (or lack) an internal thread 80 (see FIG. 2) or other suitable retention structure to lock the bone screws to the body portion. The head portion may be disposed distal to the body portion with the bone plate disposed on the radius, and at least partially distal to one or more fractures (or other discontinuities) in the radius. The head portion also may include a plurality of openings, with any suitable subset (or all) of the openings of the head portion having an internal thread 82 (see FIG. 2). Any of the openings in the body or head portion may receive a forward or retrograde fastener. In the present illustration, retrograde fastener 48 is engaged with the head portion of the bone plate, generally towards a medial side of the radius bone and adjacent a lunate facet 84 of the radius bone (the region of the radius that articulates with the lunate bone).


Bone plate 44 may have an inner surface 86 and may define a footprint 88 on the radius bone. The “footprint,” as used herein, is a surface region of the radius bone corresponding in size, shape, and position to the bone plate. The footprint is generally faced by the inner surface of the bone plate, and apposed to and/or in contact with the bone plate's inner surface. Further aspects of bone plate 44 and other bone plates suitable for fixation of the distal radius or other bones, and capable of receiving a retrograde fastener, are described in the following U.S. patent applications, which are incorporated herein by reference: Ser. No. 10/716,719, filed Nov. 19, 2003; Ser. No. 10/717,015, filed Nov. 19, 2003; Ser. No. 10/717,399, filed Nov. 19, 2003; Ser. No. 10/717,401, filed Nov. 19, 2003; Ser. No. 10/717,402, filed Nov. 19, 2003; Ser. No. 10/731,173, filed Dec. 8, 2003; Ser. No. 10/968,850, filed Oct. 18, 2004; and Ser. No. 11/071,050, filed Feb. 28, 2005.


II. Overview of an Exemplary Method of Retrograde Fastener Placement



FIGS. 4-8 show exemplary configurations representing or illustrating steps of a method of retrograde fastener placement. The method steps shown and described here may be performed in any suitable order, in any suitable combination, and any suitable number of times. This method may be used to couple the retrograde fastener to an implant, such as implant 42 (bone plate 44), disposed on a bone (such as radius bone 24), to provide or facilitate bone fixation.


The bone may include a discontinuity spanned by the implant, such as an extra-articular fracture 22 (and/or an intra-articular fracture (a fracture including the articular surface)). In some examples, the discontinuity may be at least partially or completely reduced (e.g., the fracture set) before performing the method of coupling the fastener to the implant, as in the present illustration. In some examples, the coupling of the fastener may provide partial or substantial reduction of the discontinuity, as shown and described in the following provisional patent application, which is incorporated herein by reference: Ser. No. 60/563,860, filed Apr. 19, 2004.



FIG. 4 shows system 40 configured to form an exemplary guide path extending through the bone along a guide axis 102. The guide path may be formed progressively, in a first direction 104, from a start (or entry) site 106 disposed adjacent the implant to an end (or exit) site 108 spaced from the implant. In particular, a guide member 110, such as a wire 112, may be inserted through the bone from the start site to the end site (and generally beyond the end site). The guide member may include a sharp tip 114 and/or cutting edge that facilitates insertion of the wire with a driver. The guide member also may include a stop structure 116 (such as an enlarged proximal end region) that restricts advancement of the guide member through the bone at a predefined position of the guide member.


The guide path may be defined, prior to its formation, by a guide structure 118 coupled to the implant. The guide structure may, for example, be a guide channel, such as a channel 120 defined by a cannula or tube 122 having an axial bore aligned with an opening of the bone plate and generally apposed thereto. In some examples, the channel may have a diameter substantially corresponding to that of the guide member (but generally slightly larger to permit sliding of the guide member along the channel). Accordingly, the guide structure may center the guide member within the guide structure and with respect to an opening of the bone plate, so that the guide member and the opening are arranged concentrically. The guide structure also may include a coupling mechanism, such as an external thread 124, that engages an internal thread 82 of the implant opening. In some examples, the guide structure may be coupled to the implant through a coupling mechanism disposed in a spaced relation to the opening (e.g., see Example 2), so that the guide structure does not occupy the opening and/or engage an internal thread thereof, for placement of a retrograde fastener into the opening with the guide structure coupled to the implant.



FIG. 5 shows system 40 after formation of an exemplary guide path 130. The guide path may be considered to be created by the guide member itself and/or by a bore 132 in the bone formed by insertion of the guide member (or by drilling). To form the guide path, guide member 110 may be placed (inserted) through the bone, between generally opposing surfaces of the bone. In the present illustration, the guide member has been inserted into the bone, from volar surface 34 to dorsal surface 36 of the bone.


The guide member may be advanced any suitable distance out of bone. For example, after formation of the guide path, the guide member may be extended farther, through overlying soft tissue, until the guide member protrudes visibly from the skin. The visible guide member thus may mark a position at which a surgeon may create an incision through the soft tissue to access the exit site of the guide member from bone, to allow additional manipulations to be performed from this opposing surface region of the bone. In some examples, a distal portion 134 of the guide member, including tip 114, may be advanced out of the bone until stop structure 116 engages guide structure 118 and restricts further advancement.


A measuring device 136 may be employed to determine the length of the guide path through bone, based on the length of the guide member that is disposed outside of the bone. The guide member may have a predefined (and known) length measured from stop structure 116 to tip 114. Furthermore, guide structure 118 may have a predefined (and known) length. Accordingly, by measuring the length of distal portion 134, the length of the guide path (a length of an internal portion of the guide member disposed inside bone) may be determined (e.g., the length of the guide path equals the total length of guide member 110 minus the external (outside bone) length of the guide member (e.g., the length of guide structure 118 plus the length of external portion 134). The length of the guide path may be used, for example, to facilitate opposing hole formation and/or fastener selection, among others (see FIGS. 7 and 8).


The measuring device may have any suitable structure for measuring an axial dimension(s) of the guide member. For example, the measuring device may include a receiver structure 138 (such as a slot or bore) to receive the guide member, and a distal tip 140 to abut the bone (e.g., dorsal surface 36). The measuring device also may include indicia 142, which may be arrayed axially, such as dimension marks 144 (and/or symbols such as alphanumeric characters, among others) to indicate the measured length and/or information corresponding thereto (such as a suitable fastener/drill length, size, and/or name, among others). A measured axial dimension 146 or corresponding information may be read from the measuring device at a position aligned with distal tip 114 of the guide member. In some embodiments, the role of the measuring device may be supplemented and/or supplanted by calibration marks and other optional indicia formed on and/or added to the guide member itself.



FIG. 6 shows another exemplary approach to measuring an axial dimension of the guide path. The guide member may be inserted through bone, and its exit position from bone accessed through overlying soft tissue and identified, as described above in relation to FIG. 5. The guide member then may be retracted, shown at 148, until distal tip 114 of the guide member is substantially flush with the opposing bone surface (dorsal surface 36). An external (out of bone) proximal portion 150 of the guide member then may be measured with a measuring device 152, to allow determination of the length of the guide path, generally as described above in relation to FIG. 5. In some examples, the guide member may lack stop structure 116, so that a measuring device (such as device 148 described above) may be used to receive and measure the guide member from a proximal end of the guide member. In some examples, both distal and proximal external portions (adjacent generally opposing surface of the bone) of the guide member may be measured with a measuring device(s). In some examples, the axial dimension of the guide path may be measured directly (such as by fluoroscopy, with a measuring device (such as calipers), with a marked guide member, etc.) rather than as a difference.



FIG. 7 shows an exemplary drill 160 received over the guide member and positioned to form a hole in the bone. The drill may include a cannulated drill bit 162 that can be advanced along the guide path (over the guide wire) in an opposite direction 164 to the direction of guide path formation (see FIG. 4). In the present illustration, opposing hole formation may be performed generally in a dorsal to volar direction in the radius bone. The hole may be at least substantially concentric with the guide path and may enlarge the diameter of the guide path. The hole may extend along any suitable portion or all of the guide path through bone, for example, extending to the entry site of the guide path. In some examples, the drill bit (and/or an associated driver) may include a stop structure to define the depth to which the drill bit can be advanced into the bone, to, for example, avoid damage to the implant, particularly retention structure (such as an internal thread) of an implant opening that is aligned with the guide path. In some examples, a self-drilling fastener may form a hole as the fastener is being advanced toward the implant.



FIG. 8 shows retrograde fastener 48 after placement in a retrograde (opposing) direction 164 along the guide path such that the fastener approaches, engages, and is locked to the implant, shown at 170. A fastener that is “locked” to an implant, as used herein, is engaged with the implant (and/or another fastener engaged with the implant), such that translational motion of the fastener is restricted in both longitudinal (axial) directions of the fastener. (Rotational motion about the long axis of the locked fastener may be permitted or restricted in either rotational direction.) The fastener may lock, for example, by mating of an external thread of the fastener with a wall (an internal thread and/or lip(s)) of an implant opening. Alternatively, the fastener may lock, for example, by mating of an internal thread of the fastener with an external thread of a bridge fastener disposed in an opening of the implant and projecting into bone (see FIG. 11). (In some examples, placement of the fastener may couple the fastener to the bone plate using a locking member (such as a nut) disposed adjacent the outer surface of the bone plate.) Retrograde fastener 48 may be placed into a hole 172 that is substantially concentric with the guide path (and guide axis 102). The hole may be formed in a retrograde direction, as described in relation to FIG. 7, or may be formed in the same (forward) direction as the guide path, such as during and/or after guide path formation. In some examples, the retrograde fastener may include an axial bore (see FIG. 9) and may be placed into the bone and/or coupled with the implant over a guide member disposed in the bone, or after removal of the guide member from bone. Head 56 of the fastener may engage the bone generally opposite the implant on the bone, such as engagement with the natural bone surface and/or engagement with a recess or counterbore surface 174 formed in bone.


The retrograde fastener may be selected so that the fastener at least substantially spans the bone. The fastener also may be selected and placed so that it does not protrude excessively in regions external to the bone. The selection of the fastener may be assisted by measuring a dimension corresponding to the length of the guide path, for example, based on the length and/or position of the guide member, among others. In some examples, retrograde placement of a fastener may pull or compress one or more bone fragments toward or against the implant.


In some examples, a retrograde fastener may be placed into bone along a guide path so that the bone fastener spans a discontinuity in the bone. Accordingly, in these cases, the bone fastener may extend into bone but not completely through the bone, or may extend completely through bone. Furthermore, the retrograde fastener thus may be used for fixation without engagement with and/or coupling to another implant, such as a bone plate.


Further aspects of retrograde fastener placement, including a guide device disposed adjacent an opposing surface of bone, are described in the following patent application, which is incorporated herein by reference: Ser. No. 10/717,401, filed Nov. 19, 2003.


III. Guide Paths and Formation of Guide Paths


Guide paths may be any internal path in bone configured to guide formation of a hole/bore and/or to guide placement of a bone fastener into the bone. A guide path may be defined by structural alteration/removal of bone and/or by placement of a guide member into bone.


A guide path may have any suitable shape and size. The guide path may be linear, angular and/or arcuate, among others, but preferably is linear. The guide path may extend completely through a bone (or bones), for example, between generally opposing external surfaces of a bone or bones. Alternatively, the guide path may extend incompletely through a bone, such as from an external surface of the bone to an internal region of the bone, such as a cortex, cancellous region, or medullary canal of the bone, among others. The guide path may have a diameter (or width) that is substantially less than the diameter of a bone fastener to be placed along the guide path or may have a diameter that is about the same as or greater than the diameter of the bone fastener. In some examples, the guide path may have a diameter defined by a guide member extending along the guide path. The guide path may be hollow, that is, formed as an empty hole, or may be defined by a guide member disposed in bone, among others.


The guide path may be formed in any suitable bone(s) and between any suitable regions of the bone(s). Exemplary bones may include bones of the arms (radius, ulna, humerus), legs (femur, tibia, fibula, patella), hands/wrists (e.g., phalanges, metacarpals, and carpals), feet/ankles (e.g., phalanges, metatarsals, and tarsals), vertebrae, scapulas, pelvic bones, cranial bones, ribs, and/or clavicles, among others. In some embodiments, the guide path may be formed adjacent and/or through a proximal or distal end of a bone, i.e., in a metaphyseal and/or articular region of the bone. The guide path may start and end at any suitable surface regions of the bone, including an anterior (or volar), posterior (or dorsal), lateral, medial, proximal and/or distal region of the bone. For example, the guide path may extend from a volar to a dorsal surface region (or vice versa), from an anterior to a posterior surface region (or vice versa), from a medial to a lateral surface region (or vice versa), obliquely between adjacent surface region (e.g., volar to medial), and/or the like. In exemplary embodiments, the guide path may start in a distal portion of a radius bone, at a volar position on the radius bone, and may end at a dorsal position on the radius bone. In other exemplary embodiments, the guide path may start in a distal portion of a tibia bone, at an anterior position on the tibia bone, and may end at a posterior position on the tibia bone. Accordingly, a fastener may be directed along any of these guide paths in a forward or retrograde direction, for coupling to an implant, such as a bone plate disposed on the bone.


Guide members may have any suitable structure. Exemplary guide members may be elongate and rigid enough to be pushed and/or driven into bone. The guide members may be formed of any suitable material, including metal, plastic, ceramic, carbon fiber, etc. In exemplary embodiments, the guide members may be wires formed of metal, such as K-wires, among others. The guide members may have a tip configured to be advanced into bone, for example, a tip having a cutting edge(s) configured to cut/drill into bone. The guide members may have a predefined length. In some examples, the guide members may include reference marks and/or other indicia (such as letters and/or numbers, among others). The reference marks and/or other indicia may be configured to define axial positions along the guide members, such as to indicate lengths along each guide member. In some examples, the guide members may include an end region having a stop structure, to restrict advancement of the guide members. The stop structure may be configured to restrict advancement by contact with bone and/or by contact with a guide device for placement of the guide member, such as a channel member (for example, a cannula or drill guide, among others).


After formation of the guide path, portions of the guide path may be external to bone on one or opposing sides of the bone. In some examples, a predefined first portion and thus first length of the guide member may be external to bone on one side of the bone, and a variable, second portion and thus second length of the guide member may be external to the bone on a generally opposing side of the bone. Measurement of this second length thus may permit a determination of a third length defined by a third portion of the guide member disposed in the bone, thereby measuring the length of the guide path through the bone. A determination of the length of the guide path may permit selection of a suitable length of bone fastener.


Guide members may be placed in bone by any suitable operation. The guide members may be urged into bone translationally (e.g., pounded into bone), rotationally advanced into bone, and/or placed in a pre-formed hole in the bone, among others. In some examples, a guide member (and/or a hole-forming tool) may be placed in the bone to form a guide path, and then removed to leave a channel corresponding to the guide path.


IV. Fasteners and Fastener Placement


The fasteners generally comprise any mechanism for coupling bone fragments (and/or a bone(s)) to each other and/or to an implant, including screws, pins, and/or wires, among others.


The size and/or structure of a fastener may be selected based on any suitable parameter(s). For examples, the fastener may be selected based on the size and/or shape of a guide path; the size and/or shape of a hole formed around and/or along the guide path; the size/structure of a bone in which the fastener is to be placed; the size, shape, and/or connective structure (such as thread pitch), among others, of an opening or other connective feature of an implant that will receive the fastener; and/or the like.


The fasteners may be bone screws. Bone screws may include unicortical, bicortical, and/or cancellous bone screws, among others. Unicortical and bicortical bone screws commonly have relatively small threads for use in hard bone, such as typically found in the shaft portion of a bone, whereas cancellous bone screws commonly have relatively larger threads for use in soft bone, such as typically found near the ends (metaphyseal regions) of a long bone. Unicortical bone screws penetrate the bone cortex once, for example, adjacent a bone plate. Bicortical bone screws penetrate the bone cortex twice, for example, adjacent a bone plate and opposite the bone plate. Generally, unicortical screws provide less support than bicortical screws, because they penetrate less cortex.


In some embodiments, such as when the fasteners are configured generally as bone screws, the fasteners may include a head and an elongate shank joined to the head and extending distally from the head to a distal tip of the fastener.


The head of a fastener may have any suitable structure. The head may comprise any proximal enlargement or proximal extension of the fastener that imparts an axial asymmetry to the fastener. The head may have any suitable driver-engagement structure, such as a hexagonal socket, a single slot, a pair of slots in a cruciform arrangement, external facets, etc. In some examples, as with fasteners configured to be disposed in a forward orientation, the head may be configured to engage the implant, such as to stop advancement of the fastener, to seat the fastener against the implant, and/or to dispose the fastener in threaded engagement with the implant. In some examples, as with fasteners disposed in a retrograde orientation, the head may be configured to engage bone, spaced from the implant. In some examples, a fastener may be configured to be placed alternatively in forward and retrograde orientations.


The shank of a fastener may have any suitable structure. The shank may include an external and/or internal thread(s) and/or may include an externally nonthreaded region.


The shank may have one thread (single-threaded) or a plurality of threads (e.g., double-threaded, triple-threaded, etc.). The threads may be interspersed, so that the shank is multi-threaded, for example, to accommodate a greater pitch (a steeper thread angle). Alternatively, or in addition, the threads may be disposed on adjacent and/or nonoverlapping regions of the shank. The pitch of a thread may be constant along the shank or may change according to position, for example, decreasing closer to a head of the fastener, to provide compression of the bone as the fastener is advanced into the bone. In some examples, the threaded shank may have two or more distinct threads, with different pitches and/or diameters, such as a distal thread with a smaller (or larger) diameter and/or pitch, and a proximal thread with a larger (or smaller) diameter and/or pitch.


In some examples, the shank may have a distal external (or internal) thread configured to engage an implant. A proximal region of the shank adjacent the distal thread may be nonthreaded and/or may have a distinct thread for engagement with bone. The nonthreaded region may extend over any suitable portion of the shank, such as at least about one-half or at least about three-fourths of the distance from the head to the tip. In some examples, a region of the shank proximal to the distal thread may include a stop structure, such as a shoulder, configured to restrict advancement of the fastener, such as by contact with the implant. In some examples, the threaded shank may have an at least substantially constant pitch along the shank. In these examples, the rate of advancement of the threaded shank into bone may be at least substantially equal to the rate of advancement of the threaded shank through the implant, to restrict compression of the bone plate against the bone as the fastener is fully advanced into the implant. The pitch of a thread on a threaded shank may be selected according the structure of an aperture (of an implant) in which the threaded shank will be received, for example, based on the pitch of a thread on a wall of the aperture and/or based on vertically offset retention structures on the wall, among others. Further aspects of offset retention structures that may be suitable are described in the follow patent application, which is incorporated herein by reference: U.S. patent application Ser. No. 11/071,050, filed Feb. 28, 2005.


The threaded fasteners may have any suitable linear density of thread segments (or linear densities, if multithreaded). These densities may be measured using any suitable units, including number of thread segments per inch and/or meter, among others. For example, the fastener may have 16, 20, 24, 28, 32, 36, 40, and/or other numbers of thread segments per inch; these linear densities correspond to segment-to-segment spacings (or pitches) of 0.0625 inches, 0.0500 inches, 0.0417 inches, 0.0357 inches, 0.03125 inches, 0.0278 inches, 0.0200 inches, and/or other fractions of an inch. In some embodiments, the thread on the fastener may have a continuously and/or discontinuously varying pitch at different positions along the fastener axis. Typically, in apertures having retention structures as described above, the retention structures may be offset from one another by less than (often one half of) the segment-to-segment spacing. Thus, typical offsets may include 0.03125 inches, 0.02500 inches, 0.02083 inches, 0.01786 inches, 0.01562 inches, 0.01389 inches, 0.01250 inches, and/or other numbers of inches.


The threaded fasteners may have any suitable diameters, including major (crest-to-crest) and minor (root-to-root) diameters. In some embodiments, the major diameters may be between about 1 to 10 mm. Exemplary major diameters include 1 mm, 1.5 mm, 2.0 mm, 2.7 mm, 3.5 mm, 4.0 mm, 4.5 mm, 5.3 mm, and 6.5 mm. In some examples, the difference between the major and minor diameters (generally, twice the thread height/depth) may be between about 0.1 to 5 mm, or about 0.2 mm to 2 mm. In some examples, the major diameter and minor diameter of the threaded shank may be generally constant along the length of the shank. In some examples, these diameters may be different in proximal and distal positions of the shank.


V. Orthopedic Implants


Orthopedic implants (also termed bone-repair devices) may include, among others, any implant configured to be attached to one or more bones for repair or support of the bone(s). An implant may be an addition to the bone(s) externally (such as a bone plate) and/or internally (such as an intramedullary rod), and/or it may be a replacement for a portion or all of the bone(s) (such as a prosthesis), among others. The implant may be placed in apposition to a natural, injured, and/or engineered surface of the bone(s), such as a cut surface, among others.


Bone plates as described herein generally comprise any relatively low-profile (or plate-like) fixation device configured to stabilize at least one bone by attachment to the bone. The fixation device may be configured to span any suitable bone discontinuity so that the fixation device fixes the relative positions of bone fragments (and/or bones) disposed on opposing sides of the bone discontinuity. Alternatively, or in addition, the fixation device may provide structural support to a bone lacking a discontinuity.


Suitable discontinuities may occur naturally and/or may result from injury, disease, and/or surgical intervention, among others. Accordingly, exemplary discontinuities for use with the bone plates or other bone-repair devices described herein may include joints, fractures (breaks in bones), osteotomies (cuts in bones), and/or nonunions (for example, produced by injury, disease, or a birth defect), among others.


The implants described herein may be configured for use on any suitable bone of the human skeleton and/or of another vertebrate species. Exemplary bones may include bones of the arms (radius, ulna, humerus), legs (femur, tibia, fibula, patella), hands/wrists (e.g., phalanges, metacarpals, and carpals), feet/ankles (e.g., phalanges, metatarsals, and tarsals), vertebrae, scapulas, pelvic bones, cranial bones, ribs, and/or clavicles, among others.


The implant may be at least substantially formed of, or may include, any suitable biocompatible material(s) and/or bioresorbable material(s). Exemplary biocompatible materials that may be suitable for the implant include (1) metals/metal alloys (for example, titanium or titanium alloys, alloys with cobalt and chromium (such as cobalt-chrome), stainless steel, etc.); (2) plastics (for example, ultra-high molecular weight polyethylene (UHMWPE), polymethylmethacrylate (PMMA), polytetrafluoroethylene (PTFE), polyetheretherketone (PEEK), and/or PMMA/polyhydroxyethylmethacrylate (PHEMA)); (3) ceramics (for example, alumina, beryllia, calcium phosphate, and/or zirconia, among others); (4) composites (for example, carbon-fiber composites); (5) bioresorbable (bioabsorbable) materials or polymers (for example, polymers of α-hydroxy carboxylic acids (e.g., polylactic acid (such as PLLA, PDLLA, and/or PDLA), polyglycolic acid, lactide/glycolide copolymers, etc.), polydioxanones, polycaprolactones, polytrimethylene carbonate, polyethylene oxide, poly-β-hydroxybutyrate, poly-β-hydroxypropionate, poly-δ-valerolactone, poly(hydroxyalkanoate)s of the PHB-PHV class, other bioresorbable polyesters, and/or natural polymers (such as collagen or other polypeptides, polysaccharides (e.g., starch, cellulose, and/or chitosan), any copolymers thereof, etc.); and/or the like. In some examples, one or more of these materials may form the body of an implant and/or a coating thereon.


Each implant may include one or more openings (such as through-holes, recesses, slots, and/or concavities, among others). In some embodiments, the implant may include different openings configured to receive fasteners from opposing directions. The opposing directions may direct fasteners (1) through a bone and then to the implant, and (2) through the implant and then into the bone. Each opening may be locking or nonlocking. Locking openings may include threads or retention structures, such as offset ridges. In some embodiments, threaded openings, nuts, ridges, offset retention structures, and/or the equivalent may be used for connection of the implant to a fastener(s) directed from a generally opposing surface of a bone. In some examples, locking and/or nonlocking openings may be used for directing fasteners through the implant and then into bone. The threaded or nonthreaded openings may include or lack counterbores. Further aspects of retention structures that may be suitable are included in the following U.S. patent application, which is incorporated herein by reference: Ser. No. 11/071,050, filed Feb. 28, 2005.


The implant may have any suitable configuration for repairing a bone. The implant may be configured to be attached temporarily to a bone, for any suitable period of time, or attached permanently. In some embodiments, the implant may be configured for use on both sides of the body or on only the left or right side of the body/skeleton. When configured as a bone plate, the implant may be any plate configured to span a bone discontinuity, such as a fracture, an excision, and/or a joint, among others, to fix the relative positions of bone portions or bones on opposing sides of the discontinuity. When configured as a prosthesis, the implant may be configured to replace an articulating surface or a portion of the articulating surface.


Further aspects of bone plates that may be suitable for the system of the present teachings are included in the following U.S. patent applications, which are incorporated herein by reference: Ser. No. 10/716,719, filed Nov. 19, 2003; Ser. No. 10/717,015, filed Nov. 19, 2003; Ser. No. 10/717,399, filed Nov. 19, 2003; Ser. No. 10/717,402, filed Nov. 19, 2003; Ser. No. 10/731,173, filed Dec. 8, 2003; and Ser. No. 10/968,850, filed Oct. 18, 2004.


VI. Kits


The system of the present teachings may provide kits for bone fixation. The kits may include one or more bone plates, one or more forward fasteners, one or more retrograde fasteners, a guide member(s) (such as a wire), a guide structure or device that couples to the bone plate, a drill(s), a driver(s), a measuring device(s), one or more clamps, instructions for use, and/or the like. Some or all of the components of each kit may be provided in a sterile condition, such as packaged in a sterile container.


The kits may include a bone plate and a retrograde fastener for use with the bone plate. The retrograde fastener may have a head and a shank joined to the head and extending distally therefrom. The shank may include an external thread disposed adjacent a distal end of the shank and spaced from the head. The external thread may be figured to be received in and lock to the bone plate, through engagement with an aperture wall of the bone plate. In some examples, the kits also may include one or more forward fasteners configured to lock to the same aperture wall in a forward orientation. Further aspects of fasteners that may be suitable are described elsewhere in the present teachings, such as in Example 1, among others.


VII. EXAMPLES

The following examples describe selected aspects and embodiments of the present teachings, including methods, apparatus, and kits for retrograde placement of bone fasteners into bone. These examples and the various features and aspects thereof are included for illustration and are not intended to define or limit the entire scope of the present teachings.


Example 1
Exemplary Fasteners for Retrograde Placement

This example describes exemplary fasteners for retrograde placement into bone and for coupling to a bone plate through a leading (distal) region of the fastener; see FIGS. 9-11.



FIG. 9 shows a bone screw 180 for retrograde placement into bone. The bone screw may include a head 182 joined to a shank 184. The head may have a larger cross-sectional dimension (such as diameter) than the shank and/or may include external or internal tool-engagement structure (e.g., a hexagonal recess 186) formed axially in and/or on the head for manipulation of the bone screw with a suitable driver. Shank 184 may include a nonthreaded region 186 proximally, adjacent the head, and a threaded region 188 (with an external thread 190) distally, spaced from the head. The nonthreaded region may include a stop structure, such as a shoulder 192 or an end to the external thread, that restricts advancement of the bone screw, particularly threaded advancement. For example, the shoulder may engage the inner surface of a bone plate to stop screw advancement into/through an opening of the bone plate. The bone screw also may include an axial bore 194 for receiving a wire or other guide member.


The nonthreaded and threaded regions may have any suitable structure. The nonthreaded region may have a greater diameter, about the same diameter, or a lesser diameter than the major diameter 196 of the threaded region. Furthermore, the nonthreaded region may be shorter than, about the same length as, or longer than the length of the threaded region. In some examples, the nonthreaded region may be at least about two, five, or ten times as long as the threaded region, as measured along the long axis of the bone screw, or the nonthreaded region may be absent. Furthermore, the threaded region may have a length 198, measured axially, that is about the same as, greater than, or less than, the thickness of the implant. The threaded region may include a single external thread or a plurality of interspersed threads (a multi-threaded configuration).



FIG. 10 shows another exemplary retrograde bone screw 210. The bone screw may have include a head 212 joined distally to a shank 214. The shank may include one or more external threads extending over a substantial portion or the entire length of the shank. In some examples, the shank may include a proximal thread (or threaded region) 216 and a distal thread (or threaded region) 218. The proximal thread and the distal thread may have the same pitch (or different pitches) and may have the same or different major diameters. For example, the proximal thread may have a greater major diameter than the distal thread. Furthermore, the thread depth of the threads may be the same or different, for example, the proximal thread may have a substantially greater thread depth than the distal thread (such as to engage bone more effectively). In particular, the proximal thread may be a cancellous thread with a major diameter that is at least about 25% or about 50% greater than a minor diameter of the thread.



FIG. 11 shows yet another exemplary retrograde bone screw 230. The bone screw may include a head 232 joined distally to a shank 234. The shank may include an internal thread(s) 236 formed in a distal region 238 of the shank. The internal thread of the shank may mate with an external thread 240 provided by an implant 242 (such as a bone plate) or by a bridge fastener 244 disposed in an opening 246 of the implant. The bridge fastener may or may not be disposed in threaded engagement with the implant.


Example 2
Guide Device to Assist Fastener Placement

This example describes an exemplary guide device 260 to assist forward and/or retrograde placement of fasteners into openings of a bone plate; see FIG. 12.


Guide device 260 may mount to an implant, such as bone plate 44, using one or more apertures, such as apertures 262, 264 (see FIG. 3), and a threaded coupling member 266. Apertures 262, 264 may be spaced from other openings, particularly (distal) locking openings of the bone plate. Accordingly, each distal opening and the internal thread therein may be accessible with the guide device mounted on the bone plate.


The mounted guide device may define a plurality of guide channels 268 aligned with each of the distal openings in the head portion of bone plate 44 (see FIG. 3). Each guide channel may define a guide path that is substantially aligned with the screw (helical) axis of a distal opening. The guide channel, with or without a suitable guide insert 270 (for example, to narrow the guide channel), thus may guide forward advancement of a guide member, drill bit, and/or fastener along the guide path, to facilitate forward or retrograde fastener placement with each guide channel. The guide device, with distinct channels of the device, thus may facilitate opposing placement of fasteners that couple to the same bone plate. Further aspects of the guide device that may be suitable are described in the following patent application, which is incorporated herein by reference: U.S. patent application Ser. No. 10/968,850, filed Oct. 18, 2004.


Example 3
Retrograde Fixation of a Radial Styloid Fragment

This example describes exemplary fixation of a radial styloid fragment by retrograde placement of a fastener through the fragment and into engagement with a bone plate; see FIGS. 13 and 14.



FIG. 13 shows another exemplary configuration of system 40 (see FIGS. 2 and 3). In the present configuration, a styloid fragment 280 of the radius bone is fixed with a retrograde fastener 282, with a leading region 284 of the fastener disposed in threaded engagement with a distal opening 286 of bone plate 44. The fastener may have an oblique orientation relative to the long axis of the radius. A head 288 of the fastener thus may be disposed adjacent a distal end surface, a dorsal surface, and/or a lateral surface of the radius bone, among others.



FIG. 14 shows bone plate 44 and its coupled fasteners, including retrograde fastener 282, from the inner surface of the bone plate and without the radius bone. Any suitable combination of one or more (or all) of the openings of a bone plate, particularly distal openings 290 in a head portion of the bone plate, may be selected for forward fastener placement and/or retrograde fastener placement. Each opening selected for retrograde fastener placement may receive a fastener from a generally normal direction, shown at 292, or from an oblique direction, shown at 294.


The disclosure set forth above may encompass multiple distinct inventions with independent utility. Although each of these inventions has been disclosed in its preferred form(s), the specific embodiments thereof as disclosed and illustrated herein are not to be considered in a limiting sense, because numerous variations are possible. The subject matter of the inventions includes all novel and nonobvious combinations and subcombinations of the various elements, features, functions, and/or properties disclosed herein. The following claims particularly point out certain combinations and subcombinations regarded as novel and nonobvious. Inventions embodied in other combinations and subcombinations of features, functions, elements, and/or properties may be claimed in applications claiming priority from this or a related application. Such claims, whether directed to a different invention or to the same invention, and whether broader, narrower, equal, or different in scope to the original claims, also are regarded as included within the subject matter of the inventions of the present disclosure.

Claims
  • 1. A method of attaching a fastener assembly to a bone plate, comprising: disposing a bone plate adjacent a bone, the bone plate defining an opening;forming a channel through the bone, coaxial to the opening; andinstalling a fastener assembly in the channel, such that a first fastener of the fastener assembly is in threaded engagement with the bone plate at the opening, a second fastener of the fastener assembly is in threaded engagement with the first fastener, and a head of the second fastener and the bone plate are disposed adjacent respective opposite sides of the bone, wherein the opposite sides are across the bone from each other.
  • 2. The method of claim 1, wherein the step of installing engages the bone with the head of the second fastener.
  • 3. The method of claim 1, wherein the bone is a radius bone, and wherein the step of disposing includes a step of disposing a bone plate adjacent a distal portion of the radius bone.
  • 4. The method of claim 3, wherein the step of installing disposes the head of the second fastener adjacent a dorsal surface region of the radius bone.
  • 5. The method of claim 1, further comprising a step of connecting the bone plate to the bone with one or more other fasteners before the step of forming a channel.
  • 6. The method of claim 5, wherein the step of connecting includes a step of placing the one or more other fasteners into the bone from one or more other openings of the bone plate.
  • 7. The method of claim 1, wherein the step of forming a channel includes a step of forming a first portion of the channel closer to the bone plate before forming a second portion of the channel farther from the bone plate.
  • 8. The method of claim 1, further comprising a step of attaching to the bone plate a guide structure defining an axial bore, wherein the step of attaching disposes the axial bore coaxial to the opening and projecting above an outer surface of the bone plate, and wherein the step of attaching is performed before the step of forming a channel.
  • 9. The method of claim 1, wherein the step of installing includes a step of advancing a shaft of the second fastener along the channel toward the bone plate.
  • 10. The method of claim 1, wherein the channel extends along an axis, further comprising a step of measuring a dimension of the bone parallel to the axis, wherein the fastener assembly has a length corresponding to the dimension.
  • 11. A method of attaching a fastener assembly to a bone plate, comprising: disposing a bone plate adjacent a bone, the bone plate defining an opening;placing a guide wire in the bone, coaxial to the opening;forming a channel through the bone, coaxial to the opening;locking a first fastener to the bone plate by threaded engagement of the first fastener with the bone plate at the opening;advancing a shaft of a second fastener to the first fastener with the shaft disposed over the guide wire; andlocking the second fastener to the first fastener within the bone by threaded engagement of the first and second fasteners with each other, such that a head of the second fastener and the bone plate are positioned adjacent respective opposite sides of the bone, wherein the opposite sides are across the bone from each other.
  • 12. The method of claim 11, wherein the head of the second fastener is engaged with the bone after the step of locking the second fastener to the first fastener.
  • 13. The method of claim 11, further comprising a step of connecting the bone plate to the bone with one or more other fasteners before the step of forming a channel.
  • 14. The method of claim 13, wherein the step of connecting includes a step of placing the one or more other fasteners into the bone from one or more other openings of the bone plate.
  • 15. The method of claim 11, wherein the step of forming a channel includes a step of forming a first portion of the channel closer to the bone plate before forming a second portion of the channel farther from the bone plate.
  • 16. The method of claim 11, further comprising a step of attaching a tube to the bone plate, coaxial to the opening and with the tube projecting above an outer surface of the bone plate, before the step of forming a channel.
  • 17. The method of claim 11, wherein the bone is a radius bone, and wherein the step of disposing includes a step of disposing a bone plate adjacent a distal portion of the radius bone.
  • 18. The method of claim 11, wherein the channel extends along an axis, further comprising a step of measuring a dimension of the bone parallel to the axis.
CROSS-REFERENCES TO PRIORITY APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 12/768,508, filed Apr. 27, 2010, now abandoned, which, in turn, is a continuation-in-part of the following U.S. patent applications: Ser. No. 11/504,223, filed Aug. 14, 2006, now U.S. Pat. No. 7,704,251; Ser. No. 11/637,626, filed Dec. 11, 2006, now U.S. Pat. No. 7,717,945; Ser. No. 11/929,026, filed Oct. 30, 2007 now U.S. Pat. No. 7,955,388; Ser. No. 12/175,223, filed Jul. 17, 2008; Ser. No. 12/176,913, filed Jul. 21, 2008 now U.S. Pat. No. 8,231,627; and Ser. No. 12/616,054, filed Nov. 10, 2009. U.S. patent application Ser. No. 11/504,223, in turn, is a continuation of U.S. patent application Ser. No. 10/716,719, filed Nov. 19, 2003, now U.S. Pat. No. 7,090,676, which, in turn, is based upon and claims the benefit under 35 U.S.C. §119(e) of the following U.S. provisional patent applications: Ser. No. 60/427,908, filed Nov. 19, 2002; and Ser. No. 60/512,136, filed Oct. 17, 2003. U.S. patent application Ser. No. 11/637,626, in turn, is a continuation-in-part of the following U.S. patent applications: Ser. No. 10/625,503, filed Jul. 22, 2003, now U.S. Pat. No. 7,537,603; Ser. No. 10/712,202, filed Nov. 12, 2003, now abandoned; Ser. No. 10/717,015, filed Nov. 19, 2003, now U.S. Pat. No. 7,537,604; Ser. No. 10/717,399, filed Nov. 19, 2003, now U.S. Pat. No. 7,326,212; Ser. No. 10/717,401, filed Nov. 19, 2003, now U.S. Pat. No. 7,153,309; Ser. No. 10/717,402, filed Nov. 19, 2003, now U.S. Pat. No. 7,189,237; Ser. No. 10/734,017, filed Dec. 10, 2003, now U.S. Pat. No. 7,147,640; Ser. No. 10/873,522, filed Jun. 21, 2004, now U.S. Pat. No. 7,537,596; Ser. No. 10/993,205, filed Nov. 18, 2004, now U.S. Pat. No. 7,235,079; Ser. No. 11/050,342, filed Feb. 2, 2005, now abandoned; Ser. No. 11/109,984, filed Apr. 19, 2005, now U.S. Pat. No. 7,578,825; Ser. No. 11/109,985, filed Apr. 19, 2005, now abandoned; Ser. No. 11/112,858, filed Apr. 22, 2005, now abandoned; Ser. No. 11/273,811, filed Nov. 14, 2005, now abandoned; Ser. No. 11/274,597, filed Nov. 14, 2005 now U.S. Pat. No. 7,927,332; Ser. No. 11/330,802, filed Jan. 11, 2006, now abandoned; Ser. No. 11/413,631, filed Apr. 28, 2006; Ser. No. 11/449,554, filed Jun. 7, 2006, now abandoned; Ser. No. 11/486,959, filed Jul. 13, 2006, now U.S. Pat. No. 7,857,836; Ser. No. 11/504,223, filed Aug. 14, 2006 now U.S. Pat. No. 7,704,251; Ser. No. 11/550,255, filed Oct. 17, 2006, now U.S. Pat. No. 8,231,662; and Ser. No. 11/585,378, filed Oct. 23, 2006, now U.S. Pat. No. 7,914,532. U.S. patent application Ser. No. 10/625,503, in turn, is based upon and claims the benefit under 35 U.S.C. §119(e) of the following U.S. provisional patent applications: Ser. No. 60/398,075, filed Jul. 22, 2002; and Ser. No. 60/484,262, filed Jun. 30, 2003. U.S. patent application Ser. No. 10/717,015, in turn, is based upon and claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Patent Application Ser. No. 60/512,323, filed Oct. 17, 2003. U.S. patent application Ser. No. 10/717,399, in turn, is based upon and claims the benefit under 35 U.S.C. §119(e) of the following U.S. provisional patent applications: Ser. No. 60/427,908, filed Nov. 19, 2002; and Ser. No. 60/512,136, filed Oct. 17, 2003. U.S. patent application Ser. No. 10/717,401, in turn, is based upon and claims the benefit under 35 U.S.C. §119(e) of the following U.S. provisional patent applications: Ser. No. 60/427,910, filed Nov. 19, 2002; and Ser. No. 60/512,322, filed Oct. 17, 2003. U.S. patent application Ser. No. 10/717,402, in turn, is based upon and claims the benefit under 35 U.S.C. §119(e) of the following U.S. provisional patent applications: Ser. No. 60/427,908, filed Nov. 19, 2002; and Ser. No. 60/512,136, filed Oct. 17, 2003. U.S. patent application Ser. No. 10/734,017, in turn, is based upon and claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Patent Application Ser. No. 60/454,217, filed Mar. 12, 2003. U.S. patent application Ser. No. 10/873,522, in turn, is based upon and claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Patent Application Ser. No. 60/480,529, filed Jun. 20, 2003. U.S. patent application Ser. No. 10/993,205, in turn, is based upon and claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Patent Application Ser. No. 60/541,414, filed Feb. 2, 2004. U.S. patent application Ser. No. 11/109,984, in turn, is based upon and claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Patent Application Ser. No. 60/563,860, filed Apr. 19, 2004. U.S. patent application Ser. No. 11/109,985, in turn, is based upon and claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Patent Application Ser. No. 60/563,767, filed Apr. 19, 2004. U.S. patent application Ser. No. 11/112,858, in turn, is based upon and claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Patent Application Ser. No. 60/564,853, filed Apr. 22, 2004. U.S. patent application Ser. No. 11/273,811, in turn, is based upon and claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Patent Application Ser. No. 60/627,297, filed Nov. 12, 2004. U.S. patent application Ser. No. 11/274,597, in turn, is based upon and claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Patent Application Ser. No. 60/627,721, filed Nov. 12, 2004. U.S. patent application Ser. No. 11/449,554, in turn, is a continuation of U.S. patent application Ser. No. 10/873,522, now U.S. Pat. No. 7,537,596, which, in turn, is based upon and claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Patent Application Ser. No. 60/480,529, filed Jun. 20, 2003. U.S. patent application Ser. No. 11/486,959, in turn, is based upon and claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Patent Application Ser. No. 60/699,277, filed Jul. 13, 2005. U.S. patent application Ser. No. 11/585,378, in turn, is based upon and claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Patent Application Ser. No. 60/729,373, filed Oct. 21, 2005. U.S. patent application Ser. No. 11/929,026, in turn, is based upon and claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Patent Application Ser. No. 60/856,128, filed Nov. 1, 2006. U.S. patent application Ser. No. 12/175,223, in turn, is based upon and claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Patent Application Ser. No. 60/961,317, filed Jul. 19, 2007. U.S. patent application Ser. No. 12/176,913, in turn, is based upon and claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Patent Application Ser. No. 60/961,317, filed Jul. 19, 2007. U.S. patent application Ser. No. 12/616,054, in turn, is based upon and claims the benefit under 35 U.S.C. §119(e) of U.S. Provisional Patent Application Ser. No. 61/112,878, filed Nov. 10, 2008. Each of these priority patent applications is incorporated herein by reference in its entirety for all purposes.

US Referenced Citations (327)
Number Name Date Kind
820503 Krengel et al. May 1906 A
869697 Eilhauer et al. Oct 1907 A
1105105 Sherman Jul 1914 A
1789060 Weisenbach Jan 1931 A
1889239 Crowley Nov 1932 A
2243717 Moreira May 1941 A
2406832 Hardinge Sep 1946 A
2443363 Townsend et al. Jun 1948 A
2489870 Dzus Nov 1949 A
2494229 Collison Jan 1950 A
2500370 McKibbin Mar 1950 A
2526959 Lorenzo Oct 1950 A
2580821 Nicola Jan 1952 A
2583896 Siebrandt Jan 1952 A
2737835 Herz Mar 1956 A
3025853 Mason Mar 1962 A
3072423 Charlton Jan 1963 A
3171518 Bergmann Mar 1965 A
3488779 Christensen Jan 1970 A
3489143 Halloran Jan 1970 A
3593709 Halloran Jul 1971 A
3604414 Borges Sep 1971 A
3664022 Small May 1972 A
3716050 Johnston Feb 1973 A
3741205 Markolf et al. Jun 1973 A
3842825 Wagner Oct 1974 A
3866458 Wagner Feb 1975 A
3900025 Barnes, Jr. Aug 1975 A
3901064 Jacobson Aug 1975 A
3939497 Heimke et al. Feb 1976 A
3965720 Goodwin et al. Jun 1976 A
4059102 Devas Nov 1977 A
4187840 Watanabe Feb 1980 A
4187841 Knutson Feb 1980 A
4201215 Crossett et al. May 1980 A
4364382 Mennen Dec 1982 A
4388921 Sutter et al. Jun 1983 A
4408601 Wenk Oct 1983 A
RE31628 Allgower et al. Jul 1984 E
4457307 Stillwell Jul 1984 A
4465065 Gotfried Aug 1984 A
4484570 Sutter et al. Nov 1984 A
4493317 Klaue Jan 1985 A
4498468 Hansson Feb 1985 A
4506681 Mundell Mar 1985 A
4513744 Klaue Apr 1985 A
4565191 Slocu Jan 1986 A
4565192 Shapiro Jan 1986 A
4565193 Streli Jan 1986 A
4573458 Lower Mar 1986 A
4651724 Berentey et al. Mar 1987 A
4683878 Carter Aug 1987 A
4703751 Pohl Nov 1987 A
4718413 Johnson Jan 1988 A
4730608 Schlein Mar 1988 A
4736737 Fargie et al. Apr 1988 A
4743261 Epinette May 1988 A
4750481 Reese Jun 1988 A
4757810 Reese Jul 1988 A
4759350 Dunn et al. Jul 1988 A
4760843 Fischer et al. Aug 1988 A
4794918 Wolter Jan 1989 A
4800874 David et al. Jan 1989 A
4823780 Odensten et al. Apr 1989 A
4865025 Buzzi et al. Sep 1989 A
4867144 Karas et al. Sep 1989 A
4892093 Zarnowski et al. Jan 1990 A
4893619 Dale et al. Jan 1990 A
4895141 Koeneman et al. Jan 1990 A
4903691 Heinl Feb 1990 A
4917604 Small Apr 1990 A
4923471 Morgan May 1990 A
4926847 Luckman May 1990 A
4943292 Foux Jul 1990 A
4955886 Pawluk Sep 1990 A
4957497 Hoogland et al. Sep 1990 A
4963153 Noesberger et al. Oct 1990 A
4964403 Karas et al. Oct 1990 A
4966599 Pollock Oct 1990 A
4973332 Kummer Nov 1990 A
4988350 Herzberg Jan 1991 A
5002544 Klaue et al. Mar 1991 A
5006120 Carter Apr 1991 A
5013315 Barrows May 1991 A
5015248 Burstein et al. May 1991 A
5041113 Biedermann et al. Aug 1991 A
5042983 Rayhack Aug 1991 A
5049149 Schmidt Sep 1991 A
5053036 Perren et al. Oct 1991 A
5085660 Lin Feb 1992 A
5113685 Asher et al. May 1992 A
5129899 Small et al. Jul 1992 A
5133718 Mao Jul 1992 A
5139497 Tilghman et al. Aug 1992 A
5147361 Ojima et al. Sep 1992 A
5151103 Tepic et al. Sep 1992 A
5154717 Matsen, III et al. Oct 1992 A
5161404 Hayes Nov 1992 A
5176685 Rayhack Jan 1993 A
5190544 Chapman et al. Mar 1993 A
5190545 Corsi et al. Mar 1993 A
5197966 Sommerkamp Mar 1993 A
5201737 Leibinger et al. Apr 1993 A
5234431 Keller Aug 1993 A
5236432 Matsen, III et al. Aug 1993 A
5269784 Mast Dec 1993 A
5290288 Vignaud et al. Mar 1994 A
5304180 Slocum Apr 1994 A
5314490 Wagner et al. May 1994 A
5364398 Chapman et al. Nov 1994 A
5364399 Lowery et al. Nov 1994 A
5380327 Eggers et al. Jan 1995 A
5413577 Pollock May 1995 A
5423826 Coates et al. Jun 1995 A
5429641 Gotfried Jul 1995 A
5443516 Albrektsson et al. Aug 1995 A
5458654 Tepic Oct 1995 A
5468242 Reisberg Nov 1995 A
5474553 Baumgart Dec 1995 A
5487741 Maruyama et al. Jan 1996 A
5487743 Laurain et al. Jan 1996 A
5522902 Yuan et al. Jun 1996 A
5527311 Procter et al. Jun 1996 A
5531745 Ray Jul 1996 A
5534027 Hodorek Jul 1996 A
5545228 Kambin Aug 1996 A
5564302 Watrous Oct 1996 A
5578036 Stone et al. Nov 1996 A
5586985 Putnam et al. Dec 1996 A
5591166 Bernhardt et al. Jan 1997 A
5601553 Trebing et al. Feb 1997 A
5601565 Huebner Feb 1997 A
5607426 Ralph et al. Mar 1997 A
5613971 Lower et al. Mar 1997 A
5643261 Schafer et al. Jul 1997 A
5643265 Errico et al. Jul 1997 A
5647872 Gilbert et al. Jul 1997 A
5658283 Huebner Aug 1997 A
5662655 Laboureau et al. Sep 1997 A
5665088 Gil et al. Sep 1997 A
5665089 Dall et al. Sep 1997 A
5674222 Berger et al. Oct 1997 A
5676667 Hausman Oct 1997 A
5681313 Diez Oct 1997 A
5702396 Hoenig et al. Dec 1997 A
5707372 Errico et al. Jan 1998 A
5707373 Sevrain et al. Jan 1998 A
5709682 Medoff Jan 1998 A
5709686 Talos et al. Jan 1998 A
5718704 Medoff Feb 1998 A
5718705 Sammarco Feb 1998 A
5720502 Cain Feb 1998 A
5722976 Brown Mar 1998 A
5730743 Kirsch et al. Mar 1998 A
5733287 Tepic et al. Mar 1998 A
5735853 Olerud Apr 1998 A
5741258 Klaue et al. Apr 1998 A
5741259 Chan Apr 1998 A
5749872 Kyle et al. May 1998 A
5749873 Fairley May 1998 A
5752958 Wellisz May 1998 A
5766174 Perry Jun 1998 A
5772662 Chapman et al. Jun 1998 A
5807396 Raveh Sep 1998 A
5810823 Klaue et al. Sep 1998 A
5810824 Chan Sep 1998 A
5853413 Carter et al. Dec 1998 A
D404128 Huebner Jan 1999 S
5855580 Kreidler et al. Jan 1999 A
5871548 Sanders et al. Feb 1999 A
5879389 Koshino Mar 1999 A
5902304 Walker et al. May 1999 A
5904683 Pohndorf et al. May 1999 A
5916216 DeSatnick et al. Jun 1999 A
5919195 Wilson et al. Jul 1999 A
5928234 Manspeizer Jul 1999 A
5931839 Medoff Aug 1999 A
5938664 Winquist et al. Aug 1999 A
5941878 Medoff Aug 1999 A
5951557 Luter Sep 1999 A
5954722 Bono Sep 1999 A
5964763 Incavo et al. Oct 1999 A
5968047 Reed Oct 1999 A
5973223 Tellman et al. Oct 1999 A
6001099 Huebner Dec 1999 A
6004323 Park et al. Dec 1999 A
6010505 Asche et al. Jan 2000 A
6022350 Ganem Feb 2000 A
6053915 Bruchmann Apr 2000 A
6077266 Medoff Jun 2000 A
6077271 Huebner et al. Jun 2000 A
6096040 Esser Aug 2000 A
6096043 Techiera et al. Aug 2000 A
6113603 Medoff Sep 2000 A
6117160 Bonutti Sep 2000 A
6123709 Jones Sep 2000 A
6129728 Schumacher et al. Oct 2000 A
6129730 Bono et al. Oct 2000 A
6139548 Errico Oct 2000 A
6152927 Farris et al. Nov 2000 A
6179839 Weiss et al. Jan 2001 B1
6183475 Lester et al. Feb 2001 B1
6193721 Michelson Feb 2001 B1
6197028 Ray et al. Mar 2001 B1
6206886 Bennett Mar 2001 B1
6221073 Weiss et al. Apr 2001 B1
6224602 Hayes May 2001 B1
6228087 Fenaroli et al. May 2001 B1
6235033 Brace et al. May 2001 B1
6235034 Bray May 2001 B1
6238396 Lombardo May 2001 B1
6258092 Dall Jul 2001 B1
6261291 Talaber et al. Jul 2001 B1
6273889 Richelsoph Aug 2001 B1
6283969 Grusin et al. Sep 2001 B1
6290703 Ganem Sep 2001 B1
6302883 Bono Oct 2001 B1
6302884 Wellisz et al. Oct 2001 B1
6302887 Spranza et al. Oct 2001 B1
6306136 Baccelli Oct 2001 B1
6312431 Asfora Nov 2001 B1
6315779 Morrison et al. Nov 2001 B1
6322562 Wolter Nov 2001 B1
6325803 Schumacher et al. Dec 2001 B1
6331179 Freid et al. Dec 2001 B1
6336927 Rogozinski Jan 2002 B2
6338734 Burke et al. Jan 2002 B1
6342055 Eisermann et al. Jan 2002 B1
6342075 MacArthur Jan 2002 B1
6355036 Nakajima Mar 2002 B1
6355042 Winquist Mar 2002 B2
6358250 Orbay Mar 2002 B1
6364881 Apgar et al. Apr 2002 B1
6364882 Orbay Apr 2002 B1
6364883 Santilli Apr 2002 B1
6379354 Rogozinski Apr 2002 B1
6379364 Brace et al. Apr 2002 B1
6402756 Ralph et al. Jun 2002 B1
6413259 Lyons et al. Jul 2002 B1
6428542 Michelson Aug 2002 B1
6436103 Suddaby Aug 2002 B1
6440135 Orbay et al. Aug 2002 B2
6454769 Wagner et al. Sep 2002 B2
6454770 Klaue Sep 2002 B1
6458133 Lin Oct 2002 B1
6503250 Paul Jan 2003 B2
6508819 Orbay Jan 2003 B1
6514274 Boucher et al. Feb 2003 B1
6520965 Chervitz et al. Feb 2003 B2
6527775 Warburton Mar 2003 B1
6533789 Hall, IV et al. Mar 2003 B1
6540753 Cohen Apr 2003 B2
6547790 Harkey et al. Apr 2003 B2
6565570 Sterett et al. May 2003 B2
6592578 Henniges et al. Jul 2003 B2
6595993 Donno et al. Jul 2003 B2
6602255 Campbell et al. Aug 2003 B1
6623486 Weaver et al. Sep 2003 B1
6623487 Goshert Sep 2003 B1
6682531 Winquist et al. Jan 2004 B2
6682533 Dinsdale et al. Jan 2004 B1
6692503 Foley et al. Feb 2004 B2
6695846 Richelsoph et al. Feb 2004 B2
6699665 Kim et al. Mar 2004 B1
6706046 Orbay et al. Mar 2004 B2
6712820 Orbay Mar 2004 B2
6719759 Wagner et al. Apr 2004 B2
6730090 Orbay et al. May 2004 B2
6736819 Tipirneni May 2004 B2
6767351 Orbay et al. Jul 2004 B2
6793658 LeHuec et al. Sep 2004 B2
6858031 Morrison et al. Feb 2005 B2
6866665 Orbay Mar 2005 B2
6893444 Orbay May 2005 B2
7153309 Huebner et al. Dec 2006 B2
20010011172 Orbay et al. Aug 2001 A1
20020032446 Orbay Mar 2002 A1
20020055741 Schlapfer et al. May 2002 A1
20020133172 Lambrecht et al. Sep 2002 A1
20020143336 Hearn Oct 2002 A1
20020143338 Orbay et al. Oct 2002 A1
20020147453 Gambale Oct 2002 A1
20020151899 Bailey et al. Oct 2002 A1
20020156474 Wack et al. Oct 2002 A1
20030040748 Aikins et al. Feb 2003 A1
20030055429 Ip et al. Mar 2003 A1
20030083661 Orbay et al. May 2003 A1
20030105461 Putnam Jun 2003 A1
20030149434 Paul Aug 2003 A1
20030153918 Putnam et al. Aug 2003 A1
20030233093 Moles et al. Dec 2003 A1
20040006349 Goble et al. Jan 2004 A1
20040102775 Huebner May 2004 A1
20040102776 Huebner May 2004 A1
20040102777 Huebner May 2004 A1
20040102778 Huebner May 2004 A1
20040116930 O'Driscoll et al. Jun 2004 A1
20040127901 Huebner et al. Jul 2004 A1
20040127903 Schlapfer et al. Jul 2004 A1
20040153073 Orbay Aug 2004 A1
20040193164 Orbay Sep 2004 A1
20040193165 Orbay Sep 2004 A1
20040204713 Abdou Oct 2004 A1
20040220566 Bray Nov 2004 A1
20040260291 Jensen Dec 2004 A1
20040260292 Orbay et al. Dec 2004 A1
20040260293 Orbay et al. Dec 2004 A1
20040260294 Orbay et al. Dec 2004 A1
20040260295 Orbay et al. Dec 2004 A1
20050049593 Duong et al. Mar 2005 A1
20050065520 Orbay Mar 2005 A1
20050065522 Orbay Mar 2005 A1
20050065523 Orbay Mar 2005 A1
20050065524 Orbay Mar 2005 A1
20050065528 Orbay Mar 2005 A1
20050085818 Huebner Apr 2005 A1
20050085819 Ellis et al. Apr 2005 A1
20050131413 O'Driscoll et al. Jun 2005 A1
20050159747 Orbay Jul 2005 A1
20050165395 Orbay et al. Jul 2005 A1
20050171544 Falkner Aug 2005 A1
20050182405 Orbay et al. Aug 2005 A1
20050182406 Orbay et al. Aug 2005 A1
20050187551 Orbay et al. Aug 2005 A1
20050192578 Horst Sep 2005 A1
20050234458 Huebner Oct 2005 A1
20070185493 Feibel et al. Aug 2007 A1
Foreign Referenced Citations (43)
Number Date Country
8975091 Feb 1992 AU
611147 May 1979 CH
2515430 Nov 1975 DE
4201531 Jul 1993 DE
4343117 Jun 1995 DE
0053999 Jun 1982 EP
0410309 Jan 1991 EP
0471418 Feb 1992 EP
0362049 May 1992 EP
1250892 Sep 2003 EP
742618 Mar 1933 FR
2254298 Jul 1975 FR
2367479 May 1978 FR
2405705 May 1979 FR
2405706 May 1979 FR
2406429 May 1979 FR
2472373 Jul 1981 FR
2674118 Sep 1992 FR
2245498 Jan 1992 GB
610518 Jun 1978 SU
718097 Feb 1980 SU
862937 Sep 1981 SU
897233 Jan 1982 SU
1049054 Oct 1983 SU
1130332 Dec 1984 SU
1192806 Nov 1985 SU
1223901 Apr 1986 SU
1225556 Apr 1986 SU
1544406 Feb 1990 SU
1630804 Feb 1991 SU
1644932 Apr 1991 SU
1683724 Oct 1991 SU
1711859 Feb 1992 SU
1734715 May 1992 SU
8201645 May 1982 WO
8702572 May 1987 WO
8803781 Jun 1988 WO
9629948 Oct 1996 WO
9747251 Dec 1997 WO
0121083 Mar 2001 WO
0162136 Aug 2001 WO
2004008980 Jan 2004 WO
2005102193 Nov 2005 WO
Non-Patent Literature Citations (94)
Entry
Abel et al., An Axially Mobile Plate for Fracture Fixation, Internal Fixation in Osteoporotic Bone, pp. 279-283, 2002.
Ace Medical Company, Ace 4.5/5.0 mm Titanium Cannulated Screw and Reconstruction Plate System surgical technique brochure, 1992.
Ace Medical Company, Ace 4.5/5.0 mm Titanium Cannulated Screw and Reconstruction Plate System simplified fracture fixation brochure, 1992.
Ace Medical Company, Ace Symmetry Titanium Upper Extremity Plates surgical technique brochure, 1996.
Ace Medical Company, Ace Titanium 3.5/4.0 mm Screw and Plate System with the Ace 3.5 mm Universal Ribbon CT/MRI compatible fixation brochure, 1992.
Ace Medical Company, The Ace Symmetry Titanium Upper Extremity Plates new product release brochure, 1996.
Acromio-Clavicular Plates, description page, author and date unknown.
Acroplate, aap Impantate AG, p. 37, date unknown.
Acumed LLC, Congruent Distal Radius Plate System, brochure, May 1, 2002.
Acumed LLC, Congruent Plate System, surgical technique, Dec. 18, 2000.
Acumed, Inc., Congruent Distal Radius Plate System description, Mar. 4, 1998.
Acumed, Inc., Congruent Plate System—The Mayo Clinic Congruent Elbow Plates brochure, May 7, 2002.
Acumed, Inc., Modular Hand System brochure, Aug. 2002.
Acumed, Inc., Modular Hand System brochure, Sep. 2002.
Amadio, Open Reduction of Intra-Articular Fractures of the Distal Radius, Fractures of the Distal Radius, pp. 193-202, 1995.
An, Y.H., Internal Fixation in Osteoporotic Bone, p. 276, Jul. 2002.
An, Y.H., Internal Fixation in Osteoporotic Bone, p. 83, 2002.
Avanta Orthopaedics, SCS/D Distal Radius Plate System brochure, 1997.
Avanta Orthopaedics, SCS/V Distal Radius Plate Volar brochure, 1998.
Baxter, Jessica R., Authorized officer, International Searching Authority, International Search Report, PCT Patent Application Serial No. PCT/US05/13318; search completion date: Feb. 6, 2006; search mailing date: Mar. 30, 2006.
Baxter Jessica R., Authorized officer, International Searching Authority, Written Opinion of the International Searching Authority, PCT Patent Application Serial No. PCT/US05/13318; opinion completion date: Feb. 6, 2006; opinion mailing date: Mar. 30, 2006.
Beaupre et al. A Comparison of Unicortical and Bicortical End Screw Attachment of Fracture Fixation Plates, Journal of Orthopaedic Trauma, vol. 6, No. 3, pp. 294-300, 1992.
Biomet Orthopedics, Inc., Supracondylar Cable Plate brochure, 2000.
Chin et al., Salvage of Distal Tibia Metaphyseal Nonunions With the 90° Cannulated Blade Plate, Clinical Orthopaedics and Related Research, No. 409, pp. 241-249, 2003.
Codman & Shurtleff, Inc., Zuelzer Hook Plates description page, p. 808, undated.
DePuy Ace Medical Company, TiMAX Pe.R.I. Small Fragment Upper Extremity description pages, 1999.
DePuy, Inc., McBride S.M.O. Stainless Steel Bone Plates brochure, 1943.
Ducloyer, Treatment by Plates of Anteriorly Displaced Distal Radial Fractures, Fractures of the Distal Radius, pp. 148-152, 1995.
Erothitan Titanimplantate AG, Titanium Wire Plate Osteosynthesis System According to Dr. Gahr internet printout, print date Feb. 6, 2003.
Esser Complete Distal Radius Plate System, undated.
Esser, Proximal Humerus Fractures operative technique, undated.
Esser, Treatment of Three- and Four-Part Fractures of the Proximal Humerus with a Modified Cloverleaf Plate, Journal of Orthopaedic Trauma, vol. 8, No. 1, pp. 15-22, 1994.
Fernandez et al., Fractures of the Distal Radius: A Practical Approach to Management, pp. 103-188, 1996.
Fitoussi et al., Treatment of Displaced Intra-Articular Fractures of the Distal End of the Radius With Plates, The Journal of Bone and Joint Surgery, vol. 79, No. 9, pp. 1303-1312, 1997 (abstract only provided).
Gesensway et al., Design and Biomechanics of a Plate for the Distal Radius, Journal of Hand Surgery, vol. 20, No. 6, pp. 1021-1027, 1995 (abstract only provided).
Harvey et al., The Use of a Locking Custom Contoured Blade Plate for Peri-Articular Nonunions, Injury, Int. J. Care Injured, vol. 34, pp. 111-116, 2003.
Hooker et al., Fixation of Unstable Fractures of the Volar Rim of the Distal Radius with a Volar Buttress Pin®, 2003.
Howmedica Inc., Dupont Distal Humeral Plates brochure, 1990.
Jupiter et al., Management of Comminuted Distal Radial Fractures, Fractures of the Distal Radius, pp. 167-183, 1995.
Kambouroglou et al., Complications of the AO/ASIF Titanium Distal Radius Plate System (πPlate) in Internal Fixation of the Distal Radius: A Brief Report, Journal of Hand Surgery, vol. 23A, No. 4, pp. 737-741, Jul. 1998.
Kinetics Medical Incorporated, Spider™ and Mini-Spider™ Limited Wrist Fusion System brochure, undated.
Kinetics Medical Incorporated, Spider™ Limited Wrist Fusion System brochure, undated.
Kolodziej, et al., Biomechanical Evaluation of the Schuhli Nut, Clinical Orthopaedics and Related Research, vol. 347, pp. 79-85, Feb. 1998.
Konrath et al., Open Reduction and Internal Fixation of Unstable Distal Radius Fractures: Results Using the Trimed Fixation System, Journal of Orhtopaedic Trauma, vol. 16, No. 8, pp. 578-585, 2002.
Krettek et al., LISS: Less Invasive Stabilization System, Dialogue, p. 3, Jan. 1999.
Leung et al., Palmar Plate Fixation of AO Type C2 Fracture of Distal Radius Using a Locking Compression Plate—A Biomechanical Study in a Cadaveric Model, Journal of Hand Surgery, vol. 28B, No. 3, pp. 263-266, Jun. 2003.
Martin GmbH & Co. KG, Bilder internet printout, print date Sep. 5, 2003.
Mizuho Co., Ltd., Jplate Diaphysis Plates for Japanese brochure, 2002.
Morgan et al., Salvage of a Tibial Pilon Fractures Using Fusion of the Ankle with a 90° Cannulated Blade Plate: A Preliminary Report, Foot & Ankle International, vol. 20, No. 6, pp. 375-378, Jun. 1999.
Nunley et al., Delayed Rupture of the Flexor Pollicis Longus Tendon After Inappropriate Placement of the π Plate on the Volar Surface of the Distal Radius, Journal of Hand Surgery, vol. 24, No. 6, pp. 1279-1280, Nov. 1999.
Orthocopia, LLC, Synthes Volar Distal Radius Locking Plate, internet description page, 2004.
Osada et al., Comparison of Different Distal Radius Dorsal and Volar Fracture Fixation Plates: A Biomechanical Study, Journal of Hand Surgery, vol. 28A, No. 1, pp. 94-104, Jan. 2003.
Palmer et al., The Use of Interlocked ‘Customised’ Blade Plates in the Treatment of Metaphyseal Fractures in Patients with Poor Bone Stock, Injury, Int. J. Care Injured, vol. 31, pp. 187-191, 2002.
Peine et al., Comparison of Three Different Plating Techniques for the Dorsum the Distal Radius: A Biomechanical Study, Journal of Hand Surgery, vol. 25A, No. 1 pp. 29-33, Jan. 2000.
Putnam et al., Distal Radial Metaphyseal Forces in an Extrinsic Grip Model: Implications for Postfracture Rehabilitation, Journal of Hand Surgery, vol. 25A, No. 3, pp. 469-475, May 2000.
Reip, David, Authorized officer, International Searching Authority, International Search Report for PCT Patent Application Serial No. PCT/US03/22904, Dec. 4, 2003.
Ring et al., Prospective Multicenter Trial of a Plate for Dorsal Fixation of Distal Radius Fractures, The Journal of Hand Surgery, vol. 22A, No. 5, pp. 777-784, Sep. 1997.
Rozental et al., Functional Outcome and Complications Following Two Types of Dorsal Plating for Unstable Fractures of the Distal Part of the Radius, Journal of Bone and Joint Surgery, vol. 85, No. 10, pp. 1956-1960, 2003 (abstract only provided).
Ruch et al., Results of Palmar Plating of the Lunate Facet Combined with External Fixation for the Treatment of High-Energy Compression Fractures of the Distal Radius, J. Orthop. Trauma, Vo. 18, No. 1, pp. 28-33, Jan. 2004.
Sanatmetal, Rib Securing Clamped Plate, internet printout, print date Sep. 22, 2004.
Sanchez-Sotelo et al., Principle-Based Internal Fixation of Distal Humerus Fractures, Techniques in Hand & Upper Extremity Surgery, vol. 5, No. 4, pp. 179-187, Dec. 2001.
Simic, Fractures of the Distal Aspect of the Radius: Changes in Treatment Over the Past Two Decades, Journal of Bone and Joint Surgery, vol. 85-A, No. 3, pp. 552-564, Mar. 2003.
SmartLock Locking Screw Technology, advertisement, The Journal of Hand Surgery, vol. 30A, No. 1, Jan. 2005.
Surfix Technologies, Single Unit Osteosynthesis brochure, Sep. 2000.
Synthes (USA), 3.5 mm LCP™ Proximal Humerus Plate technique guide, 2002.
Synthes (USA), Biological Plating: A New Concept to Foster Bone Healing, 1991.
Synthes (USA), The Distal Radius Plate Instrument and Implant Set technique guide, 1999.
Synthes (USA), The Titanium Distal Radius Plate, technique guide, 1997.
Synthes (USA), Titanium Distal Radius Plates description page, 2001.
Synthes, Small Titanium Plates overview page, p. 2a-33, Mar. 1997.
Synthes, The Titanium Volar Distal Radius Plate, date unknown.
Synthes, Titanium Distal Radius Instrument and Implant Set standard contents description pages, Mar. 1997.
Synthes/Mathys, Less Invasive Stabilization System LISS, surgical technique, Feb. 23, 1999.
Techmedica, Inc., Techmedica Bioengineers Keep Tabs on Your Needs brochure, 1991.
Techmedica, Inc., The Arnett-TMP* Titanium Miniplating System brochure, 1989.
Toby, Scaphoid Protocols Using the Acutrak® Bone Screw System brochure, published by Acumed, Inc., Dec. 7, 1999.
Tornetta, Distal Radius Fracture, Journal of Orthopaedic Trauma, vol. 16, No. 8, pp. 608-611, 2002.
Trimed, Inc., TriMed Wrist Fixation System brochure, 1997.
Trimed, Inc., TriMed Wrist Fixation System internet description pages, 2001.
Trumble et al., Intra-Articular Fractures of the Distal Aspect of the Radius, Journal of Bone and Joint Surgery, vol. 80A, No. 4, pp. 582-600, Apr. 1998.
Turner et al., Tendon Function and Morphology Related to Material and Design of Plates for Distal Radius Fracture Fixation: Canine Forelimb Model, Orthopaedic Research Society, Feb. 2003.
US Implants, VAL Plate description page, undated.
Vitallium, Bone Plates brochure, Mar. 1948.
Waldemar Link GmbH & Co., May Anatomical bone Plates: Plates, Bone Screws and Instruments brochure, pp. 3-4 and 10-15, 1995.
Wright Medical Technology, Inc., Locon-T Distal Radius Plating System case study and surgical method, 2001.
Wright Medical Technology, Inc., Locon-T Distal Radius Plating System brochure, 2002.
Young, Outcome Following Nonoperative Treatment of Displaced Distal Radius Fractures in Low-Demand Patients Older Than 60 Years, Journal of Hand Surgery, vol. 25A, No.1, pp. 19-28, Jan. 2000.
Zespol Bone Plates, in Mikromed—Catalogue 2004 (Nov. 2004), available at http://www.mikromed.pl/katalog/Main/main—eng.htm and http://www.mikromed.pl/katalog/zespol—eng/plytki.htm.
Zespol Bone Screws, in Mikromed—Catalogue 2004 (Nov. 2004), available at http://www.mikromed.pl/katalog/Main/main—eng.htm and http://www.mikromed.pl/katalog/zespol—eng/wkrety.htm.
Zimmer, Inc., ECT Internal Fracture Fixation System, order information brochure, undated.
Zimmer, Inc., ECT Internal Fracture Fixation, brochure, undated.
Zimmer, Inc., Forte Distal Radial Plate System brochure, 1995.
Zimmer, Inc., NexGen Osteotomy System (OS) surgical technique, brochure, undated.
Zimmer, Inc., Periarticular Plating System brochure, 2002.
Related Publications (1)
Number Date Country
20110137351 A1 Jun 2011 US
Provisional Applications (20)
Number Date Country
60427908 Nov 2002 US
60512136 Oct 2003 US
60398075 Jul 2002 US
60484262 Jun 2003 US
60512323 Oct 2003 US
60427910 Nov 2002 US
60512322 Oct 2003 US
60454217 Mar 2003 US
60480529 Jun 2003 US
60541414 Feb 2004 US
60563860 Apr 2004 US
60563767 Apr 2004 US
60564853 Apr 2004 US
60627297 Nov 2004 US
60627721 Nov 2004 US
60699277 Jul 2005 US
60729373 Oct 2005 US
60856128 Nov 2006 US
60961317 Jul 2007 US
61112878 Nov 2008 US
Continuations (3)
Number Date Country
Parent 12768508 Apr 2010 US
Child 13028757 US
Parent 10716719 Nov 2003 US
Child 11504223 US
Parent 10873522 US
Child 11449554 US
Continuation in Parts (28)
Number Date Country
Parent 11504223 Aug 2006 US
Child 12768508 US
Parent 11637626 Dec 2006 US
Child 11504223 US
Parent 11929026 Oct 2007 US
Child 11637626 US
Parent 12175223 Jul 2008 US
Child 11929026 US
Parent 12176913 Jul 2008 US
Child 12175223 US
Parent 12616054 Nov 2009 US
Child 12176913 US
Parent 10625503 Jul 2003 US
Child 11637626 US
Parent 10712202 Nov 2003 US
Child 10625503 US
Parent 10717015 Nov 2003 US
Child 10712202 US
Parent 10717399 Nov 2003 US
Child 10717015 US
Parent 10717401 Nov 2003 US
Child 10717399 US
Parent 10717402 Nov 2003 US
Child 10717401 US
Parent 10734017 Dec 2003 US
Child 10717402 US
Parent 10873522 Jun 2004 US
Child 10734017 US
Parent 10993205 Nov 2004 US
Child 10873522 US
Parent 11050342 Feb 2005 US
Child 10993205 US
Parent 11109984 Apr 2005 US
Child 11050342 US
Parent 11109985 Apr 2005 US
Child 11109984 US
Parent 11112858 Apr 2005 US
Child 11109985 US
Parent 11273811 Nov 2005 US
Child 11112858 US
Parent 11274597 Nov 2005 US
Child 11273811 US
Parent 11330802 Jan 2006 US
Child 11274597 US
Parent 11413631 Apr 2006 US
Child 11330802 US
Parent 11449554 Jun 2006 US
Child 11413631 US
Parent 11486959 Jul 2006 US
Child 11449554 US
Parent 11504223 Aug 2006 US
Child 11486959 US
Parent 11550255 Oct 2006 US
Child 11504223 US
Parent 11585378 Oct 2006 US
Child 11550255 US