The present invention relates to electronic device manufacturing, and more specifically to apparatus, systems, and methods for transporting substrates.
Conventional electronic device manufacturing systems may include multiple process chambers and load lock chambers. Such chambers may be included in cluster tools where a plurality of chambers may be provided about a transfer chamber, for example. These systems and tools may employ a robot, which may be housed in the transfer chamber, for example, to transport substrates between the various process chambers and load lock chambers. For example, the robot may transport substrates from process chamber to process chamber, from load lock chamber to process chamber, and/or from process chamber to load lock chamber. Efficient and precise transport of substrates between the various system chambers may be desirable for improving system throughput, thus lowering overall operating costs.
Accordingly, systems, apparatus, and methods for efficient and precise movement of substrates are desired.
In one aspect, a boom drive apparatus is provided. The boom drive apparatus includes a boom including a hub, a web extending from the hub, the hub having a first pilot extending in a first direction above the web, and a second pilot extending in a second direction below the web, a first driving member rotationally mounted to the first pilot, a second driving member rotationally mounted to the second pilot, a first driven member rotationally mounted to the boom above the web at a first outboard location, a second driven member rotationally mounted to the boom below the web at a second outboard location, a first transmission member coupling the first driving member to the first driven member above the web, and a second transmission member coupling the second driving member to the second driven member below the web.
In another aspect, a robot apparatus is provided. The robot apparatus includes a boom drive apparatus having a boom adapted to be rotated about a primary rotational axis, the boom including a hub, a web extending radially from the hub, the hub having a first pilot extending in a first direction above the web, and a second pilot extending in a second direction below the web, a first driving member rotationally mounted to the first pilot, a second driving member rotationally mounted to the second pilot, a first driven member rotationally mounted to the boom at a first outboard end above the web, a second driven member rotationally mounted to the boom at the first outboard end below the web, a first transmission member coupling the first driving member to the first driven member above the web, and a second transmission member coupling the second driving member to the second driven member below the web, a first multi-arm robot rotationally coupled to the boom at the first outboard end, the first multi-arm robot having a first upper arm coupled to the first driven member, a first forearm, a first wrist member, and a first end effector adapted to support a first substrate, and a second multi-arm robot rotationally coupled to the boom at the first outboard end, the second multi-arm robot having a second upper arm coupled to the second driven member, a second forearm, a second wrist member, and a second end effector adapted to support a second substrate.
In another aspect, an electronic device processing system is provided. The system includes a transfer chamber, a robot apparatus received in the transfer chamber and adapted to transport multiple substrates, the robot apparatus having a boom drive apparatus having a boom adapted to be rotated about a primary rotational axis, the boom including a hub, a web extending radially from the hub, the hub having a first pilot extending in a first direction above the web, and a second pilot extending in a second direction below the web, a first driving member rotationally mounted to the first pilot, a second driving member rotationally mounted to the second pilot, a first driven member rotationally mounted to the boom at an outboard end above the web, a second driven member rotationally mounted to the boom at an outboard end below the web, a first transmission member coupling the first driving member to the first driven member above the web, and a second transmission member coupling the second driving member to the second driven member below the web, a first multi-arm robot rotationally coupled to the boom at the first outboard end, the first multi-arm robot having a first upper arm coupled to the first driven member, a first forearm, a first wrist member, and a first end effector adapted to support a first substrate, and a second multi-arm robot rotationally coupled to the boom at the first outboard end, the second multi-arm robot having a second upper arm coupled to the second driven member, a second forearm, a second wrist member, and a second end effector adapted to support a second substrate
In another aspect, a method of transporting substrates within an electronic device processing system is provided. The method includes providing a boom drive apparatus having a boom including a hub, a web extending radially from the hub, the hub having a first pilot extending in a first direction above the web, and a second pilot extending in a second direction below the web, a first driving member rotationally mounted to the first pilot, a second driving member rotationally mounted to the second pilot, a first driven member rotationally mounted to the boom at a first outboard end above the web, a second driven member rotationally mounted to the boom at a first outboard end below the web, a first transmission member coupling the first driving member to the first driven member above the web, and a second transmission member coupling the second driving member to the second driven member below the web, coupling a first multi-arm robot to the first outboard end of the boom, coupling a second multi-arm robot to the first outboard end of the boom, driving the first multi-arm robot by driving the first driving member, and driving the second multi-arm robot by driving the second driving member.
Numerous other aspects are provided in accordance with these and other embodiments of the invention. Other features and aspects of embodiments of the present invention will become more fully apparent from the following detailed description, the appended claims, and the accompanying drawings.
Electronic device manufacturing may require very precise and rapid transport of substrates between various locations. In particular, in some embodiments, multi-arm robot apparatus including dual end effectors may be attached to one or more sides of the robot apparatus and may be adapted to transport substrates resting upon the end effectors to and from twin chambers of an electronic device processing system. Such systems may include multiple-arm robots arranged in an over/under configuration such that pick and place operations may take place at a chamber. Given the relatively high mass of so many moving robot arms and end effectors, requirements for rigidity and assembly of the robot mechanism may become a concern.
Accordingly, in one or more embodiments, a robot apparatus which may be used for transporting substrates to and from chambers (e.g., twin chambers) in electronic device manufacturing may be provided.
According to one or more embodiments of the invention, a boom drive apparatus is provided. The boom drive apparatus operates to drive one or more multi-arm robots attached at an outboard end of a boom, while providing suitable rigidity and ease of assembly. The boom drive apparatus includes a boom including a hub, a web extending from the hub, a first driving member rotationally mounted above the web, a second driving member rotationally mounted below the web, a first driven member rotationally mounted at an outboard end above the web, a second driven member rotationally mounted at the outboard end below the web, and transmission members coupling the respective driving members to the driven members above and below the web.
According to one or more embodiments of the invention, robot apparatus and electronic device processing systems including the robot boom drive apparatus are provided.
According to one or more additional embodiments of the invention, methods of transferring substrates with an electronic device processing system including the boom drive apparatus are provided.
Further details of example embodiments of the invention are described with reference to
Process chambers 106A-106F may be adapted to carry out any number of process steps, such as deposition, oxidation, nitration, etching, polishing, cleaning, lithography, or the like. Other processes may be carried out therein. The load lock chambers 108 may be adapted to interface with and receive substrates from or provide substrates to a factory interface 110. The load lock chambers 108 may receive one or more substrates from substrate carriers 112 docked at load ports of the factory interface 110. Substrates may be transferred by a robot 113 (shown dotted) in the factory interface 110 and the transfer may take place in any sequence or direction as indicated by arrows 114. Substrates as used herein shall mean articles used to make electronic devices or circuit components, such as silicon-containing wafers, thinned wafers, silicon wafer subassemblies, silicon wafer packages and assemblies such as through silicon via (TSV) and wafer level packaging (WLP), sapphire wafers and/or wafer carriers, glass plates, glass masks, glass panels, or the like. The robot 103 may be used to transfer substrate carriers, as well.
In some embodiments, the transfer chamber 102 may be operated under a vacuum, for example. Each of the process chambers 106A-106F and load lock chambers 108 may include slit valves 109 at their ingress/egress, which may be adapted to open and close when placing or extracting substrates 105A-105D to and from process chambers 106A-106F and load lock chambers 108. Slit valves 109 may be of any suitable conventional construction. The motion of the various components of the multi-arm robot apparatus 104 may be controlled by suitable commands to the robot apparatus 104 from a controller 115 as will be apparent from the following.
Now referring to
In the depicted embodiment, twin multi-link robots 220A, 220B are mounted to a first outboard end 224L of the first boom portion 222L of the boom 222. Likewise, twin multi-link robots 220C, 220D may be mounted to a second outboard end 224R of the second boom portion 222R of the boom 222. However, it should be recognized that the boom drive apparatus 104 and robot apparatus 103 may be configured with only one boom portion (e.g., 222L) and only one set of twin multi-link robots, such as twin multi-link robots 220A, 220B (e.g., SCARA robots) only.
In another option, only a single multi-arm robot may be provided on either outboard end 224L, 224R, and may be driven by the boom drive apparatus 104, but each multi-arm robot may have additional functionality, such as independent control of and upper arm and forearm, or independent control of an upper arm and wrist member, for example. In yet another option, only a single outboard end 224L may be provided on the boom 222, and only a single multi-arm robot may be coupled to an outboard end 224L, but the single multi-arm robot may be used to independently control more than one arm of the multi-arm robot.
Now describing the
The hub 226 may include a first pilot 228 extending in a first direction above the web 227, and a second pilot 229 extending in a second direction below the web 227. The pilots 228, 229 may comprise cylindrical portions extending above and below the web 227. The boom drive apparatus 104 includes a first driving member 230, such as a pulley, rotationally mounted to the first pilot 228 above the web 227, and a second driving member 232, such as a pulley, rotationally mounted to the second pilot 229 below the web 227. Above and below refer to the orientation shown in
The rotational mounting of the first driving member 230 and the second driving member 232 to the respective first and second pilots 228, 229 may be by one or more suitable bearing members (e.g., ball bearings or the like). The boom drive apparatus 104 also includes a first driven member 234 rotationally mounted to the boom 222 above the web 227 at an outboard location near the outboard end 224L, and a second driven member 236 rotationally mounted to the boom 222 below the web 227 at an outboard location near the outboard end 224L. Again, above and below are relative terms based upon the depicted orientation. In short, the first driven member 234 and the second driven member 236 are provided on opposite sides of the web 237. The first driven member 234 and the second driven member 236 may be rotationally mounted and rotate about a first outboard axis 237. The boom drive apparatus 104 also includes a first transmission member 238 coupling the first driving member 230 to the first driven member 234 above the web 227, and a second transmission member 240 coupling the second driving member 232 to the second driven member 236 below the web 227. The first transmission member 238 may comprise multiple belts (e.g., metal belts) that are pinned to the respective first driving member 230 to the first driven member 234. Likewise, the second transmission member 240 may comprise multiple belts (e.g., metal belts) that are pinned to the respective second driving member 232 to the second driven member 236.
In more detail, the boom 222 may comprise upper walls 242 extending above the web 227 and lower walls 244 extending below the web 227. The upper walls 242 may be integral with the web 227 or separate therefrom and coupled to the web 227, such as by fasteners. The upper walls 242 may surround sides of the first driving member 230, first driven member 234, and first transmission member 238. An upper cover 245 may couple to the upper walls 242 and cover the tops of the first driving member 230, first driven member 234, and first transmission member 238. Likewise, a lower cover 246 may couple to the lower walls 244 and cover the exposed bottom sides of the second driving member 232, second driven member 236, and second transmission member 240. Coupling of the covers 245, 246 to the walls 242, 244 may be by any mechanical fasteners, such as screws or bolts. The covers 245, 246 may comprise multiple pieces in some embodiments, as is shown in
The boom drive apparatus 104 may also include a third driven member 256 rotationally mounted to the boom 222 above the web 227 at an outboard end thereof (e.g., at end 224R), and a fourth driven member 257 rotationally mounted to the boom 222 below the web 227 at the outboard end (e.g., 224R). A third transmission member 258 couples the first driving member 230 to the third driven member 256 above the web 227, and a second transmission member 259 couples the second driving member 232 to the fourth driven member 257 below the web 227.
The boom 222 may be adapted to be rotated about the primary rotational axis 225 in either a clockwise or counterclockwise rotational direction. The rotation may be provided by any suitable boom drive motor 248M, such as a conventional variable reluctance or permanent magnet electric motor. Other types of motors may be used. The boom drive motor 248M may drive a boom pilot shaft 248S extending from the hub 226 and coupled to the boom drive motor 248M. The rotation of the boom 222 may be controlled by suitable commands to the boom drive motor 248M from the controller 115. Controlled rotation of the boom 222 may be +/−360 degrees or more. Position feedback may be provided from any suitable feedback sensor, such that an orientation of the boom 222 may be precisely known at all times.
The upper arm 220UA of the first multi-arm robot 220A may be adapted to be rotated about first outboard axis 237 in either a clockwise or counterclockwise rotational direction. The rotation may be less than about 180 degrees, for example, or even less than 170 degrees in some embodiments. The upper arm 220UA may be driven by rotation of a first drive motor 250M. The boom drive apparatus 104 includes a first driving member pilot shaft 250S extending to the first driving member 230. The first driving member pilot shaft 250S is adapted to be driven by the first drive motor 250M. Driving first driving member pilot shaft 250S rotates the first driving member 230 above the web 227, and resultantly rotates first driven member 234, which may be a pulley which is coupled to and rotates the upper arm 220UA of the first multi-arm robot 220A.
Similarly, the upper arm 220UB of the second multi-link robot 220B may be adapted to be rotated about first outboard axis 237 in either a clockwise or counterclockwise rotational direction. The rotation may be less than about 180 degrees, for example, or even less than 170 degrees in some embodiments. The upper arm 220UB may be driven by rotation of a second drive motor 252M. The boom drive apparatus 104 includes a second driving member pilot shaft 252S extending to the second driving member 232 below the web 227. The second driving member pilot shaft 252S is adapted to be driven by the second drive motor 252M. Driving the second driving member pilot shaft 252S rotates the second driving member 232 below the web 227, which rotates the second upper arm 220UB of the first multi-arm robot 220B that is coupled thereto.
As shown in
In the depicted embodiments, the first and second multi-link robots 220A, 220B may be three-link SCARA (selective compliance assembly robot arm) robots, for example. In operation, once the boom 222 is positioned adjacent to the desired destination for a put or pick of substrates, the robot apparatus 103 may be actuated to put or pick substrates 105A-105D to or from the destination.
In more detail, a multi-arm robot assembly 220L including embodiments of the first and second multi-arm robots 220A, 220B are illustrated in
Z axis capability may be provided to the multi-arm robot 103, or Z axis capability may be provided in the chambers 106A-106F (e.g., Z-axis moveable lift pins) to accomplish the pick and place operations of the substrates 105A-105D.
In this embodiment, the robot apparatus 303 may include robot assembly 220L including, as shown in
In this embodiment, each multi-link robot 220A, 220B may include upper arms 220AU, 220BU adapted for rotation about the first outboard axis 237 in an X-Y plane. The upper arms 220AU, 220BU may include forearms 220AF, 220BF coupled to the upper arms 220AU, 220BU at their respective at their respective outboard ends. The forearms 220AF, 220BF may each include wrist members 220AW, 220BW rotationally attached thereto at their outboard ends. The wrist members 220AW, 220BW may be adapted for relative rotation about the wrist axes relative to the forearms 220AF, 220BF in an X-Y plane. The various pulley connections and lengths of the upper arms 220AU, 220BU and forearms 220AF, 220BF may be appropriately sized so that the wrist members 220AW, 220BW translate parallel to the line of action 221 (
As shown in
A method 600 of transporting a substrate within an electronic device processing system according to embodiments of the present invention is provided in
The foregoing description discloses only example embodiments of the invention. Modifications of the above-disclosed apparatus and methods which fall within the scope of the invention will be readily apparent to those of ordinary skill in the art. Accordingly, while the present invention has been disclosed in connection with example embodiments thereof, it should be understood that other embodiments may fall within the scope of the invention, as defined by the following claims.
This claims priority to U.S. Provisional Patent Application No. 61/668,118, filed on Jul. 5, 2012, entitled “BOOM DRIVE APPARATUS, MULTI-ARM ROBOT APPARATUS, ELECTRONIC DEVICE PROCESSING SYSTEMS, AND METHODS FOR TRANSPORTING SUBSTRATES IN ELECTRONIC DEVICE MANUFACTURING SYSTEMS”, the disclosure of which is hereby incorporated by reference herein in its entirety.
Number | Name | Date | Kind |
---|---|---|---|
4597708 | Wheeler et al. | Jul 1986 | A |
5584647 | Uehara et al. | Dec 1996 | A |
5765444 | Bacchi et al. | Jun 1998 | A |
5954472 | Hofmeister et al. | Sep 1999 | A |
6105454 | Bacchi et al. | Aug 2000 | A |
6189404 | Hatake et al. | Feb 2001 | B1 |
6543306 | Wakabayashi et al. | Apr 2003 | B1 |
6669434 | Namba et al. | Dec 2003 | B2 |
6826977 | Grover et al. | Dec 2004 | B2 |
7955043 | Nakao | Jun 2011 | B2 |
8136422 | Kitahara et al. | Mar 2012 | B2 |
8156840 | Tange | Apr 2012 | B2 |
8651796 | Hosek et al. | Feb 2014 | B2 |
8784033 | Kremerman et al. | Jul 2014 | B2 |
20010036398 | Hofmeister | Nov 2001 | A1 |
20020094265 | Momoki et al. | Jul 2002 | A1 |
20020150459 | Fujii et al. | Oct 2002 | A1 |
20050095111 | Kim et al. | May 2005 | A1 |
20060099063 | Pietrantonio et al. | May 2006 | A1 |
20060216137 | Sakata et al. | Sep 2006 | A1 |
20060245905 | Hudgens | Nov 2006 | A1 |
20070116549 | Rice et al. | May 2007 | A1 |
20070217896 | Kim et al. | Sep 2007 | A1 |
20080063504 | Kroetz et al. | Mar 2008 | A1 |
20080298945 | Cox et al. | Dec 2008 | A1 |
20090087288 | Hofmeister et al. | Apr 2009 | A1 |
20100178135 | Laceky et al. | Jul 2010 | A1 |
20100178146 | Kremerman et al. | Jul 2010 | A1 |
20100178147 | Kremerman et al. | Jul 2010 | A1 |
20120063874 | Kremerman | Mar 2012 | A1 |
20120141235 | Krupyshe et al. | Jun 2012 | A1 |
20120189419 | Yazawa et al. | Jul 2012 | A1 |
20130039726 | Brodine et al. | Feb 2013 | A1 |
20130115028 | Kremerman et al. | May 2013 | A1 |
20130149076 | Cox et al. | Jun 2013 | A1 |
20130272823 | Hudgens et al. | Oct 2013 | A1 |
20140271055 | Weaver et al. | Sep 2014 | A1 |
Number | Date | Country |
---|---|---|
H07-142551 | Jun 1995 | JP |
H10-247674 | Sep 1998 | JP |
11-016981 | Jan 1999 | JP |
H11-277467 | Oct 1999 | JP |
2000-072248 | Mar 2000 | JP |
2002-158272 | May 2002 | JP |
2002-172571 | Jun 2002 | JP |
2004-288720 | Oct 2004 | JP |
2005-186259 | Jul 2005 | JP |
2007-130733 | May 2007 | JP |
2008-235836 | Oct 2008 | JP |
2008-272864 | Nov 2008 | JP |
2009-540613 | Nov 2009 | JP |
2010-166083 | Jul 2010 | JP |
2011045945 | Mar 2011 | JP |
WO 2006-109791 | Oct 2012 | WO |
Entry |
---|
International Preliminary Report on Patentability of International Application No. PCT/US2013/047034 mailed Jan. 15, 2015. |
Notice to File Corrected Application Papers of U.S. Appl. No. 12/684,780 mailed Jan. 29, 2014. |
Supplemental Amendment submitted with filing of RCE of U.S. Appl. No. 12/684,780 filed Feb. 24, 2014. |
Notice of Allowance of U.S. Appl. No. 12/684,780 mailed Mar. 6, 2014. |
Jun. 28, 2013 Reply to Mar. 22, 2013 Final Office Action of U.S. Appl. No. 12/684,780. |
Advisory Action of U.S. Appl. No. 12/684,780 mailed Jul. 8, 2013. |
Interview Summary of U.S. Appl. No. 12/684,780 filed Jul. 9, 2013. |
Office Action of U.S. Appl. No. 12/684,780 mailed Aug. 9, 2013. |
Notice of Allowance of U.S. Appl. No. 12/684,780 mailed Nov. 22, 2013. |
Nov. 5, 2013 Reply to Aug. 9, 2013 Office Action of U.S. Appl. No. 12/684,780. |
International Search Report and Written Opinion of International Application No. PCT/US13/47034 mailed Sep. 6, 2013. |
International Search Report and Written Opinion of International Application No. PCT/US2010/020477 mailed Jun. 28, 2010. |
International Preliminary Report on Patentability of International Application No. PCT/US2010/020477 mailed Jul. 21, 2011. |
Office Action of U.S. Appl. No. 12/684,780 mailed Nov. 30, 2012. |
Feb. 27, 2013 Reply to Nov. 30, 2012 Office Action of U.S. Appl. No. 12/684,780. |
Final Office Action of U.S. Appl. No. 12/684,780 mailed Mar. 22, 2013. |
Chinese Search Report of Chinese Patent Application No. 201080008862.9 dated Mar. 11, 2013. |
Applicant-Initiated Interview Summary of U.S. Appl. No. 12/684,780 mailed May 31, 2013. |
Number | Date | Country | |
---|---|---|---|
20140010625 A1 | Jan 2014 | US |
Number | Date | Country | |
---|---|---|---|
61668118 | Jul 2012 | US |