The present invention relates generally to energy recovery and, more particularly to a system and method for accumulating and using recovered hydraulic energy. The invention has particular application for mobile construction vehicles such as excavators.
Excavators are an example of construction machines that use multiple hydraulic actuators to accomplish a variety of tasks. These actuators are fluidly connected to a pump that provides pressurized fluid to chambers within the actuators. This pressurized fluid force acting on the actuator surface causes movement of actuators and connected work tool. During operation of an excavator, the implement or load may be raised to an elevated position at which the implement gains potential energy. As the implement is released from the elevated position, the potential energy may be converted to heat when pressurized hydraulic fluid is forced out of the hydraulic actuator and is throttled across a hydraulic valve and returned to a tank. Recovering the wasted potential energy for reuse will improve the efficiency of the excavator. As the excavator starts to work, the boom cylinder piston can expand and contract twice during a work period as well as the arm cylinder and the bucket cylinder. Based on an analysis, the excess energy of the boom system accounts for around 47% of input energy among the three cylinder systems: boom, arm, and bucket cylinder systems. There remains a need in the art for a system that recovers the energy in a cost effective and efficient manner.
The present invention is directed to a hydraulic system that recovers and stores energy and reuses the energy to power system components, thereby reducing the power demand on the engine and enabling the engine to be reduced in size. According to one aspect of the invention, a hydraulic system for recovering potential energy of a load implement of a mobile construction vehicle, includes first and second actuators configured to be coupled to the load implement for controlling raising and lowering of the load element; and control valving that is operable between a first position at which, during a lowering of the load implement, the control valving directs hydraulic fluid from one of the first and second actuators to an accumulator to charge the accumulator, and a second position at which the control valving directs hydraulic fluid from the accumulator to one or more of the first and second actuators to power said one or more of the first and second actuators to raise the load element.
Embodiments of the invention may include one or more of the following additional features separately or in combination.
In the first position the control valving may direct hydraulic fluid from only the one actuator to the accumulator to charge the accumulator.
In the second position the control valving may direct hydraulic fluid from the accumulator to both the first and second actuators to power the first and second actuators to raise the load element.
In the second position the control valving may direct hydraulic fluid from the accumulator to only one of the first and second actuators to power the one of the first and second actuators to raise the load element.
The hydraulic system may further include a pump connected to the control valving, and in the second position the control valving may direct hydraulic fluid from the accumulator to one of the first and second actuators and direct hydraulic fluid from the pump to the other of the first and second actuators to raise the load element.
The hydraulic system may further include a metering valve disposed between the control valving and the accumulator, and when the control valve is in the first position the metering valve may proportionately meter the hydraulic flow to control the rate of lowering the load implement and/or force on the load implement, and when the control valve is in the second position the metering valve may proportionately meter the hydraulic flow to control the rate of raising the load implement and/or force on the load implement.
In the first position the control valving may direct hydraulic fluid from a piston side of the one actuator to the accumulator to charge the accumulator.
In the first position the control valving may direct hydraulic fluid from a piston side of the other of the first and second actuators to rod sides of the first and second actuators to back fill the first and second actuators.
The hydraulic system may further include a proportional valve for controlling the amount of flow of hydraulic fluid from the piston side of the other actuator to the rod sides of the first and second actuators.
In the second position the control valving may direct hydraulic fluid from the accumulator to piston sides of the one or more of the first and second actuators to raise the load implement
The hydraulic system may further include a pump connected to the control valving, and in the first position the control valving may direct hydraulic fluid from the pump to rod sides of the first and second actuators to back fill the first and second actuators.
The hydraulic system may further include a pump connected to the control valving, and in the second position the control valving may direct hydraulic fluid from the pump to the first and second actuators to power the first and second actuators to raise the load element.
The control valving may combine the hydraulic fluid from the accumulator and the pump and direct the combined hydraulic fluid to the first and second actuators to power the first and second actuators to raise the load element.
The hydraulic system may further include a second proportional valve configured to equalize pressure between the accumulator and the pump.
The load implement and control valving may form part of a boom circuit, and the hydraulic system may further include a swing circuit and a valve, and the valve may be configured to selectively share flow from the boom circuit to the swing circuit.
According to another aspect of the invention, a hydraulic system for recovering potential energy of a load implement of a mobile construction vehicle, includes an actuator configured to be coupled to the load implement for controlling raising and lowering of the load element; a hydraulic pressure transformer configured to transform a relatively lower-pressure/higher-flow hydraulic fluid received from the actuator to a relatively higher-pressure/lower-flow hydraulic fluid and to exhaust the higher-pressure/lower-flow hydraulic fluid to an accumulator to charge the accumulator; and control valving that is operable between a first position at which, during a lowering of the load implement, the control valving directs hydraulic fluid from the actuator to the hydraulic pressure transformer to charge the accumulator, and a second position at which the control valving directs hydraulic fluid from the accumulator to the actuator to power the actuator to raise the load element.
Embodiments of the invention may include one or more of the following additional features separately or in combination.
The hydraulic pressure transformer may include a reciprocating linear actuator that has a relatively larger area chamber that receives the higher-pressure/lower-flow hydraulic fluid from the actuator and a relatively smaller area chamber from which the relatively higher-pressure/lower-flow hydraulic fluid is exhausted to the accumulator.
The hydraulic pressure transformer may include a rotary pressure transformer that has a first pump motor driven by the relatively lower-pressure/higher-flow hydraulic fluid received from the actuator and a second pump motor driven by the first pump motor that exhausts the relatively higher-pressure/lower-flow hydraulic fluid to the accumulator.
The first pump motor may be a bidirectional hydraulic pump motor and the second pump motor may be a variable hydraulic pump motor.
The hydraulic system may further include a prime mover pump connected to the control valving, and in the second position the control valving may direct hydraulic fluid from the prime mover pump to the first pump motor to drive the first pump motor and, in addition, the second pump motor, which is powered by the accumulator, may drive the first pump motor thereby assisting the prime mover pump in driving the first pump motor, and the first pump motor may supply hydraulic fluid to the actuator to raise the load element.
The hydraulic system may further include a prime mover pump connected to the control valving, and a flow passage that combines the hydraulic fluid from the accumulator and the prime mover pump and directs the combined hydraulic fluid to the actuator to power the actuator to raise the load element.
The hydraulic system may further include a prime mover pump connected to the control valving, and in the first position the control valving may direct hydraulic fluid from the prime mover pump to a rod side of the actuator to back fill the actuator.
The load implement and control valving may form part of a boom circuit, and the hydraulic system may further include a swing circuit and a valve, and the valve may be configured to selectively share flow from the boom circuit to the swing circuit.
According to another aspect of the invention, a hydraulic system for a mobile construction vehicle includes a variable displacement track motor configured to be coupled to a track of the mobile construction vehicle to drive the track; an accumulator for storing pressurized hydraulic fluid for use as a power supply to a non-track load implement; a pump dedicated to the track motor; and control valving that is operable between a first position at which the control valving directs hydraulic fluid from the dedicated pump to the variable displacement track motor to drive the variable displacement track motor, and a second position at which the control valving directs hydraulic fluid from the dedicated pump to the accumulator.
Embodiments of the invention may include one or more of the following additional features separately or in combination.
The control valving may include a proportional valve that diverts flow from the track motor to the accumulator in a proportional manner.
The control valving may be configured such that when the control valving is not operating in the first position to direct hydraulic fluid to the track motor the control valving is operating in the second position to direct hydraulic fluid to the accumulator.
The non-track load implement may include a swing motor for driving a swing of the mobile construction vehicle, and the accumulator may be configured to provide the stored pressurized hydraulic fluid to the swing motor to drive the swing motor.
The non-track load implement may include a swing motor for driving a swing of the mobile construction vehicle, and in the second position the control valving may direct hydraulic fluid from the pump to the swing motor to drive the swing motor.
According to another aspect of the invention, there is provided a hydraulic system for storing pressurized hydraulic fluid from a pump of a mobile construction vehicle and using the stored hydraulic fluid to power a track motor of the mobile construction vehicle, the hydraulic system including an accumulator configured to be coupled to the pump to receive and store the pressurized hydraulic fluid from the pump; and control valving that is operable between a first position at which the control valving directs hydraulic fluid from the pump to the accumulator to charge the accumulator, and a second position at which the control valving directs hydraulic fluid from the accumulator to the track motor to power the track motor.
Embodiments of the invention may include one or more of the following additional features separately or in combination.
The hydraulic system may further include the track motor, and the track motor may be a bidirectional overcenter track motor.
The accumulator may be stored within the track.
The control valving may include a proportional valve between the accumulator and the track motor that is configured, when the accumulator is pressurized with hydraulic fluid, to open to allow the accumulator to provide the pressurized hydraulic fluid to the track motor to drive the track motor.
The control valving may include a directional valve that, when the control valving is in the second position, the directional valve directs hydraulic fluid from the pump to the track motor to assist the accumulator in driving the track motor.
When the accumulator is depleted of pressurized hydraulic fluid the directional valve may continue to direct hydraulic fluid from the pump to the track motor to drive the track motor without the accumulator.
According to another aspect of the invention, a hydraulic system includes a first actuator system comprising a first actuator, a first plurality of hydraulic logic elements, and a first proportional valve; a second actuator system comprising a second actuator, a second plurality of hydraulic logic elements, and a second proportional valve; a pump selectively fluidly connectable to the first actuator system through the first proportional valve and selectively fluidly connectable to the second actuator system through the second proportional valve; wherein the first plurality of logic elements control the directionality of a hydraulic fluid between the pump and the first actuator; and wherein the second plurality of logic elements control the directionality of the hydraulic fluid between the pump and the second actuator.
Embodiments of this invention will now be described in further detail with reference to the accompanying drawings, in which:
While the present invention can take many different forms, for the purpose of promoting an understanding of the principles of the invention, reference will now be made to the embodiments illustrated in the drawings and specific language will be used to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended. Any alterations and further modifications of the described embodiments, and any further applications of the principles of the invention as described herein, are contemplated as would normally occur to one skilled in the art to which the invention relates.
This invention relates generally to a hydraulic system that provides energy recovery for a machine such as shown in
The basic control strategy for recovering energy and generating the required back pressure will differ between the accumulator 30 and the pump 32. When using the accumulator 30 to control the pressure of the piston side on the boom cylinder 20, a proportional valve may be used to generate a pressure drop between the pressure in the accumulator and pressure desired in the piston chamber of the boom cylinder 20. The metering orifice size may be based on the desired or actual speed of descent of the cylinder as well as for example the current pressure in the accumulator and the desired pressure in the piston chamber of the cylinder which is a function of the mass of the cylinder as well as the pressure on the rod side. When using the pump 32 for energy recovery the speed may be controlled by the amount of fluid consumed by the pump. The amount of fluid consumed by the pump can be altered by either changing the speed of the pump (the engine in this configuration) or adjusting the displacement of the pump. Adjusting the displacement of the pump can be accomplished via a variable displacement pump and adjusting the speed of the pump could be accomplished via some system that decouples the speed of the pump from the prime mover such as an EHA (Electro-Hydrostatic Actuator) system.
The system developed in
The proportional valves 40a, 40b illustrated in
The typical speed for the swing function is less than half of the maximum speed which means that the typical flow is less than half of possible maximum flow. The speed of the swing drive 25 may be directly coupled with the amount of high pressure flow when powering the function as well as the amount of high pressure flow exiting the swing drive 25 when braking. Therefore, if a pump is sized to be able to provide the maximum amount of flow required it will be typically oversized to provide the average amount of flow required, which may potentially lead to inefficient operation due to the properties of variable displacement pumps (which is a typical method for providing flow to the swing motor). However, utilizing more than one pump such as illustrated in
To improve fuel efficiency and reduce cost, the engine size may be reduced by load leveling or peak shaving. This in turn means that an engine can be downsized as less peak power is required; an energy storage device can provide bursts of power when required to meet the power demand and performance requirements. The techniques discussed so far and that will be de discussed hereafter load level and shave the peaks from the boom, arm, bucket, and swing functions on the excavator.
On a baseline excavator the track function is controlled by variable displacement motors and the fluid is supplied from the variable displacement pumps. On a typical excavator the track motors are capable of varying their displacements but only to a limited number of discrete positions; typically two positions. The track function is connected to supply flows at higher pressures so combinations of speeds and torques can be obtained for moving at the required speeds or climbing slopes. However, newer solutions are moving to an individualized approach for each function and therefore there may be a dedicated pump for the track function; and often these pumps 54, 56 are directly connected to the engine M and may be constantly spinning. The track function on an excavator is typically used sparingly and therefore pumps installed just for the track function may be churning constantly and wasting energy. There are a number of ways to minimize this churning loss such as clutching the pumps out when not required or combining the track pumps with other functions.
The valves 58a, 58b of the system illustrated in
Referring to
In the
In another embodiment, the hydraulic system does not necessarily have to be tied to a pump controlled actuation architecture, and instead a conventional prime mover system can be used, for example, where two prime mover pumps power all of the functions. In such a system, the pumps could provide hydraulic fluid through the track spool of conventional excavator control valves (instead of diverting valves) that, in turn, route the hydraulic fluid to the variable displacement track motors 60a, 60b to drive the tracks. The variable displacement motors 60a, 60b would allow more efficient use of the hydraulic flow from the pumps even in such a conventional prime mover system.
The
Referring to the circuit of
As will be appreciated, the track accumulators 30a, 30b can be charged any time the tracks are not being used. When the tracks are used, i.e. powered by the track pumps 54, 56, and with the proportional valves between the track motors 60a, 60b and track accumulators 30a, 30b open, the charged accumulators 30a, 30b can serve as a boost system to provide additional power to the pumps 54, 56 to drive the track motors 60a, 60b, for an amount of time time until the accumulators 30a, 30b are depleted. The accumulators 30a, 30b can thus aid the pumps 54, 56 in driving the track function, thus reducing the power demand on the engine and, accordingly, enabling the size of the engine to be reduced if desired. As noted above, with a proper duty cycle the engine size can be downsized with little or no compromise to performance or functionality. A proper duty cycle can consider for example passively charging the accumulators 30a, 30b at any period of time where there is available engine power. Of course, in instances where the amount of time to deplete the accumulators 30a, 30b is exceeded, the reduced size engine would provide a decreased amount of movement power to the pumps 54, 56 until the accumulators 30a, 30b are recharged sufficiently to power-assist the track motors 60a, 60b, although due to the variable displacement nature of the track motors 60a, 60b the performance decrease will be less significant than a stock system which utilizes motors that can only be in two different displacement modes.
In the illustrated embodiment, the track motors 60a, 60b are overcenter motors and, as such, the motors can travel in both directions; that is, the track motors 60a, 60b enable the vehicle to move forward or backwards. The
The several embodiments herein enable energy recovery and pressure leveling. As discussed before, the braking pressure of the swing and the boom down pressure may be very different. For example, the braking pressure of the swing drive may be approximately 240 bar, while the boom down piston side pressure may vary between 30 bar and 60 bar. However, as will be appreciated the boom down pressure can vary well outside this range. On the acceleration side the swing drive 25 can accelerate around for example 240 bar, in line with the brake pressure, but the pressure required to raise the boom may be related to the load and vary dramatically; and in some cases can be quite high. In terms of flow, the swing drive 25 may exhibit a flow rate of for example approximately 80-100 liters per minute, while the boom function may exhibit flow rates of for example 300 liters per minute. As will be appreciated, in terms of efficiency for hydraulic machines, high flows and low pressures are typically less efficient than low flows and high pressures. The method described herein efficiently increases the pressure of the boom flow and decreases the flow rate to bring it more in line with that of the swing drive 25, as well as works in the “sweet-spot” of hydraulic equipment.
The system in
Of course, there may be cases where it is desirable that the pump 62 provide input energy or a purely gravity driven drop of the boom is not desired, such that it is not possible to recover all of the boom potential energy. Still referring to the right box flow patterns of the control valve 65, if an operator command is to drop the boom faster than what can be provided by gravity then the pump 62 can be used to add flow to aid in the dropping rate. With the proportional valve 64 fully open, the pump 62 provides pump flow through the proportional valve 64 to the rod sides of the cylinders 21, 23 and to the piston side of the left side cylinder 21 to thereby urge the boom to drop faster. This can also facilitate smoother transition for powering into the ground. If the operator command is to power into the ground upon the boom hitting ground, the pump 62 can provide pump flow to the rod sides of the cylinders 21, 23 prior to hitting the ground, so that the boom will have standby power to power into the ground. If the operator command is to lower the dropping rate of the boom, the proportional valve 64 can be choked as desired to effectively create more resistance to the rod side areas, thereby slowing down the rate of fall of the pistons and thus the rate of drop of the boom. With the standby pressure on the pump 62, once the boom hits the ground the proportional valve 64 can be fully opened and digging can be started immediately. Of course, if the operator command is to slow the boom drop rate even further, the pump flow can be reduced accordingly, or to zero, and the proportional valve further choked.
Referring now to the left box flow patterns of the control valve 65, to raise the boom, the pump 62 as well as the stored energy in the accumulator 30 pressure both of the piston sides of the actuators 21, 23. The accumulator 30 adds flow to the flow of the pump 62 at the same pressure. The proportional valve 66 at the accumulator 30 can equalize the pressure between the accumulator 30 and the pump 62. As the accumulator 30 starts to deplete, the pump 62 can provide greater flow. The accumulator 30 can provide flow as it depletes until it meets a certain pressure for example the pressure required to actuate the boom. Once the accumulator 30 reaches such pressure, power can no longer be drawn from the accumulator 30. As such, the proportional valve 66 can be choked off and drive can be provided from the pump 62.
The hydraulic systems of
Similar to
In the hydraulic systems of
In the hydraulic systems of
There may be instances where one cylinder may not be capable of supporting the boom down load without flowing over the relief valves or potentially damaging the cylinder. Shown in
The system includes an accumulator 30 on the common line of the low pressure ports of the selector valves. This can be used to minimize the changes in pressure in the exhaust flow from the piston side of the cylinder; without this feature, and depending on the application, the behavior of the cylinder may seem either erratic or uncontrollable.
Referring to the left box flow patterns of the control valve, with the metering valve to the left of the accumulator 30 closed and the metering valve to the right of the accumulator 30 open, as the boom is lowered, hydraulic fluid from the piston sides of the actuators 21, 23 is routed through the lower check valve 102, through the selector valve 100, and to one of the larger area chambers 92, 98 of the reciprocating linear actuator 80. The reciprocating linear actuator 80, in turn, exhausts hydraulic fluid at a relatively higher pressure from the corresponding smaller area chamber 94, 96 through the open right side metering valve and to the accumulator 30. The right side metering valve can be used to meter some of the accumulator pressure to get the desired pressure out of the reciprocating linear actuator 80. Pump flow is routed to the rod sides of the cylinders 21, 23 as back fill. As will be appreciated, the potential energy stored in the accumulator 30 comes from the piston sides of the cylinders 21, 23 via the reciprocating linear actuator 80, and the pressure in the accumulator 30 may be relatively higher or relatively lower than the piston side pressure. If the accumulator 30 is insufficiently charged to raise or assist in raising the boom, then an additional reciprocating linear actuator 80 cycle (or cycles) can be used to recover additional potential energy from another lowering of the boom until the accumulator 30 is sufficiently charged for use. Of course, if an operator command is to drop the boom faster than the pump 62 can be used to add additional flow to aid in the dropping rate. The pump 62 can provide pump flow to the rod sides of the cylinders 21, 23 to thereby urge the boom to drop faster. This can also facilitate smoother transition for powering into the ground. If the operator command is to power into the ground upon the boom hitting ground, the pump 62 can provide additional pump flow to the rod sides of the cylinders 21, 23 prior to hitting the ground, so that the boom will have standby power to power into the ground. With the standby pressure on the pump 62, once the boom hits the ground digging can be started immediately. Of course, if the operator command is to slow the boom drop rate, the pump flow can be reduced accordingly.
Referring now to the right box flow patterns of the control valve, with the metering valve to the left of the accumulator 30 open and the metering valve to the right of the accumulator 30 closed, to raise the boom, the pump 62 as well as the stored energy in the accumulator 30 pressure both of the piston sides of the actuators 21, 23. The accumulator 30, through the open left side metering valve, adds flow to the flow of the pump 62 at the same pressure. The left side metering valve can be used to meter some of the pump pressure to get the desired pressure out of the accumulator 30. As the accumulator 30 starts to deplete, the pump 62 can provide greater flow. The accumulator 30 can provide flow as it depletes until it meets a certain pressure for example the pressure required to actuate the boom. Once the accumulator 30 reaches such pressure, power can no longer be drawn from the accumulator 30. As such, the left side metering valve is closed and drive can be provided from the pump 62.
Referring to the right box flow patterns of the control valve shown in
Of course, if an operator command is to drop the boom faster then the pump 62 can be used to add additional flow to aid in the dropping rate. The pump 62 can provide pump flow to the rod sides of the cylinders 21, 23 to thereby urge the boom to drop faster. This can also facilitate smoother transition for powering into the ground. If the operator command is to power into the ground upon the boom hitting ground, the pump 62 can provide additional pump flow to the rod sides of the cylinders 21, 23 prior to hitting the ground, so that the boom will have standby power to power into the ground. With the standby pressure on the pump 62, once the boom hits the ground digging can be started immediately. Of course, if the operator command is to slow the boom drop rate, the pump flow can be reduced accordingly.
Referring now to the left box flow patterns of the control valve, with the proportional valve connected to the accumulator 30 open, to raise the boom, the accumulator 30 provides pressurized hydraulic fluid to the pump motor 101. The pump motor 101 uses the pressurized fluid to power the motor shaft 105 and then expels the hydraulic fluid through the outlet of the pump motor 101 to the tank. The motor shaft 105 drives the motor pump 103. The motor pump 103, in turn, draws hydraulic fluid from the tank via the pump 62 and control valve, pressurizes the flow, and provides the pressurized flow to the piston sides of the actuators 21, 23 thereby raising the boom. The pump 62 can also provide pressurized flow to the piston sides of the cylinders 21, 23 via the control valve and pump motor 103, to raise or assist in raising the boom. In other words, both the pump 62 and the pump motor 103 can be used to lift the boom, in a manner similar to a two stage pump for example. The accumulator 30 can provide flow as it depletes until it meets a certain pressure for example the pressure required to actuate the boom. Once the accumulator 30 reaches such pressure, power can no longer be drawn from the accumulator 30. As such, the accumulator proportional valve can be choked off and drive can be provided from the pump 62.
The illustrated hydraulic systems of
The several embodiments herein enable utilizing recovered energy. The energy from the boom or swing can be reused in a number of different ways. If used immediately it can be directed towards a pump or if it is captured to an accumulator it can be directed to either the boom or the swing drive. It is also possible to combine one or more of the methods described herein to efficiently use the energy. In some cases, sacrifices to efficiency gains can be made to create smooth operation. Metering valves for example can be wasteful but very smooth in their operation and thus can facilitate this. A variable displacement pump/motor can also be used, but in certain displacement ranges, the volumetric efficiency of the motor for a means of energy transfer may be lower than a route using metering valves and an accumulator. Because of this, it will be appreciated that sizing of components can be done based on the most common operating modes for higher efficiencies, allowing for lower efficiencies at deviations from those averages.
If the flow energy is to be used immediately the flow can be diverted back to the pump/motor or to a separate motor. If an over-center pump is used in the system, the power can be added back to the engine shaft to assist other functions. Alternatively, if the pumps are configured to handle it, the flow can be directed back to the inlet of the pump. This can reduce the increase in pressure required to obtain the working pressure at the outlet which will reduce the amount of torque required to spin the pump. The torque required for a pump may be proportional to the delta in pressures across the pump trying to be generated. Another option is to distribute the hydraulic energy immediately to another function that is demanding flow by incorporating suitable valving. As will be appreciated, such valving may be more significant than the afore described configurations, but the efficiency in general should be higher as there are less energy conversions required to get it to work. Efficiency losses from metering may not play a large role if the pressures are close together. However, if the energy from the boom and swing motor are stored to an accumulator the energy may be used in a different manner than described above.
If the energy stored in the accumulator 30 is used to power the swing drive 25 a system similar to that described in co-owned international published patent application WO 2014120930 A1, entitled “Hydraulic hybrid swing drive system for excavators” filed Jan. 30, 2014—incorporated herein by reference, can be used. In this system the accumulator is connected in series with a proportional metering valve to the swing drive. The proportional metering valve can be used to generate the required pressure drop from the accumulator to the desired working pressure of the swing motor; from a basic perspective the opening of the proportional metering valve can be based upon the required pressured drop and the flow to the swing motor. In the referenced international patent application there is an additional dedicated swing pump added to the system to decouple the swing function from the stock system. However, it is also possible to power the swing drive from the accumulator and the stock pump on the excavator; if the boom and swing energies are recovered back to the accumulator then the efficiency of this system can be expected to not be much worse, if not better, than the system described in the referenced international patent application. If a dedicated swing pump is not included the accumulator can power the swing drive until the pressure in the accumulator is not sufficient to meet the performance requirements or the swing drive is operating at a lower pressure where it is inefficient to use the accumulator. When the accumulator is deemed to be unusable either for performance, efficiency, or other reasons the stock pump can operate as normal and provide flow to the swing drive. With a properly sized accumulator, the swing function can behave nearly as if it is decoupled from the other functions. An example of this configuration is shown in
The swing and boom recovery systems on the same vehicle can be combined. The two systems can have different actuation pressures, as well as pressure applied at different times. Recovery from the boom can be via use of an accumulator, where the pressure in lowering and the pressure to raise is usually the same. Accumulators can be charged to a higher pressure; to create a constant braking pressure, a metering orifice can be used to make the difference between the cylinder pressure and the accumulator pressure. The accumulator can be sized to make the end of recoverable energy be at a pressure equal to the braking pressure, decreasing the amount of metering required. Then to use the energy stored in the accumulator, it can be at a lower pressure with a metering orifice to create a constant pressure for accelerating and the accumulator can be considered near empty close to this acceleration pressure. Since boom recovery relies on gravity to push the boom down to create pressure which can be stored as potential energy, generally the rod side of the boom cylinders can be kept at low pressure and allow the gravity to directly create that without adding energy to the system. Because of this, when the bucket makes contact with the ground, a low pressure is seen there, so it will stop recovering, but it may not be able to dig until it is realized that pressure from the pumps needs to be supplied and then reaction time from valves and pumps also delays this an unsatisfactory amount. Two different methods can be used to alleviate this problem, one of which is to sense an oncoming ground reaction through optical or auditory sensors showing distance to the ground. Cylinder position sensors could potentially also be used, but this is less reliable and may have false negatives unnecessarily. Another way, which mimics what the stock vehicle does, is to provide standby fluid energy which can power the cylinders down once it makes contact. In the stock machine, the boom can be powered down at a low pressure and large flow, which equates to a relatively low pressure, but if another function is being used, then the pump requires a pressure to be generated, which then requires a pressure drop either through a meter out orifice or through a meter in orifice on the boom in order to provide the necessary or desired flow and pressure to the cylinder. This can be wasteful, and thus bypassing this may be desirable. Instead of using a pump, a standby pressure can be used for example from the high pressure accumulator, which is not wasteful. The pressure in the accumulator is static, so having pressure ready to be used when required does not waste energy. Once the accumulator pressure is used, pressure sensors can sense this shift and the pumps and valves can be actuated so that they provide the energy for digging. The accumulator can simply provide a transition high pressure while the pumps and valves get into position before they are able to contribute so that the transition from recovery lowering and powered digging is transparent to the user. This figure shows one such configuration using a shuttle valve and a priority valve to provide the passive circuit which will allow for this pressure transition to occur.
As will be appreciated, flow demand for the swing drive and energy loss due to metering or inefficient operating points may affect the suitability of a motor and/or cylinder. The swing drive is operated by a motor which can rotate an infinite number of rotations and therefore is unlimited in the amount of flow it can demand. This is dissimilar to a cylinder, which powers the boom, arm, and bucket functions, where the volume of flow is limited based on the working area of the cylinder and the length of stroke. Sizing an accumulator for the movement of a cylinder is in some respects less difficult than sizing it for a motor due to the bounding of the volume of flow. General operation of a swing drive usually does not exceed 180 degrees of rotation because the swing drive can rotate in the opposite direction over a shorter rotation to reach the same desired position. Most operations for an excavator are either a 90 degree operation or a 60 degree operation. Additionally, the average operating efficiency of a motor is in the range of 82% (or even lower at some undesirable operating points) whereas the efficiency of a cylinder is >95% as there is virtually no volumetric loss and small amount of mechanical inefficiency due to friction. This difference in efficiency suggests a cylinder solution may be desirable.
One embodiment to reuse the stored energy in the accumulator with the boom system is to direct the stored accumulator energy towards both boom cylinders. The force in the vertical direction can be controlled by a suitable technique for example by metering the energy. Additionally, for such a system, if the motion stops the pressure in both cylinders may equal the accumulator pressure. When the pressure in the accumulator is depleted to such a level where the boom can no longer be lifted the stock pumps can be used to provide the required flow and pressure.
Although the invention has been shown and described with respect to a certain embodiment or embodiments, it is obvious that equivalent alterations and modifications will occur to others skilled in the art upon the reading and understanding of this specification and the annexed drawings. In particular regard to the various functions performed by the above described elements (components, assemblies, devices, compositions, etc.), the terms (including a reference to a “means”) used to describe such elements are intended to correspond, unless otherwise indicated, to any element which performs the specified function of the described element (i.e., that is functionally equivalent), even though not structurally equivalent to the disclosed structure which performs the function in the herein illustrated exemplary embodiment or embodiments of the invention. In addition, while a particular feature of the invention may have been described above with respect to only one or more of several illustrated embodiments, such feature may be combined with one or more other features of the other embodiments, as may be desired and advantageous for any given or particular application.
This application is a divisional of U.S. patent application Ser. No. 17/027,834, filed on Sep. 22, 2020, which is a divisional of U.S. patent application Ser. No. 16/436,954, filed on Jun. 11, 2019, which is a divisional of U.S. patent application Ser. No. 15/747,266, filed on Jan. 24, 2018, which is a national phase of International Patent Application Serial No. PCT/US2016/047052, filed on Aug. 15, 2016, which claims the benefit of U.S. Provisional Patent Application No. 62/205,307, filed Aug. 14, 2015, which are hereby incorporated herein by reference.
Number | Name | Date | Kind |
---|---|---|---|
7434391 | Asam | Oct 2008 | B2 |
8186154 | Nelson et al. | May 2012 | B2 |
8943819 | Knussman | Feb 2015 | B2 |
9194107 | Andruch, III | Nov 2015 | B2 |
9290912 | Wen et al. | Mar 2016 | B2 |
9593467 | Kajita | Mar 2017 | B2 |
20050229594 | Nanjo | Oct 2005 | A1 |
20090025379 | White | Jan 2009 | A1 |
20090036248 | Mueller et al. | Feb 2009 | A1 |
20100236232 | Boehm et al. | Sep 2010 | A1 |
20130133966 | Jiang et al. | May 2013 | A1 |
20130333378 | Wen | Dec 2013 | A1 |
20130340418 | Wen | Dec 2013 | A1 |
20140119867 | Wen | May 2014 | A1 |
20140166114 | Wang et al. | Jun 2014 | A1 |
20140230420 | Ma | Aug 2014 | A1 |
20140260232 | Danzl | Sep 2014 | A1 |
20140325972 | Ma et al. | Nov 2014 | A1 |
20150040553 | Takahashi | Feb 2015 | A1 |
20160273192 | Kajita | Sep 2016 | A1 |
Number | Date | Country |
---|---|---|
101321642 | Dec 2008 | CN |
101845837 | Sep 2010 | CN |
202926765 | May 2013 | CN |
103148031 | Jun 2013 | CN |
102007012116 | Sep 2010 | DE |
2570381 | Mar 2013 | EP |
2589823 | May 2013 | EP |
2853755 | Mar 2017 | EP |
Entry |
---|
Fan Ji et al., “Energierueckgewinnung am drehwerksantrieb eines hydrobaggers, 0 + P olhydraulik und pneumatik”, Vereinigte fachverlage, Mainz, DE, vol. 37, No. 3, Mar. 1, 1993, pp. 190-192 and 194. |
U.S. Appl. No. 14/370,795. |
International Search Report and Written Opinion for corresponding International Application No. PCT/US2016/047052 dated Nov. 7, 2016. |
Written Opinion of the International Preliminary Examining Authority for corresponding International Application No. PCT/US2016/04/052 dated Jun. 29, 2017. |
International Preliminary Report on Patentability for corresponding International Application No. PCT/US2016/04/052 dated Nov. 20, 2017. |
Fluid Power Transmission and Control, No. 2 (Serial No. 63), Mar. 2014, English abstract and pp. 6-7. |
First Office Action in corresponding Chinese Patent Application No. 2016800484736, dated Nov. 5, 2019. |
Number | Date | Country | |
---|---|---|---|
20210148087 A1 | May 2021 | US |
Number | Date | Country | |
---|---|---|---|
62205307 | Aug 2015 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 17027834 | Sep 2020 | US |
Child | 17160940 | US | |
Parent | 16436954 | Jun 2019 | US |
Child | 17027834 | US | |
Parent | 15747266 | US | |
Child | 16436954 | US |