This invention relates to apparatus and techniques for obtaining high-resolution images of underground formations through which a borehole is drilled.
A number of techniques have been previously proposed for obtaining images of a formation at the wall of a borehole. Such images are useful in understanding the geology and lithology of the formation. Such information can be particularly useful when drilling boreholes such as oil and gas wells since it can help to identify the presence of desirable fluids and provide information allowing effective completion of the well.
The use of video technology for inspecting the inside of boreholes is known. An example can be found in U.S. Pat. No. 5,790,185. This technique is typically used to obtain images of large scale structure in the borehole, for example the state of casing or perforations. Such an approach requires the presence of a transparent fluid in the well and so cannot be used in the drilling or production phase of a well in which opaque fluids are present.
Certain high-resolution imaging techniques have been proposed for use in the drilling and production phase of the well. Such techniques include measuring properties of the formation such as electrical properties (local conductivity or permittivity), acoustic properties (acoustic impedance or formation slowness) or nuclear properties (density, photoelectric effect). These high resolution measurements made at the borehole wall can be displayed as a two-dimensional image. U.S. Pat. No. 4,567,759 discloses one such example of this approach.
U.S. Pat. No. 6,140,637 describes a technique for detecting the presence of hydrocarbon by fluorescence measurements. The tool described comprises a light source and a sensor in a tool body connected to a sensing head by means of an optical fibre bundle. The sensor head includes a window that is pressed up against the borehole wall so that light illuminating the borehole wall can cause hydrocarbons to fluoresce and the resulting light passed back to the sensor for detection. The purpose of this measurement is to detect the presence of hydrocarbon. The nature of the measurement does not allow an image to be obtained.
U.S. Pat. No. 3,091,235 describes a form of diagnostic instrument that has become known as a fibrescope or endoscope. A optical fibre bundles are used to illuminate a remote site and transfer an image back for analysis. A coherent fibre bundle is used to ensure that the image is properly transferred.
This invention aims to provide techniques that allow high-resolution optical images to be obtained of the borehole wall that can allow features of the formation the be viewed that are otherwise unavailable with other imaging techniques.
One aspect of the invention comprises apparatus for imaging the wall of a borehole drilled through an underground formation, comprising:
The optical detector device is preferably an imaging device such as a CCD or CMOS camera.
The optical fibre bundle is preferably coherent at the window and at the optical detector device. It is not essential that it be coherent between these points. Coherency can be provided by the geometrical arrangement of the fibres in the bundle, electronically, or a combination of both.
It is preferred that the optical fibre bundle is also used to connect the light source to the window, one or more light source fibres being provided adjacent the coherent bundle at least at the window.
The apparatus can also comprise means for cleaning the region of the borehole wall to which the sensor is applied so as to remove any material deposited on the borehole wall. Preferred embodiments include a supply of pressurised fluid that can be directed against the region of the borehole wall to which the sensor head is applied, an actuator for forcing the sensing head against the borehole wall, and/or a mechanical cutter operable to remove material from the borehole wall.
The sensing head being carried on an arm moveably mounted on a tool body. The optical detector device can be mounted in the tool body, as can the light source.
A particularly preferred embodiment of the invention includes two or more sensor heads mounted on a pad that optionally also includes other forms of imaging device. In such a case, the two or more sensor heads can be configured to make measurements at different resolutions.
A conveyance system for moving the apparatus along the borehole while the sensor head is applied to the borehole wall can comprise a wireline cable, coiled tubing or a logging while drilling system.
The use of a coherent fibre bundle to obtain the image of the borehole wall allows detailed images of the formation to be obtained, the large number of small fibres at the window providing the necessary resolution to obtain images of grain structure and the like.
The invention will now be described with reference to the accompanying drawings, in which:
A first embodiment of the invention is shown in
The tool body 10 carries a light source 16 (such as a red LED, UV or IR lamp, white light lamp, laser or other such device) and an imaging device in the form of a CCD (or CMOS) camera 18.
A sensor arm 20 is pivotally connected to the tool body 10 at one end 22 and carries a sensor head 24 in the form of a pad at its other end. The sensor head 24 has an optical window 26 with a focusing lens mounted at the end of a sleeve 28. The sleeve 28 sits inside a rubber tube 30 which defines a flow passage around the sleeve 28. A fibre optic bundle extends between the window 26 and the light source 16 and CCD camera 18, through the sleeve 28 and along the sensor arm 20. The fibre optic bundle comprises two main elements: a light source bundle 32 (shown here as two fibres but potentially in any form), and a coherent image bundle 34. The lens in the window 26 is arranged to focus an image on the end 36 of the coherent bundle 34.
The coherent bundle 34 typically comprises a bundle of 1000 or more individual fibres forming a bundle about 1-2 mm across at its end 36 (e.g. 30,000 fibres forming a bundle with 1.5 mm OD). The coherent bundle 34 is used as a means of transferring a two-dimensional image. Therefore the geometrical arrangement of the fibres at the end 36 must be the same as that where the bundle 34 meets the camera 18. The term ‘coherent’ is used here to indicate a fibre bundle with the same geometric arrangement at both ends of the bundle. Each fibre in the coherent bundle effectively defines a pixel in a two-dimensional image, the size of the individual fibres and the focusing effect of the lens defining the resolution of that image.
The sleeve 28 protects the optical fibre bundle from the effects of the borehole environment.
A backup arm 40 also connects the sensor head 24 to the tool body 10 below the connection point of the sensor arm 20. The rubber tube 30 extends through the backup arm 40 into the tool body 10 to connect to a pump unit 42 which draws fluid 43 from a reservoir 44 and pumps it at high pressure through the tube 30 onto the wall 46 of the borehole 12 adjacent the sensor head 24. In this way, any material that has built up on the wall 46, such as mud cake, can be removed to leave the formation clean and visible to the sensor head.
Once the head 24 is in place against the wall 46, the tool is logged up the well in the conventional manner, the camera 18 recording a continuous image of the wall 46, the flow of fluid 43 continuously cleaning the wall 46 in order to obtain a good image.
The output from the camera 18 is sent to the surface for analysis and visualisation in printed and/or on-screen form, for example. The output data can be pre-processed downhole (e.g. compressed or filtered) prior to being sent to the surface, typically via wireline telemetry.
In the embodiment of
In the embodiment of
The output of each camera 118, 119 is provided to the electronics cartridge where it is transmitted to the surface in the usual manner.
The pad can also carry an imaging system such as micro-resistivity, to provide a further level of resolution and allow the optical measurements to be correlated with structures visible in conventional imaging techniques. Corresponding sensors on the pad and electronics in the tool body are provided.
Fine resolution can show details of microporosity and be useful for cementation analysis, medium resolution allows fractal dimensions to be seen, and these can both be placed in context of the existing imaging resolution techniques at a third resolution.
It will be appreciated that a number of changes can be made to the described embodiments while still remaining within the scope of the invention. For example, the sensor head could be mounted in the tool body which can be pressed against the formation. This approach may be particularly suitable for logging while drilling applications. Alternatively, the sensor head could be mounted in a drilling stabiliser.
Because the image is a proper optical image, relatively little processing may be required other than compression for transmission. The image can be stored as a video file rather than in the traditional log format or log image format.
The resolution of the optical system can be selected according to the desired features to be seen. Such features include micro- meso- and macro-porosity, grain shape, connectivity, mineralogy, environmental deposition and clay volume, amongst others.
Number | Date | Country | Kind |
---|---|---|---|
05291884 | Sep 2005 | EP | regional |
Number | Name | Date | Kind |
---|---|---|---|
3091235 | Richards | May 1963 | A |
4567759 | Ekstrom et al. | Feb 1986 | A |
4672437 | Casper | Jun 1987 | A |
4752127 | Zafred | Jun 1988 | A |
4822154 | Oxford et al. | Apr 1989 | A |
4919533 | Bowley et al. | Apr 1990 | A |
4921326 | Wild et al. | May 1990 | A |
4941457 | Hasegawa | Jul 1990 | A |
5644394 | Owens | Jul 1997 | A |
5663559 | Auzerais et al. | Sep 1997 | A |
5790185 | Auzerais et al. | Aug 1998 | A |
6140637 | Mullins et al. | Oct 2000 | A |
6355928 | Skinner et al. | Mar 2002 | B1 |
6580449 | Meltzer | Jun 2003 | B1 |
7206067 | Jensen et al. | Apr 2007 | B2 |
7369225 | Messerschmidt et al. | May 2008 | B2 |
20010015804 | Doyle, Jr. | Aug 2001 | A1 |
20020168158 | Furusawa et al. | Nov 2002 | A1 |
20040032583 | Huston et al. | Feb 2004 | A1 |
20040061858 | Pope et al. | Apr 2004 | A1 |
20070296810 | Vessereau et al. | Dec 2007 | A1 |
Number | Date | Country |
---|---|---|
0279576 | Aug 1988 | EP |
0533771 | Mar 1996 | EP |
Number | Date | Country | |
---|---|---|---|
20070242265 A1 | Oct 2007 | US |