In the shipment of glass bottles, such as wine bottles, by common carrier or courier, it has been a persistent issue that bottles will typically become damaged or break. Breakage of the bottles may occur when the carton within which the bottles are shipped is dropped or crushed during shipment. Damage to the bottles may be aesthetic, such as abrasion, rubbing, fading, or tearing of labels on the bottles, which is undesirable to the consumer receiving the shipments.
Importantly, shipping cartons and packaging must pass arduous tests before their design is accepted for transit by the carriers. One common test is administered by the International Safe Transportation Association (ISTA) and is designated as “ISTA Test Procedure 3A—Standard.” A copy of the test parameters for this test is provided at the end of this document.
Various solutions have been proposed in the past that have been partially successful in alleviating some of these issues. For example, U.S. Pat. No. 6,290,057, which is entitled “Bottle Shipper,” proposes use of four layers of molded pulp fiber used to ship bottles upright. The four layers of trays, which include two sets of two trays each connected at hinges, include generally cylindrical cavities when stacked onto one another such that the bottles placed in the cavities are entirely encased laterally along their lengths by the molded fiber material. Although this solution is at least partially effective in preventing breakage of the bottle, repeated shaking and crushing forces applied to the molded pulp fiber structures during shipment tend to soften and disintegrate the molded pulp fiber tray structures, especially in the area around the midsection of the outer bottles.
An additional example of a previously proposed bottle shipment packaging can be found in U.S. Pat. No. 5,816,406, which is entitled “Molded Pulp Fiber Interior Package Cushioning Structures.” This solution proposes a bottle cushioning structure that cushions bottles shipped laying horizontally in the shipping carton. In one disclosed embodiment, the cushioning of the bottles is accomplished in part by providing molded shells that surround each bottle. The molded shells include internally protruding crushable projections that although are effective in substantially limiting shaking of the bottles relative to the cushioning structure during shipment, they typically also contact the bottle along its midsection thus damaging or tearing the bottle's label.
Yet another example of a previously proposed packaging for shipment of bottles is described in U.S. Pat. No. 6,910,582, which is entitled “Shock Absorbing Insulated Shipping Container Especially for Breakable Glass Bottles.” This solution proposes an insulated and shock absorbing insert for a cardboard box. The insert includes a cavity in which bottles are arranged and separated by a filling structure or partition system for separating the glass bottles from one another. An additional insulated body engages and covers a top opening of the insert. As disclosed, the insulated body is formed from injection molded polyurethane. In this arrangement, a conformable material used for the top of the insert surrounds the tops of the bottles placed in the cavity of the insert. A filler structure which forms receptacles accepts the bottles and surrounds them to provide shock absorption in cooperation with the top of the insert. Although this device is effective in avoiding the breakage of bottles carried therein, it accomplishes its function by engaging the lateral surfaces of the bottles, which as described above is generally undesirable insofar as it may cause abrasion, fading or tearing of labels on the bottles.
These and other shortcomings of the prior art can be overcome as provided herein.
The invention provides a bottle packaging for shipment that is effective in maintaining the integrity of the bottle as well as preserving the aesthetic labeling of the bottle intact during shipping. In a disclosed embodiment, twelve bottles are shipped upright in a protective packaging arrangement of components that are disposed within a shipping carton. The component arrangement includes a bottom tray, and a top tray made of molded pulp fiber, such as newspaper pulp, and a corrugated cardboard partitioned support structure disposed therebetween. The support partition may be made of corrugated cardboard material and be arranged such that the flutes extend generally horizontally when the bottles are upright.
In one aspect, the orientation of the flutes in the partition is perpendicular relative to support flutes of the shipping carton. This flute orientation in the partition provides top loading compression strength to the packaging when the packaging is lying on any one of its sides under a load applied from the top such as when other items are disposed on the packaging during a parcel delivery service transport. Cavities formed by the bottom and top trays that are arranged to engage both ends of a bottle include crushable elements that axially engage each bottle. In these ways, structural support can be provided by the carton and the packaging to the bottles from all directions.
In another aspect, the disclosure describes a method of packaging bottles for shipment over common carrier. In the disclosed method, twelve bottles may be packaged upright in a shipping carton such that engagement with the bottle by the packaging is limited to the top and bottom portions of the bottle. The packaging also enables the easy inspection of bottles prior to sealing of the packaging carton in that a bottom tray and a partition support structure enable the visual inspection of the bottles before a top tray is provided and the carton is sealed.
An outline view of a bottle shipment packaging 100 is shown removed from its shipping carton in
As shown, a bottle 108 is packaged between the bottom and top trays 102 and 104 for illustration, while other bottles are not shown for clarity. During packaging, one of the top or bottom trays 104 or 102 may be placed at the bottom of a cavity 112 of the carton 110, which is arranged to be properly dimensioned to provide a slight interference fit with the tray 102 such that the tray 102 is positively positioned and frictionally engaged with the side walls of the carton 110 to avoid displacement and rattling during shipment. As in the bottom tray 102, the edges of the top tray 104 have a slight interference fit with the side walls of the carton 110 such that the edges of the tray 104 contact the sidewalls to provide a positive positioning of the tray within the carton 110. The partition 106 is then inserted in engaging relationship to the inserted tray 102 or 104 thus creating twelve bays 114 between the members of the partition 106, each of which is configured to accept a bottle 108 as is best shown in the partially assembled view of
Thereafter, flaps 116 of the carton 110 can be closed, secured and otherwise prepared for shipment. Unlike previously proposed packaging arrangements, the packaging 100 is advantageously configured to securely engage the bottles 108 in a fashion that resists degradation of the packaging material during transit, such as disintegration of the molded pulp fiber material of the trays that hold the bottles, while also avoiding contact with the labels that can degrade the bottles' aesthetic appearance. These attributes can be accomplished, in part, by use of securement chambers that are formed in the trays 102 and 104, as is described in further detail in the paragraphs that follow. The overall integrity of the filled container is partially accomplished by the structural configuration of the partition 106 as will also be described.
Accordingly, in the illustrated embodiment the bottom tray 102 includes twelve lower securement chambers 116, which are arranged in three rows of four. Each lower securement chamber 116 has a generally cylindrical shape that forms a cup, which is defined by a hollow cylindrical wall 118 and a bottom 120 that rests upon the bottom wall of an associated carton 110 (See
A plurality of support ribs 122 are disposed, one each, between adjacent chambers 116 to provide structural support to adjacent cylindrical walls 118. The support ribs 122 provide resistance to folding or bending of the bottom tray 102 in addition to maintaining the relative orientation and spacing between adjacent securement chambers 116. Additionally, four outer posts 124 are disposed at the four outer corners of the bottom tray 102. Each post 124 provides vertical support resisting crushing of the tray 102 as well as providing a guide to ensure proper positioning of the bottom tray 102 during and after insertion into the carton 110 (
The bottom tray 102 further includes six posts 128 that provide support to, engage, and appropriately position the support partition 106 relative to the bottom tray 102 (
More specifically, and in reference to FIGS. 3 and 11-14, the support partition 106 is made up of two long structural panels 136 and three shorter structural panels 138 that are configured to interlock with one another to form the partition 106. The interlocking relationship is accomplished by interlocking notches 140 defined in each panel 136 and 138. When assembling the partition 106, edges 142 of each panel defined at the end of each notch 140 are placed in abutting relationship with corresponding edges 142 in the mating panel while the panels 136 and 138 are perpendicular to one another and the notches 140 in the two panels are aligned. In this way, the partition 106 is made up panel by panel. When the partition 106 is assembled, the panels 136 and 138 define a top edge configuration 144 (
The panels 136 and 138 in the illustrated embodiment are made of corrugated fiberboard, which is also commonly referred to as corrugated board or corrugated cardboard. Thus, each of the panels 136 and 138 is made of a paper based material that includes a fluted corrugated medium 148 sandwiched between two flat linerboards 150. The direction of the flutes 148 extends horizontally along the length of each panel 136 and 138 thus providing the greatest structural support to the partition 106 in these directions, as shown in each of the side views presented in
Referring to
Turning now to
The top tray 104 is configured to engage the upper portions or necks of bottles 108 that are disposed therein (see, for example,
The buttressing wall segments 164 terminate in annular rims 165. A plurality of support ribs 170 extend from annular rims 165, one each, between adjacent wall segments 164 to provide structural support. Planar support surfaces 171 are coplanar with tops 162 of each upper securement chamber 158. Ribs 170 are thus of a length to contact the top wall of the associated carton for transmissions of any load received by annular shoulders 168. The support ribs 170 provide resistance to folding or bending of the top tray 104 in addition to maintaining the relative orientation and spacing between adjacent wall segments 164 thus essentially isolating the cylindrical walls 160 of the upper securement chambers 158 from external stresses applied to the top tray 104 during shipment. Additionally, similar to the bottom tray 102, four outer posts 124 are disposed at the four outer corners of the top tray 104 to provide vertical support resisting crushing of the tray 104 as well as provide a guide to ensure proper positioning of the top tray 104 during and after insertion into the carton 110 (
Similar to the bottom tray 102, the top tray 104 includes six posts 128 that provide support to, engage, and appropriately position the support partition 106 relative to the bottom tray 102 (
Returning now to
In reference now to
The packaging 100 described and shown herein is advantageously capable of passing the ISTA 3A testing procedure. As can be seen from the testing procedure parameters listed at the end of this document, the ISTA 3A test includes various drop, shock and vibration test sequences performed along multiple axes of the carton. It is believed that the cross directionality of the flutes in the walls of the carton and the partition 106 (
All references, including publications, patent applications, and patents, cited herein are hereby incorporated by reference to the same extent as if each reference were individually and specifically indicated to be incorporated by reference and were set forth in its entirety herein.
The use of the terms “a” and “an” and “the” and similar referents in the context of describing the invention (especially in the context of the following claims) are to be construed to cover both the singular and the plural, unless otherwise indicated herein or clearly contradicted by context. The terms “comprising,” “having,” “including,” and “containing” are to be construed as open-ended terms (i.e., meaning “including, but not limited to,”) unless otherwise noted. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., “such as”) provided herein, is intended merely to better illuminate the invention and does not pose a limitation on the scope of the invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential to the practice of the invention.
Preferred embodiments of this invention are described herein, including the best mode known to the inventors for carrying out the invention. Variations of those preferred embodiments may become apparent to those of ordinary skill in the art upon reading the foregoing description. The inventors expect skilled artisans to employ such variations as appropriate, and the inventors intend for the invention to be practiced otherwise than as specifically described herein. Accordingly, this invention includes all modifications and equivalents of the subject matter recited in the claims appended hereto as permitted by applicable law. Moreover, any combination of the above-described elements in all possible variations thereof is encompassed by the invention unless otherwise indicated herein or otherwise clearly contradicted by context.
This patent application is a continuation of co-pending U.S. patent application Ser. No. 13/197,384, filed Aug. 3, 2011, which claims priority pursuant to Title 35 USC § 119(e) to United States Provisional Application Ser. No. 61/372,178 filed Aug. 10, 2010 for “Bottle Shipment Packaging and Method” the entire content of the specification and drawings of which are hereby incorporated by reference herein as if fully set forth.
Number | Date | Country | |
---|---|---|---|
61372178 | Aug 2010 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 13197384 | Aug 2011 | US |
Child | 13875950 | US |