The subject matter described herein relates generally to systems, devices and methods for the delivery of textured (e.g., braided or woven) medical implants.
Mainstream clinical practice in endovascular treatment of intracranial aneurysms has changed little since the 1990's when vaso-oclusive coil use became widespread. Certainly, improved catheters and other auxiliary devices (e.g., stents) have helped make coiling procedures safer and/or more effective. However, the art in achieving adequate and appropriate aneurysm coil packing is best accomplished by the most highly skilled physicians.
Where practicable, aneurysm exclusion by cover-type devices (e.g., as described in U.S. patent application Ser. No. 12/397,123 (US Publication No. 2009/0319023) to the assignee hereof) may be preferred. Certain other groups are attempting to shift the paradigm away from intra-aneurysm coil packing to achieve embolization via deployment of an extra-aneurysm flow disruptor/diverter stent in the parent vessel. These densely braided devices and/or multiple braid devices layered upon one another are placed in the parent vessel across the neck of an aneurysm with the intent to alter hemodynamics so as to effect embolization.
US Patent Publications 2006/0271149 and 2006/0271153, assigned to Chestnut Medical Technologies, Inc., disclose delivery systems such braid-type stents. In one example system, a coil socket holds the distal end of the implant until this end is released during delivery catheter retraction with grippers holding the proximal end of the implant. These grippers are able to maintain contact with the proximal end of the implant through compression by the delivery catheter sleeve surrounding the grippers. Upon sleeve withdrawal, the grippers release the proximal end of the stent.
System miniaturization of the referenced system(s) is limited by the gripper configuration. Also, the lack of an active release mechanism for detachment from the distal socket presents issues of inadvertent deployment and/or non-optimal control.
Accordingly, there remains a need for each of more robust/reliable and/or more compact systems for advanced braid-type implant delivery. The present invention offers such systems with various advantages as presented herein and others as may be apparent to those with skill in the art.
The systems, methods and devices described in this section and elsewhere herein are done so by way of exemplary variations or embodiments. These examples are provided to aid in the description of the inventive subject matter and are in no way intended to limit the inventive subject matter beyond the express language of the claims.
The implant is preferably (i.e., has been selected as but is not necessarily) a stent or stent-like device and is held onto the delivery system by one or more releasable tubular covers. Each such cover is typically limited in length to envelop a relatively short length of the implant. Overlap between the members (i.e., cover and implant) is typically between about 1 mm and about 5 mm. More preferably, the overlap is between about 1.5 mm and about 3 mm. Accordingly, the cover(s) can be characterized as mini-sheath(s).
Implant release from the delivery system is accomplished by rupturing, tearing or otherwise splitting the mini-sheath cover(s). The cover(s) may be perforated or notched to promote breakage/rupture/tearing upon application of an expansive force.
Each mini-sheath is opened by expansive mechanical action generated by retraction of a core member. The core member may be user-actuated from a handle, by shape memory alloy (SMA) action upon heat application, or operate otherwise.
The expansion action is transmitted through the implant to force open the cover. In some examples, a sledge or wedge-type feature is pulled under the implant, thereby expanding it against the cover. In other examples, an expandable body under the implant forces the cover to open. Some examples described herein rely on both types of action.
The expander (e.g., in the form of a wedge or an expandable body) may contact the implant directly. Alternatively, an intermediate layer of material may be provided. Such a layer can be used to avoid implant damage, where the intermediate layer or member takes any abrasion, etc. along its inner surface—in effect shielding the implant matrix—and expands in unison with the implant to open the cover. The intermediate layer may also, or instead, be selected to provide a surface against which the implant is frictionally locked when constrained by the cover.
Such a lock relies on a high degree of surface friction between the implant and an underlying surface to resist longitudinal/axial motion of the implant (in its contracted state) along the longitudinal axis of the delivery device or sleeve. Substantial surface friction between implant and the underlying surface will prevent the implant from sliding relative to the underlying surface, preventing the implant from decreasing in length (i.e., foreshortening) and radially expanding. Although the term “lock” can be used, it should be understood that the implant is not locked from all movement in an absolute sense, as the implant can be forced from the lock should sufficient force be applied to overcome the surface friction. Rather, the implant is preferably locked in place sufficiently to resist the implant's own bias towards expansion (if any), to resist bias applied by a secondary expansion device (if any), to resist forces applied against the implant while maneuvering within the patient's vasculature (e.g., forces applied either by the delivery device or the patient's vasculature or blood flow), and/or to resist forces applied to the implant during any loading, unloading, or deployment procedures. Of course, one of skill in the art will appreciate that the degree of surface friction necessary to achieve the state of frictional lock will depend on the specific delivery device implementation and intended application(s).
When a frictional lock is relied upon to retain the implant on the delivery system until release, the implant preferably has textured surfaces (which may be continuous or disconnected) where it is intended to be secured to the delivery system by the mini-sheath(s). The surface(s) is/are preferably present about the entire inner periphery of the implant, but can also be located in limited regions generally corresponding to the interface regions of the sleeve.
In a preferred implementation, both the intermediate body and the implant comprise braid. However, other textured surfaces can be formed on either body by altering its surface to create a textured pattern, e.g., by etching, grinding, sanding, and the like. Still other textured surfaces can be formed by applying a high-friction coating to the body. Of course, any combination of these can also be used (e.g., a braid implant on a patterned underlying surface, etc.). Other optional details and discussion of the frictional interface between the implant and delivery system body may be taken from U.S. patent application Ser. No. 12/412,731, filed on Mar. 27, 2009 and titled “Friction-release Distal Latch Implant Delivery System and Components,” which is incorporated by reference for this purpose.
In another variation, instead of using a frictional lock generated between the implant and an underlying member to maintain the implant on the delivery system, an interlocking approach with the mini-sheath may be relied upon. In one example, the mini-sheath may comprise heat shrink that is entrained with the implant. Such interlocking may be assisted by vacuum forming while shrinking.
The interlock may alternatively, or additionally, be improved by including interface features on/in the implant around which the heat shrink forms. In an example where the implant comprises braid, some or all of the ends of the braid may be formed into ball ends (e.g., by laser application to from 0.003-0.005 inch diameter bodies) that the heat shrink can grasp. As a corollary advantage, these bodies may be radiopaque. Alternatively, radiopaque bands or coils that are crimpled, welded, soldered or otherwise affixed the implants ends could serve as retention features for the mini-sheath(s). These may be affixed only at the ends, or at intermediate points (e.g., to indicate a central section of increased density or any included cover).
In a preferred embodiment, the implant is a braided device with a braided surface about its entire exterior. The implant's number of wires, braid angle, pore size, profile, diameter, etc. may range in size. The braid may be metallic (as in NiTi, St. Steel, CoCr, other Ti and/or Zirconium alloy. etc.), polymeric, of hybrid construction or otherwise. Preferred variations may be formed of Nitinol. The alloy is preferably superelastic at body temperature. The metal may be a binary alloy or a ternary alloy to provide additional radiopacity. Alternatively, platinum or tantalum DFT Nitinol or platinum or tantalum wires may be included in the braid.
The density of the device is paramount in applications where braid itself is intended to affect blood flow, allowing thrombosis outside the implant to occlude a site. High density braid/mesh is typically required for such applications. Namely, braid having at least about 48 ends, typically set at about 90 degrees or greater, in diameters from about 4 to about 8 mm may be employed. At larger diameters (e.g., about 6 mm to 12 mm or more), more wire ends (e.g., common braider-size multiples of 64, 72 or 96) may be employed in forming the implants. Still higher typical wire counts may be employed. Moreover, 3-D braiding technology (such services are provided by 3Tex, Inc.) may be employed in forming the implant braid matrix.
A range of wire sizes or combination of wire sizes may be employed, typically ranging from about 0.0008 to about 0.0015 inch, and up to about 0.003 inches depending on desired delivery profile. A single braid tube may have all wires the same diameter, or may have some wires of a slightly thicker diameter to impart additional strength to the braid layer. The thicker wires impart greater strength to the implant without significantly increasing the device delivery profile, with the thinner wires offering some strength while filling-out the braid matrix density.
At least when employing Nitinol wire, to improve implant wire corrosion resistance and/or biocompatibility after any heat setting shape, the implants may be etched in “AYA” Sulfamic Acid solution, then passivated in Nitric acid solution. Alternatively or additionally, pre-etched and/or polished wire may be employed in braiding the implant matrix. Shape setting the braid in the implant shape may be performed in an oven/furnace, a fluidized bath or salt pot. All such processing is within the knowledge of those with ordinary skill in the art.
In some cases, the braid may incorporate polymeric fibers into the braid matrix—biodegradable (e.g., PLA/PGLA) or otherwise. Likewise, while the implants advantageously comprise include polymeric fill fiber, the entire braid may instead comprise polymer—especially high strength biodegradable polymer such as MX-2 (MAX-Prene), synthetic absorbable monofilament (90/10 Glycolide/L-Lactide) and/or G-2 (Glycoprene), synthetic absorbable monofilament (Glycolide (PGA), E-Caprolactone (PCL), Trimethylene Carbonate (TMC) Copolymer) that is heat set into shape (e.g., at 110 degrees centigrade for an hour).
Whatever the material, the braid may be uniform, or it may be configured with a higher density center “patch” or circumferential section. If so, such a section will typically be located at the center of the device. Or, it may be offset distally. Moreover, a coating—such as urethane, etc. may be set over the implant in similar fashion. Still further configurations of implants having grafts, coatings (e.g., lubricious, drug-eluting, and the like) or other non-textured surfaces present on the exterior of the implant are possible. See, e.g., U.S. Pat. No. 4,416,028 to Eriksson, et al. Coatings, such as those available through NiCast, Inc. (Israel) or Medical Device Works (Belgium), may be used for such purposes, as well as others. Hydrogel coating also offers an appealing option, such as a hydrogel-based polymer network capable of entrapping therapeutic agents as described in U.S. Pat. No. 6,905,700 to Won et al.
The implant may include radiopaque markers as described above, or as described in either of U.S. patent application Ser. No. 12/412,731, filed on Mar. 27, 2009 and titled “Friction-release Distal Latch Implant Delivery System and Components,” or 61/177,847, filed on May 13, 2009 and titled “Absorbable Braid Implants and Delivery Systems,” each incorporated herein by reference in its entirety.
The implant is expandable from a contracted state to an expanded state, and preferably self-biased towards the expanded state (i.e., “self-expanding” as understood by those with skill in the art. Generally, expansion results in lengthwise shortening of the implant. Especially in braid-type implants, holding the end portions of the implant stretched apart from each other (as in at least one exemplary variation herein) can cause the implant to be maintained in a contracted state, without the need to radially restrain the entire implant (such as with a full body sheath).
Certain variations of the subject invention take advantage of this action. One such example releasably captures both ends of the implant so as to offer potential for independent navigation, especially when an optional atraumatic tip is incorporated in the design. Precision placement of the implant is achieved by predictable mini-sheath release upon rupture by contact with an inner floating wedge. By contracting the system, the floating wedge contacts each mini-sheath region at substantially the same time. However, the mini-sheath regions can be staged to release independently, for example, by using sheaths with varying thicknesses or by other means readily apparent to those of ordinary skill in the art.
System flexibility can be optimized by using multi-segment (e.g., rings) wedge members. Alternatively, a selectively slit hypotube (e.g., Nitinol, resembling a segment of a SYNCHRO guidewire) or a coil spring (e.g., stainless steel or Nitinol) may be used. The coil spring can be tightly packed or include gaps that bottom-out upon compression. In any case, the ends of the spring are optionally be held together (e.g., by soldering) or set within jacket(s).
However constructed, the wedge member(s) may underlie a braid shaft preferably attached adjacent an atraumatic tip, and running the full length of the delivery system. As discussed above, such a braid shaft offers an advantageous interlock with a braid implant to provide for robust stretch to a reduced diameter profile. Still further, the section of braid under the implant may be used to provide a mechanical expansion “balloon” effect to assist in splitting the mini-sheaths when compressed.
In an alternative construction, no wedges are provided, but such a braid expander is relied upon alone to open the mini-sheaths. Likewise, other constructions that expand when axially compressed are contemplated for rupturing the implant covers, including: coils, volume-incompressible polymer bodies (e.g. one or more urethane tubes), micro-machined (e.g., etched, EDM or laser-cut) metal lattices, etc.
Regardless, when deployed—as typical—in a vessel undersized relative to the implant, the system offers the potential for unique operation. In one mode of delivery, the stent is compressed until it reaches the vessel wall. After advancing the implant to a treatment site, the implant is compressed to achieve tissue apposition. With the body of the implant so-anchored, the end being moved (typically the distal end is retracted and the proximal shaft held stationary) causes the braid to evert and roll inward.
Upon release, the result is an implant having a substantially predictable (user selected) in-situ length, with a double-layer section of the braid. Such a feature is unique to delivery of braid-type implants because their length is typically dictated by vessel diameter. The current system, instead, allows not only for more precise placement than known delivery systems (typically sheath-based), but also a specified final implant length. In another mode of delivery, sizing may be selected to simply provide one layer. Either way, maximum braid density (e.g., as useful for flow-disruption/occlusion application) is achievable through the compressed delivery of the braid implant.
In an alternative configuration, the delivery system includes only one implant release latch. Such a device will be used in coordination with a microcatheter.
The latch may be configured for the proximal end or the distal end of the implant. In any case, precision placement of the implant is once-again achieved by predictable mini-sheath release upon its rupture. The rupture may be driven by a wedge member, an expandable braid or coil section, other means or a combination of such means.
However configured, to facilitate loading into a microcatheter for navigation to a treatment site and use, a loading sheath may be provided over at least a portion of the implant as typical. To assist in tracking within the catheter, delivery system may include a passive socket in which to receive the distal end of the implant and/or include a floppy tip.
Some of the delivery system architectures advantageously incorporate a braided tube that runs substantially the length of the system. With a jacket over the proximal portion, the construction provides a stable shaft. The jacket for the braided shaft may simply be an extension of the mini-sheath heat shrink material. At least one distal section of this braid is exposed to serve at least as a frictional interface member with the implant. In one example, it is only the interface. In another example, it provides both the implant interface and one or more expander element(s).
A jacketed braid shaft can be configured to be highly pushable, torqueable and kink-resistant. Moreover, in a braided configuration, the composite sleeve can have its PIC (Per Inch Crosses) varied along its length to provide enhanced distal flexibility. In other words, the sleeve may be tuned/modified as a catheter-like subcomponent of the system. In an alternative configuration, an elongate polymeric, metallic or metal alloy shaft can be used with section to interface with the implant.
Similarly, the core member can also be configured for enhanced flexibility. For example, the core member may have one or more successively tapered regions near or adjacent to its distal end, like a typical guidewire. In some examples, the core member has column strength (i.e., as in a wire) to allow tip extension; in others, it may be a tensile-capable member alone (e.g., as in a fiber or yarn). Both the core member and the sleeve can comprise an elastic or superelastic material such as stainless steel, NiTi, CoCr, other alloys, polymeric materials, and the like.
The sleeve jacket and/or implant restraint sheaths can, for example, be formed by heat-shrinkable tubing. The heatshrink for the covers, and the jacket described above, may be PE (polyethylene), PET (polyester), or the like. PI (polyamide), FEP, PEEK and other materials may also be advantageously employed in some cases. The mini-sheath/sleeve may be perforated or notched to promote breakage/rupture.
It is typically thin-walled heat shrink (e.g., about 0.0003 to about 0.0005 inch wall thickness PET). With or without the underlying braid frictional lock “Velcro” effect (and instead using a discrete proximal shaft comprising, e.g., PEEK or Nitinol) the mini-sheaths preferably comprise heat-shrink tubing that recovers to engage the implant. Thin wall (e.g., about 0.001 inch or less) PET is suitable for such retention and release as shown and described. Still, other materials may be used for the mini-sheaths, just as any suitable conventional material may be employed for the core member (e.g., NiTi, stainless steel) and other system components including those referenced above.
Depending on the device configuration, the delivery system inserted into the patient's vasculature may be directly navigated to a treatment site using conventional techniques just as if it were a guidewire. Alternatively, it may simply be passed through a catheter after exchange with a guidewire. Accordingly, for neurovascular applications, the system is advantageously sized to cross either an 0.021 or 0.027 inch microcatheter. The device is feasibly made with as small as about an 0.018 inches diameter. It may still be useful at larger sizes (especially for other applications—such as in the coronary or peripheral vasculature) as well.
After advancement to the treatment site, the implant is delivered by releasing or disengaging the implant. The implant may be so-delivered for a number of purposes. With a braided stent, at higher densities, it may be used to disrupt/divert the flow to treat an aneurysm or fistula. The implant may be delivered across a lateral wall aneurysm to effect flow disruption alone or with multiple devices. It may be also be used as a “coil jailer” by first trapping a microcatheter between the stent and a vessel wall and delivering coils into an aneurysm. It could be placed along one branch of a bifurcation to disrupt flow to a bifurcation/trifurcation aneurysm or offer a platform for retaining coils therein. It may be used as a liner, followed by placement of a tube-cut stent within it when stenting diseased saphenous vein grafts.
Other possibilities exist as well or will be apparent to those of ordinary skill in the art. The inventive subject matter provided herein includes these methods, systems and devices for practicing these methods, and methods of manufacturing those systems and devices.
The details of the inventive subject matter set forth herein—both as to structure and operation—may be appreciated, in part, by study of the accompanying figures, in which like reference numerals may refer to like parts. The components in the figures are not necessarily to scale, emphasis instead being placed upon illustrating the principles of the subject matter. Moreover, all illustrations are intended to convey concepts, where relative sizes, shapes and other detailed attributes may be illustrated schematically rather than literally or precisely. Variation from the embodiments depicted is, of course, contemplated. Moreover, details commonly understood by those with skill in the art may be omitted as will be understood in review of the figures. Of these:
In these views, elements that are contained within other elements are shown in profile with broken lines. However, though sometimes partially obscured, the implant profile is illustrated using an “x x x x x” pattern for the sake of clarity.
Various exemplary embodiments of the invention are described below. Reference is made to these examples in a non-limiting sense. They are provided to illustrate more broadly applicable aspects of the present invention. Various changes may be made to the invention described and equivalents may be substituted without departing from the true spirit and scope of the invention. In addition, many modifications may be made to adapt a particular situation, material, composition of matter, process, process act(s) or step(s) to the objective(s), spirit or scope of the present invention. All such modifications are intended to be within the scope of the claims made herein.
Turning to
Sleeve (pusher) 22 comprises a liner 28 (e.g. PTFE lined Polyimide), tubular braid 30 (e.g., Stainless steel or Nitinol) and a jacket 32 (e.g., PET shrink tubing). Sleeve braid 30 extends under the implant proximal end 16, optionally, to terminate beyond core member 24 with a polymeric soft tip 34.
Mini-sheath or cover 36 holds the implant in a state of frictional lock with braid layer 30 along an overlap zone 38. This engagement is maintained until the core member 24 is withdrawn as illustrated in
Because the core member 24 in this variation of the invention is actuated only in tension, it may comprise a polymeric filament of fiber (e.g., Vectran or Spectra fiber), in which case the core member 24 is advantageously knotted to retain band 26, with optional potting with glue (e.g. 4014 LOCTITE). Delivery system flexibility can be maximized in this fashion, with any changes in stiffness developed along the body of the pusher (e.g., by changes to the braid and/or jacketing).
When inside a catheter 44 (transferred thereto via a loading sheath as conventionally accomplished) the distal end of the implant 12 is protected within the cap 42. Upon exit from the catheter 44, the implant 12 is partially unconstrained and is able to expand so as to pull-out of the socket 42. Because no distal lock is provided in this variation of the invention, the cap 42 may comprise any of PI, PET or other tubing. No shrink onto the implant is necessary or desirable.
Braid extension 46 is optionally covered by a jacket 48 (e.g., with PTFE or PET shrink tubing or otherwise) to maintain dimensional stability of this body. Extending the jacket 48 underneath the distal end 16 of the implant 12 may also help ensure release as intended and illustrated in
In this case, atraumatic tip 102 is connected to core wire, or member, 104 received within sleeve 106. Braid extension section 46 is preferably similarly attached. In this manner, when the core member 104 is withdrawn (compare
In any case, when the compressive action continues (by withdrawal of core member 104 and/or advancement of sleeve/shaft 106), the wedges 108 are driven fully under the covers 110, 112 to break them open and allow implant release. Cover release may occur substantially simultaneously. Alternatively, the action can be staged. In some applications it may be desirable to open the proximal end first; in others the distal first (especially for potential recapture purposes).
One way in which to accomplish sequential release is to utilize different thickness material, different type of material and/or vary such parameters as discussed in connection with
In any case, it will be appreciated that a unique feature of delivery system 100 is that two release points are actuated by a single user input. This approach allows for minimizing delivery system profile as compared to a system that might include additional concentric layers to achieve similar two-sided functionality.
Indeed, minimizing the crossing profile for such a system can be especially useful in instances where it is intended to be used as a navigable delivery system in itself, as an interventionalist would employ a guidewire. Either by actively extending the core wire or by originally locking it into such a configuration during manufacturing, a “wire-like” delivery system is offered as shown in
Actually, in one variation, delivery system 100 can be configured to work without the bands at all. Specifically, braid section 46 can be tuned such that it severs as the only cover expander/expansion means necessary to effect release.
Whatever element(s) define as expansion means, treatment of the cover merits discussion itself. In some cases, the covers may simply be heat-shrunk down to the implant. As shown in
Also important is the amount of expansion that the wedge member(s) provide. Generally, expansion is at least about 0.004 inches but more typically about 0.006 to about 0.012 inches. While more expansion/interference may be desired in some cases, care should be taken not to introduce other system performance issues in maximizing the size of the wedge body (e.g., hindering crossing profile, mechanical advantage in addressing the cover or generating other interference issues).
[Note also, it may be desirable to introduce a chamfer or lead-in to the wedge to assist its introduction under the covered portion of the implant. However, no such feature has been observed as necessary when the components are sized appropriately. It may be preferred (at least in variations of the invention in which a single wedge body is employed) to minimize the wedge member length (e.g., size it to about 0.010 inches or less) to avoid significant effects on system flex performance. In any case, selecting and tuning the size, shape and performance of the constituent parts of the subject systems is within the knowledge of those with skill in the art.
Beyond such routine development considerations, the present invention includes additional exemplary architectures. Of these, delivery system 140 illustrated in
As another option (equally applicable to other systems as described herein), the expander section of braid need not comprise an extension of braid defining shaft 156. Rather, the shaft may comprise a hypotube sleeve 158 and liner 160, with the expander braid captured external thereto by an extension of cover 162 heat-shrink tube. Other attachment approach are possible as well.
The inclusion of coil 164 (e.g. comprising Stainless Steel or Nitinol ribbon) is also a notable feature. It serves as compressible buttresses to the expander braid layer to in generate a firm lock for the implant between the braid layer and cover.
In delivery system 150, the wedge 152 may comprise a solder joint attaching the core member to the braid. Alternatively, it may comprise a weld joint between the bodies and/or be supplemented with a band to help define a consistent geometry. In any case, the architecture of system 150 may offer advantages in action by first progressively expanding the cover with the braid and then “finish” by drawing the wedge under the implant to ensure the sheath opens for implant release.
In lieu of what one could call “belt-and-suspenders” approaches as taught in connection with
The final delivery system architecture illustrated here is shown in
Apart from these various device architectures provided (in part) to enable the full generic scope of any of the appended claims, specific methods are still contemplated within the invention. An important application of the subject devices is presented in
In these figures, pertinent implant deployment steps are illustrated in connection with treating a cerebral aneurysm. In this case, a sidewall aneurysm 200 has formed off of an artery 202. After removal from sterile packaging (not shown), and loading the delivery system 210 in a microcatheter 212 that has accessed a target site, the implant 214 is exposed as illustrated in
The subject methods may include each of the physician activities associated with implant positioning and release. As such, methodology implicit to the positioning and deployment of an implant device forms part of the invention. Such methodology may include navigating or tracking an implant through a catheter to a treatment site. In some methods, the various acts of implant introduction adjacent to an aneurysm considered. Other methods concern the manner in which the system is prepared for delivering an implant, for example attaching the implant to the delivery system. Any method herein may be carried out in any order of the recited events which is logically possible, as well as in the recited order of events, or slight modifications of those events or the event order.
Also, it is contemplated that any optional feature of the inventive variations described may be set forth and claimed independently, or in combination with any one or more of the features described herein. Reference to a singular item, includes the possibility that there is a plurality of the same items present. More specifically, as used herein and in the appended claims, the singular forms “a,” “an,” “said,” and “the” include plural referents unless specifically stated otherwise. In other words, use of the articles allow for “at least one” of the subject item in the description above as well as the claims below. It is further noted that the claims may be drafted to exclude any optional element. As such, this statement is intended to serve as antecedent basis for use of such exclusive terminology as “solely,” “only” and the like in connection with the recitation of claim elements, or use of a “negative” limitation.
Without the use of such exclusive terminology, the term “comprising” in the claims shall allow for the inclusion of any additional element irrespective of whether a given number of elements are enumerated in the claim, or the addition of a feature could be regarded as transforming the nature of an element set forth in the claims. Except as specifically defined herein, all technical and scientific terms used herein are to be given as broad a commonly understood meaning as possible while maintaining claim validity.
The breadth of the present invention is not to be limited to the examples provided and/or the subject specification, but rather only by the scope of the claim language. Use of the term “invention” herein is not intended to limit the scope of the claims in any manner. Rather it should be recognized that the “invention” includes the many variations explicitly or implicitly described herein, including those variations that would be obvious to one of ordinary skill in the art upon reading the present specification. Further, it is not intended that any section of this specification (e.g., summary, detailed description, abstract, field of the invention) be accorded special significance in describing the invention relative to another or the claims. All references cited are incorporated by reference in their entirety. Although the foregoing invention has been described in detail for purposes of clarity of understanding, it is contemplated that certain modifications may be practiced within the scope of the appended claims.
The present application is a continuation of U.S. patent application Ser. No. 15/598,357, filed May 18, 2017, which is a divisional of U.S. patent application Ser. No. 12/465,475, filed May 13, 2009, now U.S. Pat. No. 9,675,482, which claims the benefit of U.S. Provisional Patent Application Ser. Nos. 61/052,756, filed May 13, 2008, and 61/083,959, filed Jul. 28, 2008, the disclosures of which are incorporated herein by reference in their entireties.
Number | Name | Date | Kind |
---|---|---|---|
3108593 | Glassman | Oct 1963 | A |
4321711 | Mano | Mar 1982 | A |
4425908 | Simon | Jan 1984 | A |
4503569 | Dotter | Mar 1985 | A |
4512338 | Balko et al. | Apr 1985 | A |
4538622 | Samson et al. | Sep 1985 | A |
4580568 | Gianturco | Apr 1986 | A |
4619246 | Molgaard-Nielsen et al. | Oct 1986 | A |
4655771 | Wallsten | Apr 1987 | A |
4733665 | Palmaz | Mar 1988 | A |
4768507 | Fischell et al. | Sep 1988 | A |
4776337 | Palmaz | Oct 1988 | A |
4921484 | Hillstead | May 1990 | A |
4954126 | Wallsten | Sep 1990 | A |
4998539 | Delsanti | Mar 1991 | A |
5011488 | Ginsburg | Apr 1991 | A |
5026377 | Burton et al. | Jun 1991 | A |
5035706 | Giantureo et al. | Jul 1991 | A |
5061275 | Wallsten et al. | Oct 1991 | A |
5064435 | Porter | Nov 1991 | A |
5104404 | Wolff | Apr 1992 | A |
5108416 | Ryan et al. | Apr 1992 | A |
5122136 | Guglielml et al. | Jun 1992 | A |
5147370 | Mcnamara et al. | Sep 1992 | A |
5158548 | Lau et al. | Oct 1992 | A |
5160341 | Brenneman et al. | Nov 1992 | A |
5180368 | Garrison | Jan 1993 | A |
5192297 | Hull | Mar 1993 | A |
5201757 | Heyn | Apr 1993 | A |
5209731 | Sterman et al. | May 1993 | A |
5222971 | Willard et al. | Jun 1993 | A |
5242399 | Lau et al. | Sep 1993 | A |
5246420 | Kraus et al. | Sep 1993 | A |
5246445 | Yachia et al. | Sep 1993 | A |
5250071 | Palermo | Oct 1993 | A |
5284488 | Sideris | Feb 1994 | A |
5326350 | Li | Jul 1994 | A |
5334210 | Gianturco | Aug 1994 | A |
5344426 | Lau et al. | Sep 1994 | A |
5354295 | Guglielmi et al. | Oct 1994 | A |
5360443 | Barone et al. | Nov 1994 | A |
5378239 | Termin et al. | Jan 1995 | A |
5382259 | Phelps et al. | Jan 1995 | A |
5401257 | Chevalier, Jr. et al. | Mar 1995 | A |
5405379 | Lane | Apr 1995 | A |
5405380 | Gianotti et al. | Apr 1995 | A |
5415637 | Khosravi | May 1995 | A |
5417708 | Hall et al. | May 1995 | A |
5421826 | Crocker et al. | Jun 1995 | A |
5423849 | Engelson et al. | Jun 1995 | A |
5425984 | Kennedy et al. | Jun 1995 | A |
5445646 | Euteneuer et al. | Aug 1995 | A |
5449372 | Schmaltz et al. | Sep 1995 | A |
5458615 | Klemm et al. | Oct 1995 | A |
5476505 | Limon | Dec 1995 | A |
5480423 | Ravenscroft et al. | Jan 1996 | A |
5484444 | Braunschweiler et al. | Jan 1996 | A |
5489295 | Piplani et al. | Feb 1996 | A |
5499981 | Kordis | Mar 1996 | A |
5503636 | Schmitt et al. | Apr 1996 | A |
5507768 | Lau et al. | Apr 1996 | A |
5522822 | Phelps et al. | Jun 1996 | A |
5527338 | Purdy | Jun 1996 | A |
5534007 | St. Germain et al. | Jul 1996 | A |
5545208 | Wolff et al. | Aug 1996 | A |
5545209 | Roberts et al. | Aug 1996 | A |
5549635 | Solar | Aug 1996 | A |
5562641 | Flomenblit et al. | Oct 1996 | A |
5562728 | Lazarus et al. | Oct 1996 | A |
5591225 | Okuda | Jan 1997 | A |
5599291 | Balbierz et al. | Feb 1997 | A |
5607466 | Imbert et al. | Mar 1997 | A |
5609625 | Piplani et al. | Mar 1997 | A |
5624461 | Mariant | Apr 1997 | A |
5626602 | Gianotti et al. | May 1997 | A |
5628783 | Quiachon et al. | May 1997 | A |
5632772 | Alcime et al. | May 1997 | A |
5634942 | Chevillon et al. | Jun 1997 | A |
5636641 | Fariabi | Jun 1997 | A |
5643278 | Wijay | Jul 1997 | A |
5645558 | Horton | Jul 1997 | A |
5662703 | Yurek et al. | Sep 1997 | A |
5667522 | Flomenblit et al. | Sep 1997 | A |
5669931 | Kupiecki et al. | Sep 1997 | A |
5674276 | Andersen et al. | Oct 1997 | A |
5683451 | Lenker et al. | Nov 1997 | A |
5690120 | Jacobsen et al. | Nov 1997 | A |
5690643 | Wijay | Nov 1997 | A |
5690644 | Yurek et al. | Nov 1997 | A |
5690671 | McGurk et al. | Nov 1997 | A |
5695499 | Helgerson et al. | Dec 1997 | A |
5700269 | Pinchuk et al. | Dec 1997 | A |
5702418 | Ravenscroft | Dec 1997 | A |
5702419 | Berry et al. | Dec 1997 | A |
5709702 | Cogita | Jan 1998 | A |
5709703 | Lukic et al. | Jan 1998 | A |
5713907 | Wholey et al. | Feb 1998 | A |
5725552 | Kotula et al. | Mar 1998 | A |
5725570 | Heath | Mar 1998 | A |
5725571 | Imbert et al. | Mar 1998 | A |
5728906 | Eguchi et al. | Mar 1998 | A |
5733294 | Forber et al. | Mar 1998 | A |
5733327 | Igaki et al. | Mar 1998 | A |
5735859 | Fischell et al. | Apr 1998 | A |
5741325 | Chaikof et al. | Apr 1998 | A |
5741333 | Frid | Apr 1998 | A |
5749883 | Halpern | May 1998 | A |
5749891 | Ken et al. | May 1998 | A |
5749895 | Sawyer et al. | May 1998 | A |
5749919 | Blanc | May 1998 | A |
5749920 | Quiachon et al. | May 1998 | A |
5766151 | Valley et al. | Jun 1998 | A |
5769884 | Solovay | Jun 1998 | A |
5769885 | Quiachon et al. | Jun 1998 | A |
5776099 | Tremulis | Jul 1998 | A |
5776140 | Cottone | Jul 1998 | A |
5776141 | Klein et al. | Jul 1998 | A |
5776142 | Gunderson | Jul 1998 | A |
5782909 | Quiachon et al. | Jul 1998 | A |
5797952 | Klein | Aug 1998 | A |
5800518 | Piplani et al. | Sep 1998 | A |
5807398 | Shaknovich | Sep 1998 | A |
5810837 | Hofmann et al. | Sep 1998 | A |
5814062 | Sepetka et al. | Sep 1998 | A |
5817102 | Johnson et al. | Oct 1998 | A |
5823198 | Jones et al. | Oct 1998 | A |
5824039 | Piplani et al. | Oct 1998 | A |
5824041 | Lenker et al. | Oct 1998 | A |
5824044 | Quiachon et al. | Oct 1998 | A |
5824058 | Ravenscroft et al. | Oct 1998 | A |
5830230 | Berryman et al. | Nov 1998 | A |
5833632 | Jacobsen et al. | Nov 1998 | A |
5836868 | Ressemann et al. | Nov 1998 | A |
5846261 | Kotula et al. | Dec 1998 | A |
5853422 | Huebsch et al. | Dec 1998 | A |
5855578 | Guglielmi et al. | Jan 1999 | A |
5868754 | Levine et al. | Feb 1999 | A |
5873907 | Frantzen | Feb 1999 | A |
5879366 | Shaw et al. | Mar 1999 | A |
5888201 | Stinson et al. | Mar 1999 | A |
5902266 | Leone et al. | May 1999 | A |
5906640 | Penn et al. | May 1999 | A |
5908435 | Samuels | Jun 1999 | A |
5911717 | Jacobsen et al. | Jun 1999 | A |
5911731 | Pham et al. | Jun 1999 | A |
5916194 | Jacobsen et al. | Jun 1999 | A |
5916235 | Guglielmi | Jun 1999 | A |
5919204 | Lukic et al. | Jul 1999 | A |
5925060 | Forber | Jul 1999 | A |
5928228 | Kordis et al. | Jul 1999 | A |
5928260 | Chin et al. | Jul 1999 | A |
5935148 | Villar et al. | Aug 1999 | A |
5935362 | Petrick | Aug 1999 | A |
5941249 | Maynard | Aug 1999 | A |
5944726 | Blaeser et al. | Aug 1999 | A |
5944738 | Amplatz et al. | Aug 1999 | A |
5951599 | Mccrory | Sep 1999 | A |
5957948 | Mariant | Sep 1999 | A |
5957973 | Quiachon et al. | Sep 1999 | A |
5957974 | Thompson et al. | Sep 1999 | A |
5964797 | Ho | Oct 1999 | A |
5972015 | Scribner et al. | Oct 1999 | A |
5976162 | Doan et al. | Nov 1999 | A |
5976169 | Imran | Nov 1999 | A |
5980530 | Willard et al. | Nov 1999 | A |
5980533 | Holman | Nov 1999 | A |
5980554 | Lenker et al. | Nov 1999 | A |
5984929 | Bashiri et al. | Nov 1999 | A |
6001092 | Mirigian et al. | Dec 1999 | A |
6010517 | Baccaro | Jan 2000 | A |
6014919 | Jacobsen et al. | Jan 2000 | A |
6015432 | Rakos et al. | Jan 2000 | A |
6017319 | Jacobsen et al. | Jan 2000 | A |
6019778 | Wilson et al. | Feb 2000 | A |
6019786 | Thompson | Feb 2000 | A |
6022369 | Jacobsen et al. | Feb 2000 | A |
6022374 | Imran | Feb 2000 | A |
6024754 | Engelson | Feb 2000 | A |
6024756 | Huebsch et al. | Feb 2000 | A |
6024763 | Lenker et al. | Feb 2000 | A |
6027516 | Kolobow et al. | Feb 2000 | A |
6033423 | Ken et al. | Mar 2000 | A |
6036720 | Abrams et al. | Mar 2000 | A |
6039758 | Quiachon et al. | Mar 2000 | A |
6042589 | Marianne | Mar 2000 | A |
6051021 | Frid | Apr 2000 | A |
6056993 | Leidner et al. | May 2000 | A |
6059813 | Vrba et al. | May 2000 | A |
6063070 | Eder | May 2000 | A |
6063104 | Villar et al. | May 2000 | A |
6063111 | Hieshima et al. | May 2000 | A |
6068634 | Lorentzen Cornelius et al. | May 2000 | A |
6074407 | Levine et al. | Jun 2000 | A |
6077295 | Limon et al. | Jun 2000 | A |
6086577 | Ken et al. | Jul 2000 | A |
6090125 | Horton | Jul 2000 | A |
6093199 | Brown et al. | Jul 2000 | A |
6096021 | Helm et al. | Aug 2000 | A |
6096034 | Kupiecki et al. | Aug 2000 | A |
6096052 | Callister et al. | Aug 2000 | A |
6096073 | Webster et al. | Aug 2000 | A |
6099526 | Whayne et al. | Aug 2000 | A |
6102942 | Ahari | Aug 2000 | A |
6106530 | Harada | Aug 2000 | A |
6110191 | Dehdashtian et al. | Aug 2000 | A |
6113607 | Lau et al. | Sep 2000 | A |
6123712 | Di Caprio et al. | Sep 2000 | A |
6123715 | Amplatz | Sep 2000 | A |
6126685 | Lenker et al. | Oct 2000 | A |
6132459 | Piplani et al. | Oct 2000 | A |
6139543 | Esch et al. | Oct 2000 | A |
6139564 | Teoh | Oct 2000 | A |
6146415 | Fitz | Nov 2000 | A |
6149680 | Shelso et al. | Nov 2000 | A |
6152144 | Lesh et al. | Nov 2000 | A |
6159531 | Dang et al. | Dec 2000 | A |
6165178 | Bashiri et al. | Dec 2000 | A |
6165193 | Greene et al. | Dec 2000 | A |
6168592 | Kupiecki et al. | Jan 2001 | B1 |
6168615 | Ken et al. | Jan 2001 | B1 |
6168618 | Frantzen | Jan 2001 | B1 |
6168622 | Mazzocchi | Jan 2001 | B1 |
6183410 | Jacobsen et al. | Feb 2001 | B1 |
6183495 | Lenker et al. | Feb 2001 | B1 |
6190402 | Horton et al. | Feb 2001 | B1 |
6193708 | Ken et al. | Feb 2001 | B1 |
6197046 | Piplani et al. | Mar 2001 | B1 |
6206868 | Parodi | Mar 2001 | B1 |
6210400 | Hebert et al. | Apr 2001 | B1 |
6210434 | Quiachon et al. | Apr 2001 | B1 |
6210435 | Piplani et al. | Apr 2001 | B1 |
6214038 | Piplani et al. | Apr 2001 | B1 |
6214042 | Jacobsen et al. | Apr 2001 | B1 |
6221086 | Forber | Apr 2001 | B1 |
6221102 | Baker et al. | Apr 2001 | B1 |
6224609 | Ressemann et al. | May 2001 | B1 |
6224829 | Piplani et al. | May 2001 | B1 |
6231597 | Deem et al. | May 2001 | B1 |
6235050 | Quiachon et al. | May 2001 | B1 |
6238403 | Greene et al. | May 2001 | B1 |
6241758 | Cox | Jun 2001 | B1 |
6241759 | Piplani et al. | Jun 2001 | B1 |
6245103 | Stinson | Jun 2001 | B1 |
6251132 | Ravenscroft et al. | Jun 2001 | B1 |
6260458 | Jacobsen et al. | Jul 2001 | B1 |
6261305 | Marotta et al. | Jul 2001 | B1 |
6270523 | Herweck et al. | Aug 2001 | B1 |
6280412 | Pederson et al. | Aug 2001 | B1 |
6280465 | Cryer | Aug 2001 | B1 |
6287331 | Heath | Sep 2001 | B1 |
6290721 | Heath | Sep 2001 | B1 |
6299619 | Greene et al. | Oct 2001 | B1 |
6302810 | Yokota | Oct 2001 | B2 |
6302893 | Limon et al. | Oct 2001 | B1 |
6306141 | Jervis | Oct 2001 | B1 |
6309367 | Boock | Oct 2001 | B1 |
6322576 | Wallace et al. | Nov 2001 | B1 |
6322586 | Monroe et al. | Nov 2001 | B1 |
6322587 | Quiachon et al. | Nov 2001 | B1 |
6325820 | Khosravi et al. | Dec 2001 | B1 |
6331184 | Abrams | Dec 2001 | B1 |
6332576 | Colley et al. | Dec 2001 | B1 |
6342068 | Thompson | Jan 2002 | B1 |
6344041 | Kupiecki et al. | Feb 2002 | B1 |
6344048 | Chin et al. | Feb 2002 | B1 |
6346117 | Greenhalgh | Feb 2002 | B1 |
6348063 | Yassour et al. | Feb 2002 | B1 |
6350199 | Williams et al. | Feb 2002 | B1 |
6350270 | Roue | Feb 2002 | B1 |
6350278 | Lenker et al. | Feb 2002 | B1 |
6355061 | Quiachon et al. | Mar 2002 | B1 |
6361558 | Hieshima et al. | Mar 2002 | B1 |
6364895 | Greenhalgh | Apr 2002 | B1 |
6368339 | Amplatz | Apr 2002 | B1 |
6368344 | Fitz | Apr 2002 | B1 |
6368557 | Piplani et al. | Apr 2002 | B1 |
6371928 | Mcfann et al. | Apr 2002 | B1 |
6371980 | Rudakov et al. | Apr 2002 | B1 |
6375668 | Gifford et al. | Apr 2002 | B1 |
6375670 | Greenhalgh | Apr 2002 | B1 |
6375676 | Cox | Apr 2002 | B1 |
6379372 | Dehdashtian et al. | Apr 2002 | B1 |
6379618 | Piplani et al. | Apr 2002 | B1 |
6380457 | Yurek et al. | Apr 2002 | B1 |
6383174 | Eder | May 2002 | B1 |
6387118 | Hanson | May 2002 | B1 |
6391037 | Greenhalgh | May 2002 | B1 |
6395017 | Dwyer et al. | May 2002 | B1 |
6395022 | Piplani et al. | May 2002 | B1 |
6398802 | Yee | Jun 2002 | B1 |
6409683 | Fonseca et al. | Jun 2002 | B1 |
6409750 | Hyodoh et al. | Jun 2002 | B1 |
6413235 | Parodi | Jul 2002 | B1 |
6416536 | Yee | Jul 2002 | B1 |
6428489 | Jacobsen et al. | Aug 2002 | B1 |
6428558 | Jones et al. | Aug 2002 | B1 |
6432130 | Hanson | Aug 2002 | B1 |
6440088 | Jacobsen et al. | Aug 2002 | B1 |
6443971 | Boylan et al. | Sep 2002 | B1 |
6443972 | Bosma et al. | Sep 2002 | B1 |
6443979 | Stalker et al. | Sep 2002 | B1 |
6447531 | Amplatz | Sep 2002 | B1 |
6451025 | Jervis | Sep 2002 | B1 |
6451050 | Rudakov et al. | Sep 2002 | B1 |
6454780 | Wallace | Sep 2002 | B1 |
6454999 | Farhangnia et al. | Sep 2002 | B1 |
6468266 | Bashiri et al. | Oct 2002 | B1 |
6478778 | Jacobsen et al. | Nov 2002 | B1 |
6482221 | Hebert et al. | Nov 2002 | B1 |
6491648 | Cornish et al. | Dec 2002 | B1 |
6494884 | Gifford et al. | Dec 2002 | B2 |
6503450 | Afzal et al. | Jan 2003 | B1 |
6506204 | Mazzocchi | Jan 2003 | B2 |
6511468 | Cragg et al. | Jan 2003 | B1 |
6514261 | Randall et al. | Feb 2003 | B1 |
6520983 | Colgan et al. | Feb 2003 | B1 |
6524299 | Tran et al. | Feb 2003 | B1 |
6527763 | Esch et al. | Mar 2003 | B2 |
6530934 | Jacobsen et al. | Mar 2003 | B1 |
6533811 | Ryan et al. | Mar 2003 | B1 |
6540778 | Piplani et al. | Apr 2003 | B1 |
6544278 | Vrba et al. | Apr 2003 | B1 |
6547779 | Levine et al. | Apr 2003 | B2 |
6547804 | Porter et al. | Apr 2003 | B2 |
6551303 | Van Tassel et al. | Apr 2003 | B1 |
6569179 | Teoh et al. | May 2003 | B2 |
6572646 | Boylan et al. | Jun 2003 | B1 |
6576006 | Limon et al. | Jun 2003 | B2 |
6579302 | Duerig et al. | Jun 2003 | B2 |
6579303 | Amplatz | Jun 2003 | B2 |
6582460 | Cryer | Jun 2003 | B1 |
6585748 | Jeffree | Jul 2003 | B1 |
6585756 | Strecker | Jul 2003 | B1 |
6589236 | Wheelock et al. | Jul 2003 | B2 |
6589256 | Forber | Jul 2003 | B2 |
6589265 | Palmer et al. | Jul 2003 | B1 |
6589273 | Mcdermott | Jul 2003 | B1 |
6591472 | Noone et al. | Jul 2003 | B1 |
6592605 | Lenker et al. | Jul 2003 | B2 |
6592616 | Stack et al. | Jul 2003 | B1 |
6599308 | Amplatz | Jul 2003 | B2 |
6602261 | Greene, Jr. et al. | Aug 2003 | B2 |
6602280 | Chobotov | Aug 2003 | B2 |
6605101 | Schaefer et al. | Aug 2003 | B1 |
6605102 | Mazzocchi et al. | Aug 2003 | B1 |
6605110 | Harrison | Aug 2003 | B2 |
6605111 | Bose et al. | Aug 2003 | B2 |
6607539 | Hayashi et al. | Aug 2003 | B1 |
6607551 | Sullivan et al. | Aug 2003 | B1 |
6613074 | Mitelberg et al. | Sep 2003 | B1 |
6613075 | Healy et al. | Sep 2003 | B1 |
6623518 | Thompson et al. | Sep 2003 | B2 |
6626939 | Burnside et al. | Sep 2003 | B1 |
6632241 | Hancock et al. | Oct 2003 | B1 |
6635068 | Dubrul et al. | Oct 2003 | B1 |
6635069 | Teoh et al. | Oct 2003 | B1 |
6638243 | Kupiecki | Oct 2003 | B2 |
6645240 | Yee | Nov 2003 | B2 |
6646218 | Campbell et al. | Nov 2003 | B1 |
6652508 | Griffin et al. | Nov 2003 | B2 |
6652555 | Vantassel et al. | Nov 2003 | B1 |
6652556 | Vantassel et al. | Nov 2003 | B1 |
6656212 | Ravenscroft et al. | Dec 2003 | B2 |
6656218 | Denardo et al. | Dec 2003 | B1 |
6660024 | Flaherty et al. | Dec 2003 | B1 |
6663666 | Quiachon et al. | Dec 2003 | B1 |
6666882 | Bose et al. | Dec 2003 | B1 |
6666883 | Seguin et al. | Dec 2003 | B1 |
6669717 | Marotta et al. | Dec 2003 | B2 |
6669719 | Wallace et al. | Dec 2003 | B2 |
6669721 | Bose et al. | Dec 2003 | B1 |
6673089 | Yassour et al. | Jan 2004 | B1 |
6673100 | Diaz et al. | Jan 2004 | B2 |
6676696 | Marotta et al. | Jan 2004 | B1 |
6679893 | Tran | Jan 2004 | B1 |
6682505 | Bates et al. | Jan 2004 | B2 |
6682546 | Amplatz | Jan 2004 | B2 |
6682557 | Quiachon et al. | Jan 2004 | B1 |
6685735 | Ahari | Feb 2004 | B1 |
6689150 | Vantassel et al. | Feb 2004 | B1 |
6689162 | Thompson | Feb 2004 | B1 |
6689486 | Ho et al. | Feb 2004 | B2 |
6695876 | Marotta et al. | Feb 2004 | B1 |
6698877 | Urlaub et al. | Mar 2004 | B2 |
6699274 | Stinson | Mar 2004 | B2 |
6709454 | Cox et al. | Mar 2004 | B1 |
6709465 | Mitchell et al. | Mar 2004 | B2 |
6712834 | Yassour et al. | Mar 2004 | B2 |
6712835 | Mazzocchi et al. | Mar 2004 | B2 |
6716238 | Elliott | Apr 2004 | B2 |
6723112 | Ho et al. | Apr 2004 | B2 |
6723116 | Taheri | Apr 2004 | B2 |
6726700 | Levine | Apr 2004 | B1 |
6730108 | Van Tassel et al. | May 2004 | B2 |
6733519 | Lashinski et al. | May 2004 | B2 |
6740105 | Yodfat et al. | May 2004 | B2 |
6740112 | Yodfat et al. | May 2004 | B2 |
6743219 | Dwyer et al. | Jun 2004 | B1 |
6746468 | Sepetka et al. | Jun 2004 | B1 |
6746890 | Gupta et al. | Jun 2004 | B2 |
6755855 | Yurek et al. | Jun 2004 | B2 |
6758885 | Leffel et al. | Jul 2004 | B2 |
6767361 | Quiachon et al. | Jul 2004 | B2 |
6773446 | Dwyer et al. | Aug 2004 | B1 |
6780196 | Chin et al. | Aug 2004 | B2 |
6792979 | Konya et al. | Sep 2004 | B2 |
6793667 | Hebert et al. | Sep 2004 | B2 |
6797083 | Peterson | Sep 2004 | B2 |
6802851 | Jones et al. | Oct 2004 | B2 |
RE38653 | Igaki et al. | Nov 2004 | E |
6811560 | Jones et al. | Nov 2004 | B2 |
6814748 | Baker et al. | Nov 2004 | B1 |
6818006 | Douk et al. | Nov 2004 | B2 |
6833003 | Jones et al. | Dec 2004 | B2 |
6849084 | Rabkin et al. | Feb 2005 | B2 |
6855153 | Saadat | Feb 2005 | B2 |
6855154 | Abdel-Gawwad | Feb 2005 | B2 |
6858034 | Hijlkema et al. | Feb 2005 | B1 |
RE38711 | Igaki et al. | Mar 2005 | E |
6860893 | Wallace et al. | Mar 2005 | B2 |
6860898 | Stack et al. | Mar 2005 | B2 |
6860901 | Baker et al. | Mar 2005 | B1 |
6866677 | Douk et al. | Mar 2005 | B2 |
6866680 | Yassour et al. | Mar 2005 | B2 |
6878384 | Cruise et al. | Apr 2005 | B2 |
6887267 | Dworschak et al. | May 2005 | B2 |
6890337 | Feeser et al. | May 2005 | B2 |
6905503 | Gifford et al. | Jun 2005 | B2 |
6936055 | Ken et al. | Aug 2005 | B1 |
6949103 | Mazzocchi et al. | Sep 2005 | B2 |
6949113 | Van et al. | Sep 2005 | B2 |
6953472 | Palmer et al. | Oct 2005 | B2 |
6955685 | Escamilla et al. | Oct 2005 | B2 |
6960227 | Jones et al. | Nov 2005 | B2 |
6964670 | Shah et al. | Nov 2005 | B1 |
6976991 | Hebert et al. | Dec 2005 | B2 |
6979341 | Scribner et al. | Dec 2005 | B2 |
6989019 | Mazzocchi et al. | Jan 2006 | B2 |
6989024 | Hebert et al. | Jan 2006 | B2 |
6991617 | Hektner et al. | Jan 2006 | B2 |
6994092 | Van Der Burg et al. | Feb 2006 | B2 |
6994717 | Konya et al. | Feb 2006 | B2 |
6994721 | Israel | Feb 2006 | B2 |
7001422 | Escamilla et al. | Feb 2006 | B2 |
7004964 | Thompson et al. | Feb 2006 | B2 |
7011671 | Welch | Mar 2006 | B2 |
7011675 | Hemerick et al. | Mar 2006 | B2 |
7014645 | Greene et al. | Mar 2006 | B2 |
7018401 | Hyodoh et al. | Mar 2006 | B1 |
7029487 | Greene, Jr. et al. | Apr 2006 | B2 |
7029949 | Farnworth et al. | Apr 2006 | B2 |
7033375 | Mazzocchi et al. | Apr 2006 | B2 |
7037330 | Rivelli, Jr. et al. | May 2006 | B1 |
7048752 | Mazzocchi et al. | May 2006 | B2 |
7063679 | Maguire et al. | Jun 2006 | B2 |
7066951 | Chobotov | Jun 2006 | B2 |
7069835 | Nishri et al. | Jul 2006 | B2 |
7070607 | Murayama et al. | Jul 2006 | B2 |
7070609 | West | Jul 2006 | B2 |
7074236 | Rabkin et al. | Jul 2006 | B2 |
7083632 | Avellanet et al. | Aug 2006 | B2 |
7093527 | Rapaport et al. | Aug 2006 | B2 |
7101392 | Heath | Sep 2006 | B2 |
7107105 | Bjorklund et al. | Sep 2006 | B2 |
7118539 | Vrba et al. | Oct 2006 | B2 |
7118594 | Quiachon et al. | Oct 2006 | B2 |
7122050 | Randall et al. | Oct 2006 | B2 |
7125419 | Sequin et al. | Oct 2006 | B2 |
7128073 | Van Der Burg et al. | Oct 2006 | B1 |
7128736 | Abrams et al. | Oct 2006 | B1 |
7137990 | Hebert et al. | Nov 2006 | B2 |
7153323 | Teoh et al. | Dec 2006 | B1 |
7166125 | Baker et al. | Jan 2007 | B1 |
7169170 | Widenhouse | Jan 2007 | B2 |
7169172 | Levine et al. | Jan 2007 | B2 |
7169177 | Obara | Jan 2007 | B2 |
7172617 | Colgan et al. | Feb 2007 | B2 |
7195636 | Avellanet et al. | Mar 2007 | B2 |
7195639 | Quiachon et al. | Mar 2007 | B2 |
7195648 | Jones et al. | Mar 2007 | B2 |
7201768 | Diaz et al. | Apr 2007 | B2 |
7201769 | Jones et al. | Apr 2007 | B2 |
7211109 | Thompson | May 2007 | B2 |
7213495 | Mccullagh et al. | May 2007 | B2 |
7229461 | Chin et al. | Jun 2007 | B2 |
7232461 | Ramer | Jun 2007 | B2 |
7235096 | Van Tassel et al. | Jun 2007 | B1 |
7244267 | Huter et al. | Jul 2007 | B2 |
7261720 | Stevens et al. | Aug 2007 | B2 |
7264632 | Wright et al. | Sep 2007 | B2 |
7275471 | Nishri et al. | Oct 2007 | B2 |
7279005 | Stinson | Oct 2007 | B2 |
7279208 | Goffena et al. | Oct 2007 | B1 |
7294137 | Rivelli, Jr. et al. | Nov 2007 | B2 |
7294146 | Chew et al. | Nov 2007 | B2 |
7300456 | Andreas et al. | Nov 2007 | B2 |
7300460 | Levine et al. | Nov 2007 | B2 |
7303571 | Makower et al. | Dec 2007 | B2 |
7306622 | Jones et al. | Dec 2007 | B2 |
7306624 | Yodfat et al. | Dec 2007 | B2 |
7309351 | Escamilla et al. | Dec 2007 | B2 |
7311031 | Mccullagh et al. | Dec 2007 | B2 |
7320702 | Hammersmark et al. | Jan 2008 | B2 |
7326225 | Ferrera et al. | Feb 2008 | B2 |
7331973 | Gesswein et al. | Feb 2008 | B2 |
7331976 | Mcguckin, Jr. et al. | Feb 2008 | B2 |
7331980 | Dubrul et al. | Feb 2008 | B2 |
7331985 | Thompson et al. | Feb 2008 | B2 |
7338518 | Chobotov | Mar 2008 | B2 |
7367985 | Mazzocchi et al. | May 2008 | B2 |
7367986 | Mazzocchi et al. | May 2008 | B2 |
7371250 | Mazzocchi et al. | May 2008 | B2 |
7393358 | Malewicz | Jul 2008 | B2 |
7404820 | Mazzocchi et al. | Jul 2008 | B2 |
7410482 | Murphy et al. | Aug 2008 | B2 |
7410492 | Mazzocchi et al. | Aug 2008 | B2 |
7413622 | Peterson | Aug 2008 | B2 |
7419503 | Pulnev et al. | Sep 2008 | B2 |
7442200 | Mazzocchi et al. | Oct 2008 | B2 |
7468070 | Henry et al. | Dec 2008 | B2 |
7470282 | Shelso | Dec 2008 | B2 |
7473271 | Gunderson | Jan 2009 | B2 |
7481821 | Fogarty et al. | Jan 2009 | B2 |
7485088 | Murphy et al. | Feb 2009 | B2 |
7491214 | Greene et al. | Feb 2009 | B2 |
7491224 | Cox et al. | Feb 2009 | B2 |
7556635 | Mazzocchi et al. | Jul 2009 | B2 |
7566338 | Mazzocchi et al. | Jul 2009 | B2 |
7569066 | Gerberding et al. | Aug 2009 | B2 |
7572273 | Mazzocchi et al. | Aug 2009 | B2 |
7572288 | Cox | Aug 2009 | B2 |
7575590 | Watson | Aug 2009 | B2 |
7578826 | Gandhi et al. | Aug 2009 | B2 |
7597704 | Frazier et al. | Oct 2009 | B2 |
7601160 | Richter | Oct 2009 | B2 |
7608088 | Jones et al. | Oct 2009 | B2 |
7621928 | Thramann et al. | Nov 2009 | B2 |
7632296 | Malewicz | Dec 2009 | B2 |
7670355 | Mazzocchi et al. | Mar 2010 | B2 |
7670356 | Mazzocchi et al. | Mar 2010 | B2 |
7678130 | Mazzocchi et al. | Mar 2010 | B2 |
7682390 | Seguin | Mar 2010 | B2 |
7691124 | Balgobin | Apr 2010 | B2 |
7695488 | Berenstein et al. | Apr 2010 | B2 |
7699056 | Tran et al. | Apr 2010 | B2 |
7708754 | Balgobin et al. | May 2010 | B2 |
7727189 | Vantassel et al. | Jun 2010 | B2 |
7744583 | Seifert et al. | Jun 2010 | B2 |
7744652 | Morsi | Jun 2010 | B2 |
7763011 | Ortiz et al. | Jul 2010 | B2 |
7785361 | Nikolchev et al. | Aug 2010 | B2 |
7828815 | Mazzocchi et al. | Nov 2010 | B2 |
7828816 | Mazzocchi et al. | Nov 2010 | B2 |
7862602 | Licata et al. | Jan 2011 | B2 |
7922732 | Mazzocchi et al. | Apr 2011 | B2 |
7955343 | Makower et al. | Jun 2011 | B2 |
7972359 | Kreidler | Jul 2011 | B2 |
7976527 | Cragg et al. | Jul 2011 | B2 |
RE42625 | Guglielmi | Aug 2011 | E |
7993364 | Morsi | Aug 2011 | B2 |
RE42758 | Ken et al. | Sep 2011 | E |
8012210 | Lin et al. | Sep 2011 | B2 |
8016869 | Nikolchev | Sep 2011 | B2 |
8016872 | Parker | Sep 2011 | B2 |
8043326 | Hancock et al. | Oct 2011 | B2 |
8062379 | Morsi | Nov 2011 | B2 |
8075585 | Lee et al. | Dec 2011 | B2 |
8114154 | Righini et al. | Feb 2012 | B2 |
8137293 | Zhou et al. | Mar 2012 | B2 |
8142456 | Rosqueta et al. | Mar 2012 | B2 |
8147534 | Berez et al. | Apr 2012 | B2 |
8192480 | Tieu et al. | Jun 2012 | B2 |
8202280 | Richter | Jun 2012 | B2 |
8206431 | Seppala et al. | Jun 2012 | B2 |
8211160 | Garrison et al. | Jul 2012 | B2 |
8221445 | Van et al. | Jul 2012 | B2 |
8236042 | Berez et al. | Aug 2012 | B2 |
8257421 | Berez et al. | Sep 2012 | B2 |
8261648 | Marchand et al. | Sep 2012 | B1 |
8267985 | Garcia et al. | Sep 2012 | B2 |
8273101 | Garcia et al. | Sep 2012 | B2 |
8298257 | Sepetka et al. | Oct 2012 | B2 |
8333783 | Braun et al. | Dec 2012 | B2 |
8343167 | Henson | Jan 2013 | B2 |
8361104 | Jones et al. | Jan 2013 | B2 |
8361138 | Adams | Jan 2013 | B2 |
8398670 | Amplatz et al. | Mar 2013 | B2 |
8425541 | Masters et al. | Apr 2013 | B2 |
8430012 | Marchand et al. | Apr 2013 | B1 |
8454681 | Holman et al. | Jun 2013 | B2 |
8470013 | Duggal et al. | Jun 2013 | B2 |
8597320 | Sepetka et al. | Dec 2013 | B2 |
8603128 | Greene et al. | Dec 2013 | B2 |
8715317 | Janardhan et al. | May 2014 | B1 |
8834515 | Win et al. | Sep 2014 | B2 |
8906057 | Connor et al. | Dec 2014 | B2 |
8974512 | Aboytes et al. | Mar 2015 | B2 |
8998947 | Aboytes et al. | Apr 2015 | B2 |
9211202 | Strother et al. | Dec 2015 | B2 |
9301769 | Brady et al. | Apr 2016 | B2 |
9314248 | Molaei | Apr 2016 | B2 |
9486224 | Riina et al. | Nov 2016 | B2 |
9629636 | Fogarty et al. | Apr 2017 | B2 |
9675482 | Becking | Jun 2017 | B2 |
9833309 | Levi et al. | Dec 2017 | B2 |
9844380 | Furey | Dec 2017 | B2 |
9907684 | Connor et al. | Mar 2018 | B2 |
9962146 | Hebert et al. | May 2018 | B2 |
10028745 | Morsi | Jul 2018 | B2 |
20010000797 | Mazzocchi | May 2001 | A1 |
20010001835 | Greene et al. | May 2001 | A1 |
20010007082 | Dusbabek et al. | Jul 2001 | A1 |
20010012949 | Forber | Aug 2001 | A1 |
20010012961 | Deem et al. | Aug 2001 | A1 |
20010049547 | Moore | Dec 2001 | A1 |
20010051822 | Stack et al. | Dec 2001 | A1 |
20020013599 | Limon et al. | Jan 2002 | A1 |
20020013618 | Marotta et al. | Jan 2002 | A1 |
20020026210 | Abdel-Gawwad | Feb 2002 | A1 |
20020042628 | Chin et al. | Apr 2002 | A1 |
20020062091 | Jacobsen et al. | May 2002 | A1 |
20020062145 | Rudakov et al. | May 2002 | A1 |
20020078808 | Jacobsen et al. | Jun 2002 | A1 |
20020087119 | Parodi | Jul 2002 | A1 |
20020099405 | Yurek et al. | Jul 2002 | A1 |
20020111647 | Khairkhahan et al. | Aug 2002 | A1 |
20020119177 | Bowman et al. | Aug 2002 | A1 |
20020120323 | Thompson et al. | Aug 2002 | A1 |
20020143384 | Ozasa | Oct 2002 | A1 |
20020147462 | Mair et al. | Oct 2002 | A1 |
20020165572 | Saadat | Nov 2002 | A1 |
20020169473 | Sepetka et al. | Nov 2002 | A1 |
20020188341 | Elliott | Dec 2002 | A1 |
20020193812 | Patel et al. | Dec 2002 | A1 |
20020193813 | Helkowski et al. | Dec 2002 | A1 |
20030004533 | Dieck et al. | Jan 2003 | A1 |
20030004538 | Secrest et al. | Jan 2003 | A1 |
20030004568 | Ken et al. | Jan 2003 | A1 |
20030018294 | Cox | Jan 2003 | A1 |
20030028209 | Teoh et al. | Feb 2003 | A1 |
20030040772 | Hyodoh et al. | Feb 2003 | A1 |
20030055440 | Jones et al. | Mar 2003 | A1 |
20030057156 | Peterson et al. | Mar 2003 | A1 |
20030069522 | Jacobsen et al. | Apr 2003 | A1 |
20030093111 | Ken et al. | May 2003 | A1 |
20030100945 | Yodfat et al. | May 2003 | A1 |
20030109887 | Galdonik et al. | Jun 2003 | A1 |
20030113478 | Dang et al. | Jun 2003 | A1 |
20030114918 | Garrison et al. | Jun 2003 | A1 |
20030135258 | Andreas et al. | Jul 2003 | A1 |
20030149465 | Heidner et al. | Aug 2003 | A1 |
20030149490 | Ashman | Aug 2003 | A1 |
20030163155 | Haverkost et al. | Aug 2003 | A1 |
20030163156 | Hebert et al. | Aug 2003 | A1 |
20030171739 | Murphy et al. | Sep 2003 | A1 |
20030171770 | Kusleika et al. | Sep 2003 | A1 |
20030176884 | Berrada et al. | Sep 2003 | A1 |
20030187473 | Berenstein et al. | Oct 2003 | A1 |
20030195553 | Wallace et al. | Oct 2003 | A1 |
20030199913 | Dubrul et al. | Oct 2003 | A1 |
20030199919 | Palmer et al. | Oct 2003 | A1 |
20030208256 | Dimatteo et al. | Nov 2003 | A1 |
20030212419 | West | Nov 2003 | A1 |
20030216693 | Mickley | Nov 2003 | A1 |
20040015224 | Armstrong | Jan 2004 | A1 |
20040024416 | Yodfat et al. | Feb 2004 | A1 |
20040034386 | Fulton et al. | Feb 2004 | A1 |
20040044361 | Frazier et al. | Mar 2004 | A1 |
20040044391 | Porter | Mar 2004 | A1 |
20040044395 | Nelson | Mar 2004 | A1 |
20040049204 | Harari et al. | Mar 2004 | A1 |
20040049256 | Yee | Mar 2004 | A1 |
20040059407 | Escamilla et al. | Mar 2004 | A1 |
20040064093 | Hektner et al. | Apr 2004 | A1 |
20040073300 | Chouinard et al. | Apr 2004 | A1 |
20040078071 | Escamilla et al. | Apr 2004 | A1 |
20040093010 | Gesswein et al. | May 2004 | A1 |
20040093063 | Wright et al. | May 2004 | A1 |
20040098027 | Teoh et al. | May 2004 | A1 |
20040098028 | Martinez | May 2004 | A1 |
20040098030 | Makower et al. | May 2004 | A1 |
20040106945 | Thramann et al. | Jun 2004 | A1 |
20040106977 | Sullivan et al. | Jun 2004 | A1 |
20040111112 | Hoffmann | Jun 2004 | A1 |
20040115164 | Pierce et al. | Jun 2004 | A1 |
20040122467 | Vantassel et al. | Jun 2004 | A1 |
20040122468 | Yodfat et al. | Jun 2004 | A1 |
20040127912 | Rabkin et al. | Jul 2004 | A1 |
20040138733 | Weber et al. | Jul 2004 | A1 |
20040138758 | Kronengold et al. | Jul 2004 | A1 |
20040143239 | Zhou et al. | Jul 2004 | A1 |
20040143286 | Johnson et al. | Jul 2004 | A1 |
20040153119 | Kusleika et al. | Aug 2004 | A1 |
20040161451 | Pierce et al. | Aug 2004 | A1 |
20040162606 | Thompson | Aug 2004 | A1 |
20040172056 | Guterman et al. | Sep 2004 | A1 |
20040172121 | Eidenschink et al. | Sep 2004 | A1 |
20040181253 | Sepetka et al. | Sep 2004 | A1 |
20040186551 | Kao et al. | Sep 2004 | A1 |
20040186562 | Cox | Sep 2004 | A1 |
20040193178 | Nikolchev | Sep 2004 | A1 |
20040193179 | Nikolchev | Sep 2004 | A1 |
20040193206 | Gerberding et al. | Sep 2004 | A1 |
20040199243 | Yodfat | Oct 2004 | A1 |
20040204749 | Gunderson | Oct 2004 | A1 |
20040215229 | Coyle | Oct 2004 | A1 |
20040215332 | Frid | Oct 2004 | A1 |
20040220585 | Nikolchev | Nov 2004 | A1 |
20040249408 | Murphy et al. | Dec 2004 | A1 |
20040267346 | Shelso | Dec 2004 | A1 |
20050010281 | Yodfat et al. | Jan 2005 | A1 |
20050021077 | Chin et al. | Jan 2005 | A1 |
20050033408 | Jones et al. | Feb 2005 | A1 |
20050033409 | Burke et al. | Feb 2005 | A1 |
20050049625 | Shaya et al. | Mar 2005 | A1 |
20050049668 | Jones et al. | Mar 2005 | A1 |
20050049670 | Jones et al. | Mar 2005 | A1 |
20050060017 | Fischell et al. | Mar 2005 | A1 |
20050090890 | Wu et al. | Apr 2005 | A1 |
20050096728 | Ramer | May 2005 | A1 |
20050096732 | Marotta et al. | May 2005 | A1 |
20050107823 | Leone et al. | May 2005 | A1 |
20050131443 | Abdel-Gawwad | Jun 2005 | A1 |
20050131523 | Bashiri et al. | Jun 2005 | A1 |
20050137680 | Ortiz et al. | Jun 2005 | A1 |
20050209672 | George et al. | Sep 2005 | A1 |
20050209674 | Kutscher | Sep 2005 | A1 |
20050222580 | Gifford et al. | Oct 2005 | A1 |
20050222605 | Greenhalgh et al. | Oct 2005 | A1 |
20050228434 | Amplatz et al. | Oct 2005 | A1 |
20050246010 | Alexander et al. | Nov 2005 | A1 |
20050267510 | Razack | Dec 2005 | A1 |
20050267511 | Marks et al. | Dec 2005 | A1 |
20050267527 | Sandoval et al. | Dec 2005 | A1 |
20050267568 | Berez et al. | Dec 2005 | A1 |
20050273135 | Chanduszko et al. | Dec 2005 | A1 |
20050277978 | Greenhalgh | Dec 2005 | A1 |
20050278023 | Zwirkoski | Dec 2005 | A1 |
20050283220 | Gobran et al. | Dec 2005 | A1 |
20050283222 | Betelia et al. | Dec 2005 | A1 |
20050288763 | Andreas et al. | Dec 2005 | A1 |
20050288764 | Snow et al. | Dec 2005 | A1 |
20050288766 | Plain et al. | Dec 2005 | A1 |
20060025845 | Escamilla et al. | Feb 2006 | A1 |
20060034883 | Dang et al. | Feb 2006 | A1 |
20060036309 | Hebert et al. | Feb 2006 | A1 |
20060052815 | Fitz et al. | Mar 2006 | A1 |
20060052816 | Bates et al. | Mar 2006 | A1 |
20060058865 | Case et al. | Mar 2006 | A1 |
20060064151 | Guterman et al. | Mar 2006 | A1 |
20060074475 | Gumm | Apr 2006 | A1 |
20060089703 | Escamilla et al. | Apr 2006 | A1 |
20060095213 | Escamilla et al. | May 2006 | A1 |
20060106421 | Teoh | May 2006 | A1 |
20060111771 | Ton et al. | May 2006 | A1 |
20060116709 | Sepetka et al. | Jun 2006 | A1 |
20060116712 | Sepetka et al. | Jun 2006 | A1 |
20060116713 | Sepetka et al. | Jun 2006 | A1 |
20060116714 | Sepetka et al. | Jun 2006 | A1 |
20060116750 | Hebert et al. | Jun 2006 | A1 |
20060122548 | Abrams | Jun 2006 | A1 |
20060155323 | Porter et al. | Jul 2006 | A1 |
20060167494 | Suddaby | Jul 2006 | A1 |
20060184238 | Kaufmann et al. | Aug 2006 | A1 |
20060190070 | Dieck et al. | Aug 2006 | A1 |
20060190076 | Taheri | Aug 2006 | A1 |
20060200221 | Malewicz | Sep 2006 | A1 |
20060200234 | Hines | Sep 2006 | A1 |
20060206140 | Shaolian et al. | Sep 2006 | A1 |
20060206198 | Churchwell et al. | Sep 2006 | A1 |
20060206199 | Churchwell et al. | Sep 2006 | A1 |
20060206200 | Garcia et al. | Sep 2006 | A1 |
20060206201 | Garcia et al. | Sep 2006 | A1 |
20060212127 | Karabey et al. | Sep 2006 | A1 |
20060217799 | Mailänder et al. | Sep 2006 | A1 |
20060229700 | Acosta et al. | Oct 2006 | A1 |
20060235464 | Avellanet et al. | Oct 2006 | A1 |
20060235501 | Igaki | Oct 2006 | A1 |
20060241686 | Ferrera et al. | Oct 2006 | A1 |
20060241690 | Amplatz et al. | Oct 2006 | A1 |
20060247680 | Amplatz et al. | Nov 2006 | A1 |
20060264905 | Eskridge et al. | Nov 2006 | A1 |
20060264907 | Eskridge et al. | Nov 2006 | A1 |
20060271149 | Berez et al. | Nov 2006 | A1 |
20060271153 | Garcia et al. | Nov 2006 | A1 |
20060271162 | Vito et al. | Nov 2006 | A1 |
20060282152 | Beyerlein et al. | Dec 2006 | A1 |
20060292206 | Kim et al. | Dec 2006 | A1 |
20060293744 | Peckham et al. | Dec 2006 | A1 |
20070003594 | Brady et al. | Jan 2007 | A1 |
20070005125 | Berenstein et al. | Jan 2007 | A1 |
20070010850 | Balgobin et al. | Jan 2007 | A1 |
20070014831 | Sung et al. | Jan 2007 | A1 |
20070016243 | Ramaiah et al. | Jan 2007 | A1 |
20070021816 | Rudin | Jan 2007 | A1 |
20070043419 | Nikolchev et al. | Feb 2007 | A1 |
20070050017 | Sims et al. | Mar 2007 | A1 |
20070055339 | George et al. | Mar 2007 | A1 |
20070073379 | Chang | Mar 2007 | A1 |
20070083226 | Buiser et al. | Apr 2007 | A1 |
20070088387 | Eskridge et al. | Apr 2007 | A1 |
20070093889 | Wu et al. | Apr 2007 | A1 |
20070100414 | Licata et al. | May 2007 | A1 |
20070100415 | Licata et al. | May 2007 | A1 |
20070100426 | Rudakov et al. | May 2007 | A1 |
20070106311 | Wallace et al. | May 2007 | A1 |
20070112415 | Bartlett | May 2007 | A1 |
20070119295 | Mccullagh et al. | May 2007 | A1 |
20070123969 | Gianotti | May 2007 | A1 |
20070135826 | Zaver et al. | Jun 2007 | A1 |
20070135907 | Wilson et al. | Jun 2007 | A1 |
20070150045 | Ferrera | Jun 2007 | A1 |
20070162104 | Frid | Jul 2007 | A1 |
20070167876 | Euteneuer et al. | Jul 2007 | A1 |
20070167877 | Euteneuer et al. | Jul 2007 | A1 |
20070167972 | Euteneuer et al. | Jul 2007 | A1 |
20070167980 | Figulla et al. | Jul 2007 | A1 |
20070173928 | Morsi | Jul 2007 | A1 |
20070175536 | Monetti et al. | Aug 2007 | A1 |
20070179520 | West | Aug 2007 | A1 |
20070185442 | Euteneuer et al. | Aug 2007 | A1 |
20070185443 | Euteneuer et al. | Aug 2007 | A1 |
20070185444 | Euteneuer et al. | Aug 2007 | A1 |
20070185457 | Euteneuer et al. | Aug 2007 | A1 |
20070191884 | Eskridge et al. | Aug 2007 | A1 |
20070191924 | Rudakov | Aug 2007 | A1 |
20070198059 | Patel et al. | Aug 2007 | A1 |
20070198075 | Levy | Aug 2007 | A1 |
20070198076 | Hebert et al. | Aug 2007 | A1 |
20070203559 | Freudenthal et al. | Aug 2007 | A1 |
20070203563 | Hebert et al. | Aug 2007 | A1 |
20070203567 | Levy | Aug 2007 | A1 |
20070208376 | Meng | Sep 2007 | A1 |
20070219619 | Dieck et al. | Sep 2007 | A1 |
20070221230 | Thompson et al. | Sep 2007 | A1 |
20070225760 | Moszner et al. | Sep 2007 | A1 |
20070225794 | Thramann et al. | Sep 2007 | A1 |
20070233224 | Leynov et al. | Oct 2007 | A1 |
20070233244 | Lopez et al. | Oct 2007 | A1 |
20070239261 | Bose et al. | Oct 2007 | A1 |
20070265656 | Amplatz et al. | Nov 2007 | A1 |
20070270902 | Slazas et al. | Nov 2007 | A1 |
20070276426 | Euteneuer | Nov 2007 | A1 |
20070276427 | Euteneuer | Nov 2007 | A1 |
20070282373 | Ashby et al. | Dec 2007 | A1 |
20070288083 | Hines | Dec 2007 | A1 |
20070293935 | Olsen et al. | Dec 2007 | A1 |
20070299500 | Hebert et al. | Dec 2007 | A1 |
20070299501 | Hebert et al. | Dec 2007 | A1 |
20070299502 | Hebert et al. | Dec 2007 | A1 |
20080003354 | Nolan | Jan 2008 | A1 |
20080009934 | Schneider et al. | Jan 2008 | A1 |
20080021535 | Leopold et al. | Jan 2008 | A1 |
20080033366 | Matson et al. | Feb 2008 | A1 |
20080039933 | Yodfat et al. | Feb 2008 | A1 |
20080045996 | Makower et al. | Feb 2008 | A1 |
20080045997 | Balgobin et al. | Feb 2008 | A1 |
20080051705 | Von et al. | Feb 2008 | A1 |
20080058856 | Ramaiah et al. | Mar 2008 | A1 |
20080065141 | Holman et al. | Mar 2008 | A1 |
20080065145 | Carpenter | Mar 2008 | A1 |
20080081763 | Swetlin et al. | Apr 2008 | A1 |
20080082154 | Tseng et al. | Apr 2008 | A1 |
20080082176 | Slazas | Apr 2008 | A1 |
20080086196 | Truckai et al. | Apr 2008 | A1 |
20080097495 | Feller et al. | Apr 2008 | A1 |
20080109057 | Calabria et al. | May 2008 | A1 |
20080109063 | Hancock et al. | May 2008 | A1 |
20080114391 | Dieck et al. | May 2008 | A1 |
20080114436 | Dieck et al. | May 2008 | A1 |
20080114439 | Ramaiah et al. | May 2008 | A1 |
20080119886 | Greenhalgh et al. | May 2008 | A1 |
20080125806 | Mazzocchi et al. | May 2008 | A1 |
20080125848 | Kusleika et al. | May 2008 | A1 |
20080125852 | Garrison et al. | May 2008 | A1 |
20080132820 | Buckman et al. | Jun 2008 | A1 |
20080132989 | Snow et al. | Jun 2008 | A1 |
20080140177 | Hines | Jun 2008 | A1 |
20080154286 | Abbott et al. | Jun 2008 | A1 |
20080195139 | Donald et al. | Aug 2008 | A1 |
20080200945 | Amplatz et al. | Aug 2008 | A1 |
20080200979 | Dieck et al. | Aug 2008 | A1 |
20080208320 | Tan-malecki et al. | Aug 2008 | A1 |
20080219533 | Grigorescu | Sep 2008 | A1 |
20080221600 | Dieck et al. | Sep 2008 | A1 |
20080221666 | Licata et al. | Sep 2008 | A1 |
20080243226 | Fernandez et al. | Oct 2008 | A1 |
20080249562 | Cahill | Oct 2008 | A1 |
20080255654 | Hebert et al. | Oct 2008 | A1 |
20080262590 | Murray | Oct 2008 | A1 |
20080262598 | Elmaleh | Oct 2008 | A1 |
20080269774 | Garcia et al. | Oct 2008 | A1 |
20080281350 | Sepetka et al. | Nov 2008 | A1 |
20080300667 | Hebert et al. | Dec 2008 | A1 |
20080319533 | Lehe | Dec 2008 | A1 |
20090018637 | Paul et al. | Jan 2009 | A1 |
20090024202 | Dave et al. | Jan 2009 | A1 |
20090024205 | Hebert et al. | Jan 2009 | A1 |
20090024224 | Chen et al. | Jan 2009 | A1 |
20090025820 | Adams | Jan 2009 | A1 |
20090030496 | Kaufmann et al. | Jan 2009 | A1 |
20090030497 | Metcalf et al. | Jan 2009 | A1 |
20090043375 | Rudakov et al. | Feb 2009 | A1 |
20090056722 | Swann | Mar 2009 | A1 |
20090062899 | Dang et al. | Mar 2009 | A1 |
20090069806 | De et al. | Mar 2009 | A1 |
20090076540 | Marks et al. | Mar 2009 | A1 |
20090082803 | Adams et al. | Mar 2009 | A1 |
20090099647 | Glimsdale et al. | Apr 2009 | A1 |
20090105802 | Henry et al. | Apr 2009 | A1 |
20090105803 | Shelso | Apr 2009 | A1 |
20090112249 | Miles et al. | Apr 2009 | A1 |
20090112251 | Qian et al. | Apr 2009 | A1 |
20090118811 | Moloney | May 2009 | A1 |
20090125093 | Hansen | May 2009 | A1 |
20090125094 | Rust | May 2009 | A1 |
20090125119 | Obermiller et al. | May 2009 | A1 |
20090138065 | Zhang et al. | May 2009 | A1 |
20090143849 | Ozawa et al. | Jun 2009 | A1 |
20090143851 | Paul | Jun 2009 | A1 |
20090148492 | Dave et al. | Jun 2009 | A1 |
20090155367 | Neuwirth et al. | Jun 2009 | A1 |
20090163986 | Tieu et al. | Jun 2009 | A1 |
20090187214 | Amplatz et al. | Jul 2009 | A1 |
20090192536 | Berez et al. | Jul 2009 | A1 |
20090192587 | Frid | Jul 2009 | A1 |
20090198315 | Boudjemline | Aug 2009 | A1 |
20090198318 | Berez et al. | Aug 2009 | A1 |
20090204145 | Matthews | Aug 2009 | A1 |
20090210047 | Amplatz et al. | Aug 2009 | A1 |
20090216307 | Kaufmann et al. | Aug 2009 | A1 |
20090228029 | Lee | Sep 2009 | A1 |
20090228093 | Taylor et al. | Sep 2009 | A1 |
20090259202 | Leeflang et al. | Oct 2009 | A1 |
20090264914 | Riina et al. | Oct 2009 | A1 |
20090264978 | Dieck et al. | Oct 2009 | A1 |
20090270974 | Berez et al. | Oct 2009 | A1 |
20090275974 | Marchand et al. | Nov 2009 | A1 |
20090287241 | Berez et al. | Nov 2009 | A1 |
20090287288 | Berez et al. | Nov 2009 | A1 |
20090287291 | Becking et al. | Nov 2009 | A1 |
20090287292 | Becking et al. | Nov 2009 | A1 |
20090287294 | Rosqueta et al. | Nov 2009 | A1 |
20090287297 | Cox | Nov 2009 | A1 |
20090292348 | Berez et al. | Nov 2009 | A1 |
20090297582 | Meyer et al. | Dec 2009 | A1 |
20090306702 | Miloslavski et al. | Dec 2009 | A1 |
20090318892 | Aboytes et al. | Dec 2009 | A1 |
20090318941 | Sepetka et al. | Dec 2009 | A1 |
20090318947 | Garcia et al. | Dec 2009 | A1 |
20090318948 | Davis et al. | Dec 2009 | A1 |
20090319017 | Berez et al. | Dec 2009 | A1 |
20090319023 | Hildebrand et al. | Dec 2009 | A1 |
20100004726 | Hancock et al. | Jan 2010 | A1 |
20100004761 | Flanders et al. | Jan 2010 | A1 |
20100023048 | Mach | Jan 2010 | A1 |
20100023105 | Levy et al. | Jan 2010 | A1 |
20100030200 | Strauss et al. | Feb 2010 | A1 |
20100030220 | Truckai et al. | Feb 2010 | A1 |
20100036390 | Gumm | Feb 2010 | A1 |
20100036410 | Krolik et al. | Feb 2010 | A1 |
20100042133 | Ramzipoor et al. | Feb 2010 | A1 |
20100069948 | Veznedaroglu et al. | Mar 2010 | A1 |
20100087908 | Hilaire et al. | Apr 2010 | A1 |
20100094335 | Gerberding et al. | Apr 2010 | A1 |
20100106178 | Obermiller et al. | Apr 2010 | A1 |
20100131002 | Connor et al. | May 2010 | A1 |
20100139465 | Christian et al. | Jun 2010 | A1 |
20100144895 | Porter | Jun 2010 | A1 |
20100152767 | Greenhalgh et al. | Jun 2010 | A1 |
20100174269 | Tompkins et al. | Jul 2010 | A1 |
20100185271 | Zhang | Jul 2010 | A1 |
20100222802 | Gillespie et al. | Sep 2010 | A1 |
20100228184 | Mavani et al. | Sep 2010 | A1 |
20100249830 | Nelson | Sep 2010 | A1 |
20100249894 | Oba et al. | Sep 2010 | A1 |
20100256527 | Lippert et al. | Oct 2010 | A1 |
20100256528 | Lippert et al. | Oct 2010 | A1 |
20100256601 | Lippert et al. | Oct 2010 | A1 |
20100256602 | Lippert et al. | Oct 2010 | A1 |
20100256603 | Lippert et al. | Oct 2010 | A1 |
20100256604 | Lippert et al. | Oct 2010 | A1 |
20100256605 | Lippert et al. | Oct 2010 | A1 |
20100256606 | Lippert et al. | Oct 2010 | A1 |
20100262014 | Huang | Oct 2010 | A1 |
20100268201 | Tieu et al. | Oct 2010 | A1 |
20100268204 | Tieu et al. | Oct 2010 | A1 |
20100268260 | Riina et al. | Oct 2010 | A1 |
20100274276 | Chow et al. | Oct 2010 | A1 |
20100298791 | Jones et al. | Nov 2010 | A1 |
20100305606 | Gandhi et al. | Dec 2010 | A1 |
20100312061 | Hess et al. | Dec 2010 | A1 |
20100312270 | Mcguckin et al. | Dec 2010 | A1 |
20100331948 | Turovskiy et al. | Dec 2010 | A1 |
20110022149 | Cox et al. | Jan 2011 | A1 |
20110046658 | Connor et al. | Feb 2011 | A1 |
20110054519 | Neuss | Mar 2011 | A1 |
20110077620 | Debeer | Mar 2011 | A1 |
20110082493 | Samson et al. | Apr 2011 | A1 |
20110106234 | Grandt | May 2011 | A1 |
20110125110 | Cotton | May 2011 | A1 |
20110137332 | Sepetka et al. | Jun 2011 | A1 |
20110137405 | Wilson et al. | Jun 2011 | A1 |
20110144669 | Becking et al. | Jun 2011 | A1 |
20110152993 | Marchand et al. | Jun 2011 | A1 |
20110166588 | Connor et al. | Jul 2011 | A1 |
20110184452 | Huynh et al. | Jul 2011 | A1 |
20110184453 | Levy et al. | Jul 2011 | A1 |
20110196415 | Ujiie et al. | Aug 2011 | A1 |
20110202085 | Loganathan et al. | Aug 2011 | A1 |
20110208227 | Becking | Aug 2011 | A1 |
20110224776 | Sepetka et al. | Sep 2011 | A1 |
20110245862 | Dieck et al. | Oct 2011 | A1 |
20110251699 | Ladet | Oct 2011 | A1 |
20110265943 | Rosqueta et al. | Nov 2011 | A1 |
20110276120 | Gilson et al. | Nov 2011 | A1 |
20110313447 | Strauss et al. | Dec 2011 | A1 |
20110319926 | Becking et al. | Dec 2011 | A1 |
20120010644 | Sideris et al. | Jan 2012 | A1 |
20120022572 | Braun et al. | Jan 2012 | A1 |
20120041470 | Shrivastava et al. | Feb 2012 | A1 |
20120041472 | Tan et al. | Feb 2012 | A1 |
20120041474 | Eckhouse et al. | Feb 2012 | A1 |
20120065720 | Strauss et al. | Mar 2012 | A1 |
20120101510 | Lenker et al. | Apr 2012 | A1 |
20120101561 | Porter | Apr 2012 | A1 |
20120116350 | Strauss et al. | May 2012 | A1 |
20120143237 | Cam et al. | Jun 2012 | A1 |
20120143243 | Hill et al. | Jun 2012 | A1 |
20120143317 | Cam et al. | Jun 2012 | A1 |
20120165803 | Bencini et al. | Jun 2012 | A1 |
20120165919 | Cox et al. | Jun 2012 | A1 |
20120197283 | Marchand et al. | Aug 2012 | A1 |
20120221095 | Berez et al. | Aug 2012 | A1 |
20120226343 | Vo et al. | Sep 2012 | A1 |
20120239074 | Aboytes et al. | Sep 2012 | A1 |
20120245674 | Molaei et al. | Sep 2012 | A1 |
20120245675 | Molaei et al. | Sep 2012 | A1 |
20120277784 | Berez et al. | Nov 2012 | A1 |
20120283765 | Berez et al. | Nov 2012 | A1 |
20120283768 | Cox et al. | Nov 2012 | A1 |
20120283769 | Cruise et al. | Nov 2012 | A1 |
20120283815 | Berez et al. | Nov 2012 | A1 |
20120310269 | Fearnot et al. | Dec 2012 | A1 |
20120316598 | Becking et al. | Dec 2012 | A1 |
20120316632 | Gao | Dec 2012 | A1 |
20120323271 | Obermiller et al. | Dec 2012 | A1 |
20120330341 | Becking et al. | Dec 2012 | A1 |
20120330347 | Becking et al. | Dec 2012 | A1 |
20120330348 | Strauss et al. | Dec 2012 | A1 |
20130018451 | Grabowski et al. | Jan 2013 | A1 |
20130066357 | Aboytes et al. | Mar 2013 | A1 |
20130066360 | Becking et al. | Mar 2013 | A1 |
20130085522 | Becking et al. | Apr 2013 | A1 |
20130092013 | Thompson et al. | Apr 2013 | A1 |
20130116722 | Aboytes et al. | May 2013 | A1 |
20130123830 | Becking et al. | May 2013 | A1 |
20130144380 | Quadri et al. | Jun 2013 | A1 |
20130172925 | Garcia et al. | Jul 2013 | A1 |
20130172976 | Garcia et al. | Jul 2013 | A1 |
20130211495 | Halden et al. | Aug 2013 | A1 |
20130233160 | Marchand et al. | Sep 2013 | A1 |
20130239790 | Thompson et al. | Sep 2013 | A1 |
20130245667 | Marchand et al. | Sep 2013 | A1 |
20130245670 | Fan | Sep 2013 | A1 |
20130268053 | Molaei et al. | Oct 2013 | A1 |
20130274862 | Cox et al. | Oct 2013 | A1 |
20130274863 | Cox et al. | Oct 2013 | A1 |
20130274866 | Cox et al. | Oct 2013 | A1 |
20130274868 | Cox et al. | Oct 2013 | A1 |
20130304179 | Bialas et al. | Nov 2013 | A1 |
20130345739 | Brady et al. | Dec 2013 | A1 |
20140005713 | Bowman | Jan 2014 | A1 |
20140012307 | Franano et al. | Jan 2014 | A1 |
20140058420 | Hannes et al. | Feb 2014 | A1 |
20140135810 | Divino et al. | May 2014 | A1 |
20140135811 | Divino et al. | May 2014 | A1 |
20140135812 | Divino et al. | May 2014 | A1 |
20140316012 | Freyman et al. | Oct 2014 | A1 |
20140371734 | Truckai | Dec 2014 | A1 |
20150216684 | Enzmann et al. | Aug 2015 | A1 |
20150250628 | Monstadt et al. | Sep 2015 | A1 |
20150272590 | Aboytes et al. | Oct 2015 | A1 |
20150313737 | Tippett et al. | Nov 2015 | A1 |
20150327843 | Garrison | Nov 2015 | A1 |
20150342613 | Aboytes et al. | Dec 2015 | A1 |
20160022445 | Ruvalcaba et al. | Jan 2016 | A1 |
20160030050 | Franano et al. | Feb 2016 | A1 |
20160066921 | Seifert et al. | Mar 2016 | A1 |
20160135984 | Rudakov et al. | May 2016 | A1 |
20160206320 | Connor | Jul 2016 | A1 |
20160206321 | Connor | Jul 2016 | A1 |
20170150971 | Hines | Jun 2017 | A1 |
20170156903 | Shobayashi | Jun 2017 | A1 |
20170189035 | Porter | Jul 2017 | A1 |
20170266023 | Thomas | Sep 2017 | A1 |
20170340333 | Badruddin et al. | Nov 2017 | A1 |
20170367708 | Mayer et al. | Dec 2017 | A1 |
20180049859 | Stoppenhagen et al. | Feb 2018 | A1 |
20180125686 | Lu | May 2018 | A1 |
20180140305 | Connor | May 2018 | A1 |
20180161185 | Kresslein et al. | Jun 2018 | A1 |
20180193025 | Walzman | Jul 2018 | A1 |
20180193026 | Yang et al. | Jul 2018 | A1 |
20180206852 | Moeller | Jul 2018 | A1 |
20190053811 | Garza et al. | Feb 2019 | A1 |
20190282242 | Divino et al. | Sep 2019 | A1 |
20190343532 | Divino et al. | Nov 2019 | A1 |
20200061099 | Li et al. | Feb 2020 | A1 |
20200367904 | Becking et al. | Nov 2020 | A1 |
Number | Date | Country |
---|---|---|
2607529 | Apr 2008 | CA |
101472537 | Jul 2009 | CN |
102083493 | Jun 2011 | CN |
1283434 | Nov 1968 | DE |
102008028308 | Apr 2009 | DE |
102010050569 | May 2012 | DE |
102011011510 | Aug 2012 | DE |
102011102933 | Dec 2012 | DE |
0717969 | Jun 1996 | EP |
0743047 | Nov 1996 | EP |
0855170 | Jul 1998 | EP |
0775470 | Mar 1999 | EP |
1188414 | Mar 2002 | EP |
1637176 | Mar 2006 | EP |
1752112 | Feb 2007 | EP |
1813213 | Aug 2007 | EP |
1923019 | May 2008 | EP |
1942972 | Jul 2008 | EP |
1872742 | May 2009 | EP |
2208483 | Jul 2010 | EP |
2279023 | Feb 2011 | EP |
2363075 | Sep 2011 | EP |
2496299 | Sep 2012 | EP |
2675402 | Dec 2013 | EP |
2556210 | Apr 1988 | FR |
2890306 | Mar 2007 | FR |
11506686 | Jun 1999 | JP |
2003520103 | Jul 2003 | JP |
2003524434 | Aug 2003 | JP |
2004049585 | Feb 2004 | JP |
2005522266 | Jul 2005 | JP |
2005261951 | Sep 2005 | JP |
2006506201 | Feb 2006 | JP |
2008521492 | Jun 2008 | JP |
2008541832 | Nov 2008 | JP |
4673987 | Jan 2011 | JP |
8800813 | Feb 1988 | WO |
9406502 | Mar 1994 | WO |
WO 9509586 | Apr 1995 | WO |
9601591 | Jan 1996 | WO |
WO 9726939 | Jul 1997 | WO |
WO 9809583 | Mar 1998 | WO |
WO 9902092 | Jan 1999 | WO |
WO 9903404 | Jan 1999 | WO |
9908607 | Feb 1999 | WO |
9908743 | Feb 1999 | WO |
WO 9905977 | Feb 1999 | WO |
9940873 | Aug 1999 | WO |
WO 9949812 | Oct 1999 | WO |
WO 9962432 | Dec 1999 | WO |
0057815 | Oct 2000 | WO |
WO 0228320 | Apr 2002 | WO |
WO 02071977 | Sep 2002 | WO |
WO 03007840 | Jan 2003 | WO |
03011151 | Feb 2003 | WO |
WO 03022124 | Mar 2003 | WO |
03037191 | May 2003 | WO |
WO 03049600 | Jun 2003 | WO |
WO 2004010878 | Feb 2004 | WO |
WO 2004030575 | Apr 2004 | WO |
WO 2004066809 | Aug 2004 | WO |
WO 2004087006 | Oct 2004 | WO |
WO 2005018728 | Mar 2005 | WO |
WO 2005030093 | Apr 2005 | WO |
WO 2005115118 | Dec 2005 | WO |
WO 2005117718 | Dec 2005 | WO |
2006034149 | Mar 2006 | WO |
2006034166 | Mar 2006 | WO |
WO 2006026744 | Mar 2006 | WO |
WO 2006052322 | May 2006 | WO |
WO 2006091891 | Aug 2006 | WO |
2006119422 | Nov 2006 | WO |
WO 2006127005 | Nov 2006 | WO |
2007006139 | Jan 2007 | WO |
2007047851 | Apr 2007 | WO |
2007076480 | Jul 2007 | WO |
2007095031 | Aug 2007 | WO |
WO 2007121405 | Oct 2007 | WO |
WO 2008022327 | Feb 2008 | WO |
2008074027 | Jun 2008 | WO |
2008109228 | Sep 2008 | WO |
WO 2008151204 | Dec 2008 | WO |
WO 2008157507 | Dec 2008 | WO |
2009014528 | Jan 2009 | WO |
2009076515 | Jun 2009 | WO |
2009132045 | Oct 2009 | WO |
2009135166 | Nov 2009 | WO |
WO 2009134337 | Nov 2009 | WO |
2010009019 | Jan 2010 | WO |
2010027363 | Mar 2010 | WO |
2010028300 | Mar 2010 | WO |
WO 2010030991 | Mar 2010 | WO |
2010077599 | Jul 2010 | WO |
2010147808 | Dec 2010 | WO |
2011057002 | May 2011 | WO |
2011057277 | May 2011 | WO |
WO 2011066962 | Jun 2011 | WO |
2011095966 | Aug 2011 | WO |
WO 2011130081 | Oct 2011 | WO |
2011153304 | Dec 2011 | WO |
2012034135 | Mar 2012 | WO |
2012068175 | May 2012 | WO |
2012112749 | Aug 2012 | WO |
2012166804 | Dec 2012 | WO |
2013112944 | Aug 2013 | WO |
2013138615 | Sep 2013 | WO |
2013138615 | Sep 2014 | WO |
WO 2017074411 | May 2017 | WO |
WO 2018051187 | Mar 2018 | WO |
Entry |
---|
Benndor, et al. Treatment of a Ruptured Dissecting Vertebral Artery Aneurysm with Double Stent Placement: Case Report AJNR Am J Neuroradiol, Nov.-Dec. 2001, vol. 22, pp. 1844-1848. |
Brilstra, et al., Treatment of Intracranial Aneurysms by Embolization with Coils: A Systematic Review, Stroke, Journal of the American Heart Association, 1999, vol. 30, pp. 470-476. |
Ferguson, Gary, Physical Factors in the Initiation, Growth and Rupture of Human Intracranial Saccular Aneurysms, J. Neurosurg., Dec. 1972, vol. 37, pp. 666-667. |
Geremia, et al., Embolization of Experimentally Created Aneurysms with Intravascular Stent Devices, ANJR American Journal of Neuroradiology, Au 1994, vol. 15, pp. 1223-1231. |
Geremia, et al., Occlusion of Experimentally Created Fusiform Aneurysms with Porous Metallic Stents, ANJR Am J Neuroradiol, Apr. 2000, Issue 21, pp. 739-745. |
Lanzino, et al., Efficacy and Current Limitations of Intravascular Stents for Intracranial Internal Carotid, Vertebral, and Basilar Artery Aneurysms, Journal of Neurosurgery, Oct. 1999, vol. 91, Issue 4, pp. 538-546. |
Lieber, et al., Alteration of Hemodynamics in Aneurysm Models by Stenting: Influence of Stent Porosit, Ann of Biomedical Eng., 1997, vol. 25, pp. 460-469, Buffalo, NY. |
Lieber, et al., The Physics of Endoluminal Stenting in the Treatment of Cerebrovascular Aneur sms, Neurolo ical Research, 2002, vol. 24, Issue Supplement 1, pp. S32-S42. |
Moss, et al., Vascular Occlusion with a Balloon-Expadable Stent Occluder, Radiology, May 1994, vol. 191, Issue 2, pp. 483-486. |
Pereira, Edgard, History of Endovascular Aneurysm Occlusion, Management of Cerebral Aneur sms, 2004, pp. 11-26. |
Qureshi, Adnan, Endovascular Treatment of Cerebrovascular Diseases and Intracranial Neo lasms, The Lancelet, Mar. 2004, vol. 363, pp. 804-813. |
Steiger, Pathophysiology of Development and Rupture of Cerebral Aneurysms, Acta Nurochirur ica, Mar. 1990, vol. Suppiementum 48, Pages in 62 pages. |
Tenaglia, et al., Ultrasound Guide Wire-Directed Stent Deployment, Duke University Medical Center, De artment of Medicine, 1993 USA. |
Hill, S., et al., Initial Results of the AMPLATZER® Vascular Plug in the Treatment of Congenital Haert Disease, Business Briefing: US Cardiology 2004. |
Ronnen, H. R., Amplatzer® Vascular Plug Case Study, Closure of Arteriovenous Fistula Between Deep Femoral Artery and Superficial Femoral Vein, AGA Medical Corporation, May 2007. |
Number | Date | Country | |
---|---|---|---|
20200197203 A1 | Jun 2020 | US |
Number | Date | Country | |
---|---|---|---|
61083959 | Jul 2008 | US | |
61052756 | May 2008 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 12465475 | May 2009 | US |
Child | 15598357 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 15598357 | May 2017 | US |
Child | 16806766 | US |