This application claims priority to German Patent Application No. 10 2015 010310, filed Aug. 8, 2015, the entire contents of which are hereby incorporated by reference herein.
The invention relates to a heat exchanger which is brazed in a brazing furnace, comprising stacked heat exchanger parts which provide first and second channels, and with brazing material, at least arranged in brazed connection seams, the one brazing material on surfaces in the first channels being different than the other brazing material on other surfaces in the second channels. The invention also relates to production methods for said heat exchangers.
A heat exchanger of this type with a production method was filed recently at the DPMA and received the reference number DE 10 2014 015 170.0.
The different brazing materials are preferably brazing materials based on different substances, for example copper brazing materials and iron brazing materials.
Certain alloy constituent parts, of which it is said that they might trigger disadvantageous effects in connected circuits in dissolved form, can be eliminated by way of the heat exchanger of the earlier application, and costs can also possibly be reduced.
In the meantime, the applicant has carried out practical test series and has determined that there is further need for improvement. This applies, for example, with regard to the higher strength which is necessary for many applications of the heat exchanger.
It is the object of the invention to improve the heat exchanger from the earlier application. Improved strength properties are to be achieved by way of one particularly preferred exemplary embodiment.
According to the invention, this object is achieved by way of a heat exchanger which is brazed in a brazing furnace.
According to one important aspect of the invention, it is provided that the one brazing material is preferably present at least partially in an upper and/or lower channel of the first or second channels of the heat exchanger which are assigned to the first or the second medium, and that the other brazing material is arranged in the remaining first or in the remaining second channels for the same medium.
This does not necessarily have to be the uppermost or the lowermost channel. In general, this means equipping one channel or some channels on one medium side or even on both medium sides at least partially with another brazing material than the other remaining channels on the respective medium side, in order to provide the heat exchanger with the advantages which are to be assigned to said other brazing material.
With regard to strength, actually only the one uppermost and/or the one lowermost channel are/is of significance in practice, because the greatest loads will occur there and the strength is therefore to be increased there. This can be the first channel which lies below a cover plate or above a base plate and/or can also be, for example, the second channel, namely depending on the respective medium side which is to be reinforced.
It should be understood that the proposed embodiment of the uppermost and/or the lowermost channels can also be present on both medium sides of the heat exchanger, if a special application should require an embodiment of this type.
An alternative solution according to the invention provides that there is at least one first part region in all of the first channels or in all of the second channels, in which part region the one brazing material is arranged, and there is at least one second part region, in which the other brazing material is arranged.
The invention proceeds, inter alia, from the knowledge that, for example, a copper-based brazing material which contains almost exclusively copper can provide a higher strength than, for example, an iron-based brazing material which has different other alloy constituent parts.
One result of the tests which were addressed in the introductory part has proven to be that no damage caused by dissolution of copper occurred in the connected circuits as a result of the provision of copper brazing substance merely in the upper and the lower channel, which are loaded the most with regard to strength, of the first or the second channels. All of the remaining first or the remaining second channels, which therefore represent the majority of the channels, have namely been equipped with an iron-based brazing material, as in the earlier application. The overall quantity of, for example, copper therefore still remains below a threshold which triggers supposed damage.
This also applies to aforementioned alternative solution because the part regions which are provided with copper brazing substance in the first or in the second channels are relatively small.
In addition, one particularly preferred exemplary embodiment of the heat exchanger arranges for not providing the uppermost and/or the lowermost channel completely with copper brazing substance, but rather only partially, as a result of which the quantity of copper used is reduced further, but the strength can be increased to a sufficient extent, in comparison with the earlier application. The remaining brazing substance in the upper and/or in the lower channels can be an iron-based brazing substance. In this context, “partially” is therefore to be understood to mean that there are areas in said channels which have the copper brazing substance and other areas in the same channels which are provided with the iron brazing substance.
In a heat exchanger according to an embodiment of the invention, the heat exchanger parts of which, which form the channels, are heat exchanger plates which are stacked inside one another and have two inlets and two outlets, the addressed areas with the copper brazing substance are mainly those which are situated in a region around the inlets and outlets. In contrast, the addressed other areas within the channels which are provided with the iron brazing substance are those areas which are present in a middle plate or channel region between the inlets and outlets.
If the heat exchanger is an oil cooler which is cooled by means of liquid, it is provided in one very particularly preferred exemplary embodiment, in simple terms, to equip all of the channels which are assigned to the oil with the copper brazing material. In the liquid channels, in contrast, the uppermost and/or the lowermost channel are/is provided (partially) with the copper brazing material, whereas all the remaining channels for the liquid are provided completely with the iron brazing material.
The brazed heat exchangers according to some embodiments of the invention comprise, as a first type, what are known as “caseless” heat exchangers, in which the heat exchanger parts are usually configured as trough-shaped plates which are stacked inside one another. Heat exchanger plates of this type have at least four openings which, as has already been mentioned, form four inlet or outlet channels which extend through the stack. One inlet channel and one outlet channel are assigned to in each case one medium. In said first heat exchanger type, all the channels are closed channels. Closed channels are those which are closed all around by means of connected plate edges.
The heat exchangers according to some embodiments of the invention also include those of a second type which has a housing, in which the stack is arranged. As heat exchanger parts, said stack has tubes or else plate pairs and fins which form tubes or (as an alternative) lobes, between the tubes or the plate pairs, with closed channels in the tubes or plate pairs and with other, open channels, in which the fins or the lobes are arranged. If the heat exchanger parts are single-piece tubes, in particular flat tubes, they are closed at their opposite ends by way of crimping or folding, as known in the art.
Open channels are those which are at least partially open on the circumferential side, but are preferably completely open all the way around.
Said heat exchanger parts as a rule have merely two openings in the plates or in the flat tube walls, which openings form an inlet channel and an outlet channel in the plate stack for the medium which flows through the closed channels. The second medium flows into the housing and subsequently flows through the other channels which are open at least partially all around with the fins or the lobes between the plate pairs, in order to subsequently leave the housing.
Accordingly, the second heat exchanger type is distinguished by way of an alternation in the stack of closed channels with the open channels.
A suitable copper-based brazing material has a copper proportion of approximately 99% copper or even more.
A suitable iron-based brazing material contains, for example, 20% by weight chromium, 39% by weight iron and 20% by weight nickel and also 10% by weight copper and other alloy constituent parts in a relatively small quantity.
Another suitable iron-based brazing substance has 54% by weight iron and merely 15% by weight chromium and 10% by weight nickel and other alloy constituent parts, inter alia also 5% by weight copper.
Copper-based and iron-based brazing materials have been addressed up to now. This proposal is not to be restricted thereto, however. Rather, combinations of other known brazing materials or brazing alloys are to be included, it being possible for advantages which are to be attributed to said brazing material alloys to be achieved, for example an improvement with regard to resistance against corrosion, but also further cost reductions, etc. The different brazing materials should lie at least close to one another or be approximately identical with regard to their melting points, as has already been stated in the earlier application.
A heat exchanger according to the invention can also have more than two different brazing materials.
The first and the second medium can be different media or identical media (for example, two oils), but at different temperatures.
The following description of exemplary embodiments is particularly directed to those which have copper and iron brazing materials, in order to improve the strength of the heat exchanger.
Before any embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the accompanying drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways. Also, it is to be understood that the phraseology and terminology used herein is for the purpose of description and should not be regarded as limiting. The use of “including,” “comprising,” or “having” and variations thereof herein is meant to encompass the items listed thereafter and equivalents thereof as well as additional items. Unless specified or limited otherwise, the terms “mounted,” “connected,” “supported,” and “coupled” and variations thereof are used broadly and encompass both direct and indirect mountings, connections, supports, and couplings. Further, “connected” and “coupled” are not restricted to physical or mechanical connections or couplings.
The basic material of those parts of the heat exchangers which are shown in the exemplary embodiments is a stainless steel. In other exemplary embodiments which are not shown, it can be, for example, an aluminum alloy or another metal which can be brazed with correspondingly different brazing materials.
Furthermore, as is apparent from
In the abovementioned middle plate or channel region, a corrugated slat 4b is situated between the two channel plates 4a, the details of which corrugated slat 4b are shown in
All the liquid channels can be of identical configuration with regard to the above-described embodiment.
The following is provided with regard to the brazing materials which are present in
In contrast, an iron brazing material 3a, indicated merely by way of a single oval in
In contrast, exclusively the iron brazing material 3a is situated in all remaining channels 2a which are assigned to the cooling liquid.
In one exemplary embodiment which is not shown, not only is the uppermost channel 2a configured as described with regard to the brazing materials 3a, 3b, but rather also the following liquid channel 2a.
In
Exclusively a copper brazing material 3b is also situated within the oil channels in said exemplary embodiment.
In each case two other channel plates 4c are situated in the open channels. In contrast to the first exemplary embodiment, the said other channel plates 4c have merely a single opening. They are also of corrugated configuration, however, in order that they can be flowed through just like the channel plates 4a of the first exemplary embodiment. The opening corresponds with one of the abovementioned two plate openings. A copper brazing material 3b is situated in the upper, open channel which is shown, whereas an iron brazing material 3a is situated in the remaining other open channels which are not shown in detail. In
Various alternatives to the certain features and elements of the present invention are described with reference to specific embodiments of the present invention. With the exception of features, elements, and manners of operation that are mutually exclusive of or are inconsistent with each embodiment described above, it should be noted that the alternative features, elements, and manners of operation described with reference to one particular embodiment are applicable to the other embodiments.
The embodiments described above and illustrated in the figures are presented by way of example only and are not intended as a limitation upon the concepts and principles of the present invention. As such, it will be appreciated by one having ordinary skill in the art that various changes in the elements and their configuration and arrangement are possible without departing from the spirit and scope of the present invention.
Number | Date | Country | Kind |
---|---|---|---|
10 2015 010 310 | Aug 2015 | DE | national |