Breathing assistance apparatus

Information

  • Patent Grant
  • 11400249
  • Patent Number
    11,400,249
  • Date Filed
    Monday, January 24, 2022
    2 years ago
  • Date Issued
    Tuesday, August 2, 2022
    a year ago
Abstract
A nasal cannula assembly is disclosed having a face mount part, in use resting against a user's face, which includes at least one nasal prong capable of being fitted into a person's nares. The cannula assembly also includes a manifold part, in fluid communication with the face mount part, having a single horizontal side gases entry. In particular, this cannula assembly is for supplying heated, humidified gases to a patient suffering from COPD. A tie or lanyard is disclosed for use with a breathing assistance apparatus such as a nasal cannula, face or nasal mask or tracheostomy connector. The tie or lanyard transfers the weight of the conduits supplying gases to the breathing assistance apparatus from the breathing assistance apparatus and distributes it onto the neck of the patient.
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

Any and all applications for which a foreign or domestic priority claim is identified in the Application Data Sheet as filed with the present application are hereby incorporated by reference under 37 CFR 1.57.


BACKGROUND OF THE INVENTION
Field of the Invention

The present invention relates particularly, though not solely, to the delivery of high flow humidified pressurized oxygen and/or air to a patient in need of respiratory support by way of a nasal cannula


Description of the Related Art

Nasal cannula generally consist of entry tubing, either symmetric or single sided that lies across the upper lip. Protruding from this tubing are open ended prongs which extend into the nares of the patient to deliver oxygen. Nasal cannulae have the advantage of being more comfortable and acceptable than a facemask to most patients. The existing market for nasal cannula is well serviced by devices suitable for the delivery of gases in the 0 to 5 liter per minute range. These devices are typically supplied by a double entry lumen of small diameter (2-3 mm range) that supplies both sides of the nasal cannula and provides even airflow to each nasal prong. These devices work well for the delivery of low humidity gas flows of between 0 to 5 liter per minute and have been well received by patients over the last 30 years.


Hudson Respiratory Care Incorporated manufactures a nasal cannula that is disclosed in U.S. Pat. No. 2,868,199 that consists of a single flow entry nasal cannula. This single flow entry has the advantage of being unobtrusive, and more relevant to delivering humidity than a dual flow entry style of nasal cannula, simply due to the advantage of flow rates and surface area for heat loss. The single flow entry is on the left side only, which causes the user difficulty in use if the flow source is on the opposite side of the user requiring longer lengths of tubing and causing the tube to cross the body. The cannula itself is manufactured as one part only, of PVC plastic. This product is not designed for delivering high flow or high humidity gases. The nasal prongs are less than 3 mm in diameter resulting in noise and high velocity jetting of gas causing severe irritation at high flows. These cannulae are difficult to clean inside, are uncomfortable, and the prongs are too rigid for extended therapies.


U.S. Pat. No. 3,754,552 of Sandoz-Wander, Inc. discloses a nasal cannula, having two nasal prongs, adapted for the intake of therapeutic gas from either the right or left side of the patient. Here the nasal cannula has a bore within it that feeds each prong. The bore is able to receive a tube for supplying gases to the cannula in either end and in use a plug is required to obstruct the unused end.


Innomed Technologies, Inc. manufactures a nasal cannula device called the NASALAIRE™. This nasal cannula is a dual flow entry style cannula where two large tubes come from behind the ears, through the field of vision to the upper lip. In this device air or oxygen travels down a wide bore conduit to the nasal cannula. The NASALAIRE™ creates a physical seal between the nares and itself, and relies on the absence of leaks around itself and the nares to deliver pressure supplied by a continuous positive airway pressure (CPAP) blower to the airway of the wearer. The wearer is required to breathe in and out of the NASALAIRE™, thereby rebreathing some of the exhaled air from the lungs. The NASALAIRE™ is not designed to deliver humidified gases to the patient, being unheated and without insulation of any type. The NASALAIRE™ cannula is uncomfortable especially if a patient rests on the tube, as would happen during sleep, and is also obtrusive.


The new application of high airflow extended therapies using nasal cannulae generally result in the nasal cannula reaching temperatures in excess of 35 degrees C. Usually cannulae are made from soft polymeric material (for example, silicone) that absorbs heat and does not breathe and therefore sweat is generated under the contact points with the skin. This heat in combination with the polymeric materials waterproof properties results in sweat being trapped against a patient's skin and the patient has the sensation of overheating. The trapped sweat is uncomfortable and could lead to rashes.


Oxygen is generally supplied as a dry gas, but it is well known in the art to either heat and/or humidify gases before delivering them for breathing by a patient. In particular when delivering oxygen, or an oxygen air mixture, it has proven beneficial to humidify the gases first. In WO 01/41854 of Vapotherm, Inc. a system is disclosed that allows the delivery of humidified oxygen through a nasal cannula. This system uses a narrow bore conduit and nasal cannula with a high resistance to gas flows, thereby requiring the oxygen be of a high pressure. Air, as well as oxygen, can also be passed down the conduit and nasal cannula and it too must be of a high pressure. This system allows the delivery of high flows of oxygen enriched air to the patient, but is limited in the flows achievable due to the narrow bore of the cannula resulting in high resistance gas flow and excessive velocity and noise upon exiting the cannula. Furthermore, the narrowness of the nasal cannula in this system allows the patient to easily expire gases from their nostrils as there is a reasonable gap between the prongs and the patient's nares. Thus positive airway pressure is not created and as such this cannula is not suitable for the treatment of Obstructive Sleep Apnea (OSA).


In breathing circuits that supply respiratory gases to a patient by way of a patient interface, such as a nasal cannula, mask or tracheal tube, it is common to have a heated breathing circuit or tube delivering heated and humidified gases to the patient, followed by a short length of non-heated tube close to the patient. This unheated tube may be a short unheated extension tube or catheter mount. The unheated section of tube is usually intended to be very flexible to reduce torsion or pulling on the patient interface, to allow the gases to cool slightly towards the dew point of the gas, and also to eliminate hot surface temperatures near the patient. As this tube is unheated the temperature of the tube walls are colder than the dew point temperature of the gas, as a result the vapor in the gases passing near these walls will begin to condense out. Over time a build up of condensate close to the patient may lead to a build-up of bacteria which may cause infection. Build up of condensation may also create noise, such as gurgling, which may wake a patient, and in extreme circumstances the fluid build up may cause drowning.


When providing humidified gases to a patient it is common to use a heated breathing circuit (tubing). This circuit is heavy and can drag and pull on the patient interface. This is more pronounced if the patient is mobile and can be painful and/or dangerous if the patient interface is invasive such as an endotracheal tube. It is common to use a short flexible tube between the heated circuit and patient interface to reduce any torque or twisting. In order to stop the weight pulling on the patient interface, circuit hangers are occasionally used. This is a large extendable metal arm to take the weight. It also has been known in the art to clip part of the tubing to the patient's clothes or bedclothes. Both of these solutions have been found to be quite unsuitable for mobile patients especially when sleeping and turning in bed.


With patient interfaces such as nasal cannulae the stability of the nasal prongs on the face is very important, as movement of the prongs within the nares can cause severe irritation. Current methods employed to retain a single entry nasal cannula on the face use a simple elastic band of material around the back of the patients head. This is prone to rotating the nasal cannula relative to the patient's head especially when turning ones head on a pillow. This rotation causes the prongs move within the nares, irritating this sensitive area.


SUMMARY OF THE INVENTION

It is an object of the present invention to provide a breathing assistance apparatus which goes someway to overcoming the above mentioned disadvantages or which will at least provide the public a useful choice.


Accordingly in a first aspect the present invention consists in a nasal cannula assembly adapted to deliver gases to a patient comprising: a face mount part, including at least one nasal prong capable of being fitted into at least one of said patient's nares, a removable gases flow manifold part in use in fluid communication with said face mount part, said manifold part having a single horizontal side gases entry, in use, in fluid communication with said transport means.


In a second aspect the present invention may broadly be said to consist in a breathing assistance apparatus comprising: a pressurized source of gases, humidification means adapted to, in use, be in fluid communication with said source of gases and adapted to in use humidify said gases, humidified gases transport means adapted to, in use, be in fluid communication with said humidification means and adapted to in use convey said humidified gases, heating means disposed within said transport means and adapted to in use heat said gases as they pass through said transport means, and nasal cannula, adapted to deliver said humidified gases to said patient, said nasal cannula comprising a face mount part, including at least one nasal prong capable of being fitted into at least one of said patient's nares, a removable gases flow manifold part in use in fluid communication with said face mount part, said manifold part having a single horizontal side gases entry, in use, in fluid communication with said transport means.


The invention consists in the forgoing and also envisages constructions of which the following gives examples.





BRIEF DESCRIPTION OF THE DRAWINGS

Preferred forms of the present invention will now be described with reference to the accompanying drawings.



FIG. 1 is an illustration of a respiratory humidifier system that may be used with the nasal cannula assembly of the present invention.



FIG. 2 is a perspective view of a first form of the nasal cannula assembly of the present invention.



FIG. 3 is an exploded perspective view of the first form of the nasal cannula assembly of FIG. 2, showing two parts making up the nasal cannula, a face mount part and gases flow manifold part attached to tubing supplying gases to the patient.



FIG. 4 is a perspective view of a second form of the nasal cannula assembly of the present invention, showing tubing providing a gases supply to a gases flow manifold part and face mount part when in connection.



FIG. 5 is a perspective view of the second form of the nasal cannula assembly of FIG. 4 where the gases flow manifold part is disengaged from the face mount part.



FIG. 6 is a perspective view of the second form of the nasal cannula assembly of FIG. 4 where the gases flow manifold part is disengaged from the face mount part, showing the manifold part can be fitted to either side of the face mount part.



FIG. 7 is a back perspective view of the second form of the nasal cannula of FIG. 4, showing a removable breathable pad on the inner side of the face mount part that abuts the patients face.



FIG. 8 is a perspective view of a third form of the nasal cannula assembly of the present invention, particularly showing a gases flow manifold part that allows for the attachment of removable prongs.



FIG. 9 is a perspective view of the third form of the nasal cannula assembly of the present invention, showing a strap and breathable pad fittable to the manifold part of FIG. 8.



FIG. 10 is a perspective view of a first form of removable prongs capable of being attached to the manifold part of FIG. 8.



FIG. 11 is a perspective view of a second form of removable prongs capable of being attached to the manifold part of FIG. 8.



FIG. 12 is a perspective view of a patient wearing the nasal cannula assembly of FIG. 4, showing the use of a neck tie to take some weight of the tubing and a head strap assisting in the maintaining of the assembly to the patient's face.



FIG. 13 is a front view of a patient wearing a nasal cannula assembly present invention where the assembly is held to the patient's face with the assistance of ear loops.



FIG. 14 is a side view of the patient and nasal cannula assembly of FIG. 13.



FIG. 15 is a perspective view of a tracheotomy fitting.



FIG. 16 is a front view of a patient with a tracheotomy and fitting attached to a breathing supply where a neck tie or lanyard is used to support the conduit supplying gases to the patient.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

Whether used in a hospital environment or in a home environment, the nasal cannula assembly of the present invention will generally have associated three main pieces of apparatus. Firstly an active humidifier that controls the temperature of a heater plate heating a body of water to achieve a desired temperature and humidity of the gases being humidified. Secondly a transport conduit from the humidifier to the patient is also required, which is preferably heated to reduce condensation, or “rain out”. Thirdly a nasal cannula designed to fit into the nasal cavity of a patient or user and deliver humidified, pressurized gases.


Referring to FIG. 1 a humidifying circuit as might be used with the nasal cannula of the present invention is shown. A patient 1 is receiving humidified and pressurized gases through a nasal cannula 20 connected to a humidified gases transportation pathway or inspiratory conduit 3 that in turn is connected to a humidifier 8 (including humidification chamber 5) that is supplied with gases from a blower 15 or other appropriate gases supply means. The inspiratory conduit 3 is connected to the outlet 4 of a humidification chamber 5 which contains a volume of water 6. Humidification chamber 5 is preferably formed from a plastics material and may have a highly heat conductive base (for example an aluminium base) which is in direct contact with a heater plate 7 of humidifier 8. The humidifier 8 is provided with control means or electronic controller 9 which may comprise a microprocessor based controller executing computer software commands stored in associated memory. Gases flowing through the inspiratory conduit 3 are passed to the patient by way of the nasal cannula 20.


Controller 9 receives input from sources such as user input means or dial 10 through which a user of the device may, for example, set a predetermined required value (preset value) of humidity or temperature of the gases supplied to patient 1. In response to the user set humidity or temperature value input via dial 10 and other possible inputs such as internal sensors that sense gases flow or temperature, or by parameters calculated in the controller, controller 9 determines when (or to what level) to energize heater plate 7 to heat the water 6 within humidification chamber 5. As the volume of water 6 within humidification chamber 5 is heated, water vapor begins to fill the volume of the chamber above the water's surface and is passed out of the humidification chamber 5 outlet 4 with the flow of gases (for example air) provided from a gases supply means or blower 15 which enters the chamber through inlet 16. It should be noted that it is possible to obtain the relationship between the humidity of the gases in humidification chamber 5 and the temperature of the heater plate 7. Accordingly, it is possible to utilize the heater plate temperature in an algorithm or a look-up table to determine the humidity of the gases.


The blower 15 may be provided with a variable speed pump or fan 2 which draws air or other gases through the blower inlet 17. The speed of variable speed pump or fan 2 may be controlled by a further control means or electronic controller 18 (or alternatively the function of this controller 18 could be carried out by the other controller 9) in response to inputs from controller 9 and a user set predetermined required value (preset value) of pressure or fan speed via dial 19.


A heating element 11 may be provided within the conduit or tubing 3 to help prevent condensation of the humidified gases within the conduit. Such condensation is due to the temperature of the walls of the conduit being close to the ambient temperature, (being the temperature of the surrounding atmosphere) which is usually lower than the temperature of the humidified gases within the conduit. The heater element is effectively replaces the energy lost from the gases through conduction and convection during transit through the conduit. Thus the conduit heater element ensures the gases delivered are at an optimal temperature and humidity.


Side Entry Nasal Cannula

The nasal cannula assembly of the present invention provides a patient with a patient interface suitable for the delivery of high airflow, high humidity gas flow to the patient's nasal cavity. A particular aspect of the nasal cannula of the present invention is the suitability for long term therapy where the patient, for example, a patient suffering from Chronic Obstructive Pulmonary Disease (COPD), will wear the cannula for several hours per day over weeks, months and in some cases years. Therefore, for patients to accept use of nasal cannula under these circumstances the cannula need to be unobtrusive, comfortable to wear, noise free, suitable for wearing while sleeping, easy to clean and have prongs that can generate Positive End Expiry Pressure (PEEP). The cannula of the present invention may also be used for other therapies such as for Continuous Positive Airway Pressure (CPAP) therapy and the like.


A first form of the nasal cannula assembly of the present invention is shown in FIGS. 2 and 3. This nasal cannula, generally indicated as 20, comprises a face mount part 21 including a pair of tubular nasal prongs 22, 23 integrally molded with or removable attached to the face mount part 21, and a gases flow manifold part 24 that is integrally molded with or attached to tubing 3, such as that described above.


The face mount part 21 and prongs 22, 23 are preferably molded from silicone or other flexible material as is known is the art of cannula construction. The gases flow manifold part 24 is preferably made from a hard plastics material, although it may be manufactured in other suitable materials.


The face mount part 21 is preferably integrally molded with the prongs 22, 23 and is shaped to generally follow the contours of a patient's face around the upper lip area. The inner side (not shown) of the face mount part 21 may be provided with a breathable pad, to be described below. The outer side 25 of the face mount part 21 has molded in it an elongated oval recess 26 and two oval recesses 27, 28 that extend through the face mount part 21 and each meet the tubular passageways formed within each of the tubular prongs 22, 23.


The gases flow manifold part 24 is generally tubular in shape having a substantially circular inlet (not shown) on one side that curves around to an elongated oval outlet 29. The circular inlet receives the end of the conduit or tubing 3, so that gases are supplied to the gases flow manifold part 24 and are able to flow through the inlet and out the outlet 29. The tubing 3 is preferably permanently fixed to the manifold part 24, but may be releasably attachable.


The outlet 29, being elongated and oval in shape, fits into the elongated recess 26 in a friction or snap fit engagement with the manifold 21, such that a substantial force is required to remove the manifold part 24 from the elongated recess 26. Further, as the face mount part 21 is flexible and the manifold part 24 made from a harder plastics material it is possible for the manifold part outlet 29 to be easily pushed or forced into the elongated recess 26. When the manifold part 24 is engaged with the face mount part 21 and in use, gases flow from the tubing 3, through the gases flow manifold part 24 out its outlet 29, into each of the oval recesses 27, 28, into each of the prongs 22, 23 and into the patient's nares.


The face mount part elongate recess 26 and manifold part outlet 29 are symmetrical in shape and configuration and therefore the manifold part 24 is capable of being switched or flipped such that the tubing 3 extends from either the left or right side of the patient's nares. This means that the nasal cannula assembly 20 and associated tubing 3 are relatively unobtrusive as the cannula 20 only requires a single horizontal side entry, not two entries as that of the prior art.


The nasal cannula assembly of the present invention is more comfortable to wear as it sits under the septum of the nose and supports the two nasal prongs. As the prongs are made in one molding of a soft material such as silicone the prongs are easy to insert in the patient's nares and comfortable to the patient.


For a nasal cannula assembly to be suitable for wearing during sleep each night the cannula must be noise free. Many prior art cannulas are prone to whistling. With a range of airflows generally being between 0 to 40 liters per minute, although airflows of 60 liters per minute are envisaged for the present nasal cannula, and with the air or gases being supplied to a single horizontal entry point it has proved difficult to prevent whistling. For this reason the face mount part 21 is contoured such that the pressure distribution within the face mount part 21 forces even airflows up each nasal prong.


As the nasal cannula assembly of the present invention is likely to be used while a patient is sleeping, the cannula must be easily tailored for the patients sleeping arrangement. The cannula of the present invention supplies high flow humidified gases to the patient from either the left side or the right side of the cannula thus allowing the minimum length connection circuit to the bedside unit supplying the humidified gas. As the nasal cannula assembly of the present invention allows for the horizontal entry of gases from either side the patient can configure the unit as left or right entry for their particular sleeping arrangement. It is envisaged that the tubing 3 is approximately two meters in length to allow for added flexibility of the cannula.


Reference is now made to FIGS. 4 to 7 that show a second form of the nasal cannula assembly of the present invention. In this form the nasal cannula assembly 30 is of a substantially similar form to the first form described above in relation to FIGS. 2 and 3, and has a face mount part 32, a pair of nasal prongs 33, 34, gases flow manifold part 35 and tubing 3. The face mount part 32 and pair of nasal prongs 33, 34 are preferably integrally molded as one piece from a soft plastics material such as silicone, although in other forms the face mount part and prongs may be separate, but capable of attachment together for use.


The nasal prongs 33, 34 are tubular in shape and may be consistent in diameter but may be shaped to fit the contours of the human nares.


A strap or strap attachment means 31 may be integrally formed or attached to the face mount part 32 in order to enable the nasal cannula assembly 30 to be held in place about a patient's face.


The face mount part 32 has an open tubular recess 38 extending below the nasal prongs 33, 34 that is capable of receiving a gases flow manifold part 35 that is attached to or integrally formed with tubing 3. The tubular passageways within the nasal prongs 33, 34 extend through the face mount part and into the recess 38. The gases flow manifold part 35 is blocked at one end 39 but attached to the tubing at the other end and has an elongate opening 37 that acts as an exit for gases received from the tubing 3. Due to the flexible nature of the material the face mount part 32 is made from, and as the gases flow manifold part 35 is made from a hard plastics material, the gases flow manifold part 35 can be pushed through the tubular recess 38 in the face mount part 32 and the elongate opening 37 in the gases flow manifold part 35 meets with the tubular passageways of the prongs 33, 34. Therefore, in use, gases flowing through the tubing and into the gases flow manifold part 35 exit through the opening 37 and into the tubular passageways in the prongs 33, 34, then into the patient's nares.


In order to assist with maintaining the gases flow manifold part 35 within the manifold recess 38 the manifold part 35 is provided with an inner recessed portion 60 and contoured lip areas 58, 59. When engaged with the face mount part 32 the tubular body forming the recess 38 sits within the inner recessed portion 60 and the edges of the tubular body abut the lips 58, 59 formed on the manifold part 35.


Breathable Pad

A breathable pad may be supplied with any of the nasal cannula assemblies described above. In particular, such a pad 36 is shown in FIG. 7 in the second form of the nasal cannula assembly as described above. It must be appreciated that a pad of this type may be provided with any of the other two forms as herein described.


The pad is preferably attached to the inside surface of the face mount part 32 that connects with the upper lip of the patient wearing the cannula. The pad 36, which is preferably made from an absorbent cloth, reduces the incidence of heat and moisture on the patient's upper lip, where the face mount part 32 sits against their face.


The pad 36 is preferably attached to the face mount part 32 by adhesive, for example, the pad could be supplied with a sticky backing that adheres to the face mount part, so that the pad can be easily removed from the face mount part and replaced as necessary.


The pad reduces the effects of heat against the patient's skin and improves hygiene, as any contaminants or cultures that may grow close to the patient's skin, in the warm environment can be removed on removal and replacement of the pad.


Three Part Nasal Cannula

Referring now to FIGS. 8 to 11, a third form of the nasal cannula assembly of the present invention is shown where the nasal cannula assembly comprises three parts.


Firstly, a gases flow manifold part 40 is shown in FIG. 8 which is designed for either left or right hand orientation and provides a symmetrical flow to a pair of nasal cannula assembly prongs 41, 42 (see FIG. 10 or 11).


Next, a pair of soft nasal prongs 41 or 42 are provided that are capable of being attached to the top of the gases flow manifold part 40 allowing for a large range of different shaped and spaced prongs to be available to the patient. Two such configurations of prongs 41, 42 are shown in FIGS. 10 and 11. The prongs 41 of FIG. 10 are narrow elongate tubular members 43, 44 of a substantially constant diameter that are fittable into a patient's nares. The prongs are integrally molded with a body 45 that is fittable with the gases flow manifold part 40 (see FIG. 8) by appropriate means, for example, friction or snap fit. The prongs 42 of FIG. 11 are tapered tubular members 46, 47 molded to a body 48. Again, this body 48 is capable of being fitted (friction, snap or other) to the gases flow manifold part of FIG. 8. These prongs are preferably made from a soft plastics material such as silicon, although other suitable materials may be used.


With the prongs being removable they are easily cleaned and could also be disinfected for second or subsequent use.


The third part to the third form of the nasal cannula assembly shown in FIGS. 8 to 11 is the face mount part 49 of FIG. 9. The face mount part 49 comprises a head strap 53 attached to a pad 50, that may be a molded or shaped substantially rigid pad, for example, made from a plastics material such as polypropylene. The pad 36 may include a breathable cloth pad on its surface that abuts a patient's face, similar to that pad 36 described in relation to FIG. 7, or the head straps 53 may extend to sit behind the pad. The head strap 53 is preferably made from a flexible material, such as neoprene.


The plastic pad 50 is shown in FIG. 9 and has a plurality of apertures 61 formed into to allow for heat and moisture to dissipate from the patient's facial surface. The pad 50 has fastening means 51, 52 for holding the gases flow manifold part 49 in the correct position on the upper lip of the patient. The fastening means may be clips 51, 52 that are fittable into complimentary recesses 54, 55, 56, 57 provided in or on the manifold part 40 (see FIG. 8), but other appropriate fastening means may be provided with the cannula. An example of other fastening means is a loop that is integrally molded as part of the prongs which wraps around the face mount part and latches over a protrusion on the manifold part thus encapsulating the face mount part and holding the assembly together stably and securely. Another example of a fastening means is a plastic Velcro™ type attachment where one side would attach to one side of the manifold part 40 and the other side to the plastic pad 50. For the fastening means shown in FIGS. 8 and 9 at least one recess must be provided on either side of the manifold 40. In the preferred form of the nasal cannula assembly two recesses 54, 55 are provided on one side of the manifold 40 and two other recesses 56, 57 on the other side of the manifold 40.


The attachment between the face mount part 49 and the manifold part 40 allows for either left or right hand orientation of the manifold part and associated tubing.


It is envisaged the cannula of the present invention will be reusable for several wearings on a single patient and as such the nasal cannula assembly must be hygienic. It is envisaged that all the embodiments of the nasal cannula assembly of the present invention as herein described can be disassembled so that the cannula is easier to clean. The prongs and integrally attached parts are capable of being stored in a sterile solution until reused, much like false teeth are currently stored while not in use.


With a single flow entry cannula there will be less condensate due to the reduction in surface area for heat loss and thus the cannula of the present invention reduces the effects of condensation building in the tubing and cannula.


The detachable nasal cannula assembly described in relation to FIGS. 8 to 11 allows a patient on long-term therapy to order their particular prong size but maintain a common tubing connection system right to the point of connection into the manifold under the nose.


In other forms of the nasal cannula assembly of the present invention the assembly may only be provided with one nasal prong fittable into only one of the patient's nares. The purpose of such an assembly with one prong is to allow for consecutive use of a nasogastric tube. Nasogastric tubes are generally inserted in one of a patient's nares and extend down into their stomach. For example, it may be necessary or ideal for a patient to be fed by way of a nasogastric tube and to also receive heated humidified gases. The nasal cannula assembly of the present invention having only one prong would allow this.


Flexible Extension Dry Tube

Often an unheated flexible section of tubing is placed proximal to the patient to reduce torsion or pulling on the patient interface and reduce possible heat problems or over heating close to the patient. In order to reduce condensate forming in the unheated tubing, tubing can be provided that has vapor transmission properties. Referring now to FIG. 12 the nasal cannula of the present invention (in particular, that of the second form described herein) may be provided with a short piece of breathable tubing 62 between the nasal cannula 30 and heated tubing 3. The tubing 62 is preferably made from a material that allows for transmission of water, such as a hydrophilic material, for example SYMPATEX™.


Test results show the performance of a 420 mm length of breathable tube, operating with air input at an absolute humidity of 42.2 mg/L, an airflow of 10 liters per minute, in a room with ambient air at 22 degrees C. and 50% RH, only lowered the air temperature to 37 and the absolute humidity to 41.15 mg/L at the exit of the dry tube. In comparison a 420mm length of non-breathable but insulated polyethylene tube under exactly the same conditions also output air at 41.15 mg/L. In the breathable tube there was significantly less condensate measured, therefore, some of the humidity that would otherwise be lost as condensate on the wall is being transmitted through the breathable wall.


The result of providing the short section of breathable tubing 62 is that a majority of humidity in the gases is transported to the patient, and there is an insignificant and immeasurable loss of humidity through the breathable wall of the short tube 62, while condensate is reduced. The design of the high airflow high humidity system has been optimized to deliver a breathable gas treatment to patients at temperatures approximating body temperature and fully saturated with water vapor for long treatment periods. The use of an unheated breathable conduit proximal to the patient to provide a connection that is highly flexible and avoids condensation by breathing would be expected to lower the humidity of the gas treatment thereby decreasing the efficacy of the treatment. These results are surprising and are counterintuitive and go some way to explaining why the use of a breathable tube as a short section of tubing before the patient has been overlooked. This short tube 62 is envisaged to be used with any tube delivering heated and humidified gases to a patient.


Neck Tie

A neck tie or lanyard may be provided with the nasal cannula assembly of the present invention. FIG. 12 shows such a tie 63. The tie 63 is preferably connected to the tubing 3 or connection 67 between the tubing 3 and breathable tube 62. A toggle 64 is preferably provided with the neck tie 63 in order to adjust the neck tie's length. The neck tie has the purpose of taking some of the weight of the tubing 3 and prevents the weight of the tubing 3 pulling on the nasal cannula assembly 30. This helps to prevent the prongs interfering with the very sensitive lining of the nasal passages. The loose fitting neck tie also provides a convenient way of connecting the tubing 3 to the patient outside the blankets. This allows the patient to turn in the bed and avoids the tubing 3 overheating if placed under the blankets.


The tie or lanyard described may be used with any breathing apparatus that supplies gases to a patient; for example it may be used with a nasal or face mask or with a tracheotomy fitting or connector. When the tie or lanyard is used with such apparatus it takes the weight of the conduit(s) or tubing supplying gases to the mask, connector or cannulae and helps reduce the pull on the mask, connector or cannulae.



FIGS. 15 and 16 show a tracheotomy fitting or connector that may utilize a neck tie or lanyard of the present invention. The tracheotomy connector 69 attaches to a tracheotomy mount 72 that extends into a tracheotomy tube (not shown) through hole in a patient's 68 neck and into their airway passages. The connector 69 provides a direct coupling of a tracheotomy tube to the breathing supply of gases received through a conduit 71. Preferably the conduit 71 is constructed in a breathable material, similar to that described above, but may be a heated tube.


The connector 69 has the conduit 71 attached directly to it and also includes an expiratory port 70 to allow for expiration of gases. On inspiration no gases flow occurs out the port 70 due to the flow of gases to the connector 69 being greater than a patient's peak inspiratory flow. Therefore, there is also no or very little entraining of gases from the ambient air.


Excess weight on the tracheotomy tube may cause excess movement of the tube, with the risk of complications such as displacement or recannulation of the tracheotomy, the formation of granulation tissue or more seriously, stomal erosion. To obviate or reduce these problems a tie or lanyard 73 can be connected to the conduit 71 or additional connector 74 (that may for example connector the conduit 71 to an additional conduit 75 that supplies gases). The tie or lanyard 73 transfers the weight of the conduits 71, 75 and connector 74 from the tracheotomy tube or mount 72 and distributes it onto the neck of the patient leaving a minimal load directly on the tracheotomy tube or mount 72. Preferably the tie or lanyard 73 is adjustable so that the tie or lanyard length can be altered to suit a patient's requirements.


Ear Loops

Orientation of a nasal cannula is an essential requirement to patient comfort. If the nasal cannula is not held firmly in position, it can skew, placing unwanted load on the inside surfaces of the patient's nares. However, to overcome this head gear is often provided with nasal cannula, although, if the head gear is not tight the nasal cannula can still move. This type of tight tension can then compromise patient comfort with pressure on the head and face, while forcing the cannula further up the patient's nose. Ideally nasal cannula should attach to the patient's face in a rigid manner, yet with low loading on the head and face.


Referring to FIGS. 13 and 14 nasal cannula attachment means may be provided to hold the nasal cannula assembly 30 to the patient's face. The attachment means are preferably ear loops 65, 66 that are connected to the straps 31 of the face mount part 32 of the nasal cannula assembly 30.


The loops 65, 66 extend from the face mount part 32 around the patient's ears, and provide rigid anchoring when an inelastic material is used. The loops 65, 66 are preferably made from a thin, round cord with the ends captured in plastic, and are preferably adjustable. The plastic ends of the loops 65, 66 are inserted into purpose made cavities in the straps 31, enabling adjustment of length for a comfortable, yet firm fit.


In use, to fit the nasal cannula assembly, a first loop (for example, loop 65) is placed over one ear, the nasal cannula assembly positioned on the patient's face and in their nose, then the other ear is passed through the second loop (for example, loop 66), so both loops sit snugly behind the ears. This method of fitting the nasal cannula avoids the initial discomfort of gases being blown into the patient's eyes when the cannula assembly is pulled down the face for fitting with other headgear. Fastening the nasal cannula in this method provides an attachment means that is horizontally secure with minimum tension applied to the ear connection loops. The ear loops have the added advantage for a patient lying on their back that there are no straps behind the back of the head that are moved by head movement on the pillow.

Claims
  • 1. A nasal cannula for delivering high flow humidified gases to a patient, the nasal cannula comprising: a headgear for securing the nasal cannula to a face of the patient;a flexible face mount portion comprising a pair of tubular nasal prongs, wherein the pair of tubular nasal prongs are integrally molded with the flexible face mount portion;a rigid gas flow conduit having a first end,a second end; an unheated flexible tubing;a support for attaching the nasal cannula to the patient, wherein the support is independent of the headgear;wherein the first end of the rigid gas flow conduit engages with the flexible face mount portion and the second end of the rigid gas flow conduit engages with the unheated flexible tubing;wherein the nasal cannula sits under a septum of a nose of the patient;wherein the nasal cannula delivers airflow up to 60 liters per minute; andwherein the unheated flexible tubing extends from only one of either a left side or a right side of the flexible face mount portion.
  • 2. The nasal cannula of claim 1, wherein the support transfers a weight of a gases tubing to prevent the weight of the gases tubing from pulling on the nasal cannula, and wherein the support is attached to the unheated flexible tubing, or a connection between the unheated flexible tubing and a gases tubing.
  • 3. The nasal cannula of claim 1, wherein the headgear comprises: a first strap having a first end adjacent a first side of the face of the patient and a second end adjacent a second side of the face of the patient, wherein the first strap extends around a rear portion of a head of the patient, anda second strap having a first end and a second end, wherein the first end of the second strap engages a first portion of the first strap, wherein the second end of the second strap engages a second portion of the first strap, and wherein the first portion is opposite of the second portion.
  • 4. A nasal cannula for delivering high flow humidified gases to a patient, the nasal cannula comprising: a face mount portion comprising a pair of tubular nasal prongs, wherein the pair of tubular nasal prongs are integrally molded with the face mount portion, and wherein the face mount portion and the pair of tubular nasal prongs are moulded from flexible material;a headgear for securing the nasal cannula to a face of the patient;a gas flow conduit, wherein the gas flow conduit is rigid; anda first tubing attached to the gas flow conduit, wherein the first tubing is flexible and unheated.
  • 5. The nasal cannula of claim 4, wherein the gas flow conduit has a substantially circular inlet for engaging an end of the first tubing.
  • 6. The nasal cannula of claim 4, wherein the gas flow conduit comprises an oval outlet for engaging the face mount portion.
  • 7. The nasal cannula of claim 4, wherein the face mount portion and the pair of tubular nasal prongs are molded from silicone.
  • 8. The nasal cannula of claim 4, wherein the gas flow conduit comprises a hard plastics material.
  • 9. The nasal cannula of claim 4, wherein the first tubing comprises a breathable material with vapor transmission properties.
  • 10. The nasal cannula of claim 4, further comprising a second tubing fluidly connected to the first tubing and a tie or lanyard, wherein the tie or lanyard transfers a weight of the second tubing to prevent the weight of the second tubing from pulling on the nasal cannula.
  • 11. The nasal cannula of claim 10, wherein the tie or lanyard is attached to the first tubing or a connection between the first tubing and the second tubing.
  • 12. The nasal cannula of claim 4 wherein the face mount portion comprises a pressure distribution that forces airflow evenly up through each of the pair of tubular nasal prongs.
  • 13. The nasal cannula of claim 4, wherein the face mount portion comprises an oval recess moulded into an outer side of the face mount portion and wherein the gas flow conduit comprises a first end with an oval outlet, wherein the oval recess of the face mount portion receives the oval outlet.
  • 14. The nasal cannula of claim 4, wherein the nasal cannula delivers airflow up to 60 liters per minute.
  • 15. The nasal cannula of claim 4, wherein the first tubing is configured to extend away from either a left side or a right side of the nasal cannula.
  • 16. The nasal cannula of claim 4, wherein the face mount portion has a first lateral opening and a second lateral opening, wherein the gas flow conduit engages with either the first lateral opening or the second lateral opening, and either the first lateral opening or the second lateral opening not engaged with the gas flow conduit is obstructed to prevent fluid flow from entering or exiting.
  • 17. The nasal cannula of claim 4, wherein the pair of tubular nasal prongs are non-sealing.
  • 18. The nasal cannula of claim 4, wherein a strap extends from the face mount portion.
  • 19. The nasal cannula of claim 4, wherein the headgear comprises: a first strap having a first end and a second end, wherein the first strap extends around a rear portion of a patient's head, anda second strap having a first end and a second end, wherein the first end of the second strap extends from a first portion of the first strap, and wherein the second end of the second strap extends from a second portion of the first strap.
  • 20. The nasal cannula of claim 10, further comprising a tube clip, wherein the tie or lanyard is configured to engage with the tube clip.
  • 21. The nasal cannula of claim 4, further comprising an outlet with a flange for engaging a recess in the face mount portion.
  • 22. A non-sealing nasal cannula for delivering high flow humidified gases to a patient, the non-sealing nasal cannula comprising: a face mount portion comprising a pair of non-sealing nasal prongs, wherein the pair of non-sealing nasal prongs are integrally molded with the face mount portion, and wherein the face mount portion and the pair of non-sealing nasal prongs are moulded from flexible material;a headgear for securing the non-sealing nasal cannula to a face of the patient;a gas flow conduit, wherein the gas flow conduit is rigid;a first tubing attached to the gas flow conduit, wherein the first tubing is flexible and unheated; andwherein the first tubing extends from only one of either a left side or a right side of the face mount portion.
  • 23. The non-sealing nasal cannula of claim 22, wherein the gas flow conduit has a substantially circular inlet for engaging an end of the first tubing.
  • 24. The non-sealing nasal cannula of claim 22, wherein the gas flow conduit comprises an oval outlet for engaging the face mount portion.
  • 25. The non-sealing nasal cannula of claim 22, wherein the face mount portion and the pair of non-sealing nasal prongs are molded from silicone.
  • 26. The non-sealing nasal cannula of claim 22, wherein the gas flow conduit comprises a hard plastics material.
  • 27. The non-sealing nasal cannula of claim 22, wherein the first tubing comprises a breathable material with vapor transmission properties.
  • 28. The non-sealing nasal cannula of claim 22, further comprising a second tubing fluidly connected to the first tubing and a tie or lanyard, wherein the tie or lanyard transfers a weight of the second tubing to prevent the weight of the second tubing from pulling on the non-sealing nasal cannula.
  • 29. The non-sealing nasal cannula of claim 28, wherein the tie or lanyard is attached to the first tubing or a connection between the first tubing and the second tubing.
  • 30. The non-sealing nasal cannula of claim 22 wherein the face mount portion comprises a pressure distribution that forces airflow evenly up through each of the pair of non-sealing nasal prongs.
  • 31. The non-sealing nasal cannula of claim 22, wherein the face mount portion comprises an oval recess moulded into an outer side of the face mount portion, and wherein the gas flow conduit comprises a first end with an oval outlet, wherein the oval recess of the face mount portion receives the oval outlet.
  • 32. The nasal cannula of claim 22, wherein the nasal cannula delivers airflow up to 60 liters per minute.
  • 33. The non-sealing nasal cannula of claim 22, wherein the face mount portion has a first lateral opening and a second lateral opening, wherein the gas flow conduit engages with either the first lateral opening or the second lateral opening, and either the first lateral opening or the second lateral opening not engaged with the gas flow conduit is obstructed to prevent fluid flow from entering or exiting, and wherein the first lateral opening is positioned on a first side of the face mount portion, and the second lateral opening is positioned on a second opposite side of the face mount portion.
  • 34. The non-sealing nasal cannula of claim 22, wherein a strap extends from the face mount portion.
  • 35. The non-sealing nasal cannula of claim 22, further comprising an outlet with a flange for engaging a recess in the face mount portion.
Priority Claims (1)
Number Date Country Kind
526362 May 2003 NZ national
US Referenced Citations (258)
Number Name Date Kind
928237 Baird Jul 1909 A
2868199 Hudson Jan 1959 A
3144313 Pfefferie Aug 1964 A
3228877 Mahon Jan 1966 A
3245206 Bonnet Apr 1966 A
3292346 Adams Dec 1966 A
3303105 Konikoff et al. Feb 1967 A
3307330 Niedzielski et al. Mar 1967 A
3367850 Johnson Feb 1968 A
3376181 Larson et al. Apr 1968 A
3394954 Sarns Jul 1968 A
3434471 Liston Mar 1969 A
3513844 Smith May 1970 A
3578777 Degain May 1971 A
3616796 Jackson Nov 1971 A
3639970 Larkin Feb 1972 A
3682171 Dali et al. Aug 1972 A
3700513 Haberhauer et al. Oct 1972 A
3735558 Skarstrom et al. May 1973 A
3735559 Salemme May 1973 A
3754552 King Aug 1973 A
3803810 Rosenberg Apr 1974 A
3829340 Dembiak et al. Aug 1974 A
3856051 Bain Dec 1974 A
3871373 Jackson Mar 1975 A
3889717 Obadal et al. Jun 1975 A
3891556 Ricahrdson et al. Jun 1975 A
3895630 Bachman Jul 1975 A
3910808 Steward Oct 1975 A
3912795 Jackson Oct 1975 A
3963856 Carlson et al. Jun 1976 A
3966525 Steward Jun 1976 A
4007737 Paluch Feb 1977 A
4035211 Bill et al. Jul 1977 A
4048993 Dobritz Sep 1977 A
4083245 Osborn Apr 1978 A
4086035 Klaeger, Jr. et al. Apr 1978 A
4130617 Wallace Dec 1978 A
4204562 Kelly May 1980 A
4207457 Haglunc et al. Jun 1980 A
4216769 Grimes Aug 1980 A
4248218 Fischer Feb 1981 A
4262704 Grawey Apr 1981 A
4265235 Fukunaga May 1981 A
4265239 Fischer, Jr. et al. May 1981 A
4318398 Oetjen et al. Mar 1982 A
4327718 Cronenberg May 1982 A
4327775 Tally May 1982 A
4336798 Beran Jun 1982 A
4337800 Carlson et al. Jul 1982 A
4343672 Kanao Aug 1982 A
4367735 Dali Jan 1983 A
4368088 Asakura et al. Jan 1983 A
4403514 Osborn Sep 1983 A
4406283 Bir Sep 1983 A
4406514 Hillegonds et al. Sep 1983 A
4417574 Talonn et al. Nov 1983 A
4420016 Nichols Dec 1983 A
4456034 Bixby Jun 1984 A
4462397 Suzuki Jul 1984 A
4463755 Suzuki Aug 1984 A
4469495 Hiraizumi et al. Sep 1984 A
4490575 Kutnyak Dec 1984 A
4493870 Vrouenraets et al. Jan 1985 A
4509359 Gedeon et al. Apr 1985 A
4580816 Campbell et al. Apr 1986 A
4592351 Smith et al. Jun 1986 A
4597596 Tozer Jul 1986 A
4621632 Bartels et al. Nov 1986 A
4653542 Tascher Mar 1987 A
4682010 Drapeau et al. Jul 1987 A
4686354 Makin Aug 1987 A
4698196 Fabian Oct 1987 A
4698890 Neaves Oct 1987 A
4705543 Kertzman Nov 1987 A
4708831 Elsworth et al. Nov 1987 A
4715915 Vanderzee Dec 1987 A
4722334 Blackmer et al. Feb 1988 A
4753233 Grimes Jun 1988 A
4771770 Artemenko et al. Sep 1988 A
4773410 Blackmer et al. Sep 1988 A
4791963 Gronert et al. Dec 1988 A
4808201 Kertzman Feb 1989 A
4825863 Dittmar et al. May 1989 A
4844719 Toyomoto et al. Jul 1989 A
4875908 Kikukawa et al. Oct 1989 A
4886528 Aaltonen et al. Dec 1989 A
4910384 Silver Mar 1990 A
4915104 Marcy Apr 1990 A
4915105 Lee Apr 1990 A
4919128 Kopala et al. Apr 1990 A
4932269 Cammarata, III et al. Jun 1990 A
4938752 Vrouenraets et al. Jul 1990 A
4967744 Chua Nov 1990 A
4985055 Thorne et al. Jan 1991 A
4995384 Keeling Feb 1991 A
5042500 Norlien et al. Aug 1991 A
5044361 Werner et al. Sep 1991 A
5046531 Kanao Sep 1991 A
5088332 Merilainen et al. Feb 1992 A
5160511 Lovelock Nov 1992 A
5165395 Ricci Nov 1992 A
5223996 Read et al. Jun 1993 A
5230119 Woods et al. Jul 1993 A
5233996 Coleman et al. Aug 1993 A
5273032 Borody Dec 1993 A
5284160 Dryden Feb 1994 A
5308337 Bingisser May 1994 A
5335656 Bowe et al. Aug 1994 A
5341206 Pittaro et al. Aug 1994 A
5357948 Eilentropp Oct 1994 A
5365938 Eskela Nov 1994 A
5367604 Murray Nov 1994 A
5377670 Smith Jan 1995 A
5392770 Clawson et al. Feb 1995 A
5411474 Ott et al. May 1995 A
5427291 Smith Jun 1995 A
5438978 Hardester, III Aug 1995 A
5445874 Shehata Aug 1995 A
5445875 Persson Aug 1995 A
5454061 Carlson Sep 1995 A
5461122 Yilgor et al. Oct 1995 A
5462048 Lambert et al. Oct 1995 A
5501212 Psaros Mar 1996 A
5513634 Jackson May 1996 A
5532053 Mueller Jul 1996 A
5537996 Mcphee Jul 1996 A
5558087 Psaros et al. Sep 1996 A
5586551 Hillard Dec 1996 A
5595174 Gwaltney Jan 1997 A
5599610 Levy Feb 1997 A
5603991 Kupiecki et al. Feb 1997 A
5611332 Bono Mar 1997 A
5614588 Steenblock et al. Mar 1997 A
5620500 Fukui et al. Apr 1997 A
5623922 Smith Apr 1997 A
5630409 Bono et al. May 1997 A
5637168 Carlson Jun 1997 A
5640951 Huddart et al. Jun 1997 A
5645054 Cotner et al. Jul 1997 A
5653228 Bryd Aug 1997 A
5682881 Winthrop et al. Nov 1997 A
5704344 Cole Jan 1998 A
5709762 Rowan Jan 1998 A
5715647 Keim et al. Feb 1998 A
5738808 Iwamoto Apr 1998 A
5769071 Tumbull Jun 1998 A
5794619 Edelman et al. Aug 1998 A
5794986 Gansel et al. Aug 1998 A
5798013 Brandenburger Aug 1998 A
5823184 Gross Oct 1998 A
5848223 Carlson Dec 1998 A
5850833 Kotliar Dec 1998 A
5862651 Stewart et al. Jan 1999 A
5862652 Schoeler Jan 1999 A
5894839 Rosenkoetter et al. Apr 1999 A
5964219 Pekka Oct 1999 A
5975144 Akedo et al. Nov 1999 A
5983896 Fukunaga et al. Nov 1999 A
5992413 Martin, Jr. et al. Nov 1999 A
6029660 Calluaud et al. Feb 2000 A
6033368 Gaston, IV et al. Mar 2000 A
6039696 Bell Mar 2000 A
6050260 Daniell et al. Apr 2000 A
6078730 Huddart et al. Jun 2000 A
6098615 Lloyd et al. Aug 2000 A
6105576 Clawson et al. Aug 2000 A
6116235 Walters et al. Sep 2000 A
6119694 Correa Sep 2000 A
6148818 Pagan Nov 2000 A
6167883 Beran et al. Jan 2001 B1
6192886 Rudolph Feb 2001 B1
6192941 Mallen-Herrero et al. Feb 2001 B1
6201223 Nitta Mar 2001 B1
6272933 Gradon et al. Aug 2001 B1
6349722 Gradon et al. Feb 2002 B1
6363930 Clawson et al. Mar 2002 B1
6367472 Koch Apr 2002 B1
6367510 Carlson Apr 2002 B1
6378520 Davenport Apr 2002 B1
6394145 Bailly May 2002 B1
6412481 Bienvenu et al. Jul 2002 B1
6431172 Bordewick Aug 2002 B1
6432169 Kluwe et al. Aug 2002 B1
6474335 Lammers Nov 2002 B1
6478026 Wood Nov 2002 B1
6516798 Davies Feb 2003 B1
6523538 Wikefeldt Feb 2003 B1
6536428 Smith et al. Mar 2003 B1
6536436 McGlothen Mar 2003 B1
6539937 Havari Apr 2003 B1
6561219 Apostolides May 2003 B1
6584972 McPhee Jul 2003 B2
6595215 Wood Jul 2003 B2
6637434 Noble Oct 2003 B2
6662802 Smith et al. Dec 2003 B2
6667592 Jacobs et al. Dec 2003 B2
6684883 Burns Feb 2004 B1
6718973 Daniell et al. Apr 2004 B2
6742399 Kunz et al. Jun 2004 B2
6769431 Smith et al. Aug 2004 B2
6769432 Keifer Aug 2004 B1
6779522 Smith et al. Aug 2004 B2
6807967 Wood Oct 2004 B2
6986353 Wright Jan 2006 B2
7140366 Smith et al. Nov 2006 B2
7493902 White et al. Feb 2009 B2
RE40806 Gradon et al. Jun 2009 E
7559324 Smith Jul 2009 B2
7900628 Matula et al. Mar 2011 B2
7905232 Olsen et al. Mar 2011 B2
7958891 Smith et al. Jun 2011 B2
8037882 Smith et al. Oct 2011 B2
8220463 White et al. Jul 2012 B2
8267092 White et al. Sep 2012 B2
8851076 White et al. Oct 2014 B2
8905082 Gray Dec 2014 B2
8980036 Smith et al. Mar 2015 B2
9067035 Ophir et al. Jun 2015 B2
9802020 Smith et al. Oct 2017 B2
9827393 Smith et al. Nov 2017 B2
9849262 White et al. Dec 2017 B2
9878120 White et al. Jan 2018 B2
10159814 Smith Dec 2018 B2
10220175 White et al. Mar 2019 B2
10252017 Smith et al. Apr 2019 B2
10286174 Smith et al. May 2019 B2
10350376 White et al. Jul 2019 B2
10518058 Gunaratnam et al. Dec 2019 B2
11110245 White et al. Sep 2021 B2
20020002976 Smith et al. Jan 2002 A1
20020046755 De Voss Apr 2002 A1
20020055685 Levitsky et al. May 2002 A1
20020059935 Wood May 2002 A1
20020195104 Fini et al. Dec 2002 A1
20030028139 Inoue Feb 2003 A1
20030047185 Olsen et al. Mar 2003 A1
20030062048 Gradon et al. Apr 2003 A1
20030070680 Smith et al. Apr 2003 A1
20030094178 McAuley et al. May 2003 A1
20030213490 Righetti Nov 2003 A1
20060162726 Smith et al. Jul 2006 A1
20070235100 Tomerlin et al. Oct 2007 A1
20080072986 Burrowes et al. Mar 2008 A1
20090025724 Herron, Jr. Jan 2009 A1
20090088656 Levitsky et al. Apr 2009 A1
20090126817 Gray May 2009 A1
20120090622 Chang Apr 2012 A1
20130098360 Hurmez et al. Apr 2013 A1
20140180157 Levitsky et al. Jun 2014 A1
20150208953 Levitsky et al. Jul 2015 A1
20150306333 Armadio et al. Oct 2015 A1
20160045702 Milne et al. Feb 2016 A1
20170296769 Smith et al. Oct 2017 A1
20180071477 Smith et al. Mar 2018 A1
20180133428 Smith et al. May 2018 A1
20190201649 Smith et al. Jul 2019 A1
20190224439 Lopez et al. Jul 2019 A1
Foreign Referenced Citations (59)
Number Date Country
200013529 Jun 2000 AU
2833707 Nov 2001 CA
2346628 Jul 2010 CA
2697142 Feb 2014 CA
2037237 May 1989 CN
2050336 Jan 1990 CN
2229812 Jun 1996 CN
28036 Feb 1984 DE
3719009 Dec 1988 DE
0535379 Apr 1993 EP
0557040 Aug 1993 EP
0567158 Oct 1993 EP
0621050 Oct 1994 EP
0815792 Jan 1998 EP
0935971 Aug 1999 EP
1014527 Jun 2000 EP
1166814 Jan 2002 EP
0747078 Oct 2002 EP
0885623 Nov 2004 EP
1524937 Apr 2005 EP
1477200 Oct 2006 EP
1153627 Nov 2007 EP
1885460 Feb 2008 EP
1681071 Feb 2009 EP
2226341 Sep 2010 EP
2305336 Apr 2011 EP
2025359 Sep 2013 EP
2666795 Nov 2013 EP
2638361 May 1990 FR
9683 Apr 1909 GB
587163 Apr 1947 GB
1492459 Nov 1977 GB
2024100 Jan 1980 GB
2252515 Dec 1992 GB
2139110 Nov 1994 GB
2284356 Jun 1995 GB
S62-236724 Oct 1987 JP
H03-168155 Jul 1991 JP
H05-052378 Mar 1993 JP
H06-023051 Feb 1994 JP
H09-234247 Sep 1997 JP
10-248935 Sep 1998 JP
11-323899 Nov 1999 JP
2000-24111 Jan 2000 JP
2000-24113 Jan 2000 JP
WO 8801903 Mar 1988 WO
WO 9516746 Jun 1995 WO
WO 9533163 Dec 1995 WO
WO 9718001 May 1997 WO
WO 9802199 Jan 1998 WO
WO 9841148 Sep 1998 WO
WO 1999004842 Feb 1999 WO
WO 9964077 Dec 1999 WO
WO 0048682 Aug 2000 WO
WO 0141854 Jun 2001 WO
WO 0149351 Jul 2001 WO
WO 2003066145 Aug 2003 WO
WO 2006120683 Nov 2006 WO
WO 2012077052 Jun 2012 WO
Non-Patent Literature Citations (34)
Entry
Adams et al., “Thermoplastic Polyether Ester Elastomers”, Supplied by British Library; unknown date.
BS 6151:1992 (ISO 5367:1991), British Standard, Specification for Breathing tubes for use with anaesthetic apparatus and ventilators, in 12 pages.
Dryers, Sampling Systems, dated Jan. 27, 1999, Perma Pure, www.permapure.com capture from archive.org.
Farley, R.D. and Franklin, D.H., “Development of a humidifier for patient ventilation using a semi-permeable tube to minimize system condensate,” J. Biomed. Eng., vol. 14, Sep. 1992.
Flow of Fluids through Valves, Fittings, and Pipe; Crano Co., 1999.
Gibson; Effect of Temperature on Water Vapor Transport Through Polymer Membrane Laminates; U.S. Army; Feb. 1999.
Gibson; Measurement of water vapor diffusion through laminated fabrics and membranes using a diode laser spectroscope; US Army; Jan. 1998.
Gibson; On the Flow of Water through Pipes and Passages having converging or Diverging Boundaries; Univ. College, Dundee; Oct. 10, 1909.
Gravenstein; Gas Monitoring in Clinical Practice; Butterworth-Heinemann; 1995.
Johnson-Schultze; Breathable TPE Films for Medical Applications; Medical Device & Diagnostic Industry Magazine; Jul. 1, 2000.
MBM-200 Deltatrac II Service Manual; Datex/Division of Instrumentarium Corp; Mar. 1, 1993.
Medical Gas Dryers, dated Oct. 17, 2000, Perma Pure, www.permapure.com capture from archive.org.
ME-Series Moisture Exchangers, Mar. 3, 2001, Perma Pure, www.permapure.com capture from archive.org.
MR700, MR720, MR730 Manual, in 48 pages.
One page off the Perma Pure Inc. website of the product brochure #104 of the New PD TM-Series Gas Dryers.
Painter, Chris J., “Waterproof, Breathable Fabric Laminates: A Perspective from Film to Market Place”, Journal of Coated Fabrics, vol. 26, Oct. 1996, pp. 107-130.
Perma Pure Dryers Bulletin 104, No date, at least as early as Dec. 14, 1992.
Smart Anesthesai Multi-Gas SAM/SAM-80 Module Field Service Manual; Marquette Medical Systems; Mar. 27, 1998.
Sparrow, E.M. et al., Flow Serparation in a Diversging conical duct: Effect of Reynolds number and divergence angle; International Journal of Heat and Mass Transfer; Jun. 2009.
Stroeks et al., “Modeling the moisture vapour transmission rate through segmented block co-poly(ether-ester) based breathable films,” Polymer, vol. 42, Issue 1, Jan. 2001, pp. 117-127.
Three pages off the SympaTex website of some of the most common questions that are asked and some technical data on the SympaTex membrane.
May 3, 2019 Complaint for Patent Infringement Demand for Jury Trial, Fisher & Paykel Healthcare Limited v. Flexicare Incorporated, Case No. 8:19-CV-00835.
Fisher & Paykel Healthcare Limited's Disclosure of Asserted Claims and Infringement Contentions, Fisher & Paykel Healthcare Limited v. Flexicare Incorporated, Case No. 8:19-CV-00835JVS(DFMx), Aug. 19, 2019, in 17 pages.
Exhibit A, Fisher & Paykel Healthcare Limited's Disclosure of Asserted Claims and Infringement Contentions, Fisher & Paykel Healthcare Limited v. Flexicare Incorporated, Case No. 8:19-CV-00835JVS(DFMx), Aug. 19, 2019, in 34 pages.
Exhibit B, Fisher & Paykel Healthcare Limited's Disclosure of Asserted Claims and Infringement Contentions, Fisher & Paykel Healthcare Limited v. Flexicare Incorporated, Case No. 8:19-CV-00835JVS(DFMx), Aug. 19, 2019, in 16 pages.
Exhibit C, Fisher & Paykel Healthcare Limited's Disclosure of Asserted Claims and Infringement Contentions, Fisher & Paykel Healthcare Limited v. Flexicare Incorporated, Case No. 8:19-CV-00835JVS(DFMx), Aug. 19, 2019, in 31 pages.
Exhibit D, Fisher & Paykel Healthcare Limited's Disclosure of Asserted Claims and Infringement Contentions, Fisher & Paykel Healthcare Limited v. Flexicare Incorporated, Case No. 8:19-CV-00835JVS(DFMx), Aug. 19, 2019, in 15 pages.
Exhibit E, Fisher & Paykel Healthcare Limited's Disclosure of Asserted Claims and Infringement Contentions, Fisher & Paykel Healthcare Limited v. Flexicare Incorporated, Case No. 8:19-CV-00835JVS(DFMx), Aug. 19, 2019, in 16 pages.
Exhibit F, Fisher & Paykel Healthcare Limited's Disclosure of Asserted Claims and Infringement Contentions, Fisher & Paykel Healthcare Limited v. Flexicare Incorporated, Case No. 8:19-CV-00835JVS(DFMx), Aug. 19, 2019, in 34 pages.
Exhibit G, Fisher & Paykel Healthcare Limited's Disclosure of Asserted Claims and Infringement Contentions, Fisher & Paykel Healthcare Limited v. Flexicare Incorporated, Case No. 8:19-CV-00835JVS(DFMx), Aug. 19, 2019, in 24 pages.
Exhibit H, Fisher & Paykel Healthcare Limited's Disclosure of Asserted Claims and Infringement Contentions, Fisher & Paykel Healthcare Limited v. Flexicare Incorporated, Case No. 8:19-CV-00835JVS(DFMx), Aug. 19, 2019, in 27 pages.
Exhibit I, Fisher & Paykel Healthcare Limited's Disclosure of Asserted Claims and Infringement Contentions, Fisher & Paykel Healthcare Limited v. Flexicare Incorporated, Case No. 8:19-CV-00835JVS(DFMx), Aug. 19, 2019, in 34 pages.
Exhibit J, Fisher & Paykel Healthcare Limited's Disclosure of Asserted Claims and Infringement Contentions, Fisher & Paykel Healthcare Limited v. Flexicare Incorporated, Case No. 8:19-CV-00835JVS(DFMx), Aug. 19, 2019, in 29 pages.
Flexicare Incorporated's Patent L.R. 3-3 Invalidity Contentions, Fisher & Paykel Healthcare Limited v. Flexicare Incorporated, Case No. 8:19-CV-00835JVS(DFMx), Oct. 17, 2019, in 54 pages.
Related Publications (1)
Number Date Country
20220143352 A1 May 2022 US
Continuations (7)
Number Date Country
Parent 17444379 Aug 2021 US
Child 17583007 US
Parent 16432672 Jun 2019 US
Child 17444379 US
Parent 14500482 Sep 2014 US
Child 16432672 US
Parent 13592069 Aug 2012 US
Child 14500482 US
Parent 13187209 Jul 2011 US
Child 13592069 US
Parent 12389017 Feb 2009 US
Child 13187209 US
Parent 10855146 May 2004 US
Child 12389017 US