Bronchoscopic lung volume reduction method

Information

  • Patent Grant
  • 8079368
  • Patent Number
    8,079,368
  • Date Filed
    Wednesday, March 10, 2010
    14 years ago
  • Date Issued
    Tuesday, December 20, 2011
    12 years ago
Abstract
A method of minimally invasively reducing a volume of a hyper-inflated target section of diseased lung comprising the steps of introducing a bronchoscope into a patient's airway to a position adjacent the target section and equilibrating air within the target section with atmospheric air to at least partially deflate the target lung section; injecting an inflammation-causing substance into the target section to precipitate adhesion of the walls within the target lung section, preventing substantial re-inflation of the target section by occluding an airway upstream of the target section for a period of time, and removing the airway occlusion after the target section has substantially permanently been reduced in volume. The injected substance can be autologous blood or a constituent thereof.
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention


The invention relates in general to the field of pulmonary disease treatments, and specifically to a bronchoscopic method of performing lung volume reduction surgery using an obstruction or one-way valve.


2. Description of the Related Art


The lungs deliver oxygen to the body by directing air through numerous air passageways that lead from the trachea to respiratory bronchiole to small sacs called alveoli. These alveoli are generally grouped together in a tightly packed configuration called an alveolar sac, and surround both alveolar ducts and respiratory bronchiole throughout the lung. The alveoli are small, polyhedral recesses composed of a fibrillated connective tissue and surrounded by a few involuntary muscular and elastic fibers. These alveoli inflate and deflate with the respiration of air. Oxygen and carbon dioxide are exchanged through the ultra-thin walls between alveoli and capillary sized blood vessels.


During inhalation, as the diaphragm contracts and the ribs are raised, a vacuum is created in the chest, and air is drawn into the lungs. As the diaphragm relaxes, normal lungs act like a stretched balloon and rebound to the normal relaxed state, forcing air out of the lungs. The elasticity of the lungs is maintained by the supportive structure of the alveoli. This network of connective tissue provides strength to the airway walls, as well as elasticity to the lungs, both of which contribute to the lung's ability to function effectively.


Patients with chronic obstructive pulmonary disease or emphysema have reduced lung function and efficiency, typically due to the breakdown of lung tissue. Lung tissue and alveoli are destroyed, reducing the supportive structure of the airways. This reduction in strength of the airway walls allows the walls to become “floppy,” thereby losing their ability to remain open during exhalation. In the lungs of an emphysema patient, the walls between adjacent alveoli within the alveolar sac deteriorate. This wall deterioration is accelerated by a chronic inflammatory state with the production of mucus in the lungs. Although the break down of the walls of the alveoli in the lungs occurs over time even in a healthy patient, this deterioration has greatly accelerated in people with emphysema so multiple large spaces with few connecting walls replace the much smaller and more dense alveoli in healthy lung tissue. When many of the walls of the alveoli have deteriorated, the lung has larger open spaces (bullae or air cavity) and a larger overall volume, but has less wall tissue to conduct gas exchange.


In this diseased state, the patient suffers from the inability to get the air out of their lungs due to the loss of elasticity of the lungs as well as the collapse of the airways during exhalation. Heavily diseased areas of the lung become hyper-inflated. Within the confines of the chest cavity, this hyper-inflation restricts the in-flow of fresh air and the proper function of healthier tissue, resulting in significant breathlessness. Thus, the emphysematous patient attempts to take in a greater volume of air to achieve the same amount of gas exchange. With, severe emphysema, when patients take in as much air as their chest cavity can accommodate, they still have insufficient gas exchange because their chest is full of non-functional air filling large cavities in the lungs. Emphysema patients will often look barrel-chested and their shoulders will elevate as they strain to make room for their hyper-inflated lungs to work.


A wide variety of drugs are available for treating the symptoms of chronic obstructive pulmonary disease, but none are curative. Chronic bronchitis and emphysema are typically treated with antibiotics and bronchodilators. A large number of patients are not responsive to these medications. In selected severe emphysema cases, lung volume reduction surgery (LVRS) is performed to improve lung efficiency and to allow the patient to improve breathing function and quality of life. In lung volume reduction surgery, the most diseased portion of an emphysematous lung having a large amount of alveolar wall deterioration is surgically removed. LVRS is performed by surgically entering the chest cavity then stapling off and resecting the diseased portion(s) of the lung(s). This allows the remaining healthier lung tissue to inflate more fully and take greater advantage of the chest mechanics to inhale and exhale. Because there is more air and more gas exchange in the healthier portion of the lung, lung efficiency is improved and patients feel better.


Traditional lung volume reduction surgery is an invasive procedure requiring surgically entering the chest cavity and removal of lung tissue. This surgery has substantial risks of serious post-operative complications, such as pneumonia, and requires an extended convalescence. There have been more recent attempts to achieve lung volume reduction through minimally-invasive procedures. For example, U.S. Pat. Nos. 6,293,951 and 6,258,100 to Alferness et al. describe methods of collapsing a lung portion by obstructing an airway. U.S. Pat. No. 6,488,673 to Laufer et al. describes a method of increasing gas exchange of a lung by causing tissue damage within a diseased airway in order to cause the airway to remain open. U.S. Patent Application Publication No. 2001/0051799 to Ingenito teaches another method of non-surgical lung volume reduction that involves injecting a polymerizable sealant into a diseased lung section. Notwithstanding the benefits of the above methods, minimally invasive lung volume reduction may be performed utilizing other advantageous methods.


SUMMARY

The present invention comprises methods of performing lung volume reduction to address a diseased lung section. One method comprises the steps of deflating a target lung section minimally invasively, causing inflammation of the walls of the target lung section, and placing an occlusion device within an airway leading to the target lung section to temporarily prevent re-inflation of the target section. By causing inflammation of the target lung walls, that portion of the lung will seal at a smaller volume. The method comprises guiding a catheter to the target lung section via the patient's trachea and bronchi, exposing the cavity within the target lung section to the ambient environment to deflate the air cavity, and injecting an inflammation-causing substance, preferably the patient's blood or analogous compatible fluid, onto walls of the air cavity. The volume of the cavity of the target lung section will be permanently maintained in a reduced state because the walls of the cavity come into substantial contact with one another, eventually substantially adhering to one another. Temporary re-inflation is prevented during the adhesion process by placing an occlusion device in an airway upstream of the portion of the lung to be treated, as close to the cavity as feasible, although general proximity is not critical. The catheter is then removed while temporarily leaving the occlusion device in the airway.


In one application of the present method, the distal end of a bronchoscope is used to guide the catheter to a diseased lung section, where an inflammation-causing substance is injected into the diseased lung section. In one variation, the present method comprises using the distal end of a bronchoscope to guide a multilumen catheter to a position adjacent the target region, inserting a puncturing tip through a section of diseased lung tissue and into the target region, and equilibrating the target region with atmospheric air. The target region air is equilibrated through a lumen extending from a distal opening of the lumen to the atmosphere. With the target region at atmospheric pressure, one or more occlusion devices may then be deployed in airways leading into the target region, thereby isolating the target region from inspiratory air flow. In one application, the obstruction is a one-way valve, such as those described in the '951 and '100 Alferness patents, or those described in pending U.S. patent application Ser. No. 09/951,105 to Alferness et al. filed on Sep. 11, 2001, Ser. No. 10/104,487 to Alferness et al. filed on Mar. 30, 2002, and Ser. No. 10/124,790 to DeVore filed on Apr. 16, 2002. The entire disclosures of the above patents and applications are incorporated herein by reference and made part of the present disclosure. The advantage of an obstruction device is reduced risk of reinflation during the adhering process, resulting in more effective lung volume reduction. Another advantage, among others, is precluding migration of the injected substance to non-targeted regions of the lung.





BRIEF DESCRIPTION OF DRAWINGS


FIG. 1 is a schematic view of a pair of lungs;



FIG. 2 is a schematic sectional view of a portion of healthy lung with intact alveolar sacs;



FIG. 3 is a schematic sectional view of a portion of an emphysematous lung in which the alveolar walls have deteriorated leaving an air cavity or bullae;



FIG. 4 is a schematic view of a lung tissue cavity to be reduced in volume in accordance with aspects of the present invention.



FIG. 5 is a cross-sectional view of an airway with a bronchoscope positioned adjacent a target lung section to be reduced in volume, and a catheter extending through a working lumen of the bronchoscope;



FIG. 5
a is a detail view of one embodiment of a distal tip for use with the catheter of FIG. 4;



FIG. 5
b is detail view of another embodiment of a distal tip for use with the catheter of FIG. 4;



FIG. 6 is a cross-sectional view of a dual-lumen catheter which can be used to reduce a volume of a target lung section.





DETAILED DESCRIPTION

The methods described herein involve minimally invasive procedures for reducing the volume of a diseased target region of a patient's lung. Referring to FIGS. 1 and 2, airflow in a lung 10 to be treated generally follows a path from the trachea 12, through the main branch bronchial tubes 14, then through the sub-bronchial tubes 16 to the numerous tiny bronchioles 18. The bronchioles 18 lead to alveolar sacs 20 which include multiple alveoli 22 separated by alveolar walls 24 for the exchange of oxygen and carbon dioxide. In lungs suffering from emphysema, the alveolar walls 24 are deteriorated, thus leaving a number of large open spaces or cavities 30. Often, the largest of such cavities 30 will be chosen as a target region 32 for volume reduction first, although the specific regions to be reduced will be chosen by a clinician based on a number of factors. A target region 32 of diseased lung to be reduced in volume will generally include at least one enlarged target cavity 34.


The cavities 30 (otherwise called bullae) are typically larger than 10 mm in diameter, and in some cases can be much larger (up to 6 cm or more in diameter). The airways leading to the bullae 30 are often not obvious or easily located, and can often be smaller than 1 mm in diameter. Additionally, there may often be multiple small airways leading to a single cavity 30.


With reference to FIGS. 3 and 4, the methods described herein generally comprise the steps of gaining access to a hyper-inflated cavity 34 of a target region 32 by introducing a means for reducing the volume of the target region, equilibrating air within the target region with atmospheric pressure, injecting an inflammation-causing substance 36 into a cavity 34 of the target region 32, preventing re-inflation of the target region 32 by temporarily deploying one or more occlusion device 40 for a sufficient time to allow the tissue surrounding the cavity 34 to sclerose and adhere together, and finally removing the occlusion device 40 at some later time. By removing the air from within the target region first, the walls 42 of the cavity 34 forming the target region 32 can be brought into substantial contact with one another. Inflammation occurring in the lung tissue 46 of the inner walls 42 of the cavity 34 will cause the cavity walls 42 to begin adhering together. After a period of time, the walls 42 of the target section 32 will permanently adhere. During this time, the target region 32 is preferably isolated from inspiratory air flow by one or more occlusion devices in order to prevent re-inflation of the target region.


The occlusion device is configured to substantially preclude inspiration downstream of said device, and in one application comprises a one-way valve that allows the flow of fluid, whether gas or liquid, in one direction and substantially precludes fluid flow in an opposite direction. Suitable occlusion device deployment structures are described, for example, in co-pending U.S. patent application Ser. No. 10/052,875 to Rimbaugh et al. filed on Oct. 10, 2001, the entire disclosures of which is incorporated herein by reference. By way of brief summary, one example of the one-way valve may be configured in the shape of an umbrella comprising a frame that is configured to exert radial forces against the wall of the airway passage. Such an arrangement would preclude substantial inspiration to the lung downstream of the placement of the device, but permit some limited fluid flow upstream, such as experienced with mucocilliary transport. In another configuration, the one-way valve may comprise a stent-supported valve.


With reference to FIGS. 3-6, a means for reducing the volume of a target region 32 of a lung can include one of a number of known or newly developed devices. In one embodiment, means 44 for reducing the volume of a target region 32 comprises a conventional bronchoscope 50 having a visualizing tip 52 and at least one lumen 54. A wide variety of bronchoscopes are commercially available, many of which will be suitable for carrying out portions of the volume reduction procedure described herein. Typical bronchoscopes have an outer diameter of about 5 mm, although larger or smaller bronchoscopes could also be used. Alternatively, any number of other devices could be used in place of a conventional bronchoscope. Specifically, any device that allows a clinician to gain visual and functional access to the interior of a patient's lungs could be used. Such alternative devices could include laparoscopes, endoscopes, or any other elongate, flexible scope with at least one working lumen and/or one or more tools mounted on a distal end thereof. In addition to the visualizing capabilities of any bronchoscope (or other scope) that may be used, a clinician may decide to use X-ray, ultrasonic, radiographic, or other visualization systems to provide supplemental visualization during the volume-reduction procedure.


Suitable means for reducing the volume of a target region often further includes one or more elongate, flexible catheters 60 with one or more lumens extending therethrough. Suitable catheters preferably have as small an outside diameter as possible, while maintaining sufficient column strength for the catheter to be advanced through a patient's airways without buckling or kinking. For example, in some embodiments catheters may be provided with an outer diameter of about 2 mm, although larger and smaller catheters can also be used. At least one lumen of at least one catheter is preferably adapted to allow airflow therethrough. Additionally, at least one lumen of at least one catheter is typically adapted to transmit a liquid therethrough. For example, FIG. 6, illustrates a cross-section of a single catheter 60 with a first lumen 62 for transmitting air therethrough, and a second lumen 64 for transmitting a liquid therethrough. The liquid 64 and airflow 62 lumens can be any suitable size as desired. Alternatively the airflow and liquid-flow lumens could be provided in separate, single-lumen catheters. As will be clear to the skilled artisan in view of the present disclosure, a single lumen can alternatively be used for transmission of both air and liquid if so desired. Alternatively still, a working lumen 54 of a bronchoscope 50 can comprise an airflow and/or a liquid flow lumen.


If desired, the airflow lumen 62 can include a valve for limiting airflow in one or both directions through the airflow lumen 62. The airflow lumen 62 can also optionally include a pressure gauge or sensor for indicating an air pressure level or a change in air pressure at the distal end of the catheter 60. If desired, a proximal end of the airflow lumen can also include a fitting for receiving a pump, such as a vacuum pump, to force airflow in one or both directions. The liquid-carrying lumen 64 can include a syringe, plunger, or other device for injecting a liquid substance through the liquid-carrying lumen 64.


A distal end 70 of at least one catheter 60 can also include a puncturing tip 72 as shown in FIGS. 5a and 5b. In many cases, a particular diseased target region 32 may not be easily reachable with a bronchoscope translumenally in part due to the difficulty in navigating the tortuous pathways between the trachea 12 and the target alveoli 16. Additionally, the walls of a bronchiole 18 leading into a hyper-inflated diseased lung portion 30 can become flaccid and collapsed, precluding effective passage of the bronchoscope or catheter therethrough. Thus, in many cases it may be easier and more effective to navigate the distal end of a bronchoscope to a section of the lung that is adjacent to the target region 32 and then puncture through a section of lung tissue 46 in order to gain access to the hyper-inflated target region 32. In other cases, it may be necessary to puncture through the collapsed walls of an airway 18 leading into a target region 32.


Such puncturing can be accomplished with a device such as a needle or tapered tip mounted on a distal end of a bronchoscope. Alternatively, a suitable tool can be mounted on a distal end of a catheter that can be passed through a lumen 54 of a bronchoscope 50 to extend beyond the distal end of the scope in order to be used to puncture the tissue as desired. A catheter 60 with at least one lumen configured to carry a liquid or a gas therethrough can be fitted with a substantially rigid puncturing tip 72. Puncturing tips 72 can include a variety of shapes, and typically have a hollow central lumen 74 therethrough. The puncturing tip generally has as small an outer dimension ‘Do’ as possible in order to minimize the size of a hole created in the lung tissue, an inner dimension ‘Di’ that is large enough to transmit an inflammation-causing substance therethrough, while maintaining a wall thickness ‘t’ sufficient to provide the puncturing tip 72 with sufficient columnal strength for the tip to puncture a desired segment of lung tissue. For example, in some embodiments, a puncturing tip with a circular cross-section can have an inner diameter ‘Di’ of between about 0.5 mm and about 2 mm, often between about 0.75 mm and about 1.5 mm, and in one embodiment, the puncturing tip has an inner diameter ‘Di’ of about 1 mm.


In one embodiment, the puncturing tip 72 can be a stainless steel needle affixed to the distal end of a catheter 60. If desired, the needle can have either a sharp tapered tip 82 or a substantially blunt tip 84 as shown in FIGS. 5a and 5b respectively. Other shapes for atraumatic tips exist and are known to those skilled in the art, which could be used to allow a catheter and/or bronchoscope to be atraumatically navigated through a patient's bronchial passageways in the procedure described herein. A puncturing tip or an atraumatic tip can also be provided with a plurality of holes or ports for the injection or uptake of fluids or gasses into or out of a cavity 30.


Alternatively still, the puncturing tip 72 can be made of any suitable material, such as other metals or a molded or extruded plastic, provided that the puncturing tip has sufficient columnal strength to allow the tip to puncture the lung tissue to a desired depth. Thus, a section of rigid material having any hollow tubular cross-sectional shape can be used to puncture into a target region. Thus, a catheter 60 with a puncturing tip 72 can then be introduced through lumen 54 of means 44 for reducing the volume of the target region 32, and the tip 72 can be punctured through the lung tissue into the target region 32, as shown in FIG. 3. Where the step of puncturing the target wall is desired or necessary, the step of deploying the obstruction device prior to the introduction of the inflammation triggering substance may be advantageous.


Occlusion devices 40 can generally be deployed using any suitably configured catheter. For example, an occlusion device deployment catheter can include a distal cavity for retaining at least one occlusion device to be deployed in a patient's airway and a means for deploying the occlusion device. The means for deploying the occlusion device can include any suitable structure such as a push wire that is extendable through the length of the catheter and can be operated by a clinician to push the occlusion device out of the catheter. Alternatively, the means for deploying the occlusion device could include a retractable sheath that can be retracted relative to the occlusion device, thereby releasing the occlusion device.


The occlusion device can be one of many devices recognized as being suitable for occluding the flow of air in an anatomical lumen. For example, the '951 patent to Alferness et al. shows and describes a number of devices for unidirectionally and bidirectionally occluding airflow through an airway. Additionally, co-pending U.S. patent application Ser. No. 10/143,353 filed on May 9, 2002 shows and describes embodiments of a one-way valve that can also be used to prevent re-inflation of the target region while advantageously allowing mucous and other fluids to be moved proximally past the valve. PCT publication WO 98/48706 to Sabanathan shows and describes a number of plug-type occlusion devices that will occlude both inspiratory and expiratory air flow. The above-mentioned patents and applications are incorporated herein by reference and made part of the present specification.


Suitable occlusion devices can be provided in any size or configuration as desired. For example, in some embodiments, one-way valve occlusion devices having expanded outer diameters of between about 3 mm and about 8 mm can be used. Alternatively, valves having outer expanded diameters as small as 1 mm or less could be used.


The occlusion devices for use with the present inventive method can generally be adapted to be removed from a patient's airway after the volume of the target region has been permanently reduced. A means for removing the occlusion device 40 can include an elongate, flexible removal catheter with an occlusion device receiving space, and a means for gripping the occlusion device. The occlusion device receiving space can simply be a lumen of sufficient diameter to allow an occlusion device to be drawn into the space. If desired, the occlusion device receiving space can be sized to receive a plurality of occlusion devices, thereby eliminating the need to remove and re-introduce the removal catheter when removing multiple occlusion devices 40. A means for gripping an occlusion device 40 can include any suitable trans-luminal gripping tool, such as forceps, etc. Alternatively, a means for removing an occlusion device could simply include a bronchoscope. Accordingly, the occlusion device could be drawn into a lumen of the scope, thus allowing the occlusion device and the bronchoscope to be simultaneously removed. In an alternative embodiment, portions of the occlusion devices 40 can be made from a substantially bioabsorbable polymer which will be substantially dissolved and absorbed by a patient's body fluids and tissue, thereby eliminating the need for bronchoscopic removal of the occlusion device(s).


The methods of the present invention can be carried out with the above devices or any other tools or devices recognized as suitable by the skilled artisan. Once accessed, the hyper-inflated target lung portion 32 can be deflated by opening an airflow lumen 62 to bring the distal end of the lumen 62 (including any puncturing tip) in fluid communication with the ambient air at atmospheric pressure, thereby allowing the air in the target lung section 32 to equilibrate with atmospheric air pressure. In one preferred application, the target region 32 is maintained at atmospheric pressure throughout the procedure described herein. In some cases it may be desirable to further extract air from the target region 32 by applying a net negative pressure to an airflow lumen 62. In either case, the walls of the opposing side of the cavities within the target lung regions will be brought sufficiently close to permit adhesion. Where no net negative pressure is applied to the cavity or cavities, the residual air will eventually be absorbed or be drawn out through expiration, permitting the opposing walls to move closer and accelerating the adhesion process.


With reference to FIGS. 3 and 4, it has been observed that blood applied to a section of lung tissue will cause the lung tissue to become inflamed, thereby causing the tissue to become substantially adherent. The opposing wall sections of deflated lung tissue will eventually grow together, over a relatively short period of time, to create a substantially permanent and natural bond. Thus, in one preferred application, a substance 36 such as whole blood or a constituent or derivative of blood can be injected into the target region 32 to cause inflammation of the walls 42 surrounding a cavity 34 of a target region 32. Blood components such as plasma, serum, fibrin, etc can be used individually or in various combinations as needed in order to provide the desired result. Blood or blood-derived substances to be injected into the target region 32 can be obtained from the patient before the procedure is carried out. By using autologous blood or blood constituents, the risk of rejection by the patient's body and the risk of contamination with a blood-transmitted infection can be substantially reduced, or even eliminated. In some cases, it may be desirable to mix the blood or blood constituent with an anti-coagulant such as Heparin, or a diluting physiological solution such as saline. Alternatively, a pure sample of whole blood or a blood constituent that is substantially free from foreign substances could be used if desired. Alternatively still, the same effect may be achievable with other body fluids (autologous or from a compatible donor). The particular effectiveness of other non-blood-derived body fluids as inflammation-causing substances can be determined by routine experimentation in view of the present disclosure.


Alternatively still, other organic and non-organic, inflammation-triggering, substances, gaseous or liquid, heated or cooled, may be used to cause inflammation of the lung tissue surrounding an enlarged cavity. For example, U.S. Patent Application Publication No. 2001/0051799 to Ingenito (incorporated in its entirety herein by reference, shows and describes a number of fibrosis-causing substances. Hot saline solution or very cold liquids or gasses may also be used.


The volume of an inflammation-causing substance to be injected into the target region cavity 34 will depend upon a number of factors, such as the type of substance being used (e.g. whether the substance is blood, another liquid or a gas), the approximate volume or inner wall surface area of the target region cavity, and other variables, such as the viscosity of the liquid substance used. In the case of liquid inflammation-causing substances, a sufficient volume of liquid to coat a substantial portion of the entire surface of the tissue 46 surrounding the target region cavity 34 should be used. It is generally preferred, that the substance 36 injected into a target region 32 be kept from causing inflammation of any adjacent healthy lung tissue. Deployment of the obstruction device upstream of the target region is beneficial in that regard.


If blood or a blood constituent is to be used as the inflammation-causing substance, a volume of blood that is between about 1 and about 100 percent of the volume of the target region cavity 34 can be used, where the volume of blood is preferably between about 5 and about 15 percent of the volume of the target region cavity 34. In one preferred application of the present invention, the volume of blood is about 10 percent of the volume of the target region cavity 34. For example, in order to reduce the volume of a cavity 30 with an interior diameter of about 6 cm (which can have an interior volume of about 113 cc, assuming a sphere), a volume of about 10 to about 20 cc of a liquid substance such as blood could be injected to coat the interior walls of the cavity. If necessary, any excess liquid can be removed from the target region by drawing a vacuum through a catheter lumen, or any other suitable method. In order to ensure a greater coating of the walls of the target region cavity 34 with the substance, the patient may need to roll over a few times, or make other similar movements.


In some cases, the walls 42 of the target region 32 can take a substantial length of time to permanently grow together. Depending on factors such as the size of the target region cavity 34, the inflammation-causing substance used, etc, complete adhesion of the walls of the target region can take anywhere from a few days to about a month or more. During this time, it is important that the target region be substantially protected against re-inflation. In many cases of advanced emphysema, a particular target region cavity 34 in the lungs can have a plurality of airways 18 (e.g. bronchioles) leading into the cavity 34. If all of these airways remain open to air flow after injection of the substance 36, the cavity 34 can become re-inflated, thereby potentially frustrating the objective of the lung volume-reduction procedure. Thus, either before or after injecting the inflammation-causing substance into the target region cavity 34, the airways 18 leading into the cavity 34 can be at least partially occluded by deploying one or more occlusion devices 40 into the lumens of the airways 18. It may not be necessary, however, to occlude every individual airway leading into the cavity, as this may prove to be prohibitively difficult in some cases.


In order to successfully prevent re-inflation, an occlusion device 40 may be deployed in an airway 18 substantially upstream from the target region 32. Occasionally it may be necessary to occlude an airway that feeds healthy lung tissue in addition to the target region 32. It is preferred that the placement of the occlusion devices 40 will occlude a minimum of airways extending through healthy lung tissue.


Once the occlusion device deployment and substance-injection procedures have been completed, the bronchoscope and any other trans-bronchial tools can be withdrawn from the patient, thus leaving the injected substance and occlusion devices in place relative to the target region. The inventive procedures allows the patient to be ambulatory while the walls 42 of the target region substantially completely sclerose. Depending upon the patient and the particular substance injected, the time required to sclerose will vary. The occlusion device(s) can be removed after a clinician has verified that the volume of the target region has been substantially permanently reduced. Verification of volume reduction can be accomplished by evaluation of a patient's symptoms, testing a patient's breathing function (e.g. breathing effort, etc), and/or by imaging of a patient's lungs such as by x-ray or MRI scans.


Once the volume of the target region has been permanently reduced, a suitable means for removing an occlusion device 40 can be introduced through the patient's airways to a position adjacent an occlusion device 40. Once in position, the means for removing an occlusion device can be operated in an appropriate manner to remove one or all of the occlusion devices 40. Multiple occlusion devices 40 can be removed in any suitable sequence, and if desired, without removing the bronchoscope 50 with each occlusion device 40. Alternatively, it is contemplated that one embodiment of an occlusion device comprises a bio-absorbable polymer, which can be left in place and allowed to deteriorate, thereby “removing” the occlusion device without introducing a bronchoscope or a removal catheter.


In an alternative application of the present method, the substance-injection step can be omitted, where one or more occlusion devices are left in place for a sufficiently long period of time that the walls surrounding the cavity substantially permanently adhere naturally.


Although certain embodiments and examples have been described herein, it will be understood by those skilled in the art that many aspects of the methods and devices shown and described in the present disclosure may be differently combined and/or modified to form still further embodiments. Additionally, it will be recognized that the methods described herein may be practiced using any device suitable for performing the recited steps. For example, the target region volume could be reduced by the present method using conventional open-chest surgical procedures. Such alternative embodiments and/or uses of the methods and devices described above and obvious modifications and equivalents thereof are intended to be within the scope of the present disclosure. Thus, it is intended that the scope of the present invention should not be limited by the particular embodiments described above, but should be determined only by a fair reading of the claims that follow.

Claims
  • 1. A method of delivering a gas to a lung region comprising: steering a bronchoscope through an air passageway to position a distal end of the bronchoscope near a diseased target region, wherein the diseased target region comprises a hyper-inflated cavity in a lung;inserting a catheter through a lumen of the bronchoscope to position a distal end of the catheter near or in the diseased target region;at least partially deflating the diseased target region by exposing the diseased target region to an ambient environment through the catheter to equilibrate the diseased target region with the ambient environment such that the diseased target region is at ambient pressure;placing, using the catheter, an occlusion device within the air passageway leading to the diseased target region after equilibrating the diseased target region with the ambient environment; anddelivering, using the catheter, the gas to the diseased target region, wherein the gas is an inflammation-triggering gas for treating the diseased target region wherein the diseased target region is maintained substantially at ambient pressure during the placing and the delivering.
  • 2. The method of claim 1, wherein the gas delivered to the target region is a vapor.
  • 3. The method of claim 1, wherein the gas delivered to the target region is a heated gas.
  • 4. The method of claim 1, wherein the diseased target region is an emphysematous lung section.
  • 5. The method of claim 1, wherein the gas is configured to precipitate adhesion of walls of the diseased target region.
  • 6. The method of claim 1, wherein the gas is configured to reduce hyper-inflation of the diseased target region.
  • 7. The method of claim 1, wherein placing the occlusion device comprises placing a plurality of occlusion devices.
  • 8. The method of claim 1, wherein the occlusion device is decoupled from the catheter after placing the occlusion device within the air passageway leading to the diseased target region.
  • 9. The method of claim 1, wherein delivering the gas to the diseased target region comprises delivering the gas through the catheter.
  • 10. The method of claim 1, further comprising drawing a vacuum through the catheter.
  • 11. The method of claim 1, further comprising removing the occlusion device after a period of time from the delivering of the gas.
  • 12. The method of claim 11, wherein the period of time allows inner walls of the diseased target region to adhere together.
  • 13. The method of claim 1, wherein the occlusion device is a one-way valve that allows a flow of fluid in one direction and substantially precludes a fluid flow in an opposite direction.
  • 14. The method of claim 13, wherein the one-way valve is a stent-supported valve.
  • 15. The method of claim 1, wherein the occlusion device is a plug-type occlusion device.
  • 16. The method of claim 1, wherein the occlusion device is configured to preclude migration of the gas to non-targeted regions.
  • 17. The method of claim 1, wherein the exposing the disease target region to ambient environment to equilibrate the diseased target region with the ambient environment is performed without the use of pulsatile suction.
  • 18. The method of claim 1, wherein the occlusion device comprises bioabsorbable polymer.
  • 19. The method of claim 1, wherein the catheter comprises a pressure gauge or sensor for indicating an air pressure level at the distal end of the catheter.
CROSS-REFERENCE TO RELATED APPLICATIONS

The present application is a continuation application of U.S. application Ser. No. 11/417,944, filed on May 3, 2006 now abandoned, which is a continuation of U.S. application Ser. No. 10/409,785, filed Apr. 8, 2003, now U.S. Pat. No. 7,100,616. The foregoing application and patent are hereby incorporated by reference in their entirety.

US Referenced Citations (392)
Number Name Date Kind
2832078 Williams Apr 1958 A
2981254 Vanderbilt Apr 1961 A
3320972 High et al. May 1967 A
3370305 Goott et al. Feb 1968 A
3445916 Schulte May 1969 A
3472230 Forgarty Oct 1969 A
3540431 Modin-Uddin Nov 1970 A
3617060 Iezzi Nov 1971 A
3657744 Ersek Apr 1972 A
3671979 Moulopoulos Jun 1972 A
3683913 Kurtz et al. Aug 1972 A
3757783 Alley Sep 1973 A
3760808 Bleuer Sep 1973 A
3788327 Donowitz et al. Jan 1974 A
3874388 King et al. Apr 1975 A
4014318 Dockum et al. Mar 1977 A
4040428 Clifford Aug 1977 A
4056854 Boretos et al. Nov 1977 A
4084268 Ionescu et al. Apr 1978 A
4086665 Poirier May 1978 A
4212463 Repski et al. Jul 1980 A
4218782 Rygg Aug 1980 A
4222126 Boretos et al. Sep 1980 A
4250873 Bonnet Feb 1981 A
4301810 Belman Nov 1981 A
4302854 Runge Dec 1981 A
4339831 Johnson Jul 1982 A
RE31040 Possis Sep 1982 E
4403616 King Sep 1983 A
4456016 Nowacki et al. Jun 1984 A
4512338 Balko et al. Apr 1985 A
4533137 Sonne Aug 1985 A
4569674 Phillips et al. Feb 1986 A
4582058 Depel et al. Apr 1986 A
4592741 Vincent Jun 1986 A
4601465 Roy Jul 1986 A
4610256 Wallace Sep 1986 A
4619246 Molgaard-Nielsen et al. Oct 1986 A
4654027 Dragan et al. Mar 1987 A
4654029 D'Antonio Mar 1987 A
4681110 Wiktor Jul 1987 A
4684363 Ari et al. Aug 1987 A
4685908 Kurtz Aug 1987 A
4710192 Liotta et al. Dec 1987 A
4727873 Mobin-Uddin Mar 1988 A
4732152 Wallsten et al. Mar 1988 A
4745925 Dietz May 1988 A
4759758 Gabbay Jul 1988 A
4795449 Schneider et al. Jan 1989 A
4808183 Panje Feb 1989 A
4819664 Nazari Apr 1989 A
4822354 Elosegui Apr 1989 A
4830003 Wolff et al. May 1989 A
4832680 Haber et al. May 1989 A
4846836 Reich Jul 1989 A
4850999 Planck Jul 1989 A
4852568 Kensey Aug 1989 A
4877025 Hanson Oct 1989 A
4908028 Colon et al. Mar 1990 A
4934999 Bader Jun 1990 A
4936823 Colvin et al. Jun 1990 A
4968294 Salama Nov 1990 A
4973047 Norell Nov 1990 A
4979505 Cox Dec 1990 A
4984581 Stice Jan 1991 A
5033312 Stupecky Jul 1991 A
5038621 Stupecky Aug 1991 A
5059208 Coe et al. Oct 1991 A
5061274 Kensey Oct 1991 A
5078739 Martin Jan 1992 A
5092781 Casciotti et al. Mar 1992 A
5116360 Pinchuk et al. May 1992 A
5116564 Jansen et al. May 1992 A
5123919 Sauter et al. Jun 1992 A
5135488 Foote et al. Aug 1992 A
5151105 Kwan-Gett Sep 1992 A
5158548 Lau et al. Oct 1992 A
5161524 Evans Nov 1992 A
5171299 Heitzmann et al. Dec 1992 A
5197980 Gorshkov et al. Mar 1993 A
5255687 McKenna Oct 1993 A
5275169 Afromowitz et al. Jan 1994 A
5283063 Freeman Feb 1994 A
5300050 Everett, Jr. et al. Apr 1994 A
5304199 Myers Apr 1994 A
5306234 Johnson Apr 1994 A
5314473 Godin May 1994 A
5339805 Parker Aug 1994 A
5342298 Michaels Aug 1994 A
5352240 Ross Oct 1994 A
5353470 Bartlett Oct 1994 A
5358518 Camilli Oct 1994 A
5366478 Brinkerhoff et al. Nov 1994 A
5370657 Irie Dec 1994 A
5382261 Palmaz Jan 1995 A
5383470 Kolby Jan 1995 A
5391205 Knight Feb 1995 A
5392775 Adkins, Jr. et al. Feb 1995 A
5398844 Zaslavsky Mar 1995 A
5409019 Wilk Apr 1995 A
5409444 Kensey et al. Apr 1995 A
5411507 Heckele May 1995 A
5411552 Anderson et al. May 1995 A
5413599 Imachi et al. May 1995 A
5415660 Campbell et al. May 1995 A
5417226 Juma May 1995 A
5421325 Cinberg et al. Jun 1995 A
5445626 Gigante Aug 1995 A
5453090 Martenez et al. Sep 1995 A
5459544 Emura Oct 1995 A
5484444 Braunschweiler et al. Jan 1996 A
5486154 Kelleher Jan 1996 A
5499995 Teirstein Mar 1996 A
5500014 Quijano et al. Mar 1996 A
RE35225 Herweck et al. Apr 1996 E
5507754 Green et al. Apr 1996 A
5507797 Suzuki Apr 1996 A
5509900 Kirkman Apr 1996 A
5514153 Bonutti et al. May 1996 A
5549626 Miller et al. Aug 1996 A
5549628 Cooper et al. Aug 1996 A
5562608 Sekins et al. Oct 1996 A
5562641 Flomenblit et al. Oct 1996 A
5562728 Lazarus et al. Oct 1996 A
5603698 Roberts et al. Feb 1997 A
5607469 Frey Mar 1997 A
5645565 Rudd et al. Jul 1997 A
5647857 Andersen et al. Jul 1997 A
5660175 Dayal Aug 1997 A
5662713 Anderson et al. Sep 1997 A
5669933 Simon et al. Sep 1997 A
5676671 Inoue Oct 1997 A
5683451 Lenker et al. Nov 1997 A
5690644 Yurek et al. Nov 1997 A
5693089 Inoue Dec 1997 A
5697968 Rogers et al. Dec 1997 A
5702343 Alferness Dec 1997 A
5702409 Rayburn et al. Dec 1997 A
5725519 Penner et al. Mar 1998 A
5752522 Murphy May 1998 A
5752965 Francis et al. May 1998 A
5755770 Ravenscroft May 1998 A
5763979 Mukherjee et al. Jun 1998 A
5782896 Chen et al. Jul 1998 A
5797920 Kim Aug 1998 A
5797960 Stevens et al. Aug 1998 A
5800339 Salama Sep 1998 A
5803078 Brauner Sep 1998 A
5810837 Hofmann et al. Sep 1998 A
5817101 Fiedler Oct 1998 A
2479805 Sabaratnam Nov 1998 A
5830217 Ryan Nov 1998 A
5833694 Poncet Nov 1998 A
5840081 Anderson et al. Nov 1998 A
5851232 Lois Dec 1998 A
5855587 Hyon et al. Jan 1999 A
5855597 Jayaraman Jan 1999 A
5855601 Bessler et al. Jan 1999 A
5876434 Flomenblit et al. Mar 1999 A
5876445 Andersen et al. Mar 1999 A
5911756 Debry Jun 1999 A
5925063 Khosravi Jul 1999 A
5944738 Amplatz et al. Aug 1999 A
5947997 Pavcnik et al. Sep 1999 A
5954636 Schwartz et al. Sep 1999 A
5954766 Zadno-Azizi et al. Sep 1999 A
5957949 Leonhardt et al. Sep 1999 A
5957978 Blom Sep 1999 A
5972009 Fortier et al. Oct 1999 A
5976158 Adams et al. Nov 1999 A
5976174 Ruiz Nov 1999 A
5984965 Knapp et al. Nov 1999 A
5989234 Valerio et al. Nov 1999 A
6003517 Sheffield et al. Dec 1999 A
6007575 Samuels Dec 1999 A
6009614 Morales Jan 2000 A
6010511 Murphy Jan 2000 A
6010525 Bonutti et al. Jan 2000 A
6020380 Killian Feb 2000 A
6027525 Suh et al. Feb 2000 A
6045560 McKean et al. Apr 2000 A
6051022 Cai et al. Apr 2000 A
6068635 Gianotti May 2000 A
6068638 Makower May 2000 A
6077291 Das Jun 2000 A
6079413 Baran Jun 2000 A
6083141 Hougen Jul 2000 A
6083255 Laufer et al. Jul 2000 A
6096027 Iayne Aug 2000 A
6099551 Gabbay Aug 2000 A
6123663 Rebuffat Sep 2000 A
6132458 Staehle et al. Oct 2000 A
6135729 Aber Oct 2000 A
6135991 Muni et al. Oct 2000 A
6141855 Morales Nov 2000 A
6146357 Addis Nov 2000 A
6149664 Kurz Nov 2000 A
6162245 Jayaraman Dec 2000 A
6165179 Cathcart et al. Dec 2000 A
6168614 Andersen et al. Jan 2001 B1
6168617 Blaeser et al. Jan 2001 B1
6174307 Daniel et al. Jan 2001 B1
6174323 Biggs Jan 2001 B1
6183520 Pintauro et al. Feb 2001 B1
6193748 Thompson et al. Feb 2001 B1
6200333 Laufer Mar 2001 B1
6203551 Wu Mar 2001 B1
6206918 Campbell et al. Mar 2001 B1
6210338 Afremov et al. Apr 2001 B1
6231587 Makower May 2001 B1
6231589 Wessman et al. May 2001 B1
6234996 Bagaoisan et al. May 2001 B1
6238334 Easterbrook, III et al. May 2001 B1
6240615 Kimes et al. Jun 2001 B1
6241654 Alferness Jun 2001 B1
6241678 Afremov et al. Jun 2001 B1
6241758 Cox Jun 2001 B1
6242472 Sekins et al. Jun 2001 B1
6245102 Jayaraman Jun 2001 B1
6258100 Alferness et al. Jul 2001 B1
6264700 Kilcoyne et al. Jul 2001 B1
6267775 Clerc et al. Jul 2001 B1
6270527 Campbell et al. Aug 2001 B1
6287290 Perkins et al. Sep 2001 B1
6287334 Moll et al. Sep 2001 B1
6293951 Alferness et al. Sep 2001 B1
6299604 Ragheb et al. Oct 2001 B1
6302893 Limon et al. Oct 2001 B1
6312407 Zadno-Azizi et al. Nov 2001 B1
6325777 Zadno-Azizi et al. Dec 2001 B1
6325778 Zadno-Azizi et al. Dec 2001 B1
6327505 Medhkour et al. Dec 2001 B1
6327772 Zadno-Azizi et al. Dec 2001 B1
6328689 Gonzalez et al. Dec 2001 B1
6338728 Valerio et al. Jan 2002 B1
6350278 Lenker et al. Feb 2002 B1
6355014 Zadno-Azizi et al. Mar 2002 B1
6398775 Perkins et al. Jun 2002 B1
6402754 Gonzalez Jun 2002 B1
6416554 Alferness et al. Jul 2002 B1
6425916 Garrison et al. Jul 2002 B1
6428561 Johansson-Ruden et al. Aug 2002 B1
6439233 Geertsema Aug 2002 B1
6440164 DiMatteo et al. Aug 2002 B1
6447530 Ostrovsky et al. Sep 2002 B1
6454754 Frank Sep 2002 B1
6458076 Pruitt Oct 2002 B1
6458153 Bailey et al. Oct 2002 B1
6471718 Staehle et al. Oct 2002 B1
6471979 New et al. Oct 2002 B2
6485407 Alferness et al. Nov 2002 B2
6488673 Laufer et al. Dec 2002 B1
6491706 Alferness et al. Dec 2002 B1
6493589 Medhkour et al. Dec 2002 B1
6503272 Duerig et al. Jan 2003 B2
6510846 O'Rourke Jan 2003 B1
6514290 Loomas Feb 2003 B1
6527761 Soltesz et al. Mar 2003 B1
6540782 Snyders Apr 2003 B1
6544192 Starr et al. Apr 2003 B2
6544291 Taylor Apr 2003 B2
6558429 Taylor May 2003 B2
6568387 Davenport et al. May 2003 B2
6569166 Gonzalez May 2003 B2
6585639 Kotmel et al. Jul 2003 B1
6589256 Forber Jul 2003 B2
6592594 Rimbaugh et al. Jul 2003 B2
6599311 Biggs et al. Jul 2003 B1
6600307 Turski Jul 2003 B2
6610043 Ingenito Aug 2003 B1
6629951 Laufer et al. Oct 2003 B2
6632243 Zadno-Azizi et al. Oct 2003 B1
6634363 Danek et al. Oct 2003 B1
6638285 Gabbay Oct 2003 B2
6669724 Park et al. Dec 2003 B2
6673070 Edwards et al. Jan 2004 B2
6679264 Deem et al. Jan 2004 B1
6682250 Banks Jan 2004 B2
6682520 Ingenito Jan 2004 B2
6694979 Deem et al. Feb 2004 B2
6709401 Perkins et al. Mar 2004 B2
6712812 Roschak et al. Mar 2004 B2
6716208 Humes Apr 2004 B2
6722360 Doshi Apr 2004 B2
6743259 Ginn Jun 2004 B2
6746686 Hughes et al. Jun 2004 B2
6749606 Keast et al. Jun 2004 B2
6840952 Saker et al. Jan 2005 B2
6849049 Starr et al. Feb 2005 B2
6849084 Rabkin et al. Feb 2005 B2
6860847 Alferness et al. Mar 2005 B2
6887256 Gilson May 2005 B2
6904909 Andreas et al. Jun 2005 B2
6929637 Gonzalez et al. Aug 2005 B2
6941950 Wilson et al. Sep 2005 B2
6951571 Srivastava Oct 2005 B1
6958076 Acosta et al. Oct 2005 B2
6989027 Allen et al. Jan 2006 B2
6997951 Solem et al. Feb 2006 B2
7011094 Rapacki et al. Mar 2006 B2
7086398 Tanaka Aug 2006 B2
7100616 Springmeyer Sep 2006 B2
7141046 Perkins et al. Nov 2006 B2
7175644 Cooper et al. Feb 2007 B2
7207946 Sirokman Apr 2007 B2
7252086 Tanaka Aug 2007 B2
7278430 Kumar Oct 2007 B2
7357795 Kaji et al. Apr 2008 B2
7412977 Fields et al. Aug 2008 B2
7422584 Loomas et al. Sep 2008 B2
7434578 Dillard et al. Oct 2008 B2
7530995 Quijano et al. May 2009 B2
7533671 Gonzalez et al. May 2009 B2
7757692 Alferness et al. Jul 2010 B2
7798974 Sirokman Sep 2010 B2
7842061 Dillard et al. Nov 2010 B2
7875048 Dillard et al. Jan 2011 B2
7913698 Barry et al. Mar 2011 B2
20010010017 Letac et al. Jul 2001 A1
20010025132 Alferness et al. Sep 2001 A1
20010037808 Deem et al. Nov 2001 A1
20010041906 Gonzalez Nov 2001 A1
20010051799 Ingenito Dec 2001 A1
20010052344 Doshi Dec 2001 A1
20010056274 Perkins et al. Dec 2001 A1
20020007831 Davenport et al. Jan 2002 A1
20020062120 Perkins et al. May 2002 A1
20020077564 Campbell et al. Jun 2002 A1
20020077593 Perkins et al. Jun 2002 A1
20020077696 Zadno-Azizi et al. Jun 2002 A1
20020087153 Roschak et al. Jul 2002 A1
20020091411 Saker et al. Jul 2002 A1
20020095209 Zadno-Azizi et al. Jul 2002 A1
20020111619 Keast et al. Aug 2002 A1
20020111620 Cooper et al. Aug 2002 A1
20020112729 Devore et al. Aug 2002 A1
20020123749 Jain Sep 2002 A1
20020138135 Duerig et al. Sep 2002 A1
20020147462 Mair et al. Oct 2002 A1
20030018327 Truckai et al. Jan 2003 A1
20030018344 Kaji et al. Jan 2003 A1
20030024527 Ginn Feb 2003 A1
20030050648 Alferness et al. Mar 2003 A1
20030051733 Kotmel et al. Mar 2003 A1
20030055331 Kotmel et al. Mar 2003 A1
20030070682 Wilson et al. Apr 2003 A1
20030083671 Rimbaugh et al. May 2003 A1
20030109869 Shadduck Jun 2003 A1
20030125763 McInnes Jul 2003 A1
20030127090 Gifford et al. Jul 2003 A1
20030154988 DeVore Aug 2003 A1
20030158515 Gonzalez et al. Aug 2003 A1
20030180922 Eaton et al. Sep 2003 A1
20030181922 Alferness Sep 2003 A1
20030183235 Rimbaugh et al. Oct 2003 A1
20030195385 De Vore Oct 2003 A1
20030212412 Dillard et al. Nov 2003 A1
20030212452 Zadno-Azizi et al. Nov 2003 A1
20030216769 Dillard et al. Nov 2003 A1
20030225445 Derus et al. Dec 2003 A1
20030228344 Fields et al. Dec 2003 A1
20040024356 Tanaka Feb 2004 A1
20040039250 Tholfsen et al. Feb 2004 A1
20040040555 Tanaka Mar 2004 A1
20040059263 DeVore Mar 2004 A1
20040143283 McGill et al. Jul 2004 A1
20040206349 Alferness et al. Oct 2004 A1
20040210248 Gordon et al. Oct 2004 A1
20040211412 Alferness et al. Oct 2004 A1
20040211434 Loomas et al. Oct 2004 A1
20040243140 Alferness et al. Dec 2004 A1
20040244802 Tanaka Dec 2004 A1
20050033310 Alferness et al. Feb 2005 A1
20050033344 Dillard et al. Feb 2005 A1
20050096721 Mangin et al. May 2005 A1
20050137611 Escudero et al. Jun 2005 A1
20050145253 Wilson et al. Jul 2005 A1
20050166925 Wilson et al. Aug 2005 A1
20050222580 Gifford, III et al. Oct 2005 A1
20050267323 Dorros et al. Dec 2005 A1
20060074382 Gonzalez et al. Apr 2006 A1
20060235467 DeVore Oct 2006 A1
20060270940 Tsukashima et al. Nov 2006 A1
20070221230 Thompson et al. Sep 2007 A1
20070225747 Perkins et al. Sep 2007 A1
20080015627 DeVore Jan 2008 A1
20080132989 Snow et al. Jun 2008 A1
20090099530 Adams et al. Apr 2009 A1
20090182369 Gonzalez Jul 2009 A1
20090292262 Adams et al. Nov 2009 A1
20100256714 Springmeyer Oct 2010 A1
20100262071 Kutsko et al. Oct 2010 A1
Foreign Referenced Citations (111)
Number Date Country
2002239759 May 2002 AU
2308186 May 1999 CA
2375752 Jan 2001 CA
2401331 Mar 2001 CA
2408923 Nov 2001 CA
101868199 Oct 2010 CN
100 04 979 Aug 2000 DE
0 665 029 Aug 1995 EP
0 743 071 Nov 1996 EP
1 151 729 Jul 2001 EP
1 157 663 Nov 2001 EP
1 206 276 May 2002 EP
1 198 269 Oct 2009 EP
2 082 071 Mar 1982 GB
2 324 729 Nov 1998 GB
2 348 138 Sep 2000 GB
58-163332 Sep 1983 JP
60-10740 Jan 1994 JP
2003-503162 Jan 2003 JP
2004-535887 Dec 2004 JP
2005-527297 Sep 2005 JP
3742010 Nov 2005 JP
4387803 Oct 2009 JP
2140211 Oct 1999 RU
852321 Aug 1981 SU
1371700 Feb 1988 SU
1593651 Sep 1990 SU
WO 8809683 Dec 1988 WO
WO 9426175 Nov 1994 WO
WO 9532018 Nov 1995 WO
WO 9634582 Nov 1996 WO
WO 9709932 Mar 1997 WO
WO 9713471 Apr 1997 WO
WO 9727893 Aug 1997 WO
WO 9742871 Nov 1997 WO
WO 9744085 Nov 1997 WO
WO 9800840 Jan 1998 WO
WO 9801084 Jan 1998 WO
WO 9819633 May 1998 WO
WO 9839047 Sep 1998 WO
WO 9844854 Oct 1998 WO
WO 9848706 Nov 1998 WO
WO 9901076 Jan 1999 WO
WO 9913801 Mar 1999 WO
WO 9926692 Jun 1999 WO
WO 9932040 Jul 1999 WO
WO 9942059 Aug 1999 WO
WO 9942161 Aug 1999 WO
WO 9959503 Nov 1999 WO
WO 9964109 Dec 1999 WO
WO 0018329 Apr 2000 WO
WO 0027292 May 2000 WO
WO 0042950 Jul 2000 WO
WO 0051500 Sep 2000 WO
WO 0051510 Sep 2000 WO
WO 0062699 Oct 2000 WO
WO 0078386 Dec 2000 WO
WO 0078407 Dec 2000 WO
WO 0102042 Jan 2001 WO
WO 0103641 Jan 2001 WO
WO 0103642 Jan 2001 WO
WO 0105334 Jan 2001 WO
WO 0110313 Feb 2001 WO
WO 0110314 Feb 2001 WO
WO 0112104 Feb 2001 WO
WO 0113839 Mar 2001 WO
WO 0113908 Mar 2001 WO
WO 0128433 Apr 2001 WO
WO 0130266 May 2001 WO
WO 0137897 May 2001 WO
WO 0145590 Jun 2001 WO
WO 0152775 Jul 2001 WO
WO 0154585 Aug 2001 WO
WO 0154625 Aug 2001 WO
WO 0154685 Aug 2001 WO
WO 0166190 Sep 2001 WO
WO0166190 Sep 2001 WO
WO 0170114 Sep 2001 WO
WO 0174271 Oct 2001 WO
WO 0187170 Nov 2001 WO
WO 0189366 Nov 2001 WO
WO 0149213 Dec 2001 WO
WO 0195786 Dec 2001 WO
WO 0205884 Jan 2002 WO
WO 0222072 Mar 2002 WO
WO 0232333 Apr 2002 WO
WO 0234322 May 2002 WO
WO 0238038 May 2002 WO
WO 0247575 Jun 2002 WO
WO 02056794 Jul 2002 WO
WO 02064045 Aug 2002 WO
WO 02064190 Aug 2002 WO
WO 02069823 Sep 2002 WO
WO 02094087 Nov 2002 WO
WO 0195786 Dec 2002 WO
WO 03022124 Mar 2003 WO
WO 03030975 Apr 2003 WO
WO 03099164 Apr 2003 WO
WO 03003946 May 2003 WO
WO 03034927 May 2003 WO
WO 03041779 May 2003 WO
WO 03047468 Jun 2003 WO
WO 03078579 Sep 2003 WO
WO 03088820 Oct 2003 WO
WO 03094996 Nov 2003 WO
WO 2004010845 Feb 2004 WO
WO 2004080347 Sep 2004 WO
WO 2005013835 Feb 2005 WO
WO 2007123690 Nov 2007 WO
WO 2009049261 Apr 2009 WO
WO 2010118056 Oct 2010 WO
Related Publications (1)
Number Date Country
20100256714 A1 Oct 2010 US
Continuations (2)
Number Date Country
Parent 11417944 May 2006 US
Child 12721426 US
Parent 10409785 Apr 2003 US
Child 11417944 US