The present disclosure is directed generally to a brush head assembly with bristle tufts retained within an elastomeric matrix, as well as to methods for manufacturing the brush head assembly.
Periodontal diseases are thought to be infectious diseases caused by bacteria present in dental plaques. Tooth brushing is a highly effective method to remove dental plaque from the teeth. Power toothbrushes can enhance the removal of dental plaque. Such power toothbrushes have a set of bristles attached to a brush head which is moved by a driver that causes the bristles to scrub dental surfaces.
The brush heads of both manual and power toothbrushes comprise bristles which are used to clean the teeth, tongue, and cheeks. In some toothbrushes, the bristles are organized into bristle tufts contained within retention rings. The retention rings serve to secure the bristle tufts within the brush head and often have a hollow circular shape with an interior and exterior circular circumference. During manufacture, the bristle tufts are inserted into the hollow interior of the retention ring, and the bristles in the retention ring are then secured into a brush head material which is then cooled or allowed to cool in order to form the final brush head.
Often, however, the retention rings are not firmly secured within the brush head. As a result, the ring and bristle tuft can be or become loose within the brush head, and the bristles might not always be positioned at an angle optimal for brushing. As such, under the dynamic conditions of motion induced by the power toothbrush operation, for example, the bristle tuft structure can undergo higher stresses under the dynamic motion, which could lead to separation. Further, the process of organizing the bristles into tufts within the retention rings and then cooling the brush head material, or allowing it to cool, in order to fix the tufts in place can be time-consuming and expensive.
Accordingly, there is a need in the art for brush head assemblies, and methods of their manufacture, that permanently and efficiently retain bristle tufts within the brush head while ensuring flexibility of the bristles during use.
The present disclosure is directed to inventive methods for manufacturing a brush head with secured bristle tufts. Various embodiments and implementations herein are directed to manufacturing methods in which bristle tufts ends are melted to form proximal end tufts of varying shapes and sizes, which are then embedded within an elastomeric matrix resulting in a completed brush head. Using the various embodiments and implementations herein, cost-effective and efficient production of brush heads with secured bristle tufts is substantially improved. For example, in some embodiments, when a bristle tuft is pulled, some of the force is distributed to the surrounding elastomeric matrix due to the shape of the proximal end head portion of the bristle tufts. This provides for greater flexibility of tuft movement, and also, by reducing the pressure, reduces the probability of the retaining head breaking through the retaining ring, causing premature brush head failure due to bristle tuft loss.
Generally in one aspect, a brush head is provided. The brush head includes: a hard brush neck; a plurality of bristle tufts, each of which comprises a plurality of bristle strands having a proximal end and a free end, wherein each of the plurality of bristle tufts comprises a proximal end head portion melted into a first shape within a mold; and an elastomeric matrix comprising at least a portion of the hard brush neck and the proximal end head portions, wherein the first shape of the proximal end head portion is configured to engage the elastomeric matrix such that the bristle tufts are retained within the elastomeric matrix.
According to an embodiment, the proximal end head portions of two or more neighboring bristle tufts are interconnected.
According to an embodiment, the brush head further includes a plurality of retention rings, each of the plurality of retention rings configured to receive a respective one of the plurality of bristle tufts.
According to an embodiment, the proximal end head portions comprise a trapezoidal shape.
According to an embodiment, the proximal end head portions comprise a u-shape.
According to an aspect is a method for manufacturing a brush head. The method includes the steps of: positioning a proximal end of each of a plurality of bristle tufts into a mold, the mold comprising a plurality of cavities each configured to receive at least one of the plurality of bristle tufts; applying heat to each of the bristle tuft proximal ends at a temperature and distance sufficient to at least partially melt the bristle tuft proximal end to create a proximal end head portion, wherein each of the cavities is further configured to at least partially shape the proximal end head portion as it at least partially melts; removing at least a portion of the mold, wherein removing the mold exposes the proximal end head portion of the plurality of bristle tufts; and molding a thermoplastic elastomer to create an elastomeric matrix that at least partially encompasses the proximal head portions.
According to an embodiment, the method further includes the step of removing, after the molding step, a remaining portion of the mold.
According to an embodiment, the method further includes the step of positioning a brush neck in proximity to the proximal end head portions.
According to an embodiment, the mold further comprises one or more channels between at least some of the cavities, wherein the channels are configured to receive at least a portion of a melted bristle tuft during the applying step.
According to an embodiment, at least a portion of each of the cavities of the mold comprises a trapezoidal shape.
According to an embodiment, at least a portion of each of the cavities of the mold comprises u-shape.
According to an aspect a brush head assembly for a power toothbrush is provided. The brush head assembly includes a neck and a brush head, the brush head comprising: a hard brush neck; a plurality of bristle tufts, each of which comprises a plurality of bristle strands having a proximal end and a free end, wherein each of the plurality of bristle tufts comprises a proximal end head portion melted into a first shape within a mold; and an elastomeric matrix comprising at least a portion of the hard brush neck and the proximal end head portions, wherein the first shape of the proximal end head portion is configured to engage the elastomeric matrix such that the bristle tufts are retained within the elastomeric matrix.
It should be appreciated that all combinations of the foregoing concepts and additional concepts discussed in greater detail below (provided such concepts are not mutually inconsistent) are contemplated as being part of the inventive subject matter disclosed herein. In particular, all combinations of claimed subject matter appearing at the end of this disclosure are contemplated as being part of the inventive subject matter disclosed herein.
These and other aspects of the invention will be apparent from and elucidated with reference to the embodiment(s) described hereinafter.
In the drawings, like reference characters generally refer to the same parts throughout the different views. Also, the drawings are not necessarily to scale, emphasis instead generally being placed upon illustrating the principles of the invention.
The present disclosure describes various embodiments of a brush head assembly with bristle tufts retained within an elastomeric matrix, and methods of their manufacture. More generally, Applicants have recognized and appreciated that it would be beneficial to provide a brush head formed with bristle tufts that have a molded proximal end head portion, thereby increasing engagement with the elastomeric matrix and improving bristle retention which is beneficial to a brush head's function, especially in powered toothbrush devices. A particular goal of utilization of certain embodiments of the present disclosure is the ability to efficiently manufacture brush heads with improved retention of the bristle tuft and improved bristle tuft flexibility. In view of the foregoing, various embodiments and implementations are directed to a brush head assembly in which a bristle tuft is exposed to heat in order to shape the proximal end head portion of the bristle tuft and increase engagement with the elastomeric matrix.
The brush heads disclosed and described herein can be used with any manual or power toothbrush device. One example of a power toothbrush device that the brush head can be used with Sonicare® devices available from Koninklijke Philips Electronics N.V. This oral care device is based upon an actuator with a reciprocating brush head including bristles to provide an effective cleaning of a user's teeth.
Referring to
Referring to
The proximal end head portion 26 can comprise a wide variety of different shapes and sizes. For example, the proximal end head portion 26 can be square, rounded, oval, triangular, trapezoidal, rectangular, u-shaped, or any of a wide variety of other shapes and sizes. Referring to
Referring to
In step 410 of the method, a plurality of bristle tufts 21 each comprising a plurality of bristle strands is provided and positioned with respect to a mold having cavities 201a therethrough for holding and/or positioning the bristle tufts. Each bristle tuft includes a proximal end 23 and a free end 25, where the proximal end of each bristle tuft is retained within the brush head assembly 100. Referring to
Referring to
As shown in
At step 420 of the method in
Referring to
At step 430 of the method in
According to an embodiment, at least the bottom mold portion 202 is removed. In some arrangements, the top mold portion 201 is also removed, but in other arrangements, it stays in place during the next step of the manufacturing to help ensure bristle tuft positioning and arrangement until the brush head is completed. Referring to
In step 440 of the method, the supporting portion 42 of the brush neck 40 is positioned in relation to the proximal end head portion 26 of the bristle tufts. Supporting portion of brush neck 42 can be properly positioned using a mold, for example, or other positioning mechanism. As shown in
In step 450 of the method in
At optional step 460 of the method, after the elastomeric matrix 30 has cured/cooled/hardened, if the top portion 201 of the mold 200 was left in place, it can be removed. In some arrangements, the free end 25 of the bristle tufts 21 may be trimmed after manufacturing is completed.
All definitions, as defined and used herein, should be understood to control over dictionary definitions, definitions in documents incorporated by reference, and/or ordinary meanings of the defined terms.
The indefinite articles “a” and “an,” as used herein in the specification and in the claims, unless clearly indicated to the contrary, should be understood to mean “at least one.”
The phrase “and/or,” as used herein in the specification and in the claims, should be understood to mean “either or both” of the elements so conjoined, i.e., elements that are conjunctively present in some cases and disjunctively present in other cases. Multiple elements listed with “and/or” should be construed in the same fashion, i.e., “one or more” of the elements so conjoined. Other elements may optionally be present other than the elements specifically identified by the “and/or” clause, whether related or unrelated to those elements specifically identified.
As used herein in the specification and in the claims, “or” should be understood to have the same meaning as “and/or” as defined above. For example, when separating items in a list, “or” or “and/or” shall be interpreted as being inclusive, i.e., the inclusion of at least one, but also including more than one, of a number or list of elements, and, optionally, additional unlisted items. Only terms clearly indicated to the contrary, such as “only one of” or “exactly one of,” or, when used in the claims, “consisting of,” will refer to the inclusion of exactly one element of a number or list of elements. In general, the term “or” as used herein shall only be interpreted as indicating exclusive alternatives (i.e. “one or the other but not both”) when preceded by terms of exclusivity, such as “either,” “one of,” “only one of,” or “exactly one of.”
As used herein in the specification and in the claims, the phrase “at least one,” in reference to a list of one or more elements, should be understood to mean at least one element selected from any one or more of the elements in the list of elements, but not necessarily including at least one of each and every element specifically listed within the list of elements and not excluding any combinations of elements in the list of elements. This definition also allows that elements may optionally be present other than the elements specifically identified within the list of elements to which the phrase “at least one” refers, whether related or unrelated to those elements specifically identified.
It should also be understood that, unless clearly indicated to the contrary, in any methods claimed herein that include more than one step or act, the order of the steps or acts of the method is not necessarily limited to the order in which the steps or acts of the method are recited.
In the claims, as well as in the specification above, all transitional phrases such as “comprising,” “including,” “carrying,” “having,” “containing,” “involving,” “holding,” “composed of,” and the like are to be understood to be open-ended, i.e., to mean including but not limited to. Only the transitional phrases “consisting of” and “consisting essentially of” shall be closed or semi-closed transitional phrases, respectively.
While several inventive embodiments have been described and illustrated herein, those of ordinary skill in the art will readily envision a variety of other means and/or structures for performing the function and/or obtaining the results and/or one or more of the advantages described herein, and each of such variations and/or modifications is deemed to be within the scope of the inventive embodiments described herein. More generally, those skilled in the art will readily appreciate that all parameters, dimensions, materials, and configurations described herein are meant to be exemplary and that the actual parameters, dimensions, materials, and/or configurations will depend upon the specific application or applications for which the inventive teachings is/are used. Those skilled in the art will recognize, or be able to ascertain using no more than routine experimentation, many equivalents to the specific inventive embodiments described herein. It is, therefore, to be understood that the foregoing embodiments are presented by way of example only and that, within the scope of the appended claims and equivalents thereto, inventive embodiments may be practiced otherwise than as specifically described and claimed. Inventive embodiments of the present disclosure are directed to each individual feature, system, article, material, kit, and/or method described herein. In addition, any combination of two or more such features, systems, articles, materials, kits, and/or methods, if such features, systems, articles, materials, kits, and/or methods are not mutually inconsistent, is included within the inventive scope of the present disclosure.
This application is the U.S. National Phase application under 35 U.S.C. § 371 of International Application No. PCT/IB2016/052695, filed on May 11, 2016, which claims the benefit of U.S. Provisional Patent Application No. 62/161,361, filed on May 14, 2015. These applications are hereby incorporated by reference herein.
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/IB2016/052695 | 5/11/2016 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2016/181322 | 11/17/2016 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
2271835 | Cave | Feb 1942 | A |
5474366 | Zahoransky et al. | Dec 1995 | A |
5802656 | Dawson et al. | Sep 1998 | A |
5970564 | Inns et al. | Oct 1999 | A |
6088870 | Holbein | Jul 2000 | A |
6406099 | Boucherie | Jun 2002 | B2 |
7281768 | Sato et al. | Oct 2007 | B2 |
7600288 | Givonetti | Oct 2009 | B1 |
7992247 | Pfenniger et al. | Aug 2011 | B2 |
8069524 | Kraemer | Dec 2011 | B2 |
8099819 | Kraemer | Jan 2012 | B2 |
20010024060 | Boucherie | Sep 2001 | A1 |
20010038237 | Boucherie | Nov 2001 | A1 |
20020132572 | Lageson | Sep 2002 | A1 |
20030041402 | Stein | Mar 2003 | A1 |
20070006410 | Kraemer | Jan 2007 | A1 |
20070271717 | Clos | Nov 2007 | A1 |
20080168613 | Kraemer | Jul 2008 | A1 |
20080315668 | Huber | Dec 2008 | A1 |
20110232016 | Yu | Sep 2011 | A1 |
20120233790 | Uchida et al. | Sep 2012 | A1 |
20130205529 | Flesch | Aug 2013 | A1 |
20140232173 | Birk et al. | Aug 2014 | A1 |
20150115692 | Hiramoto | Apr 2015 | A1 |
20150130259 | Birk | May 2015 | A1 |
20160166051 | Shokoohi | Jun 2016 | A1 |
Number | Date | Country |
---|---|---|
1547442 | Nov 2004 | CN |
1593321 | Nov 2005 | EP |
2708155 | Mar 2014 | EP |
2004080238 | Sep 2004 | WO |
2006109077 | Oct 2006 | WO |
Number | Date | Country | |
---|---|---|---|
20180132988 A1 | May 2018 | US |
Number | Date | Country | |
---|---|---|---|
62161361 | May 2015 | US |