Brushless direct current motor for power tools

Information

  • Patent Grant
  • 11881750
  • Patent Number
    11,881,750
  • Date Filed
    Tuesday, August 24, 2021
    2 years ago
  • Date Issued
    Tuesday, January 23, 2024
    4 months ago
Abstract
A motor assembly for use with a power tool includes a motor housing, a brushless electric motor disposed at least partially in the motor housing, and a PCB assembly coupled to the motor housing. The PCB assembly includes a heat sink, a power PCB coupled to a first side of the heat sink, and a position sensor PCB coupled to a second side of the heat sink opposite the first side and in facing relationship with the motor.
Description
FIELD OF THE INVENTION

The present invention relates to brushless DC motors, and more particularly to brushless DC motors used in power tools.


SUMMARY OF THE INVENTION

The invention provides, in one aspect, a motor assembly for use with a power tool. The motor assembly includes a motor housing, a brushless electric motor disposed at least partially in the motor housing, and a PCB assembly coupled to the motor housing. The PCB assembly includes a heat sink, a power PCB coupled to a first side of the heat sink, and a position sensor PCB coupled to a second side of the heat sink opposite the first side and in facing relationship with the motor.


The invention provides, in another aspect, a method of manufacturing a brushless electric motor. The method includes providing a stator that includes a core defining a plurality of stator teeth, positioning a rotor within the stator, coupling a first end cap to a first end of the core, coupling a second end cap to a second end of the core, winding a plurality of coils on the respective stator teeth, and overmolding a plurality of coil contact plates within one of the first end cap or the second end cap, wherein the coil contact plates short-circuit diagonally opposite coils on the stator.


Other aspects of the invention will become apparent by consideration of the detailed description and accompanying drawings.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a block diagram of a power tool including a brushless DC motor in accordance with an embodiment of the invention.



FIG. 2A is a perspective view of a motor assembly, including the brushless DC motor, in accordance with another embodiment of the invention.



FIG. 2B is a rear perspective view of the motor assembly of FIG. 2, illustrating a PCB assembly exploded from the remainder of the motor assembly.



FIG. 3 is an exploded view of the motor assembly of FIGS. 2A and 2B.



FIG. 4 is a perspective view of the brushless DC motor in the motor assembly of FIG. 3.



FIG. 5 is a front perspective view of the motor of FIG. 4.



FIG. 6 is another front perspective view of the motor of FIG. 4 with portions removed.



FIG. 7 is another front perspective view of the motor of FIG. 4 with portions removed.



FIG. 8 is a plan view of a stator lamination of the motor of FIG. 4.



FIG. 9 is a front perspective view of a front end cap of the motor of FIG. 4.



FIG. 10 is a rear perspective view of the front end cap of FIG. 9.



FIG. 11 is a front view of a rear end cap of the motor of FIG. 4.



FIG. 12 is a rear view of the rear end cap of FIG. 11.



FIG. 13 is a perspective view of the rear end cap of FIG. 11 with coil contact plates overmolded therein.



FIG. 14 is a front view of the rear end cap and coil contact plates of FIG. 13, illustrating the rear end cap in a transparent state.



FIG. 15 is a perspective view of the coil contact plates of FIG. 13.



FIG. 15A is a perspective view of an alternative embodiment of the rear end cap of FIG. 13.



FIG. 15B is a rear exploded view of a portion of the rear end cap of FIG. 15A.



FIG. 16 is a perspective view of a rear end cap and coil contact plates according to another embodiment, illustrating the rear end cap in a transparent state.



FIG. 17 is a plan view of the coil contact plates shown in FIG. 16 with the rear end cap removed.



FIG. 18 is a perspective view of the coil contact plates of FIG. 17.



FIG. 19 is a rear perspective view of a motor housing of the motor assembly of FIG. 2.



FIG. 20 is a front perspective view of the motor housing in accordance with some embodiments.



FIG. 21 is a rear view of the motor housing of FIG. 19.



FIG. 22 is a front view of the motor housing of FIG. 19.



FIG. 23 is a perspective view of a PCB assembly in accordance with some embodiments.



FIG. 24 is a side view of the PCB assembly of FIG. 23.



FIG. 25 is a perspective view of the PCB assembly of FIG. 23, with portions removed.



FIG. 26 is a perspective view of a heat sink of the PCB assembly of FIG. 23.



FIG. 27 is a front view of a power PCB of the PCB assembly of FIG. 23.



FIG. 28 is a rear perspective view of the power PCB of FIG. 27.



FIG. 29 is a rear perspective view of a motor assembly according to another embodiment, illustrating a PCB assembly exploded from the remainder of the motor assembly.



FIG. 30 is a perspective view of the PCB assembly of FIG. 29.



FIG. 31 is a side view of the PCB assembly of FIG. 30.



FIG. 32 is a perspective view of a multi-piece heat sink of the PCB assembly of FIG. 21.





Before any embodiments of the invention are explained in detail, it is to be understood that the invention is not limited in its application to the details of construction and the arrangement of components set forth in the following description or illustrated in the following drawings. The invention is capable of other embodiments and of being practiced or of being carried out in various ways.


DETAILED DESCRIPTION


FIG. 1 illustrates a simplified block diagram of a power tool 100. The power tool 100 includes a power source 105, field effect transistors (FETs) 110, a brushless electric motor 115, Hall-effect sensors 120, a motor controller 125, user input 130, and other components 135 (such as current/voltage sensors, work lights (LEDs), etc.). The power source 105 provides DC power to the various components of the power tool 100 and may be a power tool battery pack that is rechargeable (e.g., a Lithium-ion battery pack). In some instances, the power source 105 may receive AC power (e.g., 120V/60 HZ) from a tool plug that is coupled to a standard wall outlet. The AC power may then be converted into DC power and provided to the components of the power tool 100. The power source 105 provides operating power to the motor 115 through the FETs 110 (e.g., an inverter bridge).


The Hall-effect sensors 120 output motor feedback information, such as an indication (e.g., a pulse) when the Hall-effect sensors detect a pole of a magnet attached to a rotating shaft 150 of the motor 115. Based on the motor feedback information from the Hall-effect sensors 120, the motor controller 125 may determine the rotational position, velocity, and/or acceleration of the shaft 150. The motor controller 125 also receives control signals from the user input 130. The user input 130 may include, for example, a trigger switch, a forward/reverse selector switch, a mode selector switch, etc. In response to the motor feedback information and user control signals, the motor controller 125 transmits control signals to the FETs 110 to drive the motor 115. By selectively activating the FETs 110, power from the power source 105 is selectively applied to opposed coils of the motor 115 to cause rotation of a shaft 150. Although not shown, the motor controller 125 and other components 135 of the power tool 100 may also be electrically connected to the power source 105 to receive operating power from the power source 105.


With reference to FIGS. 2A to 3, a motor assembly 140 is shown including a motor housing 145, the motor 115 positioned within the motor housing 145, and a PCB assembly 155 coupled to an end of the motor housing 145 opposite the end from which the shaft 150 protrudes. The PCB assembly 155 is fastened to the motor housing 145 by fasteners 170 (FIG. 3) equally spaced about the periphery of the motor housing 145. The PCB assembly 155 includes a heat sink 160, a power PCB 165 disposed on a rear side of the heat sink 160, and a position sensor PCB 355 disposed on an opposite side of the heat sink 160. The power PCB 165 includes the FETs 110 and a connection terminal that is connected to the power source 105 and the Hall-effect sensors 120. In the illustrated embodiment, the power PCB 165 is coupled to the heat sink 160 by fasteners 167. In some embodiments, rather than being attached to the motor housing 145, the power PCB 165 may be located on a casting elsewhere within the power tool 100. For example, the power PCB 165 may be located in a handle portion of the power tool housing or adjacent the motor assembly 145 in a motor housing portion of the power tool.


With reference to FIG. 7, the motor 115 includes a rotor 175 from which the shaft 150 extends and a stator 180 (FIG. 4) surrounding the rotor 175. The stator 180 includes individual stator laminations 185 that are stacked together to form a stator core 235. The stator 180 includes radially outward-extending ribs 190 on the outer surface of the stator core 235 that extend the entire length of the stator core 235. Adjacent ribs 190 define a concave channel 295 through which the fasteners 170 extend. In addition, the stator 180 also includes recesses 195, the purpose of which is described below, that extend parallel with the ribs 190 and that are rotationally offset from the ribs 190. With reference to FIG. 8, each stator lamination 185 includes a rim 210 having multiple radially outward-extending protrusions that collectively define the ribs 190 when the laminations 185 are stacked, and recesses 195 defined on the outer surface of the rim 210. The stator 180 also includes inwardly extending stator teeth 215 and slots 220 defined between each pair of adjacent stator teeth 215. An insulating member 225 (FIG. 7) is provided in the slots 220 to insulate the stator teeth 215 from coil windings (not shown).


With reference to FIG. 4, the motor 115 also includes a permanent ring magnet 305 mounted on the rear of the rotor shaft 150. The ring magnet 305 is affixed to the rotor shaft 150 and co-rotates with the rotor shaft 150, emanating a rotating magnetic field that is detectable by the Hall-effect sensors 120. The ring magnet 305 is rotationally aligned with the magnets of the rotor 175.


The stator 180 includes a front end cap 200 adjacent a front end of the stator core 235 and a rear end cap 205 adjacent a rear end of the stator core 235. With reference to FIGS. 9-14, the front end cap 200 and the rear end cap 205 each include rim portions 240 and end cap teeth 245 extending radially inward from the rim portions 240. The end cap teeth 245 include projections 250 that prevent the respective coil windings from slipping off the stator teeth 215 and the end cap teeth 245. Each of the front end cap 200 and the rear end cap 205 additionally includes tabs 255 extending transversely from the rim portions 240, with each tab 255 including a radially inward extending projection 260 (FIG. 12) that is received in a respective recesses 195 of the stator core 235 to rotationally align the front end cap 200 and the rear end cap 205 relative to the stator core 235. The front end cap 200 includes concave recesses 265 (FIGS. 9 and 10) that are aligned with the channels 295 in the stator core 235 through which the fastener 170 extend. The rear end cap 205 includes recessed portions 270 (FIGS. 11 and 12) that receive respective poles 330 (FIG. 17) of the motor housing 145 to rotationally align the rear end cap 205 relative to the stator core 235.


During assembly of the stator 180, stator windings are wound around the stator teeth 215 and the end cap teeth 245. The stator windings are guided between adjacent stator teeth 215 by wire guiding tabs 230 on the rear end cap 205 (FIG. 13). The stator 180 also includes coil contact plates 275a, 275b, and 275c (also referred interchangeably herein as coil contact plates 275) that short-circuit diagonally opposite pairs of coil windings (FIGS. 14-15). With reference to FIGS. 14 and 15, the coil contact plates 275 are generally semi-circular in shape and staggered to avoid contact between adjacent coil contact plates 275. In particular, the first coil contact plate 275a is positioned radially inward of the second coil contact plate 275b, and the first coil contact plate 275a is positioned radially outward of the third coil contact plate 275c. Each of the coil contact plates 275 includes a first terminal 280 and a second terminal 285 diagonally opposite the first terminal 280. Stator windings are connected to hooks 290 on the respective terminals 280, 285. With reference to FIG. 2A, the first terminals 280 extend through the heat sink 160 and are electrically connected to the power PCB 165, while the second terminals 285 do not protrude through the heat sink 160. Particularly, the terminals 280 of the coil contact plates 275a, 275b, 275c are connected, respectively, to the U, V, W phases of the inverter bridge (i.e., FETs 110). The first and second terminals 280, 285 and the hooks 290 protrude from the guiding tabs 230. In some embodiments, where the power PCB 165 is located elsewhere within the power tool 100 as described above, the coil contact plates 275 may be connected to the power PCB 165 by lead wires. Lead wires may be connected to the first terminals 280 (e.g., to holes in the first terminals 280) and routed to the power PCB 165 within the power tool housing.


With continued reference to FIGS. 14 and 15, a plurality of spacers 293 are coupled to the coil contact plates 275. At least some of the spacers 293 are positioned between adjacent coil contact plates 275 in order to create and maintain an insulating gap (e.g., a space) between the adjacent coil contact plates 275. In some embodiments, the plurality of spacers 293 are equally spaced circumferentially around the coil contact plates 275. The spacers 293 are pre-molded onto the coil contact plates 275 before the coil contact plates 275 are overmolded as discussed in further detail below. In particular, each of the spacers 293 are molded on one of the coil contact plates 275. In the illustrated embodiment, the spacers 293 include a first spacer positioned between the first and second adjacent coil contact plates 275a, 275b, and a second spacer 293 positioned between the adjacent first and third coil contact plates 275a, 275c. As such, insulating gaps are created between the adjacent coil contact plates 275.


The pre-molded spacers 293 prevent internal shorts between coil contact plates 275 and portions of the coil contact plates 275 being exposed. In other words, the relative spacing between adjacent coil contact plates 275 may be difficult to adequately control during an injection molding process, and the coil contact plates 275 may deform during the molding process from the injection pressure. This deformation of the coil contact plates 275 can cause internal shorts or exposure. By adding the pre-molding spacers 293, deformation of the coil contact plates 275 while being overmolded is prevented.


With reference to FIGS. 13 and 14, the coil contact plates 275 and the spacers 283 are overmolded in the rear end cap 205. In some embodiments, the front end cap 200 and the rear end cap 205 may be manufactured separately from the stator core 235, positioned relative to the stator core 235 using the tabs 255 and the recesses 195, and then retained to the stator core by the coil windings. In such an embodiment, the coil contact plates 275 may be overmolded by the rear end cap 205 using, for example, an insert molding process. In other embodiments, the stator core 235 and the coil contact plates 275 may be insert molded together, for example, using an injection molding process. In such an embodiment, the mold material defining each of the end caps 200, 205 may also overlie one or multiple of the laminations 185 in the front and the rear of the stator core 235. In both embodiments, because the coil contact plates 275 are molded within the rear end cap 205, separate means of attaching the coil contact plates 275 to the end cap 205 is unnecessary. Also, the entire circumferential length of the coil contact plates 275 is insulated within the non-conductive mold material comprising the rear end cap 205, thereby reducing the likelihood of corrosion of the coil contact plates 275 if the motor 115 is exposed to wet or damp environments.


With reference to FIGS. 16-18, a rear end cap 205′ according to another embodiment includes features similar to the rear end cap 205 identified with the same references numerals appended with an (′). In particular, the rear end cap 205′ includes three coil contact plates 275a′, 275b′, and 275c′. In this embodiment, there are no spacers (similar to spacers 293) included.


With reference to FIG. 15A, another embodiment of a rear end cap 205″, which may be used in place of the end cap 205 of FIG. 13, is shown with like reference numerals with two appended prime markers (″) being associated with like components in the end cap 205. In the rear end cap 205″ of FIG. 15A, the coil contact plates 275″ are first positioned in a pre-molded annular carrier 294 prior to being positioned in a mold for applying an outer resin layer 296 to the pre-assembled carrier 294 and coil contact plates 275″.


The carrier 294 includes a single circumferential groove 297 defined in a side of the end cap 205″ facing the stator core 235 in which the coil contact plates 275″ are positioned (FIG. 15B). A plurality of ribs 298 are located in the groove 297 for maintaining an air gap between adjacent coil contact plates 275″, thereby preventing relative movement between the plates 275″ during an injection molding process to apply the resin layer 296 that might otherwise cause two adjacent plates 275″ to come into contact and short.


With reference to FIGS. 19-22, the motor housing 145 includes a cylindrical portion 310 that houses the motor 115. Mounting bosses 320 are provided along the cylindrical portion 310 through which the fasteners 170 extend to interconnect the PCB assembly 155 to the motor housing 145. The motor housing 145 also includes a hub portion 340 coaxial with the cylindrical portion 310 and axially spaced from the cylindrical portion 310, posts 330 extending axially from a rear end of the cylindrical portion 310, and radially extending spokes 335 interconnecting the hub portion 340 to the posts 330. With reference to FIG. 20, the cylindrical portion 310 of the motor housing 145 also includes radially inward-extending ribs 315 extending the entire length of the cylindrical portion 310, with each pair of adjacent ribs 315 defining a channel 325 therebetween. When the motor 115 is inserted into the motor housing 145, the adjacent ribs 190 on the motor 115 are slidably received within the respective channels 325 defined in the cylindrical portion 310, thereby rotationally orienting the motor 115 relative to the motor housing 145.


With reference to FIGS. 19-22, the hub portion 340 defines a central aperture 345 into which a bearing 300 (FIG. 5) for supporting a rear of the rotor shaft 150 is interference-fit and the ring magnet 305 (FIG. 4) is received. In some embodiments, the motor housing 145′ may include a recessed portion 350′ (FIG. 29) formed in the hub portion 340′ and partially along one of the spokes 335′ into which a position sensor PCB 355′ is at least partially received. The recessed portion 350′ allows the position sensor PCB 355′ to be located in close proximity and in facing relationship with the ring magnet 305′ for accurate readings by multiple Hall-effect sensors 120′ on the position sensor PCB 355′.


With reference to FIGS. 23-26, the heat sink 160 is sandwiched between the power PCB 165 and the position sensor PCB 355 at the rear of the motor housing 145. In the illustrated embodiment, the position sensor PCB 355 is coupled to the heat sink 160 by fasteners 357. In the illustrated embodiment, there are three Hall-effect sensors 120 on the position sensor PCB 355. Alternatively, there may be other numbers of Hall-effect sensors 120 (e.g., two, four, etc.). With reference to FIGS. 27 and 28, the power PCB 165 includes a first, generally flat surface 360 facing the heat sink 160 and a second surface 365 opposite the first surface 360. The FETs 110 and capacitors 370 associated with the power PCB 165 are positioned on the second surface 365 (FIG. 28). The first surface 360 is held in contact with the heat sink 160 so that heat generated by the power PCB 165 is transferred by conduction to the heat sink 160, where it is subsequently dissipated.


A connection terminal 375 connecting the FETs 110 to the power source 105 is also positioned on the second surface 365. Connections between the FETs 110, the capacitors 370, and the connection terminal 375 may be routed on the first surface 360 or the second surface 365, for example, by a wiring substrate (e.g., printed electrical traces on the power PCB 165). The power PCB 165 also includes holes 380 through which the terminals 280 of the coil contact plates 275 protrude. The terminals 280 are connected to the U, V, and W terminals of the inverter bridge (i.e., FETs 110), respectively, via printed electrical traces on the power PCB 165. Accordingly, individual electrical wires are not required to electrically connect the FETs 110 to the coil contact plates 275. Additionally, recesses 385 are provided on the outer circumference of the power PCB 165 through which the fasteners 170 extend.


With reference to FIG. 25, the Hall-effect sensors 120 on the position sensor PCB 355 detect the rotating magnetic field emanated by the ring magnet 305. A connection terminal 390 is provided at one end of the position sensor PCB 355 to connect with a mating connection terminal 425 on the first surface 360 of the power PCB 165. In this manner, power is provided to the position sensor PCB 355 via the mating connection terminals 390, 425, and the motor information feedback from the Hall-effect sensors 120 is transmitted to the motor controller 125 via the power PCB 165. The connection between the power PCB 165 and the position sensor PCB 355 is made around an outermost edge of the heat sink 160. In some embodiments, the power PCB 165 and the position sensor PCB 355 may be combined on a single motor controller PCB (not shown). The motor controller PCB may include the Hall-effect sensors 120 on the side facing the ring magnet 305 and the FETs 110 on the side opposite the side with the Hall-effect sensors 120.


With reference to FIG. 26, the heat sink 160 includes holes 405 aligned with the respective holes 380 in the power PCB through which the terminals 280 pass and connect to the power PCB 165 as mentioned above. Recesses 410 are also provided on the outer circumference of the heat sink 160 through which the fasteners 170 extend. With reference to FIGS. 23 and 24, a low-pressure molding 400 provided with the heat sink 160 supports the end of the position sensor PCB 355 proximate the connection terminals 390 against the heat sink 160, while the position sensor PCB 355 is also fastened to the heat sink 160 (via fasteners 357) to ensure that the position sensor PCB 355 remains in contact with the heat sink 160 and to reduce tolerance stack-up back to the ring magnet 305. In other words, the molding 400 supports the connection terminal 390 on the position sensor PCB 355 and the mating connection terminal 425 on the power PCB 165.


In the illustrated embodiment, the position sensor PCB 355 is received within a recess 402 formed in the heat sink 160, and the low-pressure molding 400 encases the position sensor PCB 355. The low-pressure molding 400 also insulates solder joints for power leads and a ribbon cable connector from contamination. In the illustrated embodiment, the low-pressure molding 400 extends to the holes 405 in the heat sink 160 to provide electrical insulation between terminals 280 and the heat sink 160. In other words, the molding 400 electrically insulates the holes 405 in heat sink 160. Specifically, the heat sink 160 includes a plurality of tracks 403 extending between the recess 402 and the holes 405 to form the molding 400. The molding 400 covers the recess 402, the tracks 403, and the holes 405. The heat sink 160 may also be hard-coat anodized or carbon coated to provide electrical isolation from the terminals 280.


With reference to FIGS. 29-32, a motor assembly 140′ according to another embodiment, includes an alternative PCB assembly 155′. The PCB assembly 155′ includes features similar to the PCB assembly 155 identified with the same references numerals appended with an (′). The low-pressure molding 400 shown in FIG. 30 does not encase the position sensor PCB 355, but rather encases only an end of the position sensor PCB 355. In addition, the position PCB 355 is mounted to the heat sink 160 without any recess.


Various features of the invention are set forth in the following claims.

Claims
  • 1. A motor assembly for use with a power tool, the motor assembly comprising: a motor housing;a brushless electric motor disposed at least partially in the motor housing; anda PCB assembly coupled to the motor housing, the PCB assembly including a heat sink,a power PCB coupled to a first side of the heat sink, anda position sensor PCB coupled to a second side of the heat sink opposite the first side and in facing relationship with the motor,wherein the heat sink includes a plurality of holes aligned with respective holes formed in the power PCB, andwherein the brushless electric motor includes coil contact plates with terminals that extend through the holes in the heat sink to electrically connect to the power PCB.
  • 2. The motor assembly of claim 1, further comprising a molding positioned between the terminals and the heat sink.
  • 3. The motor assembly of claim 1, further comprising a molding coupled to the position sensor PCB.
  • 4. The motor assembly of claim 3, wherein the molding encases the position sensor PCB.
  • 5. The motor assembly of claim 3, wherein the molding extends to the plurality of holes in the heat sink.
  • 6. The motor assembly of claim 5, wherein the molding electrically insulates the holes in heat sink.
  • 7. The motor assembly of claim 1, further comprising a connection terminal provided on the position sensor PCB to connect with a mating connection terminal on the power PCB, wherein the connection between the position sensor PCB and the power PCB is made around an edge of the heat sink.
  • 8. The motor assembly of claim 7, further comprising a molding supporting the connection terminal on the position sensor PCB and the mating connection terminal on the power PCB.
  • 9. The motor assembly of claim 1, wherein the heat sink includes a recess, and wherein the position sensor PCB is received within the recess.
  • 10. The motor assembly of claim 9, wherein the heat sink includes a plurality of tracks extending between the recess and the holes.
  • 11. The motor assembly of claim 10, further comprising a molding covering the recess, the tracks, and the holes.
  • 12. The motor assembly of claim 1, wherein the power PCB is coupled to the heat sink with a fastener.
  • 13. The motor assembly of claim 1, wherein the position sensor PCB is coupled to the heat sink with a fastener.
  • 14. The motor assembly of claim 1, further comprising a position sensor magnet coupled to a shaft of the brushless motor.
  • 15. The motor assembly of claim 14, wherein the position sensor magnet is ring shaped.
  • 16. The motor assembly of claim 1, wherein the position sensor PCB includes at least two Hall-Effect sensors.
  • 17. The motor assembly of claim 16, wherein the position sensor PCB includes at least three Hall-Effect sensors.
  • 18. The motor assembly of claim 1, wherein the PCB assembly is coupled to the motor housing with a fastener.
  • 19. A motor assembly for use with a power tool, the motor assembly comprising: a motor housing;a brushless electric motor disposed at least partially in the motor housing; anda PCB assembly coupled to the motor housing, the PCB assembly including a heat sink,a power PCB coupled to a first side of the heat sink, anda position sensor PCB coupled to a second side of the heat sink opposite the first side and in facing relationship with the motor,wherein the heat sink includes a recess, and wherein the position sensor PCB is received within the recess,wherein the heat sink includes a plurality of holes aligned with respective holes formed in the power PCB, andwherein the heat sink includes a plurality of tracks extending between the recess and the holes.
  • 20. The motor assembly of claim 19, further comprising a molding covering the recess, the tracks, and the holes.
CROSS-REFERENCE TO RELATED APPLICATIONS

This application is a continuation of U.S. patent application Ser. No. 17/095,484 filed on Nov. 11, 2020, now U.S. Pat. No. 11,114,927, which is a continuation of U.S. patent application Ser. No. 15/894,386 filed on Feb. 12, 2018, now U.S. Pat. No. 10,848,042, which claims priority to U.S. Provisional Patent Application No. 62/458,367 filed on Feb. 13, 2017, the entire contents of which are incorporated herein by reference.

US Referenced Citations (133)
Number Name Date Kind
3531702 Hill Sep 1970 A
4926075 Fushiya et al. May 1990 A
4952830 Shirakawa Aug 1990 A
4982124 Cummings et al. Jan 1991 A
4982125 Shirakawa Jan 1991 A
5932942 Patyk et al. Aug 1999 A
6107708 Yamaguchi et al. Aug 2000 A
6297572 Sunaga et al. Oct 2001 B1
6522130 Lutz Feb 2003 B1
6552453 Ohiwa et al. Apr 2003 B2
6577030 Tominaga et al. Jun 2003 B2
6617719 Sunaga et al. Sep 2003 B2
6693422 Lutz Feb 2004 B2
6713981 Nakajima Mar 2004 B2
6774599 Ishii Aug 2004 B2
6856057 Kobayashi et al. Feb 2005 B2
6894410 Kobayashi et al. May 2005 B2
6930418 Kobayashi et al. Aug 2005 B2
6956315 Yoon et al. Oct 2005 B2
6993829 Kobayashi et al. Feb 2006 B2
7095193 Kellogg et al. Aug 2006 B2
7219417 Kobayashi et al. May 2007 B2
7262529 Klappenbach et al. Aug 2007 B2
7411326 Achor et al. Aug 2008 B2
7557478 Hoshika Jul 2009 B2
7652402 Kinoshita et al. Jan 2010 B2
7663285 Yumoto et al. Feb 2010 B2
7714529 Chen et al. May 2010 B2
7739788 Prochazka et al. Jun 2010 B1
7755231 Kataoka et al. Jul 2010 B2
7791232 Purohit et al. Sep 2010 B2
7827673 Kataoka et al. Nov 2010 B2
7893579 Rudel et al. Feb 2011 B2
8035263 Kienzler et al. Oct 2011 B2
8035269 Bottger et al. Oct 2011 B2
8141231 Wolfe, Jr. et al. Mar 2012 B2
8169119 Eppler et al. May 2012 B2
8188624 Noh et al. May 2012 B2
8188632 Miyajima May 2012 B2
8247937 Minato et al. Aug 2012 B2
8304942 Yamasaki et al. Nov 2012 B2
8310119 Uryu et al. Nov 2012 B2
8310121 Fujita et al. Nov 2012 B2
8415845 Miyachi et al. Apr 2013 B2
8436500 Minato May 2013 B2
8456049 Matsuda et al. Jun 2013 B2
8471418 Yamasaki Jun 2013 B2
8546896 Marchitto et al. Oct 2013 B2
8552604 Matsuda et al. Oct 2013 B2
8564161 Yamasaki Oct 2013 B1
8630095 Minato et al. Jan 2014 B2
8649159 Fujita et al. Feb 2014 B2
8659193 Yamasaki et al. Feb 2014 B2
8803383 Miyachi Aug 2014 B2
8829746 Yamasaki Sep 2014 B2
8890380 Andrieux et al. Nov 2014 B2
8916999 Imai et al. Dec 2014 B2
9025336 Minato et al. May 2015 B2
9271422 Yamasaki Feb 2016 B2
9450471 Mergener Sep 2016 B2
9799929 Kawase et al. Oct 2017 B2
10205365 Beyerl Feb 2019 B2
10348159 Beyerl Jul 2019 B2
10848042 Beyerl Nov 2020 B2
20020094907 Elger Jul 2002 A1
20050088049 De Filippis et al. Apr 2005 A1
20050248320 Denning Nov 2005 A1
20060108881 Hauger et al. May 2006 A1
20060279162 Achor Dec 2006 A1
20070232094 Hoshika Oct 2007 A1
20090127964 Yumoto May 2009 A1
20100186978 Sekino et al. Jul 2010 A1
20110163701 Carrier et al. Jul 2011 A1
20110188232 Friedman et al. Aug 2011 A1
20110285223 Miyachi Nov 2011 A1
20110291514 Figgins Dec 2011 A1
20110316371 Dietl et al. Dec 2011 A1
20120307476 Masuzawa et al. Dec 2012 A1
20130033217 Hirabayashi Feb 2013 A1
20130057294 Mizoguchi et al. Mar 2013 A1
20130113313 Ikura May 2013 A1
20130207491 Hatfield et al. Aug 2013 A1
20130218597 Lorsch et al. Aug 2013 A1
20130270934 Smith et al. Oct 2013 A1
20130313927 Laber et al. Nov 2013 A1
20140035445 Uryu et al. Feb 2014 A1
20140145564 Taniguchi et al. May 2014 A1
20140147718 Furui et al. May 2014 A1
20140209341 Nishikawa Jul 2014 A1
20140265748 Clendenen Sep 2014 A1
20140361645 Beyerl Dec 2014 A1
20150069864 Nagahama Mar 2015 A1
20150149467 Sar et al. May 2015 A1
20150180307 Inuzuka Jun 2015 A1
20150229172 Kashihara et al. Aug 2015 A1
20150249375 Andrieux Sep 2015 A1
20160021765 Yu et al. Jan 2016 A1
20160036286 Yamasaki Feb 2016 A1
20160094110 Drye Mar 2016 A1
20160094175 Yamasaki Mar 2016 A1
20160111984 Koizumi et al. Apr 2016 A1
20160134178 Acinas Lope May 2016 A1
20160149463 Smith et al. May 2016 A1
20160149474 Smith et al. May 2016 A1
20160192535 Yamanaka Jun 2016 A1
20160218596 Hayashi Jul 2016 A1
20160218598 Hayashi Jul 2016 A1
20160226334 Falguier Aug 2016 A1
20160254719 Pondelek Sep 2016 A1
20160261161 Roos Sep 2016 A1
20160268875 Roos Sep 2016 A1
20170015347 Asao Jan 2017 A1
20170106521 Kelleher Apr 2017 A1
20170214292 Nagahama Jul 2017 A1
20170234484 Vanko Aug 2017 A1
20170288499 Beyerl Oct 2017 A1
20170294819 Crosby Oct 2017 A1
20170296020 Chen Oct 2017 A1
20170310194 Beyerl Oct 2017 A1
20170373614 Lewis Dec 2017 A1
20180029148 Suzuki Feb 2018 A1
20180152062 Chang May 2018 A1
20180156638 Liu Jun 2018 A1
20180226861 Palmer Aug 2018 A1
20180262092 Beyerl Sep 2018 A1
20180323689 Schuler Nov 2018 A1
20190044110 Sheeks Feb 2019 A1
20190190351 Gregorich Jun 2019 A1
20190326790 Hao Oct 2019 A1
20200112227 Kouda Apr 2020 A1
20210067018 Beyerl et al. Mar 2021 A1
20230081123 Morimoto Mar 2023 A1
20230118691 Morimoto Apr 2023 A1
Foreign Referenced Citations (30)
Number Date Country
2733729 Oct 2005 CN
201185382 Jan 2009 CN
201533207 Jul 2010 CN
202535244 Nov 2012 CN
103023262 Apr 2013 CN
103036385 Apr 2013 CN
102664506 Oct 2014 CN
203933327 Nov 2014 CN
204652140 Sep 2015 CN
105322686 Feb 2016 CN
205123457 Mar 2016 CN
4311267 Oct 1994 DE
4332249 Mar 1995 DE
29512597 Oct 1995 DE
1215804 Jun 2002 EP
1659672 May 2006 EP
2889107 Jul 2015 EP
2005287240 Oct 2005 JP
2005341640 Dec 2005 JP
2007135339 May 2007 JP
2012139783 Jul 2012 JP
2013021824 Jan 2013 JP
2014069254 Apr 2014 JP
2014113664 Jun 2014 JP
2015126562 Jul 2015 JP
100869509 Nov 2008 KR
200475473 Dec 2014 KR
2006000131 Jan 2006 WO
2012052577 Apr 2012 WO
2016021803 Feb 2016 WO
Non-Patent Literature Citations (5)
Entry
International Search Report and Written Opinion for Application No. PCT/US2018/043749 dated Nov. 21, 2018, 26 pages.
International Search Report and Written Opinion for Application No. PCT/US2018/017804 dated May 25, 2018, 12 pages.
Partial Search Report issued by the European Patent Office for Application No. 18751952.5 dated Nov. 2, 2020 (14 pages).
Extended European Search Report for Application No. 18751952.5 dated Feb. 3, 2021 (12 pages).
European Patent Office Action for Application No. 18751952.5 dated Jul. 5, 2022 (6 pages).
Related Publications (1)
Number Date Country
20210384809 A1 Dec 2021 US
Provisional Applications (1)
Number Date Country
62458367 Feb 2017 US
Continuations (2)
Number Date Country
Parent 17095484 Nov 2020 US
Child 17410298 US
Parent 15894386 Feb 2018 US
Child 17095484 US