Building Designs and Heating and Cooling Systems

Abstract
Building heating and/or cooling methods are provided that can include: distributing fluid from within conduits within a concrete floor of a building to conduits within grounds surrounding and/or supporting the building; diverting at least some of the fluid exiting the conduits within the grounds surrounding and/or supporting the building to a dehumidifier operably associated with the interior of the building; and returning the at least some of the fluid from the dehumidifier to the conduits within the grounds surrounding and/or supporting the building.
Description
TECHNICAL FIELD

The present disclosure relates generally to the field of atmosphere modification systems and more specifically to the area of building heating and/or cooling systems as well as building designs.


BACKGROUND

Energy for use in heating and cooling buildings has become expensive to consume as well as environmentally difficult to generate. Whether occupants rely on gas, electric, or even solid fuel to heat and/or cool their buildings, the cost of these energy sources is not decreasing, and utilizing each of these sources has environmental impacts unique to each source. For example, electricity is manufactured utilizing coal in most cases or via hydro turbines. The burning of the coal can adversely impact the atmosphere, and the hydro turbines have been recognized to adversely impact fish populations. It would be beneficial to require less energy from these sources to maintain a building at a comfortable temperature during both cold winter months and hot summer months as well. The present disclosure provides both heating and cooling systems.


SUMMARY OF THE DISCLOSURE

Building heating and/or cooling methods are provided that can include continuously distributing fluid from within conduits within a concrete floor of a building to conduits within grounds surrounding and/or supporting the building.


Building heating/cooling systems are provided that can include: a building comprising walls and concrete floors; fluid containing conduit within the concrete floors; circulating fluid within the conduit; a least one dehumidifier operatively associated within the building and configured to maintain a desired humidity within the building; and processing circuitry operatively coupled to fluid circulation controls and the dehumidifier.


Building constructions are provided that can include at least one subfloor above grounds supporting the building, and interior conduits extending through the one subfloor and configured to convey a fluid, with exterior conduits extending through the grounds and configured to convey the fluid; and a control system operable to couple the interior and exterior conduits.


Building heating and/or cooling methods are provided that can include distributing fluid from within a building to grounds surrounding and/or supporting the building and returning the fluid to the building. The methods can also include after returning the fluid to the building, exposing the fluid to a subfloor of the building to regulate a temperature of the subfloor.


Heating and/or cooling systems are also provided that can include a control system operably associated with a wall of a building and coupled to both interior and exterior conduits, with the interior conduits configured to extend to within a mass of the building and the exterior conduits configured to extend to within grounds proximate the building.


Building heating and/or cooling methods are provided that can include: distributing fluid from within conduits within a concrete floor of a building to conduits within grounds surrounding and/or supporting the building; diverting at least some of the fluid exiting the conduits within the grounds surrounding and/or supporting the building to a dehumidifier operably associated with the interior of the building; and returning the at least some of the fluid from the dehumidifier to the conduits within the grounds surrounding and/or supporting the building.





BRIEF DESCRIPTION OF THE DRAWINGS

Preferred embodiments of the disclosure are described below with reference to the following accompanying drawings.



FIG. 1A is a building construction according to an embodiment of the disclosure.



FIG. 1B is a heat exchanger according to an embodiment of the disclosure.



FIG. 1C is a control component and dehumidifier alignment for use in the systems and methods of the present disclosure.



FIG. 1D is a control component, dehumidifier, and heat exchanger alignment for use in the systems and methods of the present disclosure.



FIG. 1E is a dehumidifier and heat exchanger alignment for use in the systems and methods of the present disclosure.



FIG. 1F is a dehumidifier operably engaged with the conduit extending between the concrete floor and grounds of a building according to an embodiment of the present disclosure.



FIG. 2 is a building construction according to another embodiment of the disclosure.



FIG. 3 is an overview of a building construction in the context of a plot plan according to an embodiment of the disclosure.



FIG. 4 is a building construction in context of a plot plan according to another embodiment of the disclosure.



FIG. 5 is a system for use by building construction according to an embodiment of the disclosure.



FIG. 6 is another view of the system of FIG. 5 according to an embodiment of the disclosure.



FIG. 7 is a system for use in a building construction according to an embodiment of the disclosure.



FIG. 8 is another view of the system of FIG. 7 according to an embodiment of the disclosure.





DESCRIPTION OF THE DISCLOSURE

This disclosure is submitted in furtherance of the constitutional purposes of the U.S. Patent Laws “to promote the progress of science and useful arts” (Article 1, Section 8).


The present disclosure provides building constructions and systems for controlling the interior temperature of these building constructions. The constructions and systems, according to embodiments, reduce airborne dust and mites by up to 90% air exchange by heat reclaiming units such as air to air heat exchangers, with CO2 monitors, for example. According to other embodiments, there is no moisture absorption to encourage the growth of mold or smut spores; there are no chemicals to cause allergic reactions in sensitive people; there is no continuous circulation of airborne viruses such as that which causes Legionnaires Disease; and the construction and systems exceed health house guidelines of the American Lung Association. According to other embodiments, the constructions and systems within the constructions make the building envelope or construction envelope nearly soundproof and airtight. According to example implementations in museums, safe rooms, and computer rooms, there is no humidity to affect priceless or irreplaceable artifacts, valuables, or delicate electronic equipment.


According to another embodiment, constructions and systems have an over 200 year lifespan with little maintenance requirements; the system can use up to 60% less fuel than forced air heating and cooling; little to no environmental energy is required for summer cooling; and according to additional example embodiments, the systems meet all qualifications for energy aid programs (Form 70 A) and make lower mortgages possible because of the energy saving rating. According to additional example implementations, there can be zero carbon dioxide emissions through the use of cooling and around 50% less for heating than other heating and cooling systems available today with no contaminants. Once emitted from the systems, water can be used for decorative water features such as ponds and fountains or recycled for irrigation.


The constructions and systems will be described with reference to FIGS. 1A-8. Referring to FIG. 1A, a building construction 10 is shown over grounds 12 supporting the building construction. Construction 10 includes envelope or exterior walls 14 over foundation 16. In connection with or running between, above, or as part of foundation 16 is flooring 18 which may be considered a subfloor. Envelope 14 can be any envelope and can include wood construction as well as masonry construction or even steel construction. Foundation 16 as stated above can be part of or combined with floor section 18. However, in example constructions, foundation 16 is an above-ground or perhaps even a basement construction.


Subfloor 18 can be a slab construction or a flooring construction. However, in specific embodiments, subfloor 18 is a slab construction of at least 2 inches of thickness, but can be as thick as 4 inches or greater, with 2-4 inches being preferred. Subfloor 18 can be constructed of concrete, for example. Buildings can be configured with multiple subfloors. For example, subfloors located on every level of the building and any or all of these subfloors can be constructed of concrete or other high mass building material. As another example, one subfloor can be located elevationally above another subfloor.


According to example implementations, construction 10 can include high mass areas such as floors and walls. These high mass areas can be utilized to store heat or cold that can be utilized later to heat or cool the building. For example, foundation 16 can be constructed of concrete and the concrete of the floor can be cooled throughout a hot summer evening during non-peak kilowatt hours. During the heat of the day, the high mass foundation assists in cooling the house during peak kilowatt hours. During winter months, the high mass foundation can be heated during the evening and the heat of the high mass foundation used to heat the home during peak kilowatt hours of the day.


Construction 10 also includes a control system 20 that is coupled to interior lines (conduits) 22 and exterior lines (conduits) 24. Control system 20 can be operable to couple these interior and exterior conduits. Interior lines 22 and exterior lines 24 both have respective return and outgoing lines. For example, interior lines 22 include a return line 22 A and an outgoing line 22 B. Exterior lines 24 include a return line 24 A and an outgoing line 24 B. Control system 20 controls the return and the outgoing flows of these lines.


The lines themselves are conduits. The conduits are configured to provide a fluid, typically a liquid fluid, within the sub floor portion 18 and returning through control system 20, and then to exterior, preferably within the grounds 12 via outgoing lines 24. According to example implementations, the interior conduits can extend through the one subfloor and be configured to convey fluid. The interior conduits can also be at least partially encased in concrete of a subfloor. According to other implementations, a majority of the interior conduits can be encased in the concrete of the subfloor. Where multiple subfloors are utilized the interior conduits can extend through one, a number of, or all of the subfloors.


The fluid itself that is contained within these lines is preferably water but can also be other fluids, including glycols, for example. Where water is utilized, the fluid can be treated with a disinfectant or not treated with a disinfectant.


The exterior conduits can extend through the grounds and can be configured to convey the fluid between and/or through the control unit and/or interior conduits. Substantially all or a majority of the exterior conduits can be encased in the grounds surrounding and/or supporting the building. In accordance with example implementations the building can be a commercial building and the exterior conduits can extend through the grounds supporting a parking lot associated with the commercial building. In accordance with other implementations, the building can be a multi-family unit with individual units of the building sharing common walls and/or grounds. The exterior conduits can traverse the common wall and/or grounds, for example.


In accordance with the systems, heating/cooling can include distributing fluid from within a building to grounds surrounding and/or supporting the building and returning the fluid to the building. After returning the fluid to the building, the fluid can be exposed to a subfloor of the building to regulate a temperature of the subfloor.


Control system 20 can be configured to seasonally control the flow of fluid from within conduits 22 and 24 based on temperature requirements within building construction 10. For example, during winter months, fluid can be provided from within floor construction 18 through control system 20 and out to ground loop 26. This flow can continue on a year-long basis and as such provides an ambient temperature that is more consistent with the temperature of the ground region below the home or in the surrounding grounds of the home. For example, in the winter months, while the exterior of the home may be in the 40° Fahrenheit or lower range, the interior slab portion will be more proximately in the subterranean range of 50° F. to 60° F., a significant increase in temperature of 10° F. to 20° F.; as such, when this fluid is provided from ground loop 26 to within slab 18, this warmer fluid can warm the house to at least a 10° F. to 15° F. change, thus requiring less of an interior heat source to heat the home. In the summer months, likewise the slab can be cooled to approximately 50° F. to 60° F. while the exterior of the home is in the 80° F. to 90° F. range. As such, there is a significant change, approximately 20° F. to 30° F. between the floor 18 temperature within the home and that temperature outside the home, at the same time requiring less energy to cool the home. According to example implementations, fluid, such as water, can be provided from either or both of the interior or exterior conduits to a sprinkler system associated with the grounds surrounding and/or supporting the building.


In accordance with example embodiments, perimeter 14 or envelope 14 can have walls that are insulated to at least R24 or higher. Perimeter 14 can also have less than 30% window area with a U rating of 0.333 or less. According to an example embodiment, floor 18 can also have at least 2″ of insulation to an R10 rating. Above floors there can also be an R5 rating. Perimeter 14 can include a ceiling insulated to R50 or higher, for example.


The building can also have attic/ceiling fans. The fans can be configured to remove hot air from the building during summer months and maintain warmer air in the building during winter months, for example.


The building heating/cooling system 10 can also include at least one heat exchanger 102 that is operatively engaged with control system 20 as well as additional controls 104. In accordance with example implementations the heat exchanger can be an air to air heat exchanger and/or a liquid to air heat exchanger. With the liquid to air heat exchanger, the liquid can be associated with the liquid that circulates through the concrete. In this configuration, air can be exchanged between the outside of the building and the inside of the building over a coil containing liquid that may include the liquid circulating in the concrete, a separate liquid, or a gas, such as a refrigerant for example.


In accordance with additional implementations, system 10 can include a dehumidifier 105. This dehumidifier can be controlled by additional controls 104 to engage when humidity reaches a predetermined threshold level and/or operatively coupled with a CO2 detector 107. Example levels requiring the engagement of dehumidification can be but are not limited to 50% or an engagement of dehumidification when the humidity is 55%. Conversely, humidifiers can be engaged when the humidity is as low as 40%.


In accordance with example configurations, dehumidifier 105 may not operatively engage the fluid control system 20 to utilize fluid from system 20 for dehumidification operations.


In the air to air configuration, FIG. 1B depicts an example embodiment of at least one heat exchanger that includes intakes 106 and 108, as well as outlets 110 and 112. Air from each of the outlets can pass over cores 114 and 115 respectively that are thermally conductive material such as aluminum for example. This transfer can be facilitated with at least two motorized fans and both air paths can proceed through filters.


The heat exchangers can include drain pans to facilitate the collection of moisture through loss of water from exchanged air. The heat exchanger can be operatively associated with building ducting and/or associated with an opening in the building envelope.


In accordance with example implementations, the heat exchanger can be used in concert with the building temperature control using the circulating fluid in the concrete to reduce humidity in the building and/or exchange high CO2 air with fresh air with minimal temperature change inside the building.


In accordance with additional configurations and with reference to FIG. 1C, dehumidifier 105 can be in fluid communication with system 20. As shown fluid 24a can be provided to dehumidifier 105 and returned to system 20 as fluid 22b. In this configuration, fluid within system 20 that is circulated between the concrete floors and the exterior grounds can be used to dehumidify the dwelling if desired.


Referring to FIG. 1D and in accordance with yet another configuration of system 20, heat exchanger 104, dehumidifier 105 and system 20 can be aligned as shown. Accordingly, fluid 22a can be received from the dwelling flooring and provided to the exterior grounds of the dwelling for cooling, 24b. Fluid 24a can be returned to system 20 and then provided to dehumidifier 105 for use in dehumidification. Fluid 22b can be provided after use in dehumidification to system 20 and then provided to the flooring of the dwelling before returning as fluid 22a.


In accordance with example implementations, air 111 may be received from heat exchanger 104 by dehumidifier 105 and then provided to the dwelling as 117. This configuration may take place when air is replaced in the dwelling, for example to compensate for a high CO2 detection. In accordance with another configuration, air 113 may be received from within the dwelling by dehumidifier 105 to dehumidify dwelling air without exchanging air with the exterior of the dwelling. Accordingly, CO2 detector 107 can work in concert with control unit 104 as well as system 20 to facilitate the desired flow of air through dehumidifier 105 as desired.


In accordance with an additional implementation of the disclosure, FIG. 1E depicts a configuration of the heat exchanger and dehumidifier.


In accordance with another implementation and with reference to FIG. 1F, a building heating and/or cooling system/method is provided that can include: distributing fluid from within conduits 22 (a) and (b) within a concrete floor of a building to conduits 26 within grounds surrounding and/or supporting the building. The method can include diverting via control 20 and valves at least some of the fluid exiting the conduits 26 within the grounds surrounding and/or supporting the building to a dehumidifier 102 operably associated with the interior of the building; and returning the at least some of the fluid from the dehumidifier to the conduits 26 within the grounds surrounding and/or supporting the building. The method can utilize a plurality of directional and/or check valves to control the direction of flow of the fluid within the conduits and to or from the dehumidifier (within box 20).


Processing circuitry can be used to control fluid circulation and the dehumidifier. The processing circuitry is operatively coupled to one or more of a timer, humidistat, CO2 sensor, and/or an on/off switch.


The method can include monitoring the humidity of the air in the building to determine a humidity greater than about 50% or within the range of 48-55% humidity. Upon determining this humidity, at least one valve can be opened to divert at least some of the fluid exiting the conduits within the grounds surrounding and/or supporting the building to the dehumidifier operably associated with the interior of the building. Additionally, at least another valve can be opened to return the at least some of the fluid from the dehumidifier to the conduits within the grounds surrounding and/or supporting the building. Both these valves can be in box 20. In combination or separate from the above, the method can also include controlling the flow of the fluid between the ground and the concrete floor to regulate the temperature within the building.


Turning now to FIG. 2, another exemplary embodiment of construction 10 is shown. As the example depiction of FIG. 2 indicates, construction 10 can have at least two floors, 18A and 18B. Floors 18A and 18B can have conduits 22 extending therethrough. As depicted, conduits 22 can extend from control system 20 to floor 18A as well as floor 18B, thereby circulating fluid from intake of 24A throughout the flooring of construction 10. According to an example implementation, control system 20 may be able to regulate the flow of fluid within conduits 22 to floor 18B as opposed to 18A depending on the temperature requirements of the home. For example, in the summer months, more of the fluid received from 24A can be provided to the upper floors of construction 10 rather than the lower floors, for example, 18B and 18A. As also shown in FIG. 2, conduits 24B and 24A extend in opposing directions within ground 12. This, for example, is an indication that conduits 24A and 24B do not necessarily need to extend directly below construction 10. These conduits can extend laterally from construction 10 to subsurface regions beyond subsurface 10.


Referring to FIG. 3, an exemplary plot plan 30 is shown that includes a building 10 situated on a plot having, for example, parking designations 32 proximate thereto. As depicted, building 10 can have a control system 20 therein with conduits 22 extending therein. The conduits 22 can extend to slab or floor constructions not shown at many levels of building 10, or to only single levels of building 10, depending on design choice. Conduits 24 can extend from control system 20 and to within the ground below parking designations 32. According to example implementations, providing fluid to this mass of conduits underneath parking designation 32 can allow for the cooling and/or warming of building 10.


Referring to FIG. 4 according to another implementation, plot 40 is shown having multiple buildings 42, 44, 46, and 48 placed thereon. These multiple buildings can have individual system controls or can have a single system control as shown, for example. Conduits 22 and 24 can be configured to take advantage of the space in and around these individual units. According to an exemplary implementation, conduits 22 can extend throughout and actually join individual units 42, 44, 46 and 48. As an example, this kind of uniform ambient heating can be utilized to lower the energy costs of each of these units rather than requiring each of the units to have individual system controls. According to exemplary implementations, individual system controls can be utilized; however, additional ground coils 24 would be required. As shown in plot 40, ground coils 24 can extend through the front and around the perimeter of buildings 42, 44, 46 and 48.


Referring to FIG. 5, an example system 20 is shown. As shown in FIG. 5, system 20 has the various portions of system 20 labeled as example designations. By no means should these example designations be inferred to limit the configuration of system 20 to the systems as shown. Other implementations of the control of fluids throughout the interior of construction 10 as well as throughout the ground portions underneath and surrounding construction 10 can be utilized. As an example, system 20 may have a system supply loop that is coupled into a 3-way control valve motor driven on cooling; opening will be from the branch to the tank; a 119 gallon water heater tank can be hooked to this system as well as an 80 gallon buffer tank. As an example, water is utilized with system 20, and this fluid can be circulated using a water to water heat pump. To increase the temperature of the fluid, in this example water, as it returns through to heat the house in the winter months, for example, a 12 KW electric boiler can be utilized.


Referring to FIG. 6, system 20 is outlined as configured in an exemplary control room. The control room as stated above can include a water softener as well as, if desired, water service, water heater, buffer tank, and heat source heat pump as described previously. This can also be referred to as the mechanical room.


Referring to FIG. 7, an additional exemplary implementation of control system 20 is given as control system 70. As shown, control system 70 can have a water heater and a water filter coupled to one another, a water pressure reducing valve for incoming water, and this can be utilized to heat or control the incoming fluid from the ground lines. Likewise, another view of system 70 is given in FIG. 8 as a landscaped view of the system as it is configured within a control room. According to exemplary implementations, the fluid within lines 24 and 22 of the present disclosure can be utilized to provide an ambient temperature within construction 10. At specified points within a seasonal use of this system, water may be preferred, as the water can be drained from the system and replaced quite easily. The tubing itself utilized can be of copper, steel, Rehau, or other cross-linked construction.


In compliance with the statute, embodiments of the invention have been described in language more or less specific as to structural and methodical features. It is to be understood, however, that the entire invention is not limited to the specific features and/or embodiments shown and/or described, since the disclosed embodiments comprise forms of putting the invention into effect. The invention is, therefore, claimed in any of its forms or modifications within the proper scope of the appended claims appropriately interpreted in accordance with the doctrine of equivalents.

Claims
  • 1. A building heating and/or cooling method comprising: distributing fluid from within conduits within a concrete floor of a building to conduits within grounds surrounding and/or supporting the building;diverting at least some of the fluid exiting the conduits within the grounds surrounding and/or supporting the building to a dehumidifier operably associated with the interior of the building; andreturning the at least some of the fluid from the dehumidifier to the conduits within the grounds surrounding and/or supporting the building.
  • 2. The method of claim 1 wherein the building is a commercial building and the grounds are a parking lot proximate the commercial building.
  • 3. The method of claim 1 wherein the fluid is water.
  • 4. The method of claim 3 wherein the method further comprises periodically distributing the water via a sprinkler system.
  • 5. The method of claim 1 wherein the building is a multi-family housing unit.
  • 6. The method of claim 5 wherein the fluid is distributed to grounds surrounding the unit and exposed to the concrete floors of individual units within the housing unit.
  • 7. The method of claim 5 wherein at least some of the units have associated grounds and share a common wall.
  • 8. The method of claim 1 wherein the building is a commercial building and the grounds are a parking lot proximate the commercial building and covered by asphalt and/or concrete.
  • 9. The method of claim 1 wherein the conduits are 1″ in diameter.
  • 10. The method of claim 1 wherein the conduit is tubing constructed of copper, steel, Rehau, and/or other cross-linked construction.
  • 11. The method of claim 1 wherein the concrete floor is a minimum of 2″ thickness.
  • 12. The method of claim 1 further comprising utilizing a plurality of directional and/or check valves to control the direction of flow of the fluid within the conduits and to or from the dehumidifier.
  • 13. The method of claim 1 further comprising using processing circuitry to control fluid circulation and the dehumidifier.
  • 14. The method of claim 13 wherein the processing circuitry is operatively coupled to one or more of a timer, humidistat, CO2 sensor, and/or an on/off switch.
  • 15. The method of claim 13 wherein the at least one dehumidifier is operatively associated with the supply and/or return air ducting of the building.
  • 16. The method of claim 13 further comprising monitoring the humidity of the air in the building.
  • 17. The method of claim 16 further comprising: monitoring the humidity to determine a humidity greater than 50%; andupon determining a humidity greater than 50%, opening at least one valve to divert at least some of the fluid exiting the conduits within the grounds surrounding and/or supporting the building to the dehumidifier operably associated with the interior of the building; andopening at least another valve to return the at least some of the fluid from the dehumidifier to the conduits within the grounds surrounding and/or supporting the building.
  • 18. The method of claim 17 further comprising controlling the flow of the fluid between the ground and the concrete floor to regulate the temperature within the building.
CROSS REFERENCE TO RELATED APPLICATION

This application is a continuation-in-part of U.S. patent application Ser. No. 16/141,801 filed Sep. 25, 2018, entitled “Building Designs and Heating and Cooling Systems”, which is a continuation-in-part of U.S. patent application Ser. No. 15/418,436 filed Jan. 27, 2017, entitled “Building Designs and Heating and Cooling Systems”, now U.S. Pat. No. 10,082,317 issued Sep. 25, 2018, which is a continuation-in-part of U.S. patent application Ser. No. 15/144,576 filed May 2, 2016, entitled “Building Designs and Heating and Cooling Systems”, now U.S. Pat. No. 9,964,338 issued May 8, 2018, which is a continuation of U.S. patent application Ser. No. 12/163,455 which was filed on Jun. 27, 2008, entitled “Building Designs and Heating and Cooling Systems”, now U.S. Pat. No. 9,328,932 issued on May 3, 2016, which claims priority to U.S. provisional patent application Ser. No. 60/937,335 which was filed Jun. 27, 2007, entitled “Building Designs and Heating and Cooling Systems”, the entirety of each of which is incorporated by reference herein.

Provisional Applications (1)
Number Date Country
60937335 Jun 2007 US
Continuations (1)
Number Date Country
Parent 12163455 Jun 2008 US
Child 15144576 US
Continuation in Parts (3)
Number Date Country
Parent 16141801 Sep 2018 US
Child 17122613 US
Parent 15418436 Jan 2017 US
Child 16141801 US
Parent 15144576 May 2016 US
Child 15418436 US