This invention relates to optical sheet material and, more specifically, to such sheet material characterized by bulk diffusion of light.
In backlight computer displays or other display systems, optical films or sheet material are commonly used to direct, diffuse or polarize light. For example, in backlight displays, brightness enhancement films use prismatic structures on the surfaces thereof to direct light along a viewing axis (i.e., an axis normal to the display). This enhances the brightness of the light viewed by the user of the display and allows the system to consume less power in creating a desired level of on-axis illumination. Such films can also be used in a wide range of other optical designs, such as in projection displays, traffic signals, and illuminated signs.
In current displays systems, for example in Liquid Crystal Displays (LCD), it is desirable to have diffusing components. Examples of the utility of diffusing components include (but are not limited to) masking artifacts, such as seeing electronic components located behind the diffuser film, improved uniformity in illumination and increased viewing angle. In a typical LCD display, diffusion of light is introduced into the backlight assembly by adding separate films (i.e., a stack) that are comprised of a non-diffusing substrate to which a highly irregular, diffusing surface treatment is applied or attached. It is thus desirable to generate diffuse light with out the added cost of separate films.
The invention features a bulk light diffuser material. The bulk light diffuser material comprises about 95 to about 99.8 percent by weight of polycarbonate and about 0.2 to about 2.5 percent by weight of a particulate light diffusing component, based on the total weight of the polycarbonate and the light diffusing particles. The sheet material has a percent transmittance of at least 70% and a haze of at least 10% measured according to the American Society for Testing and Materials (ASTM) standard D 1003.
In another aspect of the invention, a backlight display device comprises an optical source for generating light; a light guide for guiding the light therealong including a reflective surface for reflecting the light out of the light guide; and the aforesaid bulk light diffuser material as a sheet material receptive of the light from the reflective surface.
In
As best understood from
Haze is the scattering or diffusion of light as light passes through a transparent material. Haze can be inherent in the material, a result of a formation or molding process, or a result of surface texture (e.g., prismatic surfaces). By adding light diffusing particles 128 (FIG. 4), having a characteristic dimension of about 1 to 10 micrometers, to the second optical substrate 114, the diffusion of light emanating therefrom may be improved. The light diffusing particles 128 may be round or irregular in shape, and have a refractive index different from that of the second optical substrate 114. Typical refractive indices of the light diffusing particles 128 are in the range of about 1.4 to about 1.7 and that of the second optical substrate 114 in the range of about 1.45 to about 1.65. The light diffusing particles 128 may be randomly, or at least pseudo-randomly, distributed or oriented in the optical substrate 114, or may be aligned in some deterministic fashion.
Suitable light diffusing particles may comprise organic or inorganic materials, or mixtures thereof, and do not significantly adversely affect the physical properties desired in the polycarbonate, for example impact strength or tensile strength. Examples of suitable light diffusing organic materials include poly(acrylates); poly (alkyl methacrylates), for example poly(methyl methacrylate) (PMMA); poly (tetrafluoroethylene) (PTFE); silicones, for example hydrolyzed poly(alkyl trialkoxysilanes) available under the trade name TOSPEARL® from GE Silicones; and mixtures comprising at least one of the foregoing organic materials, wherein the alkyl groups have from one to about twelve carbon atoms. Examples of suitable light diffusing inorganic materials include materials comprising antimony, titanium, barium, and zinc, for example the oxides or sulfides of the foregoing such as zinc oxide, antimony oxide and mixtures comprising at least one of the foregoing inorganic materials.
Table 1 shows data for two types of light diffusing particles suspended in a 0.178 mm thick polycarbonate film with a refractive index of 1.59. Typical films are about 0.025 to 0.5 mm in thickness but could be thicker or thinner if the application required it. The first light diffusing particle is a polymer comprised of poly(methyl methacrylate), and the second is a polymer comprising hydrolyzed poly(alkyl trialkoxysilane), or a mixture thereof, where “alkyl” is defined as C1-C12 alkyl, preferably methyl. With no light diffusing particles added to the polycarbonate film the integrated reflection is 9.7% and the integrated transmission is 88.4%. As can be seen from Table 1, in the first exemplary particle size and concentration, by maintaining a constant mean particle diameter (2.4 micrometers), standard deviation (0.24 micrometers) and particle concentration (0.2%), while changing the refractive index of the light diffusing particles from 1.49 to 1.43, the integrated reflection increases from 9.8% to 9.9%, the integrated transmission diminishes from 88.3% to 87.8%. In the second exemplary particle size and concentration, by maintaining a constant mean particle diameter (2.4 micrometers), standard deviation (0.24 micrometers) and particle concentration (2.2%), while changing the refractive index of the light diffusing particles from 1.49 to 1.43, the integrated reflection increases from 11.0% to 16.5% and the integrated transmission diminishes from 86.3% to 78.9%. Thus, lowering the refractive index of the added particulate matter from 1.49 to 1.43 relative to that of polycarbonate film refractive index of 1.59 reduces transmission and increases the reflection of light through the polycarbonate film.
As can also be seen from Table 1, by increasing the light diffusing particle concentration from 0.2% to 2.2% for a given particle type, where the refractive index of the light diffusing particles is constant, the haze for PMMA increases from 34% to 98% while for TOSPEARL® the haze increases from 44% to 99%. Thus, increasing the concentration of the light diffusing particles increases the haze of the polycarbonate film. In summary, Table 1 illustrates that PMMA is a good candidate for use as the added light diffusing particles because its addition to the polycarbonate film has the minimal reduction in the integrated transmission from 88.4% to 86.3% while at the same time achieving a percent haze value of 98%.
Referring now to
In
where total transmission is the integrated transmission and the diffuse transmission is the light transmission that is scattered by the film as defined by ASTM D 1003. As seen in
Thus, based upon the foregoing description a bulk light diffuser as a polycarbonate film or optical sheet material or optical substrate has been described comprising about 95 to about 99.8 percent by weight of a polycarbonate and about 0.2 to about 5 percent by weight of light diffusing particles, based on the total weight of the polycarbonate and the light diffusing particles. In another embodiment, the light diffusing particles are present in an amount of about 2.2% to about 2.5%. based on the total weight of the polycarbonate and the light diffusing particles. Other components maybe present in the polycarbonate compositions in minor amounts, as long as such components do not adversely affect the physical properties of the composition, such that the bulk light diffuser consists essentially of the polycarbonate and the light diffusing particles. Preferably the light diffusing particles comprise a polymer selected from the group consisting of poly(methyl methacrylate), hydrolyzed poly(methyl trialkoxysilane), and mixtures thereof. The sheet material has a percent transmittance of at least 70% and a haze of at least 10% measured according to ASTM standard D 1003-00.
The description of the invention herein discloses a polymer particle concentration ρ, a sheet material thickness, t, and a mean particle size, s, to achieve a preferred sheet material having optical properties of at least 70% transmission and at least 10% haze, a more preferred sheet material having optical properties of at least 90% transmission and at least 80% haze, and a most preferred sheet material having optical properties of at least 90% transmission and at least 90% haze, for a polymer such as a poly(acrylate), a poly(alkyl methacrylate), a hydrolyzed poly(alkyl trialkoxysilane), or a mixture thereof, wherein alkyl is defined as C1-C12 alkyl, and the particles are suspended within a polycarbonate. However, it will be understood by those skilled in the art that the aforesaid particle concentration ρ, sheet material thickness, t, and mean particle size, s, can be manipulated either separately or in combination so as to achieve the preferred, more preferred and most preferred transmission and haze.
Embodiments of the bulk light diffuser material as a polycarbonate film or optical sheet material have been described with respect to backlight displays or the like. Such bulk diffusion may also be attained by adding the light diffusion particles to either the upper or lower substrate containing liquid crystal material, or both in an LCD. This can result in increased view angle and decreased artifacts from pixel boundaries. The bulk diffusion of light may also be accomplished by adding the light diffusion particles to the reflective surface 106 positioned along the light guide 104 or to the light guide 104 in an edge-lit backlight or frontlight assembly. The optical sheet material can replace surface texture type of diffusers in existing backlight devices or may be included in such diffusers as well as in brightness enhancement films or light turning films.
Any references to first, second, etc. or to front and back, right and left, top and bottom, upper and lower, horizontal and vertical, or any other similar type of designation indicating a relative position between two or more quantities or objects are, unless noted otherwise, intended for convenience of description, not to limit the present invention or its components to any one positional or spatial orientation. All dimensions of the components in the attached Figures can vary with a potential design and the intended use of an embodiment without departing from the scope of the invention.
While the invention has been described with reference to several embodiments thereof, it will be understood by those skilled in the art that various changes may be made and equivalents may be substituted for elements thereof without departing from the scope of the invention. In addition, many modifications may be made to adapt a particular situation or material to the teachings of the invention without departing from the essential scope thereof. Therefore, it is intended that the invention not be limited to the particular embodiments disclosed as the best mode contemplated for carrying out this invention, but that the invention will include all embodiments falling within the scope of the appended claims.
Number | Name | Date | Kind |
---|---|---|---|
4152618 | Abe et al. | May 1979 | A |
4220583 | Mark | Sep 1980 | A |
4252916 | Mark | Feb 1981 | A |
4368303 | McDaniel | Jan 1983 | A |
5394255 | Yokota et al. | Feb 1995 | A |
5422756 | Weber | Jun 1995 | A |
5528720 | Winston et al. | Jun 1996 | A |
5594561 | Blanchard | Jan 1997 | A |
5825542 | Cobb, Jr. et al. | Oct 1998 | A |
5949506 | Jones et al. | Sep 1999 | A |
5963284 | Jones et al. | Oct 1999 | A |
5999281 | Abbott et al. | Dec 1999 | A |
6002829 | Winston et al. | Dec 1999 | A |
6018419 | Cobb, Jr. et al. | Jan 2000 | A |
6044196 | Winston et al. | Mar 2000 | A |
6111696 | Allen et al. | Aug 2000 | A |
6160663 | Merrill et al. | Dec 2000 | A |
6208466 | Liu et al. | Mar 2001 | B1 |
6221543 | Guehler et al. | Apr 2001 | B1 |
6280808 | Fields et al. | Aug 2001 | B1 |
6322236 | Campbell et al. | Nov 2001 | B1 |
6327091 | Agano | Dec 2001 | B1 |
6335999 | Winston et al. | Jan 2002 | B1 |
6361180 | Iimura | Mar 2002 | B1 |
20010005243 | Yamaguchi | Jun 2001 | A1 |
20010010884 | Guehler et al. | Aug 2001 | A1 |
20010015780 | Yamaguchi | Aug 2001 | A1 |
20010017674 | Yamaguchi | Aug 2001 | A1 |
20010019240 | Takahashi | Sep 2001 | A1 |
20010019378 | Yamaguchi | Sep 2001 | A1 |
20010022997 | Honda et al. | Sep 2001 | A1 |
20010036546 | Kaytor et al. | Nov 2001 | A1 |
20010055078 | Lee et al. | Dec 2001 | A1 |
20020001183 | Shigehiro | Jan 2002 | A1 |
20020012248 | Campbell et al. | Jan 2002 | A1 |
20020024803 | Adachi et al. | Feb 2002 | A1 |
20020061178 | Winston et al. | May 2002 | A1 |
Number | Date | Country |
---|---|---|
0 604 130 | Jun 1994 | EP |
0 999 033 | Oct 2000 | EP |
WO 9833006 | Jul 1998 | WO |
WO 0070399 | Nov 2000 | WO |
WO 0131370 | May 2001 | WO |
WO 0131371 | May 2001 | WO |
WO 0204858 | Jan 2002 | WO |
Number | Date | Country | |
---|---|---|---|
20040066645 A1 | Apr 2004 | US |