The invention relates to semiconductor structures and methods of manufacture and, more particularly, to bulk finFET well contacts with fin pattern uniformity and methods of manufacture.
Bulk finFET devices can be fabricated for complementary metal-oxide-semiconductor (CMOS) technologies, particularly at the 22 nm node and beyond. The bulk finFET devices can be used in a variety of applications such as microprocessors, microcontrollers, and other digital logic circuits. N-well and P-well contacts are typically used in the layout of bulk finFET devices to avoid latch-up and ensure adequate device-to-device isolation electrically. However, the contact regions of the N-well and P-well disrupt regular fin patterning, and thus degrade uniformity of the layout of the bulk finFET devices. The degradation in uniformity of the layout of the bulk finFET devices results in variable patterning and etching, and consequently electrical degradation.
Accordingly, there exists a need in the art to overcome the deficiencies and limitations described hereinabove.
In a first aspect of the invention, a method is provided comprising providing a substrate with a first region and a second region, the first region comprising a well with a first conductivity. The method further comprises forming contiguous fins over the first region and the second region. The method further comprises forming an epitaxial layer on at least one portion of the fins in the first region and at least one portion of the fins in the second region. The method further comprises doping the epitaxial layer in the first region with a first type dopant to provide the first conductivity. The method further comprises doping the epitaxial layer in the second region with a second type dopant to provide a second conductivity.
In another aspect of the invention, a method is provided comprising forming a well with a first conductivity type in a first region of a substrate. The method further comprises forming fins on the first region and a second region of the substrate in a uniform uninterrupted pattern. The method further comprises forming a first epitaxial layer with the first conductivity type on at least one portion of the fins in the first region. The method further comprises forming a second epitaxial layer with a second conductivity type on at least one portion of the fins in the second region.
In another aspect of the invention, a structure is provided comprising a substrate comprising a first region and a second region, the first region comprising a well with a first conductivity. The structure further comprises fins extending over the first region and the second region in an uninterrupted pattern, wherein a first section of the fins extends over the first region and a second section of the fins extends over the second region. The structure further comprises a dielectric layer formed surrounding a first portion of the fins. The structure further comprises an epitaxial layer formed surrounding a second portion of the fins on at least one portion of the first section of the fins and on at least one portion of the second section of the fins, the epitaxial layer on the at least one portion of the first section of the fins having the first conductivity and the epitaxial layer on the at least one portion of the second section of the fins having a second conductivity such that the at least one portion of the first section of the fins creates a contiguous charge-neutral zone from the epitaxial layer to the well. The structure further comprises at least one gate structure perpendicular to the fins and between the first region and the second region.
In yet another aspect of the invention, a design structure tangibly embodied in a machine readable storage medium for designing, manufacturing, or testing an integrated circuit is provided. The design structure comprises the structures of the present invention. In further embodiments, a hardware description language (HDL) design structure encoded on a machine-readable data storage medium comprises elements that when processed in a computer-aided design system generates a machine-executable representation of the semiconductor structures, which comprises the structures of the present invention. In still further embodiments, a method in a computer-aided design system is provided for generating a functional design model of the semiconductor structures. The method comprises generating a functional representation of the structural elements of the semiconductor structures.
The present invention is described in the detailed description, which follows, in reference to the noted plurality of drawings by way of non-limiting examples of exemplary embodiments of the present invention.
a, 2b, 3a, 3b, 4a, 4b, 5a, 5b, 6a, 6b, 7a-7d, 8, and 9 show processing steps and respective semiconductor structures in accordance with aspects of the present invention; and
The invention relates to semiconductor structures and methods of manufacture and, more particularly, to bulk finFET well contacts with fin pattern uniformity and methods of manufacture. More specifically, the present invention provides a fabrication process for providing bulk finFET well contacts on a high-density basis while maintaining fin pattern uniformity. In embodiments, the present invention provides gate-isolated fin contacts on logic pitch to introduce well contacts without disruption of fin patterns (e.g., a contiguous or uninterrupted fin pattern). That is, fins are provided over source/drain regions and at least one well contact of the finFET device without disruption of the fin patterns. In further embodiments, the finFET device can be manufactured in a gate-first or gate-last fabrication process, as should be understood by those of skill in the art.
Bulk finFET well contacts are used in the layout of bulk finFET devices to avoid latch-up and ensure adequate device-to-device isolation electrically. However, in conventional bulk finFET devices, the contact region of the well typically disrupts regular fin patterning, and thus degrades uniformity of the layout of the bulk finFET device. Accordingly, in embodiments of the present invention, the method of fabricating the bulk finFET device advantageously avoids latch-up and ensures adequate device-to-device electrical isolation, as well as maintains fin pattern uniformity. Also, advantageously, the fabrication processes of the present invention avoid inconsistency in the fin patterning throughout source/drain regions and the well region of a bulk finFET device and thus avoids resultant electrical degradation. The fabrication processes of the present invention will thus improve device performance by avoiding electrical degradation from a lack of uniformity in the layout of bulk finFET devices.
Referring to
a and 2b show structures and respective processing steps in accordance with aspects of the present invention. In particular,
As shown in
In more specific embodiments, an amorphous Si material may be formed on the hardmask 45, and conventionally patterned to form a mandrel. The patterning of the Si material can be achieved using any conventional lithography and etching (reactive ion etching) processes, known to accomplish such patterning techniques. After patterning, sidewall spacers are formed on both sides of the mandrel. The mandrel can then be removed, leaving the two sidewall spacers. The sidewalls spacers, in turn, can be used to pattern the fins 20. In embodiments, the fins 20 can have a width of about 5 nm to about 20 nm, a height of about 40 nm to about 150 nm, and a pitch of about 20 nm to about 100 nm; although other dimensions are also contemplated by the present invention.
b shows an nFET device for illustrative purposes; however, it should be understood by those of skill in the art that
In
In embodiments, the STI regions 55 can be formed using a conventional CVD or spin on process, on the substrate 40. The STI regions 55 can be formed from oxide or other insulator material. In more specific embodiments, the STI regions 55 can be formed by depositing an oxide material (e.g., a dielectric material) over the fins 20, and planarizing the oxide material to the hardmask material 45 using a conventional chemical mechanical polishing (CMP) process. In one or more embodiments, the oxide material may be etched to form a recessed portion, exposing a portion of the sidewalls 20a of the fins 20. In embodiments, the sidewalls 20a can be exposed to a height of about 15 nm to about 30 nm; although other dimensions are also contemplated by the present invention. In alternative embodiments, the fins 20 can be formed with a taper such that the fins 20 are wider below the STI regions 55.
In
In embodiments, in a gate-last process, a dielectric material 65 is deposited over the STI regions 55 and the fins 20, using conventional deposition methods such as, for example, CVD. The dielectric material 65 can be an oxide material, e.g., SiO2. A polysilicon material 70 is then formed over the dielectric material 65, using an atomic layer deposition (ALD) process, for example. The dielectric material 65 and the polysilicon material 70 can then be patterned, for example, using conventional lithography and etching processes, to form the gate structure 25 of
In alternate embodiments, the gate structure 25 can be formed in a gate-first process. In this example, the dielectric material 65 can be a high-k material such as, for example, a hafnium oxide or other hafnium based material. The thickness of the gate dielectric material 65 can vary depending on the required device performance. The gate material 70 can be any gate metal such as, for example, aluminum lined with a workfunction metal, e.g., TiN or TaN (although other workfunction metals are also contemplated by the present invention).
In
In embodiments, the sidewall material 75 may also be formed over the exposed walls 20a of the fins 20. The sidewall material 75 can be a nitride material, deposited to a thickness of about 4 nm to about 12 nm; although other dimensions are also contemplated by the present invention. In embodiments, the nitride material can be deposited using a conventional CVD process, followed by a RIE cleaning process. As should be understood by those of skill in the art, the RIE cleaning process would remove the nitride material from horizontal surfaces, e.g., STI regions 55.
In
In this process, the removal of the sidewall material will expose an upper portion of the fins 20. In embodiments, this process will also pull down the sidewalls on the gate structure 25, e.g., the poly material 70 (and may remove some height of the gate material 70). The pull down or removal process can be performed by, for example, a conventional RIE process.
As shown in
In embodiments, the bulk finFET device 5 may be fabricated as an nFET or a pFET. As such, it should be understood by those of ordinary skill in the art that the order of forming the source/drain regions 10 and well region 15, and the conductivity provided for each region, may be reversed from that illustrated and described herein. As shown in
Specifically, a first block mask can be formed over the source/drain regions 10 (shown in
As should be understood by those of skill in the art, the dopants are driven into the fins 20. Typical doping concentrations of the epitaxial layer range from 1×1021 to 3×1022 dopant atoms/cm3. Specifically, a first region 92 of the fins 20 surrounded by the epitaxial layer 80 and a second region 94 of the fins 20 penetrating through the STI regions 55 receive a sufficient amount of dopants through the epitaxial layer 80 such that a contiguous charge-neutral zone is formed from the epitaxial layer 80 to the P-well 42 formed in the bulk wafer 40. Typical doping concentrations for the first region 92 of the fins range from 3×1019 to 6×1021 dopant atoms/cm3. Typical doping concentrations for the second region 94 of the fins range from 1×1018 to 6×1019 dopant atoms/cm3.
Subsequently, the first block mask is removed from the source/drain regions 10 and a second block mask is formed over the well region 15. Specifically, the second block mask is formed over the well region 15 to protect that region from receiving doping or ion implantation of a second conductivity. The block mask may be removed utilizing a conventional stripping, such as, for example, wet or dry stripping. Thus, to continue the fabrication of the nFET, the well region 15 may be blocked by the second block mask while the source/drain regions 10 are epitaxially grown (as shown in
In further embodiments, the epitaxial layer 80 can also be used for strain purposes, e.g., SiGe used for straining a pFET and Si:C used for straining an nFET. More specifically, in a pFET implementation, the epitaxial layer 80 of the source/drain regions 10 can be a SiGe material with a p-type dopant, e.g., boron. In an nFET implementation, the epitaxial layer 80 of the source/drain regions 10 can be a Si:C material with an n-type dopant, e.g., arsenic and/or phosphorous. A thermal anneal can be performed to drive the dopants towards the channel to form extensions. In embodiments, the thermal anneal process can be a laser anneal process, rapid thermal anneal process, flash anneal process, furnace anneal process, or other known annealing processes to drive the dopants into the fins 20. Any suitable combination of those anneal processes is also conceived.
d is an alternative plan view of
As shown in
For example, the silicide regions 95 may be formed over the source-drain regions 10 and the well region 15. Particularly, the silicide regions 95 may be formed by selectively sputtering a cobalt (or nickel) film onto the source-drain regions 10 and the well region 15, and annealing the film to form a cobalt (or nickel) silicide. In embodiments, the silicide may have a thickness of about 20 nm to 40 nm, although other thicknesses may be used within the scope of the invention.
In alternative processes comprising a gate-late process (as discussed above with respect to
As further depicted in
Design flow 900 may vary depending on the type of representation being designed. For example, a design flow 900 for building an application specific IC (ASIC) may differ from a design flow 900 for designing a standard component or from a design flow 900 for instantiating the design into a programmable array, for example a programmable gate array (PGA) or a field programmable gate array (FPGA) offered by Altera® Inc. or Xilinx® Inc.
Design process 910 preferably employs and incorporates hardware and/or software modules for synthesizing, translating, or otherwise processing a design/simulation functional equivalent of the components, circuits, devices, or logic structures shown in
Design process 910 may include hardware and software modules for processing a variety of input data structure types including netlist 980. Such data structure types may reside, for example, within library elements 930 and include a set of commonly used elements, circuits, and devices, including models, layouts, and symbolic representations, for a given manufacturing technology (e.g., different technology nodes, 32 nm, 45 nm, 90 nm, etc.). The data structure types may further include design specifications 940, characterization data 950, verification data 960, design rules 970, and test data files 985 which may include input test patterns, output test results, and other testing information. Design process 910 may further include, for example, standard mechanical design processes such as stress analysis, thermal analysis, mechanical event simulation, process simulation for operations such as casting, molding, and die press forming, etc. One of ordinary skill in the art of mechanical design can appreciate the extent of possible mechanical design tools and applications used in design process 910 without deviating from the scope and spirit of the invention. Design process 910 may also include modules for performing standard circuit design processes such as timing analysis, verification, design rule checking, place and route operations, etc.
Design process 910 employs and incorporates logic and physical design tools such as HDL compilers and simulation model build tools to process design structure 920 together with some or all of the depicted supporting data structures along with any additional mechanical design or data (if applicable), to generate a second design structure 990.
Design structure 990 resides on a storage medium or programmable gate array in a data format used for the exchange of data of mechanical devices and structures (e.g. information stored in an IGES, DXF, Parasolid XT, JT, DRG, or any other suitable format for storing or rendering such mechanical design structures). Similar to design structure 920, design structure 990 preferably comprises one or more files, data structures, or other computer-encoded data or instructions that reside on transmission or data storage media and that when processed by an ECAD system generate a logically or otherwise functionally equivalent form of one or more of the embodiments of the invention shown in
Design structure 990 may also employ a data format used for the exchange of layout data of integrated circuits and/or symbolic data format (e.g. information stored in a GDSII (GDS2), GL1, OASIS, map files, or any other suitable format for storing such design data structures). Design structure 990 may comprise information such as, for example, symbolic data, map files, test data files, design content files, manufacturing data, layout parameters, wires, levels of metal, vias, shapes, data for routing through the manufacturing line, and any other data required by a manufacturer or other designer/developer to produce a device or structure as described above and shown in
The method as described above is used in the fabrication of integrated circuit chips. The resulting integrated circuit chips can be distributed by the fabricator in raw wafer form (that is, as a single wafer that has multiple unpackaged chips), as a bare die, or in a packaged form. In the latter case the chip is mounted in a single chip package (such as a plastic carrier, with leads that are affixed to a motherboard or other higher level carrier) or in a multichip package (such as a ceramic carrier that has either or both surface interconnections or buried interconnections). In any case the chip is then integrated with other chips, discrete circuit elements, and/or other signal processing devices as part of either (a) an intermediate product, such as a motherboard, or (b) an end product. The end product can be any product that includes integrated circuit chips, ranging from toys and other low-end applications to advanced computer products having a display, a keyboard or other input device, and a central processor.
The descriptions of the various embodiments of the present invention have been presented for purposes of illustration, but are not intended to be exhaustive or limited to the embodiments disclosed. Many modifications and variations will be apparent to those of ordinary skill in the art without departing from the scope and spirit of the described embodiments. The terminology used herein was chosen to best explain the principles of the embodiments, the practical application or technical improvement over technologies found in the marketplace, or to enable others of ordinary skill in the art to understand the embodiments disclosed herein.
Number | Name | Date | Kind |
---|---|---|---|
6413802 | Hu et al. | Jul 2002 | B1 |
7101763 | Anderson et al. | Sep 2006 | B1 |
7238601 | Varghese et al. | Jul 2007 | B2 |
7452758 | Dyer et al. | Nov 2008 | B2 |
7517764 | Booth, Jr. et al. | Apr 2009 | B2 |
7700449 | Jam-Wem | Apr 2010 | B2 |
7800165 | Sasaki et al. | Sep 2010 | B2 |
7968394 | Orlowski et al. | Jun 2011 | B2 |
20040110331 | Yeo et al. | Jun 2004 | A1 |
20040126969 | Brown et al. | Jul 2004 | A1 |
20050026343 | Quek et al. | Feb 2005 | A1 |
20060202266 | Radosavljevic et al. | Sep 2006 | A1 |
20060273372 | Voldman et al. | Dec 2006 | A1 |
20070080409 | Seliskar | Apr 2007 | A1 |
20070085576 | Sanchez | Apr 2007 | A1 |
20070111419 | Doyle et al. | May 2007 | A1 |
20070272925 | Choi et al. | Nov 2007 | A1 |
20080224213 | Dyer et al. | Sep 2008 | A1 |
20090108351 | Yang et al. | Apr 2009 | A1 |
20090315112 | Lee | Dec 2009 | A1 |
20110316080 | Luo et al. | Dec 2011 | A1 |
20120126884 | Juengling | May 2012 | A1 |
20120264269 | Ke et al. | Oct 2012 | A1 |
20120280250 | Basker et al. | Nov 2012 | A1 |
20120292715 | Hong et al. | Nov 2012 | A1 |
20130082282 | Suzuki | Apr 2013 | A1 |
20130200470 | Liu et al. | Aug 2013 | A1 |
20140061801 | Doornbos et al. | Mar 2014 | A1 |
Number | Date | Country |
---|---|---|
2011080409 | Sep 2011 | WO |
Entry |
---|
Okano, K. et al., “Process integration technology and device characteristics of CMOS FinFET on bulk silicon substrate with sub-10 nm fin width and 20 nm gate length,” IEEE International Electron Devices Meeting, Dec. 5, 2005, pp. 721-724. |
Griffoni, A. et al., “Next generation bulk FinFET devices and their benefits for ESD robustness,” 31st EOS/ESD Symposium, Aug. 30, 2009-Sep. 4, 2009, 10 pages. |
Number | Date | Country | |
---|---|---|---|
20140110767 A1 | Apr 2014 | US |