Bulk material handling system for reduced dust, noise, and emissions

Abstract
In accordance with presently disclosed embodiments, systems and methods for handling bulk material in a manner that reduces dust, noise, and emissions are provided. The presently disclosed techniques use portable containers to transfer bulk material from a transportation unit to a blender inlet. The containers may be carried to the location on the transportation unit, where a hoisting mechanism is used to remove the container from the transportation unit and place it in a desired location. When bulk material is needed at the blender inlet, the hoisting mechanism may position the container of bulk material onto an elevated support structure. Once on the support structure, the container may be opened to release bulk material to a gravity feed outlet, which routes the bulk material from the container directly into the blender inlet. The disclosed containerized bulk material transfer system and method allows for reduced dust, noise, and emissions on location.
Description
CROSS-REFERENCE TO RELATED APPLICATION

The present application is a U.S. National Stage Application of International Application No. PCT/US2016/043271 filed Jul. 21, 2016, which is incorporated herein by reference in its entirety for all purposes.


TECHNICAL FIELD

The present disclosure relates generally to transferring bulk materials, and more particularly, to a bulk material delivery system and method for reducing dust, noise, and engine emissions at a job site.


BACKGROUND

During the drilling and completion of oil and gas wells, various wellbore treating fluids are used for a number of purposes. For example, high viscosity gels and proppant infused liquids are used to create fractures in oil and gas bearing formations to increase production. High viscosity and high density gels are also used to maintain positive hydrostatic pressure in the well while limiting flow of well fluids into earth formations during installation of completion equipment. High viscosity fluids are used to flow sand into wells during gravel packing operations. The high viscosity fluids are normally produced by mixing dry powder and/or granular materials and agents with water at the well site as they are needed for the particular treatment. Systems for metering and mixing the various materials are normally portable, e.g., skid- or truck-mounted, since they are needed for only short periods of time at a well site.


The powder or granular treating material is normally transported to a well site in a commercial or common carrier tank truck. Once the tank truck and mixing system are at the well site, the dry powder material (bulk material) must be transferred or conveyed from the tank truck into a supply tank for metering into a blender as needed. The bulk material is usually transferred from the tank truck pneumatically. More specifically, the bulk material is blown pneumatically from the tank truck into an on-location storage/delivery system (e.g., silo). The storage/delivery system may then deliver the bulk material onto a conveyor or into a hopper, which meters the bulk material into a blender tub.


There is a larger emphasis on dust, noise, and emissions control at job sites than ever before with customers and regulatory bodies. Therefore, bulk material handling applications that cut down on the dust, noise, and engine emissions on location are desired.





BRIEF DESCRIPTION OF THE DRAWINGS

For a more complete understanding of the present disclosure and its features and advantages, reference is now made to the following description, taken in conjunction with the accompanying drawings, in which:



FIG. 1 is a schematic block diagram of a containerized bulk material handling system, in accordance with an embodiment of the present disclosure;



FIG. 2 is a perspective view of a pile of bulk material being used to regulate a gravity feed of bulk material to a blender inlet, in accordance with an embodiment of the present disclosure;



FIG. 3 is a perspective view of a transportation unit that may be used to carry a container of bulk material to or from a worksite, in accordance with an embodiment of the present disclosure;



FIG. 4 is a perspective view of a lock used to fasten a container of bulk material to the transportation unit of FIG. 3, in accordance with an embodiment of the present disclosure; and



FIG. 5 is a perspective view of the transportation unit of FIG. 3 with a container of bulk material positioned thereon, in accordance with an embodiment of the present disclosure.





DETAILED DESCRIPTION

Illustrative embodiments of the present disclosure are described in detail herein. In the interest of clarity, not all features of an actual implementation are described in this specification. It will of course be appreciated that in the development of any such actual embodiment, numerous implementation specific decisions must be made to achieve developers' specific goals, such as compliance with system related and business related constraints, which will vary from one implementation to another. Moreover, it will be appreciated that such a development effort might be complex and time consuming, but would nevertheless be a routine undertaking for those of ordinary skill in the art having the benefit of the present disclosure. Furthermore, in no way should the following examples be read to limit, or define, the scope of the disclosure.


Certain embodiments according to the present disclosure may be directed to systems and methods for efficiently managing bulk material (e.g., bulk solid or liquid material). Bulk material handling systems are used in a wide variety of contexts including, but not limited to, drilling and completion of oil and gas wells, concrete mixing applications, agriculture, and others. The disclosed embodiments are directed to systems and methods for efficiently delivering bulk material into an inlet of a blender unit at a job site. Disclosed embodiments may include a system and method for transporting and releasing bulk materials into the blender inlet in a manner that reduces dust, noise, and engine emissions on location. The disclosed techniques may be used to efficiently handle any desirable bulk material having a solid or liquid constituency including, but not limited to, sand, proppant, gel particulate, diverting agent, dry-gel particulate, liquid additives, acid, chemicals, cement, and others.


In currently existing on-site bulk material handling applications, bulk material (e.g., sand, proppant, gel particulate, or dry-gel particulate) may be used during the formation of treatment fluids. In such applications, the bulk material is often transferred between transportation units, storage tanks, blenders, and other on-site components via pneumatic transfer, sand screws, augers, chutes, conveyor belts, and other components. However, these existing techniques for transferring bulk material about a job site can release large amounts of undesirable dust, noise, and engine emissions into the atmosphere.


As an example, dust is often generated on location from pneumatic transfer of bulk material via pressurized air flow from a transportation unit (e.g., tank truck) to a receiving bin (e.g., silo). When bulk material is carried from the transportation unit in a fluidized airstream to the receiving bin, the bulk material strikes a plate to knock the bulk material down into the bin. When this occurs, a large amount of dust is generated and becomes airborne in the receiving bin. The blown airstream is then vented to keep from pressurizing the receiving bin, and dust that is being carried in the airstream is released to the atmosphere. This process can release a significant amount of dust into the atmosphere. Techniques to capture the airborne dust require additional external equipment and operators, and these efforts can be quite costly.


Dust can also be generated when bulk material is transferred from one piece of equipment to the next on location. For example, the bulk material may “fall” from one conveyor belt to another, or from a belt to the sand pile at a blender hopper, releasing dust into the air upon impact. Capturing this dust can be complicated and expensive, since the dust is often generated at multiple transfer points, with each transfer point requiring an enclosure, ventilation, and filtering to prevent release of the dust.


The process of pneumatically filling a receiving bin with bulk material from a transportation unit can be very noisy as well, due to the use of compressors or blowers to create the airstream needed to carry the bulk material. The high noise levels are often sustained for long periods of time, since blowing the bulk material pneumatically from a transportation unit to a storage/delivery system is a time consuming process taking at least an hour to empty a single truck. Multiple transportation units are sometimes operated at the same time to pneumatically fill one or more receiving bins on location, thereby further increasing the noise levels.


The transportation units can also generate significant engine emissions on location due to running diesel engines during pneumatic filling as well as operating the transportation units when they are waiting to move into position to unload their contents. For example, at any one time, a dozen or more transportation units may be idling (while running heating and cooling) until it is their turn to pneumatically unload the contents. In addition, the engines powering the storage bins that receive bulk material from the transportation units contribute to the release of engine emissions on location.


The bulk material handling systems and methods disclosed herein are designed to address and eliminate the shortcomings associated with existing material handling systems. The presently disclosed techniques use one or more portable containers to transfer bulk material from a transportation unit to a blender inlet (e.g., blender hopper or mixer inlet). The portable containers may be carried to the location on a transportation unit (e.g., truck trailer), where a hoisting mechanism (e.g., forklift, crane, or other system) is used to remove the container from the transportation unit and place it in a desired location. When bulk material is needed at the blender inlet, a hoisting mechanism may position the container of bulk material onto an elevated support structure. Once on the support structure, the container may be opened to release bulk material to a gravity feed outlet, which routes the bulk material from the container directly into the blender inlet.


The disclosed containerized bulk material transfer system and method allows for reduced dust, noise, and engine emissions on location. For example, the bulk material can be removed from the transportation unit very quickly when disposed in portable containers and without generating any dust on location. The support structure may elevate the bulk material containers to a sufficient height above the blender inlet and route the bulk material directly from the containers to the blender inlet via a gravity feed to reduce or eliminate dust generation at this transfer point on location. The transportation units can be unloaded relatively quickly via removal of the containers, thereby reducing the engine emissions associated with multiple transportation units waiting to be unloaded. Further, the noise levels are reduced on location since pneumatic transfer is not being used to convey bulk material from the transportation units to a separate receiving bin.


Turning now to the drawings, FIG. 1 is a block diagram of a bulk material handling system 10. The system 10 includes one or more containers 12 elevated on a support structure 14 and holding a quantity of bulk material (e.g., solid or liquid treating material). Although only one such container 12 is illustrated in FIG. 1, other embodiments of the system 10 may feature multiple bulk material containers 12 disposed on a support structure 14. The container 12 may utilize a gravity feed to provide a controlled, i.e. metered, flow of bulk material at an outlet 18. The container 12 is separate from other containers of bulk material at the job site and is independently transportable about the job site (e.g., for placement on or removal from the support structure 14).


In the illustrated embodiment, the support structure 14 may include a frame 16 for receiving and holding the one or more containers 12 and one or more gravity feed outlets 18 for directing bulk material away from the respective containers 12. For example, in the illustrated embodiment, the support structure 14 includes a single gravity feed outlet 18 for directing bulk material from the container 12 disposed on the frame 16. The outlet 18 may be coupled to and extend from the frame 16. The outlet 18 may utilize a gravity feed to provide a controlled, i.e. metered, flow of bulk material from the container 12 to a blender unit 20. The outlet 18 may be a chute that directs the bulk material from the container 12 to the blender 20.


Although just one support structure 14 is shown in FIG. 1, other embodiments of the bulk material handling system 10 may include multiple separate support structures 14 having one or more bulk material containers 12 disposed thereon, and all of these support structures 14 may feed into the blender unit 20. In some embodiments, the support structures 14 may each hold a single container 12. In other embodiments, the support structures 14 may each hold multiple containers 12. In still other embodiments, one support structure 14 may hold a single container 12 while another support structure 14 holds multiple containers 12.


As illustrated, the blender unit 20 may include a hopper 22 and a mixer 24 (e.g., mixing compartment). The blender unit 20 may also include a metering mechanism 26 for providing a controlled, i.e. metered, flow of bulk material from the hopper 22 to the mixer 24. However, in other embodiments the blender unit 20 may not include the hopper 22, such that the outlet 18 of the support structure 14 may provide bulk material directly into the mixer 24.


Water and other additives may be supplied to the mixer 24 (e.g., mixing compartment) through a fluid inlet 28. As those of ordinary skill in the art will appreciate, the fluid inlet 28 may include more than the one input flow line illustrated in FIG. 1. The bulk material and water may be mixed in the mixer 24 to produce (at an outlet 30) a hydraulic fracturing fluid, a mixture combining multiple types of proppant, proppant/dry-gel particulate mixture, sand/sand-diverting agents mixture, cement slurry, drilling mud, a mortar or concrete mixture, or any other fluid mixture for use on location. The outlet 30 may be coupled to a pump for transporting the treating fluid to a desired location (e.g., a hydrocarbon recovery well) for a treating process.


It should be noted that the disclosed containers 12 may be utilized to provide bulk material for use in a variety of treating processes. For example, the disclosed systems and methods may be utilized to provide proppant materials into fracture treatments performed on a hydrocarbon recovery well. In other embodiments, the disclosed techniques may be used to provide other materials (e.g., non-proppant) for diversions, conductor-frac applications, cement mixing, drilling mud mixing, and other fluid mixing applications.


As illustrated, one or more containers 12 may be elevated above an outlet location via the frame 16. The support structure 14 is designed to elevate the container 12 above the level of the blender inlet (e.g., blender hopper 22 and/or mixing tub 24) to allow the bulk material to gravity feed from the container 12 to the blender unit 20. This way, the container 12 is able to sit on the frame 16 of the support structure 14 and output bulk material directly into the blender unit 20 via the gravity feed outlet 18 of the support structure 14.


As illustrated, the containers 12 may each include a discharge gate 42 for selectively dispensing or blocking a flow of bulk material from the container 12. In some embodiments, the discharge gate 42 may include a rotary clamshell gate. However, other types of discharge gates 42 that can be actuated open and closed may be used. When the discharge gate 42 is closed, the gate 42 may prevent bulk material from flowing from the container 12 to the outlet 18. The discharge gate 42 may be selectively actuated into an open position (as shown in the illustrated embodiment) to release the bulk material from the container 12. When it is desired to stop the flow of bulk material, or once the container 12 is emptied, the discharge gate 42 may then be actuated (e.g., rotated or translated) back to the closed position to block the flow of bulk material.


The support structure 14 may also include one or more actuators (not shown) designed to aid in actuation of the discharge gate 42 of the one or more containers 12 disposed on the frame 16. The actuators may be rotary actuators designed to rotate into engagement with the discharge gate 42 to transition the gate between a closed position and an open position. In other embodiments, the actuators may be linear actuators designed to interface with the discharge gate 42 to selectively open and close the gate. By utilizing actuators disposed on the support structure 14 to actuate the discharge gate 42 between open and closed positions, the system 10 may prevent the container 12 from releasing bulk material before the container 12 is positioned on the support structure 14 for releasing material directly into the blender unit 20.


Significantly reduced dust is generated on location at this transfer point between the container 12 and the blender unit 20, due to the outlet 18 gravity feeding the bulk material from the container 12 elevated on the support structure 14 into the blender inlet. With the container 12 elevated on the support structure 14, the suspended bulk material has enough potential energy that when the discharge gate 42 is opened, the bulk material flows from the container 12 through the outlet 18 and directly into the blender 20. The outlet 18 may provide a choke feed for bulk material that is released from the container 12 on the support structure. This choke feed method is illustrated more specifically in FIG. 2, where bulk material 110 is shown exiting the bottom of the outlet 18 (i.e., chute) into a blender inlet 112 (e.g., hopper or mixer compartment).


As shown, the bulk material 110 may form a pile within the blender inlet 112. The outlet 18 may extend into the blender inlet 112 such that, once the pile of bulk material 110 is established, any additional bulk material is discharged from the outlet 18 at a fill level of the bulk material 110 already present in the blender inlet 112. The discharge gate (e.g., 42 of FIG. 1) of the container (e.g., 12 of FIG. 1) may be kept open to facilitate a flow of bulk material through the outlet 18 under a force due to gravity. The existing bulk material pile 110 in the blender inlet 112 may effectively choke off the supply of bulk material from the outlet 18 until some of the bulk material 110 is removed from the blender inlet 112. An angle of repose of the bulk material 110 in the pile may affect the flow rate of additional material from the outlet 18. As bulk material 110 is transferred from the blender inlet 112 to another location (e.g., via a metering device or pump) the used material may be replaced by bulk material that had previously stacked up in the outlet 18 and the container 12. This allows the bulk material 110 to flow into the blender inlet 112, instead of dropping into the blender inlet 112. As such, the bulk material does not fall and is not being impacted, and dust is not generated at this location.


In addition to reducing dust at this transfer point, the transfer of bulk material directly from the container 12 to the blender unit 20 of FIG. 1 also reduces the noise and engine emissions generated on location. Specifically, after the discharge gate 42 is opened to release bulk material from the container 12, the bulk material flows through the outlet 18 and into the blender unit 20 under a force due to gravity. As such, no conveyor belts or other powered conveyor devices are required to move the bulk material from the container 12 to the blender unit 20. This is different from conventional material handling equipment, which often relies on several diesel powerpacks (likely running at the same time) to provide the power to hydraulic components used to run a belt system for conveying bulk material from a receiving bin to the blender. The disclosed system 10, however, provides bulk material from the container 12 to the blender unit 20 by opening the discharge gate 42 and simply allowing the material to flow through the outlet 18 under gravity into the blender unit 20. This reduces the noise and engine emissions, since just one powerpack (or possibly no powerpacks) are operating at a time to move bulk material from the container 12 to the blender unit 20.


In some embodiments, the support structure 14 (with the frame 16 and the gravity feed outlet 18) may be integrated into the blender unit 20. In this manner, the system 10 may be a single integrated unit for receiving one or more containers 12 on the support structure 14, feeding bulk material from the containers 12 to the blender inlet, and mixing the bulk material with one or more fluids at the mixer 24 to produce the treatment fluid.


Although shown as supporting one container 12, other embodiments of the frame 16 may be configured to support other numbers (e.g., 2, 3, 4, 5, 6, 7, 8, or more) of containers 12. The exact number of containers 12 that the support structure 14 can hold may depend on a combination of factors such as, for example, the volume, width, and weight of the containers 12 to be disposed thereon.


In any case, each container 12 may be completely separable and transportable from the frame 16, such that any container 12 may be selectively removed from the frame 16 and replaced with another container 12. That way, once the bulk material from one container 12 runs low or empties, a new container 12 may be placed on the frame 16 to maintain a steady flow of bulk material to the blender unit 20. In some instances, a container 12 may be closed before being completely emptied, removed from the frame 16, and replaced by a container 12 holding a different type of bulk material to be provided to the blender unit 20.


It should be noted that the disclosed system 10 may be used in other contexts as well. For example, the bulk material handling system 10 may be used in concrete mixing operations (e.g., at a construction site) to dispense aggregate from the container 12 through the outlet 18 into a concrete mixing apparatus (blender 20). In addition, the bulk material handling system 10 may be used in agriculture applications to dispense grain, feed, seed, or mixtures of the same. Still other applications may be realized for transporting bulk material via containers 12 to an elevated location on a support structure 14 and dispensing the bulk material in a metered fashion through the one or more outlets 18.


In presently disclosed embodiments, one or more containers 12 of bulk material may be transported to the job location on a transportation unit (e.g., truck trailer) 32. In some instances, the one or more containers 12 may be transferred from the transportation unit 32 to a bulk material storage site 34 on location. This storage site 34 may be used to store one or more additional containers 12 of bulk material to be positioned on the frame 16 of the support structure 14 at a later time. The storage site 34 may be a skid, a pallet, or some other holding area designated for storing unused containers 12 of bulk material.


The bulk material containers 12 may be unloaded from transportation units 32 via a hoisting mechanism 36, such as a forklift, a crane, or a specially designed container management device, and brought to the storage site 34 until the container 12 is needed. One or more containers 12 may be transferred from the storage site 34 onto the support structure 14, as indicated by arrow 38, using the same or a different hoisting mechanism 36 that unloaded the containers 12 from the transportation units 32. In other embodiments, the hoisting mechanism 36 may be used to transfer one or more bulk material containers 12 directly from the transportation unit 32 to the support structure 14 where the contents of the containers 12 are then emptied into the blender unit 20. In such instances, the job site may or may not include a storage site 34 for unused containers 12 of bulk material.


When the container 12 is positioned on the support structure 14, the discharge gate 42 of the container 12 may be opened, allowing bulk material to flow from the container 12 into the respective outlet 18 of the support structure 14. The outlet 18 may then route the flow of bulk material directly into a blender inlet (e.g., into the hopper 22 or mixer 24) of the blender unit 20.


After the container 12 on the support structure 14 is emptied and/or the discharge gate 42 is closed, the same or a different hoisting mechanism 36 may be used to remove the empty container 12 from the support structure 14. In some embodiments, one or more empty or partially emptied containers 12 may be positioned at another bulk material storage site 34 (e.g., a skid, a pallet, or some other holding area), as indicated by arrow 40, until they can be removed from the job site (e.g., via a transportation unit 32) and/or refilled. In other embodiments, the one or more empty or partially emptied containers 12 may be positioned directly onto a transportation unit 32 for transporting the containers 12 away from the site. It should be noted that the same transportation unit 32 used to provide one or more filled containers 12 to the location may then be utilized to remove one or more empty or partially emptied containers 12 from the site.


The disclosed methods for transferring bulk material about the job site in containers 12 do not generate dust on location. This is because the bulk material is “transferred” from the transportation unit 32 to one or more positions on the job site within the fully enclosed containers 12. The containers 12 maintain the bulk material securely therein while the containers 12 are moved about the job site. Instead of the material being transferred from one container to another via pneumatic filling, conveyor belts, or other dust-generating transfer systems, the containers 12 filled with bulk material are removed from transportation units 32 and positioned at a desired location via the hoisting mechanism 36. No dust is generated during this process of unloading bulk material in containers 12 from the transportation units 32.


In addition, having the ability to lift the bulk material containers 12 off the transportation units 32 that arrive on location is a much quicker and quieter operation than conventional methods of pneumatically unloading material from tanker trailers. The unloading of a bulk material container 12 from the transportation unit 32 may take less than approximately 5 minutes using the hoisting mechanism 36, as opposed to a pneumatic unloading process that takes 1-2 hours to unload a conventional tank trailer. Because of the reduced unloading time, several transportation units 32 can be successively unloaded on location in a relatively short amount of time using the disclosed containerized system 10. When a transportation unit 32 pulls up to be offloaded and then the contents are replaced with an empty container 12, this entire process may last only approximately 20 minutes. There is little to no wait time (i.e., detention) for the transportation units 32 that arrive to the location for offloading and/or reloading. As a result, less noise and fewer engine emissions are generated around the location due to trucks idling and waiting to unload.


Furthermore, the disclosed system may utilize just a single powerpack on location (e.g., engine of the forklift or other hoisting mechanism 36) to move bulk material from the transportation unit 32 to the blender unit 20, as opposed to several engines or powerpacks running at the same time to pneumatically unload conventional tankers and/or convey bulk material to the blender. Thus, there is a reduction in the emissions footprint, as well as noise generation, using the disclosed systems and methods for moving bulk material about the location.



FIGS. 3-5 illustrate an embodiment of the transportation unit 32 that may be used in the disclosed bulk material handling operations. FIG. 3 illustrates the transportation unit 32, which may be a trailer 210 with multiple rails to support a container of bulk material thereon. As illustrated, the trailer may include four rails extending outward with locks 212 formed thereon to support the corners of a bulk material container. The bulk material container may be supported on the trailer 210 and secured at each corner to the trailer 210 via the locks 212.



FIG. 4 is a close-up view of one embodiment of a lock 212 that may be used on the trailer 210. As shown, the lock 212 may be an iso-twist lock that can be easily manipulated to secure the container to the trailer 210. However, other types of twist locks or other mechanically actuated locks may be used in other embodiments of the container trailer 210. The lock 212 may be simply rotated to unlock the container from the trailer 210. Thus, zero engine emissions are generated in the process of unlocking the container from the trailer 210. This lock 212 may also save time during the loading and unloading operations on location, allowing the container to be unlocked and removed from the trailer 210 in about 5 minutes.



FIG. 5 illustrates the container trailer 210 of FIG. 3 with a container 12 of bulk material disposed thereon and connected to the trailer 210 via the locks 212. Although only one container 12 is able to be supported on the illustrated trailer 210, other embodiments of the trailer 210 may be designed to support two or more containers 12. The number and arrangement of containers 12 that can be supported on the trailer 210 may be limited based on the weight of the containers 12, due to weight restrictions for roads over which the containers 12 will be transported. In some embodiments, the trailer 210 may include space for multiple containers 12, and this trailer 210 may be used to transport one container 12 filled with bulk material to the location and to transport multiple empty containers 12 away from the location. Or, a trailer 210 with multiple spaces available for containers 12 may be used to transport multiple containers 12 filled with relatively lighter or less dense bulk material.


The disclosed containerized system and method for handling bulk material at a job site may reduce the dust, noise, and engine emissions generated on location. By making the bulk material unloading/loading process on location more efficient, the disclosed techniques may reduce the amount of engine emissions generated from idling trucks, since transportation units may be able to unload their materials faster than would be possible using pneumatic transfer. In addition, the disclosed techniques may enable the transfer of bulk material on location without generating excessive noise that would otherwise be produced through a pneumatic loading process. Still further, the bulk material remains in the individual containers 12 until it is output directly into the blender unit 20 via the gravity feed outlet 18. Since the bulk material remains in the containers 12, instead of being released directly onto a conveyor, the containers 12 may enable movement of bulk material on location without generating a large amount of dust.


Although the present disclosure and its advantages have been described in detail, it should be understood that various changes, substitutions and alterations can be made herein without departing from the spirit and scope of the disclosure as defined by the following claims.

Claims
  • 1. A system, comprising: a container holding bulk material, wherein the container is portable, and wherein the container stores the bulk material during movement of the container prior to discharge of the bulk material from the container;a blender having a blender inlet, wherein the blender inlet is a hopper of the blender or a mixing compartment of the blender;a frame for receiving and holding the container thereon; anda gravity feed outlet coupled to the frame for routing the bulk material discharged from the container directly into the blender inlet such that the bulk material exits a lower end of the gravity feed outlet directly into the blender inlet;wherein the container comprises a discharge gate disposed at a lower portion thereof, wherein the discharge gate is selectively actuated to release the bulk material from the container;wherein the frame comprises a gate actuator disposed thereon for selectively actuating the discharge gate of the container when the container is disposed on the frame, wherein the container is prevented from releasing the bulk material until the container is positioned on the frame and the gate actuator actuates the discharge gate.
  • 2. The system of claim 1, further comprising a transportation unit for transporting the container to or from a job site.
  • 3. The system of claim 2, wherein the transportation unit comprises a trailer with mechanical locks for selectively locking the container onto the transportation unit.
  • 4. The system of claim 2, further comprising a hoisting mechanism for removing the container from the transportation unit at the job site and lifting the container onto the frame.
  • 5. The system of claim 4, wherein the hoisting mechanism comprises a forklift, a crane, or a container management device.
  • 6. The system of claim 1, wherein the gravity feed outlet is positioned relative to the blender inlet such that the gravity feed outlet provides a choke feed of the bulk material from the container into the blender inlet.
  • 7. The system of claim 1, wherein the blender inlet comprises an opening at an upper end thereof, wherein the gravity feed outlet extends downward from the frame to a position immediately above or through the opening of the blender inlet such that bulk material discharged therefrom flows into the blender inlet instead of dropping from a vertical height into the blender inlet.
  • 8. The system of claim 1, wherein the gravity feed outlet is a chute with an upper end located beneath a position where the container is held on the frame, and wherein the chute extends vertically downward from the frame.
  • 9. A method, comprising: unloading a portable container holding bulk material from a transportation unit;maintaining the bulk material in the container as the container is moved about a job site;positioning the container holding the bulk material on an elevated frame; anddischarging the bulk material from the container directly into a blender inlet of a blender via a gravity feed outlet coupled to the elevated frame, wherein discharging the bulk material directly into the blender inlet comprises discharging the bulk material from a lower end of the gravity feed outlet directly into the blender inlet at a fill level of bulk material already present in the blender inlet without dropping the bulk material from a vertical height into the blender inlet, wherein the blender inlet is a hopper of the blender or a mixing compartment of the blender.
  • 10. The method of claim 9, further comprising loading an empty or partially emptied portable container onto the transportation unit after unloading the portable container holding bulk material.
  • 11. The method of claim 9, further comprising moving the container holding the bulk material from the transportation unit to a storage site at the job site, and moving the container holding the bulk material from the storage site to the elevated frame.
  • 12. The method of claim 9, further comprising moving the container holding the bulk material from the transportation unit directly to the elevated frame.
  • 13. The method of claim 9, further comprising regulating a flow of the bulk material from the container into the blender inlet via a choke feed.
  • 14. The method of claim 9, further comprising actuating a discharge gate of the container into an open position via a gate actuator disposed on the frame, and discharging the bulk material from the container through the open discharge gate.
  • 15. The method of claim 9, further comprising mixing the bulk material dispensed into the blender inlet with additives to generate a treatment fluid.
  • 16. The method of claim 9, further comprising utilizing a hoisting mechanism to remove the container holding bulk material from the transportation unit, move the container about the job site, and position the container on the elevated frame.
  • 17. The method of claim 9, further comprising removing the container from the elevated frame after the container is emptied and/or after a discharge gate on the container is closed.
  • 18. The method of claim 9, wherein unloading the container holding bulk material from the transportation unit comprises unlocking the container from a trailer and removing the container from the trailer.
PCT Information
Filing Document Filing Date Country Kind
PCT/US2016/043271 7/21/2016 WO 00
Publishing Document Publishing Date Country Kind
WO2018/017090 1/25/2018 WO A
US Referenced Citations (241)
Number Name Date Kind
710611 Ray Oct 1902 A
917646 Otto Apr 1909 A
1519153 Mitton Sep 1923 A
1726603 Wallace Sep 1929 A
1795987 Adams Mar 1931 A
2231911 Hitt et al. Feb 1941 A
2281497 Hyson et al. Apr 1942 A
2385245 Willoughby Sep 1945 A
2415782 Zademach Feb 1947 A
2513012 Dugas Jun 1950 A
2563470 Kane Aug 1951 A
2652174 Shea Sep 1953 A
2670866 Glesby Mar 1954 A
2678737 Mangrum May 1954 A
2802603 McCray Aug 1957 A
2867336 Soldini et al. Jan 1959 A
3049248 Heltzel et al. Aug 1962 A
3083879 Coleman Apr 1963 A
3151779 Rensch et al. Oct 1964 A
3203370 Friedrich et al. Aug 1965 A
3217927 Bale, Jr. et al. Nov 1965 A
3318473 Jones et al. May 1967 A
3343688 Ross Sep 1967 A
3354918 Coleman Nov 1967 A
3404963 Fritsche et al. Oct 1968 A
3432151 O'Loughlin et al. Mar 1969 A
3476270 Cox et al. Nov 1969 A
3602400 Cooke Aug 1971 A
3627555 Driscoll Dec 1971 A
3698693 Poncet Oct 1972 A
3785534 Smith Jan 1974 A
3802584 Sackett, Sr. et al. Apr 1974 A
3986708 Heltzel et al. Oct 1976 A
4023719 Noyon May 1977 A
4058239 Van Mill Nov 1977 A
4138163 Calvert et al. Feb 1979 A
4178117 Brugler Dec 1979 A
4204773 Bates May 1980 A
4248337 Zimmer Feb 1981 A
4258953 Johnson Mar 1981 A
4313708 Tiliakos Feb 1982 A
4398653 Daloisio Aug 1983 A
4544279 Rudolph Oct 1985 A
4583663 Bonerb Apr 1986 A
4626166 Jolly Dec 1986 A
4701095 Berryman et al. Oct 1987 A
4850702 Arribau et al. Jul 1989 A
4856681 Murray Aug 1989 A
4900157 Stegemoeller et al. Feb 1990 A
4919540 Stegemoeller et al. Apr 1990 A
4953752 Tousignant et al. Sep 1990 A
4956821 Fenelon Sep 1990 A
4993883 Jones Feb 1991 A
5036979 Selz Aug 1991 A
5096096 Calaunan Mar 1992 A
5149192 Hamm et al. Sep 1992 A
5303998 Whitlatch et al. Apr 1994 A
5339996 Dubbert et al. Aug 1994 A
5375730 Bahr et al. Dec 1994 A
5413154 Hurst, Jr. et al. May 1995 A
5415323 Fenelon May 1995 A
5426137 Allen Jun 1995 A
5441321 Karpisek Aug 1995 A
5445289 Owen Aug 1995 A
5590976 Kilheffer et al. Jan 1997 A
5722552 Olson Mar 1998 A
5772390 Walker Jun 1998 A
5806441 Chung Sep 1998 A
5913459 Gill et al. Jun 1999 A
5927356 Henderson Jul 1999 A
5944470 Bonerb Aug 1999 A
5997099 Collins Dec 1999 A
6059372 McDonald et al. May 2000 A
6112946 Bennett et al. Sep 2000 A
6193402 Grimland et al. Feb 2001 B1
6247594 Garton Jun 2001 B1
6379086 Goth Apr 2002 B1
6491421 Rondeau et al. Dec 2002 B2
6517232 Blue Feb 2003 B1
6536939 Blue Mar 2003 B1
6537015 Lim et al. Mar 2003 B2
6568567 McKenzie et al. May 2003 B2
6622849 Sperling Sep 2003 B1
6655548 McClure, Jr. et al. Dec 2003 B2
6980914 Bivens et al. Dec 2005 B2
7008163 Russell Mar 2006 B2
7086342 O'Neall et al. Aug 2006 B2
7100896 Cox Sep 2006 B1
7252309 Eng Soon Aug 2007 B2
7284579 Elgan Oct 2007 B2
7451015 Mazur et al. Nov 2008 B2
7475796 Garton Jan 2009 B2
7500817 Furrer et al. Mar 2009 B2
7513280 Brashears et al. Apr 2009 B2
7762281 Schuld Jul 2010 B2
7997213 Gauthier et al. Aug 2011 B1
8387824 Wietgrefe Mar 2013 B2
3434990 Claussen May 2013 A1
8434990 Claussen May 2013 B2
D688349 Oren et al. Aug 2013 S
D688350 Oren et al. Aug 2013 S
D688351 Oren et al. Aug 2013 S
D688772 Oren et al. Aug 2013 S
8505780 Oren Aug 2013 B2
8545148 Wanek-Pusset et al. Oct 2013 B2
8573917 Renyer Nov 2013 B2
8585341 Oren Nov 2013 B1
8607289 Brown et al. Dec 2013 B2
8616370 Allegretti et al. Dec 2013 B2
8622251 Oren Jan 2014 B2
8668430 Oren et al. Mar 2014 B2
D703582 Oren Apr 2014 S
8827118 Oren Sep 2014 B2
8834012 Case et al. Sep 2014 B2
8887914 Allegretti et al. Nov 2014 B2
RE45713 Oren et al. Oct 2015 E
9162603 Oren Oct 2015 B2
RE45788 Oren et al. Nov 2015 E
9248772 Oren Feb 2016 B2
RE45914 Oren et al. Mar 2016 E
9296518 Oren Mar 2016 B2
9340353 Oren et al. May 2016 B2
9358916 Oren Jun 2016 B2
9394102 Oren et al. Jul 2016 B2
9403626 Oren Aug 2016 B2
9421899 Oren Aug 2016 B2
9440785 Oren et al. Sep 2016 B2
9446801 Oren Sep 2016 B1
9475661 Oren Oct 2016 B2
9511929 Oren Dec 2016 B2
9522816 Taylor Dec 2016 B2
9527664 Oren Dec 2016 B2
9580238 Friesen et al. Feb 2017 B2
RE46334 Oren et al. Mar 2017 E
9617065 Allegretti et al. Apr 2017 B2
9617066 Oren Apr 2017 B2
9624030 Oren et al. Apr 2017 B2
9624036 Luharuka et al. Apr 2017 B2
9643774 Oren May 2017 B2
9650216 Allegretti May 2017 B2
9656799 Oren et al. May 2017 B2
9669993 Oren et al. Jun 2017 B2
9670752 Glynn et al. Jun 2017 B2
9676554 Glynn et al. Jun 2017 B2
9682815 Oren Jun 2017 B2
9694970 Oren et al. Jul 2017 B2
9701463 Oren et al. Jul 2017 B2
9718609 Oren et al. Aug 2017 B2
9718610 Oren Aug 2017 B2
9725233 Oren et al. Aug 2017 B2
9725234 Oren et al. Aug 2017 B2
9738439 Oren et al. Aug 2017 B2
RE46531 Oren et al. Sep 2017 E
9758081 Oren Sep 2017 B2
9758993 Allegretti et al. Sep 2017 B1
9771224 Oren et al. Sep 2017 B2
9783338 Allegretti et al. Oct 2017 B1
9796504 Allegretti et al. Oct 2017 B1
9809381 Oren et al. Nov 2017 B2
9828135 Allegretti et al. Nov 2017 B2
9840366 Oren et al. Dec 2017 B2
9988182 Allegretti et al. Jun 2018 B2
10081993 Walker et al. Sep 2018 B2
10189599 Allegretti et al. Jan 2019 B2
10287091 Allegretti May 2019 B2
10308421 Allegretti Jun 2019 B2
10486854 Allegretti et al. Nov 2019 B2
10604338 Allegretti Mar 2020 B2
20020121464 Soldwish-Zoole et al. Sep 2002 A1
20030159310 Hensley et al. Aug 2003 A1
20040008571 Coody et al. Jan 2004 A1
20040206646 Goh et al. Oct 2004 A1
20040258508 Jewell Dec 2004 A1
20050219941 Christenson et al. Oct 2005 A1
20060013061 Bivens et al. Jan 2006 A1
20070014185 Diosse et al. Jan 2007 A1
20080187423 Mauchle Aug 2008 A1
20080294484 Furman et al. Nov 2008 A1
20090078410 Krenek et al. Mar 2009 A1
20090129903 Lyons, III May 2009 A1
20090292572 Alden et al. Nov 2009 A1
20090314791 Hartley et al. Dec 2009 A1
20100319921 Eia et al. Dec 2010 A1
20110076123 Beck Mar 2011 A1
20120017812 Renyer et al. Jan 2012 A1
20120037231 Janson Feb 2012 A1
20120181093 Fehr et al. Jul 2012 A1
20120219391 Teichrob et al. Aug 2012 A1
20130142601 McIver et al. Jun 2013 A1
20130206415 Sheesley Aug 2013 A1
20130284729 Cook et al. Oct 2013 A1
20140023463 Oren Jan 2014 A1
20140023464 Oren et al. Jan 2014 A1
20140083554 Harris Mar 2014 A1
20140216736 Leugemors et al. Aug 2014 A1
20140299226 Oren et al. Oct 2014 A1
20140305769 Eiden, III et al. Oct 2014 A1
20140377042 McMahon Dec 2014 A1
20150003943 Oren et al. Jan 2015 A1
20150003955 Oren et al. Jan 2015 A1
20150183578 Oren et al. Jul 2015 A9
20150191318 Martel Jul 2015 A1
20150284194 Oren et al. Oct 2015 A1
20150303770 Beissler Oct 2015 A1
20150353293 Richard Dec 2015 A1
20150366405 Manchuliantsau Dec 2015 A1
20150368052 Sheesley Dec 2015 A1
20150375930 Oren et al. Dec 2015 A1
20160031658 Oren et al. Feb 2016 A1
20160039433 Oren et al. Feb 2016 A1
20160046438 Oren et al. Feb 2016 A1
20160046454 Oren et al. Feb 2016 A1
20160068342 Oren et al. Mar 2016 A1
20160130095 Oren et al. May 2016 A1
20160244279 Oren et al. Aug 2016 A1
20160264352 Oren Sep 2016 A1
20160332809 Harris Nov 2016 A1
20160332811 Harris Nov 2016 A1
20170021318 McIver et al. Jan 2017 A1
20170129696 Oren May 2017 A1
20170144834 Oren et al. May 2017 A1
20170190523 Oren et al. Jul 2017 A1
20170203915 Oren Jul 2017 A1
20170217671 Allegretti Aug 2017 A1
20170225883 Oren Aug 2017 A1
20170240350 Oren et al. Aug 2017 A1
20170240361 Glynn et al. Aug 2017 A1
20170240363 Oren Aug 2017 A1
20170267151 Oren Sep 2017 A1
20170283165 Oren et al. Oct 2017 A1
20170313497 Schaffner et al. Nov 2017 A1
20170320660 Sanders et al. Nov 2017 A1
20170327326 Lucas et al. Nov 2017 A1
20170334639 Hawkins et al. Nov 2017 A1
20180002120 Allegretti et al. Jan 2018 A1
20180201437 Surjaatmadja et al. Jul 2018 A1
20180257814 Allegretti et al. Sep 2018 A1
20180369762 Hunter et al. Dec 2018 A1
20190009231 Warren et al. Jan 2019 A1
20190111401 Lucas et al. Apr 2019 A1
20200062448 Allegretti et al. Feb 2020 A1
Foreign Referenced Citations (20)
Number Date Country
2937826 Oct 2015 EP
2066220 Jul 1981 GB
2204847 Nov 1988 GB
2008239019 Oct 2008 JP
2008012513 Jan 2008 WO
2013095871 Jun 2013 WO
2013142421 Sep 2013 WO
2014018129 Jan 2014 WO
2014018236 May 2014 WO
2015119799 Aug 2015 WO
2015191150 Dec 2015 WO
2015192061 Dec 2015 WO
2016044012 Mar 2016 WO
2016160067 Oct 2016 WO
2016178691 Nov 2016 WO
2016178692 Nov 2016 WO
2016178694 Nov 2016 WO
2016178695 Nov 2016 WO
2017014768 Jan 2017 WO
2017014771 Jan 2017 WO
Non-Patent Literature Citations (3)
Entry
International Search Report and Written Opinion issued in related PCT Application No. PCT/US2016/043271 dated Apr. 18, 2017, 16 pages.
Office Action issued in related Canadian Patent Application No. 2,996,055 dated Oct. 2, 2020, 5 pages.
U.S. Pat. No. 0802254A, Oct. 17, 1905, “Can-Cooking Apparatus,” John Baker et al.
Related Publications (1)
Number Date Country
20190127144 A1 May 2019 US