This application is a national stage application of PCT/KR2017/003939 filed on Apr. 12, 2017, which claims priority of Korean patent application number 10-2016-0145967 filed on Nov. 3, 2016. The disclosure of each of the foregoing applications is incorporated herein by reference in its entirety.
The present invention relates to a bullet with an increased effective range, and more particularly, to a bullet with an increased effective range, in which super cavitation is effectively generated around the bullet when the bullet is shot into air or water to increase the effective range, thereby improving accuracy (accuracy rate) of striking.
A bullet loaded in and shot from a projectile is composed of gunpowder generating firing energy by explosion and a warhead flying to a target by the firing energy. When the bullet is manufactured, a jacket made of a copper alloy is generally manufactured in a conical shape having a space therein through mechanical machining such as forging, and then, melted metal such as lead is injected into the inner space of the jacket by using a nozzle.
Also, a bullet having a structure, in which a groove is formed in an outer circumferential surface of the bullet so that flying resistance is reduced to increase an effective range when the bullet is shot to fly in air and also to improve accuracy, and a groove deeply recessed in a front inner direction is formed in a rear surface of the bullet to fill gunpowder into the groove, is being used.
However, although the bullet having the above-described structure is increased in effective range and improved in accuracy when shot in air, if the bullet is used as a bullet for underwater launch, the deep groove formed in the rear surface of the bullet may generate excessive vortex. Thus, the bullet having the above-described structure is not suitable for a bullet for underwater.
Also, in the bullet into which a soft metal such lead is filled, the lead filled into the bullet is instantly compressed and then expanded toward the jacket by explosive power of the gunpowder, and thus, the jacket is expanded also to increase a contact between a barrel and the bullet and effectively transfer the explosive power to the bullet, thereby increasing the effective range. However, if the bullet having the above-described structure is used for the underwater launch, although the explosive power is effectively transferred to the bullet, the jacket forming an outer appearance of the bullet is contracted by a water pressure applied to a front surface of the bullet when the bullet advances in the underwater, and thus, the lead filled in the jacket is pushed to a rear side of the bullet. As a result, the jacket is deformed to significantly deteriorate the accuracy.
Due to the above-described reasons, when the bullet advances in the underwater, the effective range is extremely shortened, and also the accuracy is reduced when compared to the case in which the bullet flies in air. To solve this problem, European Patent Application No. 2053342 and US Patent Application No. 2011-0297031 are disclosed, in which a stepped portion or an inclined surface is formed at the front of a bullet as illustrated in
However, when the bullet is gradually reduced in advancing speed while the bullet advances in the underwater, air constituting the bubbles is reabsorbed into the water. Thus, since the effective super cavitation around the bullet as described above is not generated to gradually reduce a size of a cavity existing between the outer circumferential surface and the water. Furthermore, as illustrated in
The present disclosure is contrived to solve the foregoing problems of the bullet according to the related art, and an object of the present invention is to provide a bullet having a structure in which super cavitation is more effectively generated around the bullet flying in air or underwater and maintained for even longer to increase an effective range.
According to an aspect of the present invention, there is provided a bullet with an increased effective range, which has a streamlined shape on the whole and is shot into air and underwater to strike a target, the bullet including: a front end portion having a hemispherical shape; a recess portion connected to a rear end of the front end portion and having a curved surface that is recessed inward; an inclined portion connected to a rear end of the recess portion and inclined at a predetermined angle with respect to a horizontal line; a stepped portion connected to a rear end of the inclined portion and inclined at a predetermined angle with respect to the horizontal line; and fluid inducing grooves formed from the rear to a rear end surface of the bullet.
The angle of the stepped portion may be greater than the angle of the inclined portion.
An installation hole communicating backward may be formed in the bullet, and a projectile and a rear assembly may be inserted into and assembled within the installation hole.
A front end portion, a recess portion, an inclined portion, and a stepped portion, which respectively have the same shape as the front end portion, the recess portion, the inclined portion, and the stepped portion, may be formed on the front of the projectile.
The bullet may further include: a main body having a cylindrical shape, in which the fluid inducing grooves are formed in the rear thereof, an installation hole passing in a front and rear direction thereof is formed therein, and a bubbling groove is formed in an outer circumferential surface thereof; a front assembly inserted and installed to the front of the installation hole so as to be exposed to a front side of the main body; and a rear assembly assembled with the rear of the installation hole, wherein the front assembly may include: a protrusion part protruding to the front side of the main body; and an insertion part disposed at a rear side of the protrusion and inserted into the installation hole.
At least one coupling groove may be formed in the projectile or the insertion part.
The front of the installation hole may have a diameter greater than that of the insertion part so that the front of the installation hole is spaced a predetermined distance from the insertion part.
According to the present invention, when the bullet flies in the air, the air may be uniformly induced to the central portion of the rear end surface of the bullet by the air inducing groove formed in a rear side of the bullet to generate turbulence and prevent the bullet from being shaken. Thus, the bullet may be stably flied to improve the effective range and accuracy. When the bullet advances in the underwater, the super cavitation may be more effectively generated by the front end portion, the recess portion, the inclined portion, and the stepped portion, which are provided on the bullet, to significantly increase the size of the cavity between the surface of the bullet and the water when compared to that of the bullet according to the related art and also may be maintained for even longer to significantly increase the effective range of the bullet. Therefore, the bullet may be stably flied and improved in accuracy.
Hereinafter, configurations and effects of the present invention will be described in more detail with reference to the accompanying drawings illustrating preferred embodiments.
The present invention is to provide a bullet in which super cavitation is effectively generated around an outer circumferential surface of the bullet and maintained for even longer while the bullet advances in air and underwater to increase an effective range. For this, as illustrated in
Also, for convenience of description, a case in which the bullet advances in the underwater, instead of a case in which the bullet flies in the air, will be described below.
As illustrated in
Also, the recess portion 20 having a curved surface that is recessed inward as illustrated in
Since the recess portion 20 having the curved shape that is recessed inward is provided on a rear side of the front end portion 10 as described above, the water flowing around the outer circumferential surface of the bullet 1 may be farther away from the outer circumferential surface of the bullet 1. Thus, the super cavitation may be maintained for even longer, and the effective range may be increased when compared to the bullet (underwater bullet) according to the related art.
As illustrated in
Also, the cavity may be reduced in size while the water flows along the inclined portion 30, and thus the water may approach the surface of the bullet 1. In this case, the advancing speed of the bullet 1 may be significantly reduced. To prevent this phenomenon from occur in the present invention, as illustrated in
The cavity around the bullet 1, which comes close up to the surface of the bullet 1 by the above-described stepped portion 40, may meet the stepped portion 40 to regenerate the super cavitation, thereby again increasing a size of the cavity around the bullet 1 and reducing the resistance of the water around the bullet 1.
A streamlined portion (not shown) forming a horizontal surface together with an outwardly protruding surface of the bullet 1 extends at a rear side of the stepped portion 40. The flow of the water is guided by the streamlined portion to smoothly advance in the underwater. Three fluid inducing grooves 50 are formed from the rear of the streamlined portion to a rear end surface approximately vertically formed on the rear of the streamlined portion at the end of the streamlined portion. When the bullet 1 is shot to fly in the air and advance in the underwater, the flows of the air and water are uniformly induced to a center of the rear end surface of the bullet 1 and forms turbulence by the fluid inducing groove 50 so that the shaking of the bullet 1 is prevented to stably fly. Thus, the accuracy rate of the bullet 1 may be improved, and the flying resistance may be reduced to help the extension of the effective range.
As illustrated in
When the bullet 1 having the above-described structure and the increased effective range is manufactured, the front end portion 10, the recess portion 20, the inclined portion, and the stepped portion 40 may be integrally manufactured with the rear of the bullet 1 or be assembled with the rear of the bullet 1. Hereinafter, each of the cases will be described as one exemplary embodiment.
According to Embodiment 1, as illustrated in
Here, the projectile 60 inserted into and installed in the installation hole 1A formed in the outer shell of the bullet 1 is manufactured by using a soft metal such as tungsten or a tungsten alloy that has stiffness superior to that of the outer shell. At least one coupling groove 65 is formed at a rear side of the projectile 60. Here, the outer shell made of a relatively soft material when compared to the projectile 60 may be press-fitted into the coupling groove 65 by applying force from the outside of the outer shell of the bullet 1, and thus, the projectile 60 inserted into the installation hole 1A may be firmly fixed inside the outer shell of the bullet 1.
According to the above-described material characteristics and structure, when the bullet 1 is shot to enter into the water and approach a target, the outer shell made of the soft metal is ruptured by an impact, and thus, the projectile 60 installed in the outer shell is out of the outer shell to penetrate the target. Here, since a front end portion 61, a recess portion 62, an inclined portion 63, and a stepped portion 64 are formed also on the projectile 60, resistance force generated while the bullet 1 strikes the target may be significantly reduced to improve the striking performance to the target.
As illustrated in
Here, a front diameter of the installation hole 110 has a greater than that of an insertion part 220 so that the front of the installation hole 110 is spaced a predetermined distance from the insertion part 220 of the front assembly. As a result, the bullet 1 may be reduced in weight.
Also, when the front assembly 200 is installed on the main body 100, the front assembly 200 fitted into and installed in the front of the installation hole 110 is constituted by a protrusion part 210 exposed to a front side of the main body 100 and the insertion part 220 disposed at a rear side of the protrusion part 210 and inserted into the installation hole 110 of the main body 100. Here, as described above, a front end portion 10, a recess portion 20, an inclined portion 30, and a stepped portion 40 are formed on the protrusion part 210.
Also, the rear assembly 300 is inserted and installed in the rear of the installation hole 110 formed in the main body 100 so as to be spaced a predetermined distance from a rear end of the front assembly 200. Since an empty space is formed between the front assembly 200 and the rear assembly 300, the bullet 1 may be reduced in weight.
Also, the front assembly 200 is manufactured by using a hard metal such as tungsten or a tungsten alloy that has stiffness superior to that of the main body 100 made of a material such as a copper alloy. Like Embodiment 1, since at least one coupling groove 221 is formed in an outer circumferential surface of the rear of the insertion part 220 of the front assembly 200, the main body 100 and the front assembly 200 may be firmly coupled to each other.
Due to the above-described material characteristics and structure of the bullet 1, when the bullet 1 is shot to enter into the water and approach a target, the front assembly 200 may be maintained in shape as it is without being damaged even though an impact on the water or the target occurs. Thus, the superior striking performance of the bullet 1 to the target may be secured. As described above, the present invention may provide the bullet having the increased effective range and superior striking performance by more effectively generating the super cavitation and maintaining the super cavitation for even longer when the bullet passes through the air or underwater.
It will be apparent to those skilled in the art that various modifications and variations can be made in the present invention. Thus, it is intended that the present invention covers the modifications and variations of this invention provided they come within the scope of the appended claims and their equivalents.
Number | Date | Country | Kind |
---|---|---|---|
10-2016-0145967 | Nov 2016 | KR | national |
Filing Document | Filing Date | Country | Kind |
---|---|---|---|
PCT/KR2017/003939 | 4/12/2017 | WO | 00 |
Publishing Document | Publishing Date | Country | Kind |
---|---|---|---|
WO2018/084391 | 5/11/2018 | WO | A |
Number | Name | Date | Kind |
---|---|---|---|
1241409 | Lizarraga | Sep 1917 | A |
3205822 | Gustafsson | Sep 1965 | A |
3282216 | Calfee | Nov 1966 | A |
3873048 | Platou | Mar 1975 | A |
4176487 | Manis | Dec 1979 | A |
4572077 | Antoine | Feb 1986 | A |
4612860 | Flatau | Sep 1986 | A |
4757766 | Ruffle | Jul 1988 | A |
4813635 | Paterson | Mar 1989 | A |
5070791 | Dineen | Dec 1991 | A |
5133261 | Kelsey, Jr. | Jul 1992 | A |
5725179 | Gilman | Mar 1998 | A |
5798478 | Beal | Aug 1998 | A |
6363856 | Stoker, Jr. | Apr 2002 | B1 |
6374743 | Hug | Apr 2002 | B1 |
7150234 | Gilman | Dec 2006 | B2 |
7779759 | Paulic | Aug 2010 | B2 |
8082850 | Marx | Dec 2011 | B2 |
8082851 | Polovnev | Dec 2011 | B2 |
8307768 | Cziglenyi | Nov 2012 | B2 |
20060027128 | Hober | Feb 2006 | A1 |
20060096491 | Fichot | May 2006 | A1 |
20070144395 | Yaich | Jun 2007 | A1 |
20070151474 | Widener | Jul 2007 | A1 |
20070204758 | Spatz | Sep 2007 | A1 |
20080264290 | Salvel | Oct 2008 | A1 |
20090173248 | Fu | Jul 2009 | A1 |
20110297031 | Fu | Dec 2011 | A1 |
20130180424 | Kim | Jul 2013 | A1 |
20160153757 | Mahnke | Jun 2016 | A1 |
20170199019 | Fricke | Jul 2017 | A1 |
Number | Date | Country |
---|---|---|
2 053 342 | Apr 2009 | EP |
191102236 | Jun 1911 | GB |
2006-132874 | May 2006 | JP |
2007-537416 | Dec 2007 | JP |
1020070106558 | Nov 2007 | KR |
101347167 | Jan 2014 | KR |
101568319 | Nov 2015 | KR |
101660887 | Sep 2016 | KR |
WO-2016148369 | Sep 2016 | WO |
Number | Date | Country | |
---|---|---|---|
20190277609 A1 | Sep 2019 | US |