The present invention relates generally to devices for the extermination of rodents and more particularly to a device and method for the injection of a flammable gas into a tunnel of a burrowing rodent and the detonation of said gas from a location that is remote to the site of gas injection.
The prior art includes a number of devices that provide for the detonation or ignition of a fuel gas mixture in a burrow or tunnel system of a burrowing rodent. U.S. Pat. No. 6,171,098 to Meyer, et al., entitled Rodent Exterminating Apparatus, U.S. Pat. No. 5,860,243 to Stager entitled Device for Explosive Extermination of Rodents and U.S. Pat. No. 4,005,976 to Rombach, et al., entitled Rodent Exterminator all disclose portable exterminating devices that ignite a gas or gas mixture to produce a detonation of the gas or gas mixture in the burrow or tunnel system of a rodent. All of these devices include a barrel or other means for conducting the gas or gas mixture into the burrow or tunnel system, a gas flow control means for controlling the injection of mixed gas into the burrow or tunnel system and an ignition system positioned adjacent to the gas flow control means on a handle that the operator maintains contact with during detonation.
It has been observed that repeated exposure to the concussion experienced by an operator directly at or above the blast site can cause fatigue in the operator. Additionally, it has been observed, on occasion, that gas can get trapped in the unit and can ignite in these units, giving rise to a potential for injury to the operator and/or the device.
Advantage may be found in providing a device and method for the injection of a flammable gas into a tunnel of a burrowing rodent and the detonation of said gas from a location that is remote to the site of gas injection. There may be advantage in providing a burrowing rodent extermination device wherein the ignition switch, the high voltage emitter and the fuel mixing and flow control means are not all located on a continuous support element, for instance a handle or an amalgamation of parts including a conduit and fuel mixing and flow control means that form a support, handle or carrying means. Therefore, it is an objective of the present invention to provide a device and method for the injection of a flammable gas or gas mixture into a tunnel of a burrowing rodent and ignition switching to effect detonation of said gas from a location that is remote to the site of gas injection and generation and emission of a spark for initiating detonation.
The present invention is directed to a device and method for controlling the population of burrowing rodents. A device for controlling the population of burrowing rodents includes a remote control panel including a box having a lid with a welding torch positioned at least partially within the box. The welding torch includes a gas flow valve. A pair of hoses are connected between the welding torch and a bottle of oxygen and a bottle of fuel gas. A hose is connected to a downstream end of the gas flow valve and extends to an injector. An ignition wire extends between an ignition switch and the injector. A high voltage converter is attached to the injector and a spark emitter is positioned in the fire cone end of the injector. An electrical cutout switch is connected between the ignition switch and the gas flow valve and prevents operation of the ignition switch while the gas flow valve is open. The hose connecting the welding torch and the injector may be five to fifty feet, (1.524 to 15.24 meters), long or longer. The injector is equipped with a flash arrestor-check valve, preventing fire from coming back up into the hose.
In operation, an operator places a fire cone end of the injector in a hole connected to a tunnel system and then steps back to the remote control panel to operate gas flow. After gas is injected into a burrow or tunnel system for a selected time, the gas flow valve is closed and the ignition switch is engaged. A low voltage current is switched from a battery located in the remote control panel to the high voltage converter and a spark emits in the fire cone igniting the gas mixture in the tunnel.
The injector, to which the high voltage converter is connected is not held by the operator at the time of ignition and detonation. As a result, the operator and the ignition switch are distanced a length greater than a length of the injector from the high voltage converter and the spark emitter at the time of ignition and therefore the operator is not exposed to the repeated concussion experienced directly at or above the blast site that can cause operator fatigue. Additionally, ignition of gas upstream of the injector or at the location of the operator at the time of ignition is markedly reduced by the fact that the ignition switch and therefore the operator are distanced a length greater than the length of the injector from the high voltage converter and the spark emitter at the time of ignition. The use of a flash arrestor/check valve at the injector also reduces the probability of flash back to the remote control panel.
The high voltage converter generates a high-voltage, low-amperage electrical charge. One or more batteries supply electricity to a circuit including one or more transformers that boost the voltage in the circuit, typically to between 20,000 and 150,000 volts, and reduce the amperage. The high-voltage, low-amperage current charges a capacitor that stores a charge, and releases it when switched.
Additional objects, advantages and novel features of the invention will be set forth in part in the description which follows, and in part will become apparent to those skilled in the art upon examination of the following, or may be learned by practice of the invention. The objects and advantages of the invention may be realized and attained by means of the instrumentalities and combination particularly pointed out in the appended claims.
Referring to
As shown in
Referring to
Referring to
High voltage converter circuit 60 is shown enclosed in housing 51 of injector 50. High voltage converter circuit 60 includes one or more step-up transformers show as transformers T1 and T2 and a capacitor C1 for storing a high voltage low amperage charge. A pair of discharge wires, 57A and 57B, connect to high voltage converter circuit 60 extend to fire cone 55. Flash arrestor 56 is shown positioned downstream of in housing 51 and high voltage converter circuit 60 for limiting the possibility a flashback into housing 51 and high voltage converter circuit 60. In the event that such a flashback were to occur, soft plug 63 located in housing 51 and soft plug 62 located in remote control panel 20 would serve limit damage.
Gas flow valve 16 is biased towards a closed position. Plunger 26 is positioned between gas flow valve operation lever 21 and gas flow valve actuator 17. Gas flow valve operation lever 21 is connected to lid 11 of enclosure 12 and is cooperatively operative with a flow control actuator via plunger 26. Plunger 26 includes a flange 46 that is adapted to contact flow valve actuator 17 and trigger 27 of ignition circuit cutout switch 23 when gas flow valve operation lever 21 is depressed. When trigger 27 of ignition circuit cutout switch 23 is depressed the ignition circuit is broken and therefore inoperable. When pressure on plunger 26 and gas flow valve actuator 17 are released through outlet 18 of mining chamber 15, gas flow valve 16 returns to a closed position, trigger 27 is released and ignition circuit cutout switch 23 returns to a close position. Ignition of the mixed gas is now possible by pressing ignition switch button 22 of ignition switch 24 which triggers the emission of spark S at emitter 61 located in fire cone 55. Battery 25 provides the low voltage current for the circuit. As high voltage converter circuit 60 is located in housing 51 of injector 50, the possibility of a spark in remote control panel 20 becomes greatly diminished.
In use, a pressurized flow of a controlled ratio of fuel gas, preferably propane, and oxygen, is injected for a specific amount of time, 30-60 seconds, into tunnel system TS depending on type of pest and tunnel conditions. Button 22 of ignition switch 26 is pushed and the ensuing explosion kills pests in the tunnel system by concussion, burying them at the same time. The explosion follows the route of the tunnel system and does no damage except to that system.
While this invention has been described with reference to the described embodiments, this description is not to be construed in a limiting sense. Various modifications to the described embodiments, as well as additional embodiments of the invention, will be apparent to persons skilled in the art upon reference to this description. It is therefore contemplated that the appended claims will cover any such modifications or embodiments as fall within the true scope of the invention.
This application is a continuation-in-part of and claims the priority of an application entitled Remote Control Panel, Ser. No. 10/959,353, filed on Oct. 5, 2004, which claims benefit to a provisional application, entitled Remote Control Panel, Ser. No. 60/509,817, filed on Oct. 8, 2003, entitled Remote Control Panel.
Number | Date | Country | |
---|---|---|---|
60509817 | Oct 2003 | US |
Number | Date | Country | |
---|---|---|---|
Parent | 10959353 | US | |
Child | 11064296 | Feb 2005 | US |