An avalanche photodiode (APD) may be described as a semiconductor photodiode detector. The APD may convert light into electricity by utilizing the photoelectric effect. An APD may be utilized in fiber optic communication systems as a photo detector. In this regard, an APD may include a relatively high sensitivity, and also a relatively high internal gain.
Features of the present disclosure are illustrated by way of example and not limited in the following figure(s), in which like numerals indicate like elements, in which:
For simplicity and illustrative purposes, the present disclosure is described by referring mainly to examples. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present disclosure. It will be readily apparent however, that the present disclosure may be practiced without limitation to these specific details. In other instances, some methods and structures have not been described in detail so as not to unnecessarily obscure the present disclosure.
Throughout the present disclosure, the terms “a” and “an” are intended to denote at least one of a particular element. As used herein, the term “includes” means includes but not limited to, the term “including” means including but not limited to. The term “based on means” based at least in part on. The term “optical fiber” may be generalized to an optical waveguide of any type. A “telecom” singlemode fiber may be generally assumed but the principles may be generalized to other types of singlemode fibers, for example at different wavelengths, and to multimode fibers, with values for diameters and distances of elements that would need to be rescaled accordingly.
A butt-coupled avalanche photodiode (APD), and a method for butt-coupling an APD are disclosed herein. The butt-coupled APD and method for butt-coupling an APD disclosed herein provide a specific alignment procedure for an APD for an improved temporal response.
In reflectometry, after an intense event such as Fresnel reflection on a probe pulse, low level of light (e.g., Rayleigh scattering) may need to be adequately measured. For example, situations where the power level of light to be measured is 50 dB less intense than the intense event that precedes may be relatively common. An APD may be TO-canned with a lens and an optical fiber may be positioned to maximize a signal from the fiber to the APD. In this regard, an APD recovery time may represent a parameter that may need to be improved for improvement in measurement of the low level of light.
The butt-coupled APD and method for butt-coupling an APD disclosed herein provide for improvement in measurement of the low level of light. Yet further, the direct butt-coupling at a correct position may improve the APD performance as the original beam quality (e.g., of the fiber mode) may be better maintained. In this regard, the APD's tailing may be created by illumination at the periphery of the active area. Further propagation of the beam within the APD structure, with associated beam divergence and internal reflections may further result in undesirable illumination at the periphery of the active area. As a general rule, a spot with a width of approximately −40 to −60 dB may be maintained at the anode ring level.
According to examples disclosed herein, the butt-coupled APD and method for butt-coupling an APD disclosed herein may utilize a flat fiber-end to maintain the Gaussian mode quality (e.g., either cleaved or polished, possibly angled or non-angled with index matching material, possibly coated with an anti-reflective thin film deposit).
According to examples disclosed herein, for the butt-coupled APD and method for butt-coupling an APD disclosed herein, the fiber may be a trench-assisted fiber as the fundamental mode may be as close as possible to the Gaussian mode structure.
According to examples disclosed herein, the butt-coupled avalanche photodiode may include an avalanche photodiode, and an optical fiber. The optical fiber may be butt-coupled to the avalanche photodiode.
For the butt-coupled avalanche photodiode described above, an index-matching material may be inserted between the optical fiber and the avalanche photodiode. The two possible configurations may be referred to hereafter as the index-matched configuration or the air-gap configuration. The index-matched configuration may reduce reflections, while the air-gap configuration may need to rely on element angles to move away undesirable reflections.
For the butt-coupled avalanche photodiode described above, and the index-matched configuration, the optical fiber may include a face that includes an angle of approximately 90° relative to a central axis of the optical fiber. For the butt-coupled avalanche photodiode described above, and the air-gap configuration, the optical fiber may include a face that includes an angle of less than approximately 85° and greater than 70° relative to a central axis of the optical fiber.
For the butt-coupled avalanche photodiode described above, and the index-matched configuration, an active area of a chip associated with the avalanche photodiode may be positioned at an angle of greater than approximately 93° and less than approximately 98° relative to the central axis of the optical fiber. For the butt-coupled avalanche photodiode described above, and the air-gap configuration, an active area of a chip associated with the avalanche photodiode may be positioned at an angle of greater than approximately 97° and less than approximately 110° relative to the central axis of the optical fiber.
For the butt-coupled avalanche photodiode described above, and the air-gap configuration, the optical fiber may include an angled face. In this regard, an active area of a chip associated with the avalanche photodiode may be positioned at an angle relative to the angled face to permit, for an incident light beam from the optical fiber, the redirection, away from the active area of the chip, of the light beam that is first reflected onto the photodiode and secondly reflected onto the optical fiber surface. The anti-reflection coatings either on the chip or the fiber tip may be modified in order to mitigate the problem and lower the angle and chip to fiber distance in the air-gap configuration.
For the butt-coupled avalanche photodiode described above, the optical fiber may include an intermediate pin-hole to truncate a Gaussian beam relative to an active area of a chip associated with the avalanche photodiode. Alternatively, that pin-hole may be deposited during the chip manufacturing process.
For the butt-coupled avalanche photodiode described above, for a 30 μm wide chip associated with the avalanche photodiode, and the index-matched configuration, the core of the optical fiber may be disposed at less than 20 μm from an active area of the chip and down to contact with the chip. For the butt-coupled avalanche photodiode described above, for a 30 μm wide chip associated with the avalanche photodiode, and the air-gap configuration, the core of the optical fiber may be disposed at approximately 20 μm from an active area of the chip.
For the butt-coupled avalanche photodiode described above, for a 50 μm wide chip associated with the avalanche photodiode, and the index-matched configuration, the optical fiber may include a face that is disposed at less than 40 μm from an active area of the chip. For the butt-coupled avalanche photodiode described above, for a 50 μm wide chip associated with the avalanche photodiode, and the air gap configuration, the optical fiber may include a face that is disposed at approximately 40 μm from an active area of the chip.
According to examples disclosed herein, a butt-coupled avalanche photodiode may include an avalanche photodiode, and an optical fiber. The optical fiber may be butt-coupled to the avalanche photodiode. A face of the optical fiber may include a specified angle relative to and/or a specified distance from an active area of a chip associated with the avalanche photodiode to minimize a tailing associated with an incident light beam from the optical fiber.
According to examples disclosed herein, a method for butt-coupling an avalanche photodiode may include coupling an optical fiber to an avalanche photodiode by butt-coupling the optical fiber to the avalanche photodiode. A face of the optical fiber may include a specified angle relative to and/or a specified distance from an active area of a chip associated with the avalanche photodiode. The method may further include specifying the specified angle and/or the specified distance to minimize a tailing associated with an incident light beam from the optical fiber.
The method described above may further include specifying, for the index-matched configuration, the face of the optical fiber to include the specified angle of approximately 90° relative to a central axis of the optical fiber. Further, for the air-gap configuration, the face of the optical fiber may include the specified angle of less than approximately 85° and greater than 70° relative to the central axis of the optical fiber.
The method described above may further include positioning, for the index-matched configuration, the active area of the chip associated with the avalanche photodiode at an angle of greater than approximately 93° and less than approximately 98° relative to the central axis of the optical fiber. Further, the method described above may further include positioning, for the air-gap configuration, the active area of the chip associated with the avalanche photodiode at an angle of greater than approximately 97° and less than approximately 110° relative to the central axis of the optical fiber.
The method described above may further include specifying the specified angle and/or the specified distance to permit, for the incident light beam from the optical fiber, the redirection, away from the active area of the chip, of the light beam that is first reflected onto the photodiode and secondly reflected onto the optical fiber surface.
The method described above may further include index-matching the optical fiber relative to the active area of the chip associated with the avalanche photodiode.
The method described above may further include implementing, for the optical fiber, an intermediate pin-hole to truncate a Gaussian beam relative to the active area of the chip associated with the avalanche photodiode.
With respect to connection of a fiber to an APD, one technique may include a lensed-TO-can assembly. With respect to the lensed-TO-can assembly, examples of aberrations may include under-corrected spherical aberrations, coma, astigmatism, and chromatic aberrations.
Referring to
For the example of
Referring to
With respect to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
Referring to
What has been described and illustrated herein is an example along with some of its variations. The terms, descriptions and figures used herein are set forth by way of illustration only and are not meant as limitations. Many variations are possible within the spirit and scope of the subject matter, which is intended to be defined by the following claims—and their equivalents—in which all terms are meant in their broadest reasonable sense unless otherwise indicated.
Number | Date | Country | Kind |
---|---|---|---|
EP22305498.2 | Apr 2022 | EP | regional |