Button latch with integrally molded cantilever springs

Information

  • Patent Grant
  • 9464741
  • Patent Number
    9,464,741
  • Date Filed
    Wednesday, December 22, 2010
    13 years ago
  • Date Issued
    Tuesday, October 11, 2016
    8 years ago
Abstract
An integral button latch is formed for use in a female fluid connector housing. The button latch has a latch plate, a button actuator, and two or more cantilevered leg springs extending from beneath the actuation surface to interface with the connector housing. The latch plate, the button actuator, and the leg springs are all integrally formed. The leg springs bias the latch plate in a locked position and resist depression forces applied to either of the button actuator or the latch plate. By integrally forming the button latch structure, the separate costs associated with purchasing the springs, molding the lock latch, and the ensuing assembly of the three are significantly diminished.
Description
TECHNICAL FIELD

The technology described herein relates to latch mechanisms for fluid tube connection devices.


BACKGROUND

Tubing sections are often be joined together to provide for gas and/or liquid fluid flow from one component to another. Thus, it is often desirable to connect and disconnect tubing sections from one another. For example, when a patient's blood pressure is taken with an automatic blood pressure monitor, tubing from the blood pressure cuff (which is generally wrapped around the patient's arm) is connected to the tubing that is connected to the blood pressure monitor. To disconnect the cuff from the blood pressure monitor, it is desirable to merely detach the tubing section connected to the cuff from the tubing connected to the blood pressure monitor. Similarly, when providing intravenous fluids, it is often required to replace an empty fluid bag with a full fluid bag without removing the intravenous needle or stent from the patient. In order to switch between the first fluid bag and the second fluid bag, it is desirable to merely detach a tubing section connected with the fluid bag to the tubing section connected with the needle or stent placed intravenously in the patient, which can then be easily connected with a tubing section connected with the new fluid bag.


Single lumen blood pressure cuff connectors are commercially available from various manufacturers. Common connectors currently use two metal springs and a separate molded lock latch part in conjunction with the disconnect button to form a button-actuated latch mechanism. Generally, the greater number of parts forming a connector, the more expensive it will be to manufacturer due to the cost of multiple parts and the greater number of steps in the manufacturing and assembly process.


The information included in this Background section of the specification, including any references cited herein and any description or discussion thereof, is included for technical reference purposes only and is not to be regarded subject matter by which the scope of the invention is to be bound.


SUMMARY

An integral button latch is formed in a female fluid connector housing having a latch plate, an actuator portion, and two or more cantilevered springs extending from beneath the actuation surface. The latch plate is integral with and extends downwardly from the button actuator. The leg springs are integrally formed with either or both the button actuator or the latch plate and extend from either or both the button actuator or the latch plate. The plurality of cantilevered leg springs bias the latch plate in a locked position and resist depression forces applied to each of the button actuator and the latch plate.


By integrally forming the button latch structure, the separate costs associated with purchasing the springs, molding the lock latch and the ensuing assembly of the three are significantly diminished. In one implementation, the button latch is designed with three plastic springs and a dual latch, which are all molded as part of a single disconnect button. The four parts (button, 2 springs, and the lock latch) are thus consolidated into one button latch. As a further advantage, by designing a connector with no metal springs, the connector is compatible for use during a magnetic resonance imaging (MRI) procedure or in other environments in which metal parts or multiple parts might malfunction or become hazardous.


This Summary is provided to introduce a selection of concepts in a simplified form that are further described below in the Detailed Description. This Summary is not intended to identify key features or essential features of the claimed subject matter, nor is it intended to be used to limit the scope of the claimed subject matter. A more extensive presentation of features, details, utilities, and advantages of the present invention is provided in the following written description of various embodiments of the invention, illustrated in the accompanying drawings, and defined in the appended claims.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is an isometric view of a female connector with a button latch and a corresponding male bayonet connector.



FIG. 2A is a top front isometric view of an embodiment of a button latch with integrally molded cantilevered springs.



FIG. 2B is a bottom rear isometric view of the button latch of FIG. 2A with integrally molded cantilevered springs.



FIG. 2C is a front elevation view of the button latch of FIG. 2A with integrally molded cantilevered springs.



FIG. 3A is a top front isometric view in partial cross section of the button latch of FIG. 2 positioned in the female connector of FIG. 1.



FIG. 3B is a front elevation view in cross section of the button latch of FIG. 2 positioned in the female connector of FIG. 1.



FIG. 3C is a side elevation view in cross section of the button latch of FIG. 2 positioned in the female connector of FIG. 1.



FIG. 4A is a side elevation view in cross section of the button latch of FIG. 2 positioned in the female connector of FIG. 1 initially receiving the male bayonet connector.



FIG. 4B is a side elevation view in cross section of the button latch of FIG. 2 positioned in the female connector of FIG. 1 with the male bayonet connector deflecting the button latch as it is inserted within the female connector.



FIG. 4c is a side elevation view in cross section of the button latch of FIG. 2 positioned in the female connector of FIG. 1 with the male bayonet connector fully inserted within the female connector and the button latch engaging the male bayonet connector.



FIG. 5A is an illustration of finite element analysis results indicating areas of stress on the integrally molded springs on the button latch.



FIG. 5B is a schematic drawing of a spring arm of the button latch in a rest position.



FIG. 5C is a schematic drawing of a spring arm of the button latch in a deformed position.



FIG. 6A is an isometric view of a second embodiment of a button latch with integrally molded cantilevered springs.



FIG. 6B is an isometric view of the second embodiment of the button latch positioned within a female connector housing shown in partial cross section.



FIG. 6C is an isometric view of the second embodiment of the button latch positioned within a female connector housing shown in partial cross section.



FIG. 6D is an enlarged view of a portion of the second embodiment of the button latch as indicated in FIG. 6C.



FIG. 6E is an isometric view of the second embodiment of the button latch positioned within a female connector housing shown in partial cross section with the button in a depressed position.



FIG. 6F is an enlarged view of a portion of the second embodiment of the button latch as indicated in FIG. 6E.



FIG. 6G is a side elevation view in cross section of the second embodiment of the button latch positioned within a female connector housing.



FIG. 6H is a side elevation view in cross section of the second embodiment of the button latch positioned within a female connector housing with the button in a depressed position.



FIG. 7A is an isometric view of a third embodiment of a button latch with integrally molded cantilevered springs.



FIG. 7B is an isometric view of the third embodiment of the button latch positioned within a female connector housing shown in partial cross section.



FIG. 8A is an isometric view of a fourth embodiment of a button latch with integrally molded cantilevered springs.



FIG. 8B is an isometric view of the fourth embodiment of the button latch positioned within a female connector housing shown in partial cross section.





DETAILED DESCRIPTION

A female fluid connector may be used conjunction with male bayonet connectors to releasably connect sections of tubing. In one embodiment, for example as shown in FIGS. 1-2C, the female receiving connector 102 includes a button latch 100 that actuates an integral, guillotine-type latch plate 112. The latch plate 112 physically secures a male bayonet connector 104 within the female connector 102. When the male bayonet connector 104 is inserted distally into the female receiving connector 102, a distal end of the male bayonet connector 104 interfaces with a proximal edge of a receiving aperture 114 within the latch plate 112 to bias the latch plate 112 downward and lower the receiving aperture 114 through which the male bayonet connector 104 may pass. The downward travel of the latch plate 112 is countered by an arrangement of cantilevered springs 118, 120, 122 (see FIGS. 2A-2C) extending from the button actuator 106 and interfacing with surfaces on the interior walls of the housing of the female connector 102 in order to bias the latch plate 112 in an upward, locked position. The male bayonet connector 104 defines an annular channel 142 that is engaged by the edges of the aperture 114 in the guillotine latch plate 112 upon sufficient insertion of the male bayonet connector 104 into the female receiving connector 102.


The orientations “proximal” and “distal” as used herein have been arbitrarily chosen, and are not meant to limit the present disclosure, but will follow the convention just described with reference to the ends of the female receiving connector 102 and male bayonet connector 104.


In this embodiment, the female connector 102 is primarily designed for connection between the tubing from a blood pressure monitor and a male connector, which is attached to tubing from a blood pressure cuff. The blood pressure cuff is fastened about the patient's arm. When the female connector 102 is connected to the male connector 104, the flow of air can pass through. The term “dual lumen” indicates that there are two air pathways within the connector. Disconnect between the female connector 102 and the male connector 104 is achieved via pressing the actuation button latch 100, which disengages the male connector 104 from the latch plate 112 and then the two components can be pulled apart.


In the implementation depicted in FIGS. 1-5C, the button latch 100 has three cantilevered legs that function as springs, namely, a left spring 118, a right spring 120, and a rear spring 122. Each of the springs 118, 120, 122 is integrally formed with the actuator 106 and the latch plate 112. The latch plate 112 extends downwardly and generally perpendicularly from the proximal edge of the button actuator 106. The actuator 106 is a surface that resides within an aperture in the top of the housing of the female connector 102. The exposed surface of the actuator 106 may be ergonomically formed to support a thumb or finger of a user when depressing the actuator 106 to disengage the male connector 104. The actuator 106 may have a thickness defined by a sidewall 108 that interfaces with and travels along a corresponding sidewall of the aperture within the housing of the female connector 102. The actuator 106 may also define a retention flange 110 that extends outwardly at the base of the sidewall 108 underneath the top surface of the female connector housing to engage the housing and retain the button 100 within the apertures.


Each of the left spring 118 and the right spring 120 extend from a top lateral corner of the latch plate 112 and curve downwardly to a distance below the bottom of the latch plate 112. Each of the left and right springs 118, 120 may be understood as having an outer shoulder 124, an inner hollow 126, an outer radius 128, and an inner radius 130. There is thus a curved separation space between the inner radius 130 and the lateral sides of the latch plate 112. This separation space allows the left and right springs 118, 120 to flex when under pressure from the downward force of the button 100, either through depression of the actuator 106 by a user or due to the insertion of a male connector 104.


As shown in FIGS. 3A and 3B, the outer radius 128 of each toward the lower ends of the left and right springs 118, 120 interfaces with an inside surface of the housing of the female connector 102 as it transitions along a curve from side surfaces to the bottom surface of the housing. As the button is depressed, the left and right springs 118, 120 slide along the curved inner surface of the housing and deflect both laterally inward and upward.


In addition to the left and right springs 118, 120, the rear of the button 100 is further supported by a rear spring 122 to provide a “tripod” support structure. The rear spring 122 curves distally outward from the button 100 rather than underneath it as the left and right springs 118, 120 do. The curve of the rear spring may be understood to define a rear spring outer radius 134. As shown in FIG. 3C, the outer radius 134 of the rear spring 122 interfaces with a curved inside surface of the housing of the female connector 102. As the button is depressed, the rear spring 122 slides along the curved inner surface of the housing and deflects both distally and upward.


The button 100 is constantly biased upward due to the three springs 118, 120, 122. The springs 118, 120, 122 need to be “loaded” so that the button 100 remains in the upward or locked position until the user depresses the button 100 or until a male bayonet connector in inserted into the connector aperture 114, which will mechanically force the button 100 downward. The interface between the retention flange 110 and a guide wall 138 of the housing of the female connector 102 surrounding the button aperture therein ensures that the button 100 is retained within the female connector while under the bias of the springs 118, 120, 122. The thickness of the actuator 106 and therefore the height of the sidewalls 108 may be selected to be larger than the downward travel distance of the button 100 within the guide wall 138 when connecting and disconnecting with the male connector 104. In this way the sidewall 108 acts as a guide to align the button 100. The button 100 remains centered and level within the female connector 102 while it is depressed and further the actuator 106 does not slip under the housing of the female connector 102 to become stuck or misaligned.


Curved leading latch surfaces 116 located on the proximal side of the latch plate 112 on the bottom edge and lower sidewalls of the aperture 114 enable the button 112 to be actuated to its “down” position as the male bayonet connector 104 is inserted into the female connector 102. The distal end of the male connector 104 may be similarly curved or chamfered to aid in sliding past the latch surface 116.



FIG. 4A illustrates a male bayonet connector 104 entering the aperture of the female connector housing 102. In some embodiments, the male bayonet connector 104 may include a proximal portion shaped as a barbed frustum for coupling with fluid tubing. The distal portion 140 of the male connector 104 may be generally cylindrical with a substantially smooth surface that may serve as a sealing surface when the male bayonet 104 is fully inserted into the female receiving connector 102. The male connector 104 may also have an annular channel 142 located proximal to and adjacent the distal portion 140. The annular channel 142 may be defined by sidewalls that are perpendicular or beveled with respect to the axis of the lumen of the male connector 104 that may be used to engage the latch plate 112.


As the distal portion 140 of the male bayonet connector 104 enters into the female connector 102, it contacts the latch surface 116 of the connection aperture 114 as shown in FIG. 4B. As axial force is applied to insert the male bayonet connector 104 through the aperture 114, the latch plate 112 is forced downward against the opposing bias of the right, left, and rear springs 118, 120, 122 as the distal portion 140 slides against the ramped or curved latch surface 116. The latch plate 112 moves downward until the male bayonet connector 104 is able to pass through the larger area of the aperture 114. The male bayonet connector 104 extends through the aperture 114 until the annular channel 142 of the male bayonet connector 104 is aligned with the latch surface 116 of the latch plate 112 as shown in FIG. 4C. When the channel 142 is aligned with the latch plate 112, the latch plate 112 is forced upward by the springs 118, 120, 122 whereby the latch plate 112 engages the channel 142 to secure the male bayonet connector 104 within the female receiving connector 104.


The above descriptions demonstrate the need for the springs 118, 120, 122 to maintain their spring force and resiliency and resist creep, otherwise the female connector 102 will not securely engage and retain the male connector 102. Such female connectors 102 will typically see 20,000 male connects and 20,000 disconnects during a product life. The button 100 is mechanically depressed by the male bayonet 104 during insertion and the end user must manually depress the button to the “down” position to disconnect. Therefore, the product will typically see the button 100 depressed to its “down” position 40,000 times during its life.


A standard product specification is a tension pull load test. While the male connector 104 is locked into the female connector 104, the two are pulled apart. It is desirable that the connection withstand a 10 lb. tension axial pull load. Another typical product specification is the male insertion force. It is desirable that the force required to connect the male connector be lower than 4 lbs. A further typical product specification is the squeeze-to-disconnect force, i.e., button push-down force. It is desirable that the force not exceed 3.5 lbs.


There is a direct relationship between the spring force, the button push-down force, and the force required to connect the male. If the spring force increases, the push-down and insertion forces increase. If the spring force decreases, the push-down and insertion forces decrease. If the initial spring force is too low, there is a risk of the springs creeping or relaxing or deforming over time. The springs 118, 120, 122 need to maintain enough spring force to lift the button 100 to its “up” or “locked” position throughout the lifecycle of the female connector 102, i.e., for 40,000 depressions.


In one exemplary implementation, acetal plastic may be used for the molded button as well as the male connector 104 and/or the female connector housing 102. Acetal has very good shape memory and a high creep resistance. Acetal also has a low coefficient of friction which helps keep the insertion force low as the acetal male connector 104 makes contact with the latch surface 116 of the latch plate 112 and similarly as the springs 118, 120, 122 slide against the inner surface of housing of the female connector 102.


The springs 118, 120, 122 are designed so that the resultant stress is distributed over a large percentage of the spring's surface to minimize deformation of the springs 118, 120, 122 over extended use. See e.g., FIG. 5A for a finite element analysis of a desirable force distribution. The design of the three springs 118, 120, 122 is based upon a delicate balance between minimizing the spring force (to maintain the desirable push-down and male connection forces) and creating a geometry that will return to the original shape even after 40,000 actuations.



FIGS. 5B and 5C depict how the left and right springs 118, 120 of the present embodiment slide along the mating housing in both a vertical and horizontal direction as the button 100 is depressed downward. The mating geometry which enables the spring(s) to move in both a vertical and horizontal is significant to achieve the low push-down and insertion forces, as well as distributing forces through the springs in such a way that it minimizes flexural creep and deformation of the spring(s) over repeated use.


Through finite element analysis and actual testing, a desirable relationship between the radius of curvature of the outer shoulder 124 to the radius of curvature of the inner hollow 126 at the base of the left and right springs 118, 120 has been determined as a ratio in a range between 5.40 and 9.67 for the springs 118, 120 of this implementation to adequately perform.


Similarly, through finite element analysis and actual testing, a desirable relationship between the outer radius of curvature 128 to the inner radius of curvature 130 of the left and right springs 118, 120 has been determined as a ratio in a range between 1.06 and 1.22 for the left and right springs 118, 120 of this implementation to adequately perform.


Further, through finite element analysis and actual testing, a desirable relationship between the outer radius of curvature 128 of the left and right springs 118, 120 to the radius of curvature 132 of the mating surface on the connector housing has been determined as a ratio in a range between 1.06 and 1.22 for the left and right springs 118, 120 of this implementation to adequately perform.


Additionally, through finite element analysis and actual testing, a desirable relationship between the radius of curvature 132 of the mating surface on the connector housing to the outer radius of curvature 128 of the rear spring 122 has been determined as a ratio in a range between 6.44 and 8.30 for the rear spring 122 of this implementation to adequately perform.


Additional implementations of button latches with integrally molded cantilevered springs are possible. Several additional examples of such implementations are presented in FIGS. 6A-8B. As before, the molded in cantilever springs are designed to simplify a button latch where helical or other coil springs would normally be used to force the button to return to its resting position after being pushed down in some fashion. Each of the following examples is a button with molded springs that provide specific return forces and/or resistances to push-down and may be designed to meet particular specifications.



FIG. 6A depicts an exemplary implementation of a button 600 that pivots or is hinged in the rear and allows for the front portion of the button 600 to move. The button 600 is composed of an actuator 606 with short sidewalls 608, a retention tab 610 on the proximal end, and a hinge tab 622 on the distal end to retain the button 600 within the housing of the connector.


The left and right cantilever leg springs 618, 620 have a form similar to sleigh runners. In this embodiment, the springs 618, 620 have a right angle channel cross section for structural reinforcement. The left and right springs 618, 620 may be formed with various cross sections to achieve desired levels of spring force, structural rigidity, and creep resistance. The left and right springs 618, 620 attach to the button actuator 606 at the distal end and sweep downward and proximally underneath the actuator 606. As in the prior embodiment, the button 600 has a latch plate 612 with a sloping latch surface 616 that defines an aperture 614 for receipt of and connection with a male connector.



FIGS. 6B-6H depict the button 600 disposed within a female connector housing composed of an upper housing 602 and a lower housing 604 that are connected together, e.g., by ultrasonic welding, adhesive, detent tabs, or otherwise. The upper housing 602 defines a connector aperture 638 at the proximal end that provides access for a male connector. The lower housing defines a connector lumen 640 that is in fluid communication with the connector aperture 638 on the proximal end and with a barb lumen 644 defined within a barb fitting section 644 on the distal end. In this embodiment, the barb fitting section 642 is integrally formed as a part of the lower housing 604 and is configured for retaining a flexible fluid tube thereon. The retention tab 610 halts the upward travel of the button 600 under bias of the springs 618, 620 upon interfacing with a retention surface 628 in the upper housing 602. The hinge tab 622 is retained under and pivots against a bearing surface 624 of the upper housing 602 as the button 600 is pushed downward by a user.


The left and right leg springs 618, 620, as shown in FIG. 6B, extend to a point below the proximal end of the button 600 on either side of the latch plate 612. This position provides the largest vertical travel distance for the button 600, minimizes the forward rocking motion of the button 600, and provides a good, stable feel to the push-down motion. The springs 618, 620 deflect upwards as indicated by the arrows in FIG. 6B under a downward force on the actuator 606. The leg springs 618, 620 also slide proximally within a guide track 632 formed in the bottom wall of the female connector housing 602. A shallow guide wall 634 may also be formed in the housing 602 to prevent the leg springs 618, 620 from angling inward. Such restraint may be desirable to limit the vertical travel of the button 606 or as another method for resisting creep by limiting lateral movement of the leg springs 618, 620. The bias in the left and right leg springs 618, 620 will force the button to return up to its resting position when the user force is removed from the button 600.


As noted, the button 600 pivots at the interface of the hinge tab 622 and the bearing surface 624 under the downward force on the actuation surface 606. As the latch plate 612 travels downward within a latch channel 636 formed within the upper housing 602 and lower housing 604, the latch plate 612 flexes along a flexion area 626 at the interface between the latch plate 612 and retention tab 610 on the button 600. The flexion area 626 is formed as a thinner section of the latch plate 612 and allows the latch plate 612 to flex and maintain a constantly vertical orientation in view of the constraints of the latch channel 636 even though the movement of the proximal end of the button 600 is angular downward and distally due to the hinge structure of the hinge tab 622 at the distal end of the button 600. By maintaining a vertical orientation of the latch plate 612 within the latch channel 636, a better locking interface between the latch surface 616 and the inserted male connector is achieved.



FIG. 7A is another exemplary implementation of a button 700 that slides vertically along cantilevered leg springs 718, 720 extending from the lateral proximal edges of the button 700. The button 700 is composed of an actuator 706 with short sidewalls 708 and retention tabs 710 on the proximal and distal ends to retain the button 700 within the housing of the connector. The left and right cantilever leg springs 718, 720 are curved slightly laterally outwardly, but primarily extend downwardly substantially normal to the actuator 706. As in the prior embodiment, the button 700 has a latch plate 712 with a sloping latch surface 716 that defines an aperture 714 for receipt of and connection with a male connector.



FIG. 7B depicts the button 700 disposed within a female connector housing 702. The left and right leg springs 718, 720, as shown in FIG. 7B, extend to a point below the proximal end of the button 700 on either side of the latch plate 712. The springs 718, 720 deflect laterally inwards and move symmetrically toward each other as indicated by the arrows in FIG. 7B under a downward force on the actuator 706. The leg springs 718, 720 also slide laterally along a guide surface 732 formed in the bottom wall of the female connector housing 702. The guide surface 732 may be formed in a similar manner to a cam surface in that the guide surface 732 can be designed to push the springs closer together or release tension based upon the thickness of the wall at various points along the guide surface 732. Such variations in the guide surface 732 may be desirable to change (e.g., increase) the force on the button 706 as the springs travel 718, 720 or as another method for resisting creep by limiting lateral movement of the leg springs 718, 720. The bias in the left and right leg springs 718, 720 will force the button to return up to its resting position when the user force is removed from the button 700.



FIG. 8A is another exemplary implementation of a button 800 that slides vertically along cantilevered leg springs 818, 820 extending from the lateral proximal edges of the button 800. This embodiment of a button 800 is very similar to the prior embodiment of the button 700 with the addition of two rear springs 822, 824 and several additional alignment features. The button 800 is composed of an actuator 806 with short sidewalls 808 and retention tabs 810 on the proximal end to retain the button 800 within the housing of the connector. Additionally, a pair of rear alignment walls 840 extends downwardly from the distal end of the actuator 806 defining a curved saddle therebetween. Retention tabs (not shown) are also on the distal faces of the rear alignment walls 840. A pair of guideposts 836, 838 also extends downward, normal to the bottom surface of the actuator 806. The left and right cantilever leg springs 818, 820 are curved slightly laterally outwardly, but primarily extend downwardly substantially normal to the actuator 806. As in the prior embodiment, the button 800 has a latch plate 812 with a sloping latch surface 816 that defines an aperture 814 for receipt of and connection with a male connector. In this embodiment, two additional cantilevered rear springs 822, 824 extend slightly downward from the center of the sidewalls of the actuator and then form shoulders from which they extend downward at a distal angle.



FIG. 8B depicts the button 800 disposed within a female connector housing 802. The left and right leg front springs 818, 820, as shown in FIG. 8B, extend to a point below the proximal end of the button 800 on either side of the latch plate 812. The springs 818, 820 deflect laterally inwards and move symmetrically toward each other as indicated by the arrows in FIG. 8B under a downward force on the actuator 806. The left and right leg springs 818, 820 also slide laterally along a surface in the bottom wall of the female connector housing 802. The bias in the left and right leg springs 818, 820 will force the button 800 to return up to its resting position when the user force is removed from the button 800. The rear leg springs 822, 824 also slide distally within a guide track 832 formed in the bottom wall of the female connector housing 802 while resisting the downward force on the button 800. A shallow guide wall 834 may also be formed in the housing 802 to prevent the rear leg springs 818, 820 from angling inward. Such restraint may be desirable to limit the vertical travel of the button 806 or as another method for resisting creep by limiting lateral movement of the leg springs 818, 820. The bias in the rear leg springs 822, 824 will force the button 800 to return up to its resting position when the downward user force is removed from the button 800.


In addition, the guideposts 836, 838 may be aligned with and fit within cylindrical guide tubes 844 extending upward from the bottom of the housing 802. The interface between the guideposts 836, 838 and the guide tubes 844 helps maintain the vertical alignment of the button 800 within the female connector housing 802 and may further be used to limit the vertical travel distance of the button. Further, the saddle 842 formed between the rear alignment walls 840 may be used to align the button 800 with a wall of a lumen 846 formed within the female connector 802.


All directional references (e.g., proximal, distal, upper, lower, upward, downward, left, right, lateral, longitudinal, front, back, top, bottom, above, below, vertical, horizontal, radial, axial, clockwise, and counterclockwise) are only used for identification purposes to aid the reader's understanding of the present invention, and do not create limitations, particularly as to the position, orientation, or use of the invention. Connection references (e.g., attached, coupled, connected, and joined) are to be construed broadly and may include intermediate members between a collection of elements and relative movement between elements unless otherwise indicated. As such, connection references do not necessarily infer that two elements are directly connected and in fixed relation to each other. The exemplary drawings are for purposes of illustration only and the dimensions, positions, order and relative sizes reflected in the drawings attached hereto may vary.


The above specification, examples and data provide a complete description of the structure and use of exemplary embodiments of the invention. Although various embodiments of the invention have been described above with a certain degree of particularity, or with reference to one or more individual embodiments, those skilled in the art could make numerous alterations to the disclosed embodiments without departing from the spirit or scope of this invention. Other embodiments are therefore contemplated. It is intended that all matter contained in the above description and shown in the accompanying drawings shall be interpreted as illustrative only of particular embodiments and not limiting. Changes in detail or structure may be made without departing from the basic elements of the invention as defined in the following claims.

Claims
  • 1. A button latch for use in a fluid connector, the button latch comprising: a button actuator portion for engagement by a user;a latch plate integrally formed with and extending downwardly and perpendicularly from a proximal edge of the button actuator portion and configured to physically secure a male connector within the button latch; anda plurality of cantilevered leg springs, each leg spring integrally formed with the button actuator portion and the latch plate and cantilevered from either a bottom surface of the button actuator portion or both an upper portion of the latch plate and the bottom surface of the button actuator portion,wherein the plurality of cantilevered leg springs comprise: two leg springs extending symmetrically downward and inward from laterally opposite corners of the button actuator portion to bias the latch plate in a locked position and resist depression forces applied to each of the button actuator portion and the latch plate, anda rear leg spring extending downward from a bottom of the button actuator portion and curving distally.
  • 2. The button latch of claim 1, wherein the two leg springs curve symmetrically downward and inward to extend under the latch plate.
  • 3. The button latch of claim 2, wherein the two leg springs each have an outer shoulder and an inner hollow and a ratio of a radius of curvature of the outer shoulder to a radius of curvature of the inner hollow is between 5.40 and 9.67.
  • 4. The button latch of claim 2, wherein a ratio of an outer radius of curvature of one of the leg springs to an inner radius of curvature of the one of the leg springs is between 1.06 and 1.22.
  • 5. The button latch of claim 1, wherein the plurality of leg springs further comprise two leg springs extending downward and angled rearward from laterally opposite sides of the button actuator portion away from the latch plate.
  • 6. The button latch of claim 1, wherein the two leg springs extend downward in substantially a same plane as the latch plate.
  • 7. The button latch of claim 1, wherein the plurality of leg springs further comprise two leg springs extending downward from laterally opposite sides of the button actuator portion and further curving forward to extend along a length of the button actuator portion toward the latch plate.
  • 8. The button latch of claim 1, further comprising a hinge tab extending from a rear edge of the button actuator portion, the hinge tab being configured to engage a bearing surface on a housing of the fluid connector.
  • 9. The button latch of claim 1, further comprising an alignment post extending downward from a bottom surface of the button actuator portion, the alignment post being configured to engage with a post receiver in the fluid connector.
  • 10. The button latch of claim 9, wherein the alignment post is positioned along a rear edge of the button actuator portion.
  • 11. The button latch of claim 1, further comprising a retention tab positioned along a front edge of the button actuator portion and configured to retain the front edge of the button actuator portion within a housing of the fluid connector.
  • 12. A fluid tubing connector, comprising: a housing defining an aperture in a top surface thereof;a tube connection portion;an opening configured to receive a male connector; anda button latch configured to engage and disengage with the male connector, the button latch further comprising: a button actuator portion with a top surface exposed within the aperture in the top surface of the housing for engagement by a user;a latch plate integrally formed with and extending downwardly and perpendicularly from a proximal edge of the button actuator portion and defining a latch aperture substantially aligned with the opening, wherein the latch plate is configured to engage a male connector to secure the fluid tubing connector in a locked position; anda plurality of cantilevered leg springs, each leg spring integrally formed with the button actuator portion and the latch plate, extending from either a bottom surface of the button actuator portion or both an upper portion of the latch plate and the bottom surface of the button actuator portion, and contacting an inner wall surface of the housing,wherein the plurality of cantilevered leg springs comprise:two leg springs extending symmetrically downward and inward from laterally opposite corners of the button actuator portion to bias the latch plate within the housing in the locked position and resist depression forces applied to each of the button actuator portion and the latch plate, anda rear leg spring extending downward from a bottom of the button actuator portion and curving distally to slidingly engage the inner wall surface of the housing.
  • 13. The fluid tubing connector of claim 12, wherein a ratio of an outer radius of curvature of the rear leg spring to a radius of curvature of the inner wall surface of the housing is between 6.44 and 8.30.
  • 14. The fluid tubing connector of claim 12, wherein the plurality of leg springs further comprise two leg springs extending downward and angled rearward from laterally opposite sides of the button actuator portion away from the latch plate to slidingly engage the inner wall surface of the housing.
  • 15. The fluid tubing connector of claim 12, wherein the two leg springs extend downward in substantially a same plane as the latch plate.
  • 16. The fluid tubing connector of claim 12, wherein the plurality of leg springs further comprise two leg springs extending downward from laterally opposite sides of the button actuator portion and further curving forward to extend along a length of the button actuator portion toward the latch plate.
  • 17. The fluid tubing connector of claim 12, further comprising a hinge tab extending from a rear edge of the button actuator portion, the hinge tab being configured to engage a bearing surface on an edge of the housing defining the aperture in the top surface.
  • 18. The fluid tubing connector of claim 17, wherein: the housing further defines a channel within which the latch plate translates upward and downward; andan interface between the button actuator portion and the latch plate is pliable to allow the button actuator portion to bend with respect to the latch plate as the button actuator portion pivots on the hinge tab at the bearing surface when depressed.
  • 19. The fluid tubing connector of claim 12, further comprising an alignment post extending downward from the bottom surface of the button actuator portion, the alignment post being configured to engage with a post receiver formed on the inner wall surface of the housing.
  • 20. The fluid tubing connector of claim 19, wherein the alignment post is positioned along a rear edge of the button actuator portion.
  • 21. The fluid tubing connector of claim 12, further comprising a retention tab positioned along a front edge of the button actuator portion and configured engage an edge of the housing defining the aperture in the top surface to retain the front edge of the button actuator portion within the housing.
  • 22. The fluid tubing connector of claim 12, further comprising one or more channels formed in the inner wall surface of the housing, the one or more channels being configured to interface with and guide movement of one or more respective ones of the plurality of cantilevered leg springs when the button actuator portion is depressed.
  • 23. The fluid tubing connector of claim 12, wherein the two leg springs each have an outer shoulder and an inner hollow and a ratio of a radius of curvature of the outer shoulder to a radius of curvature of the inner hollow is between 5.40 and 9.67.
  • 24. The fluid tubing connector of claim 12, wherein a ratio of an outer radius of curvature of one of the leg springs to an inner radius of curvature of the one of the leg springs is between 1.06 and 1.22.
  • 25. The fluid tubing connector of claim 12, wherein a ratio of an outer radius of curvature of one of the leg springs to a radius of curvature of a corresponding mating surface on the inner wall surface of the housing of the fluid tubing connector is between 1.06 and 1.22.
  • 26. A button latch for use in a fluid connector, the button latch comprising: a button actuator portion for engagement by a user;a latch plate integrally formed with and extending downwardly and perpendicularly from a proximal edge of the button actuator portion and configured to physically secure a male connector within the button latch;a plurality of cantilevered leg springs, each leg spring integrally formed with the button actuator portion and the latch plate and cantilevered from either a bottom surface of the button actuator portion or both an upper portion of the latch plate and the bottom surface of the button actuator portion; anda hinge tab extending from a rear edge of the button actuator portion, the hinge tab being configured to engage a bearing surface on a housing of the fluid connector,wherein the plurality of cantilevered leg springs comprise two leg springs extending symmetrically downward and inward from laterally opposite corners of the button actuator portion to bias the latch plate in a locked position and resist depression forces applied to each of the button actuator portion and the latch plate.
  • 27. A button latch for use in a fluid connector, the button latch comprising: a button actuator portion for engagement by a user;a latch plate integrally formed with and extending downwardly and perpendicularly from a proximal edge of the button actuator portion and configured to physically secure a male connector within the button latch;a plurality of cantilevered leg springs, each leg spring integrally formed with the button actuator portion and the latch plate and cantilevered from either a bottom surface of the button actuator portion or both an upper portion of the latch plate and the bottom surface of the button actuator portion; andan alignment post extending downward from a bottom surface of the button actuator portion, the alignment post being configured to engage with a post receiver in the fluid connector,wherein the plurality of cantilevered leg springs comprise two leg springs extending symmetrically downward and inward from laterally opposite corners of the button actuator portion to bias the latch plate in a locked position and resist depression forces applied to each of the button actuator portion and the latch plate.
  • 28. A button latch for use in a fluid connector, the button latch comprising: a button actuator portion for engagement by a user;a latch plate integrally formed with and extending downwardly and perpendicularly from a proximal edge of the button actuator portion and configured to physically secure a male connector within the button latch;a plurality of cantilevered leg springs, each leg spring integrally formed with the button actuator portion and the latch plate and cantilevered from either a bottom surface of the button actuator portion or both an upper portion of the latch plate and the bottom surface of the button actuator portion; anda retention tab positioned along a front edge of the button actuator portion and configured to retain the front edge of the button actuator portion within a housing of the fluid connector,wherein the plurality of cantilevered leg springs comprise two leg springs extending symmetrically downward and inward from laterally opposite corners of the button actuator portion to bias the latch plate in a locked position and resist depression forces applied to each of the button actuator portion and the latch plate.
  • 29. A fluid tubing connector, comprising: a housing defining an aperture in a top surface thereof;a tube connection portion;an opening configured to receive a male connector; anda button latch configured to engage and disengage with the male connector, the button latch further comprising: a button actuator portion with a top surface exposed within the aperture in the top surface of the housing for engagement by a user;a latch plate integrally formed with and extending downwardly and perpendicularly from a proximal edge of the button actuator portion and defining a latch aperture substantially aligned with the opening, wherein the latch plate is configured to engage a male connector to secure the fluid tubing connector in a locked position;a plurality of cantilevered leg springs, each leg spring integrally formed with the button actuator portion and the latch plate, extending from either a bottom surface of the button actuator portion or both an upper portion of the latch plate and the bottom surface of the button actuator portion, and contacting an inner wall surface of the housing; anda hinge tab extending from a rear edge of the button actuator portion, the hinge tab being configured to engage a bearing surface on an edge of the housing defining the aperture in the top surface,wherein the plurality of cantilevered leg springs comprise two leg springs extending symmetrically downward and inward from laterally opposite corners of the button actuator portion to bias the latch plate within the housing in the locked position and resist depression forces applied to each of the button actuator portion and the latch plate.
  • 30. A fluid tubing connector, comprising: a housing defining an aperture in a top surface thereof;a tube connection portion;an opening configured to receive a male connector; anda button latch configured to engage and disengage with the male connector, the button latch further comprising: a button actuator portion with a top surface exposed within the aperture in the top surface of the housing for engagement by a user;a latch plate integrally formed with and extending downwardly and perpendicularly from a proximal edge of the button actuator portion and defining a latch aperture substantially aligned with the opening, wherein the latch plate is configured to engage a male connector to secure the fluid tubing connector in a locked position;a plurality of cantilevered leg springs, each leg spring integrally formed with the button actuator portion and the latch plate, extending from either a bottom surface of the button actuator portion or both an upper portion of the latch plate and the bottom surface of the button actuator portion, and contacting an inner wall surface of the housing; andan alignment post extending downward from the bottom surface of the button actuator portion, the alignment post being configured to engage with a post receiver formed on the inner wall surface of the housing,wherein the plurality of cantilevered leg springs comprise two leg springs extending symmetrically downward and inward from laterally opposite corners of the button actuator portion to bias the latch plate within the housing in the locked position and resist depression forces applied to each of the button actuator portion and the latch plate.
  • 31. A fluid tubing connector, comprising: a housing defining an aperture in a top surface thereof;a tube connection portion;an opening configured to receive a male connector; anda button latch configured to engage and disengage with the male connector, the button latch further comprising: a button actuator portion with a top surface exposed within the aperture in the top surface of the housing for engagement by a user;a latch plate integrally formed with and extending downwardly and perpendicularly from a proximal edge of the button actuator portion and defining a latch aperture substantially aligned with the opening, wherein the latch plate is configured to engage a male connector to secure the fluid tubing connector in a locked position;a plurality of cantilevered leg springs, each leg spring integrally formed with the button actuator portion and the latch plate, extending from either a bottom surface of the button actuator portion or both an upper portion of the latch plate and the bottom surface of the button actuator portion, and contacting an inner wall surface of the housing; anda retention tab positioned along a front edge of the button actuator portion and configured engage an edge of the housing defining the aperture in the top surface to retain the front edge of the button actuator portion within the housing,wherein the plurality of cantilevered leg springs comprise two leg springs extending symmetrically downward and inward from laterally opposite corners of the button actuator portion to bias the latch plate within the housing in the locked position and resist depression forces applied to each of the button actuator portion and the latch plate.
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of priority pursuant to 35 U.S.C. §119(e) of U.S. provisional application No. 61/361,228 filed 2 Jul. 2010 entitled “Button latch with integrally molded cantilever springs” and U.S. provisional application No. 61/289,998 filed 23 Dec. 2009 entitled “Button latch with integrally molded cantilever springs,” which is hereby incorporated herein by reference in its entirety. The present application is related to U.S. patent application No. 61/289,990 filed 23 Dec. 2009 entitled “Fluid connector latches with profile lead-ins,” U.S. provisional application No. 61/289,545 filed 23 Dec. 2009 entitled “Male bayonet connector,” U.S. design patent application No. 29/352,637 filed 23 Dec. 2009 entitled “Female dual lumen connector,” and U.S. design patent application No. 29/351,665 filed 9 Dec. 2009 entitled “Male dual lumen bayonet connector,” which are hereby incorporated herein by reference in their entirety.

US Referenced Citations (653)
Number Name Date Kind
163261 Ruppenthal May 1875 A
185896 Curtis Jan 1877 A
187982 Pirsson et al. Mar 1877 A
200944 Smith Mar 1878 A
235580 Smith et al. Dec 1880 A
327509 Aldridge Oct 1885 A
584008 Munson Jun 1887 A
465868 List Dec 1891 A
725421 Dinkins Apr 1903 A
727982 Ludwig May 1903 A
874957 Godley Dec 1907 A
884461 Browne Apr 1908 A
909131 Antic Jan 1909 A
951889 Teuer Mar 1910 A
D42368 Mossberg Mar 1912 S
1029819 Nylander Jun 1912 A
1033187 Metzger Jul 1912 A
1039354 Bonadio Sep 1912 A
1077417 McCracken Nov 1913 A
1078112 Storm Nov 1913 A
1115945 Kunz Nov 1914 A
1115989 Thurman Nov 1914 A
1193446 Wells Aug 1916 A
1239345 Brown Sep 1917 A
1255847 Arkin Feb 1918 A
1259684 Vinten Mar 1918 A
1489310 Critchlow Apr 1924 A
1526218 Johnson Feb 1925 A
1578504 Bronson et al. Mar 1926 A
1587079 Machino Jun 1926 A
1767073 Ingold Jun 1930 A
1863360 Weatherhead Jun 1932 A
1950947 Mulroyan Mar 1934 A
2023428 Liebhardt Dec 1935 A
2056524 Johnson Oct 1936 A
2066473 Jorgensen Jan 1937 A
2097628 Liebhardt Nov 1937 A
2099335 Hansen Nov 1937 A
2108714 Hirsch et al. Feb 1938 A
2116705 Marx et al. May 1938 A
2139745 Goodall Dec 1938 A
2147355 Scholtes Feb 1939 A
2159116 Zacharias May 1939 A
2211147 Miller Aug 1940 A
2257321 Arnold Sep 1941 A
2263293 Ewald Nov 1941 A
2264815 Thomsen Dec 1941 A
2340119 Graham Jan 1944 A
2346445 Merker et al. Apr 1944 A
2352728 Merker et al. Jul 1944 A
2429782 Versoy Oct 1947 A
2432946 Theunissen Dec 1947 A
2470800 Ashton May 1949 A
2479499 Le Clair Aug 1949 A
2500720 Van der Heem Mar 1950 A
2507536 Goodson May 1950 A
2516583 Moore Jul 1950 A
2535740 Knopp Dec 1950 A
2577009 Frantz Dec 1951 A
2626974 Howard et al. Jan 1953 A
2630131 Snyder Mar 1953 A
2661018 Snyder Dec 1953 A
2701147 Summerville Feb 1955 A
2722399 Oetiker Nov 1955 A
2753195 Palmer Jul 1956 A
2774616 Dodd et al. Dec 1956 A
2790571 Flaith et al. Apr 1957 A
2864628 Edleson Dec 1958 A
2915325 Foster Dec 1959 A
2926934 Gill Mar 1960 A
2931668 Baley Apr 1960 A
2937892 Prescott, Jr. May 1960 A
2948553 Gill et al. Aug 1960 A
2967067 Singer Jan 1961 A
2991090 De Cenzo Jul 1961 A
3017203 Macleod Jan 1962 A
3037497 Roberson Jun 1962 A
3046028 Nathan Jul 1962 A
3048415 Shook Aug 1962 A
3073342 Magorien Jan 1963 A
3078068 Romney Feb 1963 A
D196473 Hill Oct 1963 S
3124157 Krzewina Mar 1964 A
3129020 Bujnowski Apr 1964 A
3171196 Helitas Mar 1965 A
3191628 Kirkwood et al. Jun 1965 A
3217400 Illesy et al. Nov 1965 A
3217771 Beall et al. Nov 1965 A
3227380 Pinkston Jan 1966 A
3237974 Press Mar 1966 A
3245703 Manly Apr 1966 A
3276799 Moore et al. Oct 1966 A
3279497 Norton et al. Oct 1966 A
3314696 Ferguson et al. Apr 1967 A
3317214 Durgom May 1967 A
D209166 Hunt Nov 1967 S
D209168 Hunt Nov 1967 S
3352576 Thomas Nov 1967 A
3382892 Cerbin May 1968 A
3394954 Sarns Jul 1968 A
3403930 Bernier Oct 1968 A
3432176 Valenziano Mar 1969 A
3448760 Cranage Jun 1969 A
3450424 Calisher Jun 1969 A
3512808 Graham May 1970 A
3523701 Graham Aug 1970 A
3538940 Graham Nov 1970 A
3542338 Scaramucci Nov 1970 A
3545490 Burrus Dec 1970 A
3550626 Daniels et al. Dec 1970 A
3560027 Graham Feb 1971 A
3563265 Graham Feb 1971 A
3574314 Quercia Apr 1971 A
3588149 Demler Jun 1971 A
3596933 Luckenbill Aug 1971 A
3599843 Johnston Aug 1971 A
3600917 Krock Aug 1971 A
3649050 Woodling Mar 1972 A
3666297 Marks May 1972 A
3690336 Drum Sep 1972 A
3712583 Martindale et al. Jan 1973 A
3747964 Nilsen Jul 1973 A
3750238 Tanner Aug 1973 A
3815887 Curtis et al. Jun 1974 A
3817561 Kay Jun 1974 A
3829135 Forni Aug 1974 A
3876234 Harms Apr 1975 A
3889710 Brost Jun 1975 A
3899200 Gamble Aug 1975 A
3921656 Meisenheimer, Jr. et al. Nov 1975 A
3979934 Isenmann Sep 1976 A
3990674 Schattenberg Nov 1976 A
3995659 Cantore Dec 1976 A
4025049 Schmidt May 1977 A
4039213 Walters Aug 1977 A
4072330 Brysch Feb 1978 A
4099748 Kavick Jul 1978 A
4113627 Leason Sep 1978 A
4116476 Porter et al. Sep 1978 A
4129145 Wynn Dec 1978 A
4142546 Sandau Mar 1979 A
D252470 Pawlak Jul 1979 S
4181149 Cox Jan 1980 A
4182519 Wilson Jan 1980 A
D254505 Parsons et al. Mar 1980 S
4200605 Imamura Apr 1980 A
D255145 Nederman May 1980 S
4220360 Jacek et al. Sep 1980 A
D258526 Nederman Mar 1981 S
4253687 Maples Mar 1981 A
D259278 McCaw May 1981 S
4271865 Galloway et al. Jun 1981 A
4282175 Volgstadt et al. Aug 1981 A
4287644 Durand Sep 1981 A
4294285 Joslyn Oct 1981 A
4296949 Muetterties et al. Oct 1981 A
4319774 Kavick Mar 1982 A
4330010 Drescher et al. May 1982 A
4330142 Paini May 1982 A
4331175 Brake et al. May 1982 A
4331177 Makishima May 1982 A
4340200 Stegmeier Jul 1982 A
4345786 Egert Aug 1982 A
4346703 Dennehey Aug 1982 A
4351351 Flory et al. Sep 1982 A
4366816 Bayard et al. Jan 1983 A
4393548 Herb Jul 1983 A
4397442 Larkin Aug 1983 A
4407526 Cicenas Oct 1983 A
4431031 Ettlinger Feb 1984 A
4431218 Paul Feb 1984 A
4434121 Schaper Feb 1984 A
4436125 Blenkush Mar 1984 A
4437689 Goebel et al. Mar 1984 A
4439188 Dennehey Mar 1984 A
4458719 Strybel Jul 1984 A
4489914 Stevenson et al. Dec 1984 A
4489961 Laidig Dec 1984 A
4500118 Blenkush Feb 1985 A
4527745 Butterfield et al. Jul 1985 A
4541457 Blenkush Sep 1985 A
4541657 Smyth Sep 1985 A
4553587 Traylor Nov 1985 A
D282962 Gerber Mar 1986 S
4580816 Campbell et al. Apr 1986 A
4603888 Goodall et al. Aug 1986 A
4603890 Huppee Aug 1986 A
4613112 Phlipot et al. Sep 1986 A
4616859 Brunet Oct 1986 A
4626001 Lee Dec 1986 A
4630847 Blenkush Dec 1986 A
4632436 Kimura Dec 1986 A
4635972 Lyall Jan 1987 A
4645245 Cunningham Feb 1987 A
4658326 Clark et al. Apr 1987 A
4659116 Cameron Apr 1987 A
4694544 Chapman Sep 1987 A
4698027 Vandame Oct 1987 A
4699298 Grant et al. Oct 1987 A
4700926 Hansen Oct 1987 A
4703957 Blenkush Nov 1987 A
4706847 Sankey et al. Nov 1987 A
4712280 Fildan Dec 1987 A
4733890 Vyse Mar 1988 A
4738401 Filicicchia Apr 1988 A
4753268 Palau Jun 1988 A
4768558 Weber Sep 1988 A
4776067 Sorensen Oct 1988 A
4790567 Kawano et al. Dec 1988 A
4790569 Chaffee Dec 1988 A
4792115 Jindra et al. Dec 1988 A
4793637 Laipply et al. Dec 1988 A
4806123 Konishi et al. Feb 1989 A
D300361 Tokarz Mar 1989 S
4824148 Grabowski Apr 1989 A
4827921 Rugheimer May 1989 A
4832237 Hurford, Jr. May 1989 A
4834423 DeLand May 1989 A
4844512 Gahwiler Jul 1989 A
4863201 Carstens Sep 1989 A
4863202 Oldford Sep 1989 A
4896402 Jansen et al. Jan 1990 A
4900065 Houck Feb 1990 A
4903995 Blenkush et al. Feb 1990 A
4923228 Laipply et al. May 1990 A
4928859 Krahn et al. May 1990 A
4928999 Landriault et al. May 1990 A
4934655 Blenkush et al. Jun 1990 A
4935992 Due Jun 1990 A
4946200 Blenkush et al. Aug 1990 A
4946204 Boticki Aug 1990 A
4949745 McKeon Aug 1990 A
4966398 Peterson Oct 1990 A
4969879 Lichte Nov 1990 A
D313067 Kotake et al. Dec 1990 S
D313277 Haining Dec 1990 S
D314050 Sone Jan 1991 S
D314233 Medvick Jan 1991 S
4982736 Schneider Jan 1991 A
4991880 Bernart Feb 1991 A
5009252 Faughn Apr 1991 A
5015014 Sweeney May 1991 A
5029908 Belisaire Jul 1991 A
5033777 Blenkush Jul 1991 A
D319312 Schneider Aug 1991 S
5052725 Meyer et al. Oct 1991 A
5074601 Spors et al. Dec 1991 A
5076615 Sampson Dec 1991 A
5078429 Braut et al. Jan 1992 A
5085472 Guest Feb 1992 A
5090448 Truchet Feb 1992 A
5090747 Kotake Feb 1992 A
5094482 Petty et al. Mar 1992 A
5104158 Meyer et al. Apr 1992 A
5106127 Briet Apr 1992 A
D326155 Boehringer et al. May 1992 S
5110163 Benson et al. May 1992 A
5112084 Washizu May 1992 A
5114250 Usui May 1992 A
D326715 Schmidt Jun 1992 S
5123677 Kreczko et al. Jun 1992 A
5143381 Temple Sep 1992 A
5160177 Washizu Nov 1992 A
5160474 Huff Nov 1992 A
5165733 Sampson Nov 1992 A
5169161 Jones Dec 1992 A
D332482 Petty et al. Jan 1993 S
5176406 Straghan Jan 1993 A
5178303 Blenkush et al. Jan 1993 A
5181752 Benson et al. Jan 1993 A
D333178 Novy Feb 1993 S
5190224 Hamilton Mar 1993 A
5222279 Frano et al. Jun 1993 A
5228724 Godeau Jul 1993 A
5232020 Mason et al. Aug 1993 A
D339417 Sampson et al. Sep 1993 S
5251025 Cooper et al. Oct 1993 A
5273053 Pohndorf Dec 1993 A
5297826 Percebois et al. Mar 1994 A
5316041 Ramacier, Jr. et al. May 1994 A
5318332 Hohmann et al. Jun 1994 A
5330235 Wagner et al. Jul 1994 A
5348051 Kallenbach Sep 1994 A
5348354 Badoureaux Sep 1994 A
5353836 deCler et al. Oct 1994 A
5356183 Cole Oct 1994 A
5374088 Moretti et al. Dec 1994 A
5385311 Morikawa et al. Jan 1995 A
5385331 Allread et al. Jan 1995 A
D357307 Ramacier, Jr. et al. Apr 1995 S
5405333 Richmond Apr 1995 A
5405339 Kohnen et al. Apr 1995 A
5405340 Fageol et al. Apr 1995 A
5411300 Mitsui May 1995 A
5417442 Jornhagen May 1995 A
5421622 Godeau Jun 1995 A
5437650 Larkin et al. Aug 1995 A
5440792 Ida Aug 1995 A
5462313 Rea et al. Oct 1995 A
5494074 Ramacier, Jr. et al. Feb 1996 A
D369409 Salter Apr 1996 S
5507733 Larkin et al. Apr 1996 A
5511527 Lorraine et al. Apr 1996 A
D372093 Sampson et al. Jul 1996 S
5536258 Folden Jul 1996 A
5542712 Klinger et al. Aug 1996 A
5547166 Engdahl Aug 1996 A
5547230 Bank et al. Aug 1996 A
5553895 Karl et al. Sep 1996 A
D375160 Sampson et al. Oct 1996 S
5568946 Jackowski Oct 1996 A
5595217 Gillen et al. Jan 1997 A
5601317 Crouse et al. Feb 1997 A
5607190 Exandier et al. Mar 1997 A
5617609 Bently Apr 1997 A
5620025 Lewin Apr 1997 A
5628726 Cotter May 1997 A
D380262 Van Funderburk et al. Jun 1997 S
5639064 deCler et al. Jun 1997 A
D382639 Musgrave et al. Aug 1997 S
D384731 Ramacier, Jr. et al. Oct 1997 S
5681062 Fukao et al. Oct 1997 A
5682662 Coules et al. Nov 1997 A
5683117 Corbett et al. Nov 1997 A
D387147 Vandermast et al. Dec 1997 S
5692783 Watanabe et al. Dec 1997 A
5695223 Boticki Dec 1997 A
D388876 Sampson Jan 1998 S
5709244 Patriquin et al. Jan 1998 A
5725258 Kujawski Mar 1998 A
5737810 Krauss Apr 1998 A
5745957 Khokhar et al. May 1998 A
5746414 Weldon et al. May 1998 A
5762646 Cotter Jun 1998 A
5784750 Sankovic et al. Jul 1998 A
5799987 Sampson Sep 1998 A
5820614 Erskine et al. Oct 1998 A
5837180 Linder et al. Nov 1998 A
5845943 Ramacier, Jr. et al. Dec 1998 A
5855568 Battiato et al. Jan 1999 A
5879033 Hansel et al. Mar 1999 A
5882047 Ostrander et al. Mar 1999 A
5884531 Koenig Mar 1999 A
D407803 Redman Apr 1999 S
5897142 Kulevsky Apr 1999 A
5911367 McInerney Jun 1999 A
5911403 deCler et al. Jun 1999 A
5911404 Cheng Jun 1999 A
5930424 Heimberger et al. Jul 1999 A
5937501 Imgram Aug 1999 A
5938244 Meyer Aug 1999 A
5941577 Musellec Aug 1999 A
5942730 Schwarz et al. Aug 1999 A
D413967 Yuen Sep 1999 S
5957898 Jepson et al. Sep 1999 A
5961157 Baron et al. Oct 1999 A
5964485 Hame et al. Oct 1999 A
5965077 Rowley et al. Oct 1999 A
5975489 deCler et al. Nov 1999 A
5984378 Ostrander et al. Nov 1999 A
5988704 Ryhman Nov 1999 A
6012743 Godeau et al. Jan 2000 A
6015171 Schorn Jan 2000 A
D419861 Khokhar Feb 2000 S
6019348 Powell Feb 2000 A
6024124 Braun et al. Feb 2000 A
6029701 Chaffardon et al. Feb 2000 A
6032691 Powell et al. Mar 2000 A
6041805 Gydesen et al. Mar 2000 A
D422487 Khokhar Apr 2000 S
6050297 Ostrowski et al. Apr 2000 A
6076234 Khokhar et al. Jun 2000 A
6077245 Heinrich et al. Jun 2000 A
6077259 Caizza et al. Jun 2000 A
6082401 Braun et al. Jul 2000 A
6086044 Guest Jul 2000 A
6089540 Heinrichs et al. Jul 2000 A
6099045 Pirona Aug 2000 A
6112855 Camacho et al. Sep 2000 A
6123690 Mejslov Sep 2000 A
6135150 Powell et al. Oct 2000 A
6135992 Wang Oct 2000 A
6142538 Volgstadt et al. Nov 2000 A
6145896 Vitel et al. Nov 2000 A
6152914 Van De Kerkhof et al. Nov 2000 A
6155610 Godeau et al. Dec 2000 A
6161578 Braun et al. Dec 2000 A
6176523 Winslett Jan 2001 B1
6182694 Sievers et al. Feb 2001 B1
6189560 Reynolds Feb 2001 B1
6199915 Becker Mar 2001 B1
6199919 Kawasaki et al. Mar 2001 B1
6199920 Neustadtl Mar 2001 B1
6206028 Holden et al. Mar 2001 B1
6221064 Nadal Apr 2001 B1
6231089 DeCler et al. May 2001 B1
D444054 Bernard et al. Jun 2001 S
6250688 Kirby Jun 2001 B1
6257626 Campau Jul 2001 B1
6260851 Baron Jul 2001 B1
6261282 Jepson et al. Jul 2001 B1
6293596 Kinder Sep 2001 B1
6296508 Kuwahara et al. Oct 2001 B1
6296796 Gordon Oct 2001 B1
6302147 Rose et al. Oct 2001 B1
6318764 Trede et al. Nov 2001 B1
6344033 Jepson et al. Feb 2002 B1
6382593 deCler et al. May 2002 B1
D459206 Caveney et al. Jun 2002 S
6402207 Segal et al. Jun 2002 B1
6422574 Mooklar Jul 2002 B1
6423053 Lee Jul 2002 B1
6439620 Guest Aug 2002 B1
6454314 Grosspietsch et al. Sep 2002 B1
6481758 Andre et al. Nov 2002 B1
6481759 Kawasaki et al. Nov 2002 B1
6485064 Davidson Nov 2002 B1
6485483 Fujii Nov 2002 B1
6497433 Ketcham Dec 2002 B1
6505866 Nakamura et al. Jan 2003 B1
6508807 Peters Jan 2003 B1
6520546 Szabo Feb 2003 B2
D471261 Kozu Mar 2003 S
6540263 Sausner Apr 2003 B1
6543745 Enerson Apr 2003 B1
6595964 Finley et al. Jul 2003 B2
6609696 Enerson Aug 2003 B2
6612634 Zoppas Sep 2003 B1
6626419 DeCler et al. Sep 2003 B2
6626465 Lacroix et al. Sep 2003 B2
D481125 Hayamizu Oct 2003 S
6641177 Pinciaro Nov 2003 B1
6649829 Garber et al. Nov 2003 B2
6652007 Hwang Nov 2003 B1
D484241 Peters et al. Dec 2003 S
6669681 Jepson et al. Dec 2003 B2
6676172 Alksnis Jan 2004 B2
D486909 Cise et al. Feb 2004 S
6688654 Romero Feb 2004 B2
6692038 Braun Feb 2004 B2
6695817 Fangrow Feb 2004 B1
6705591 deCler Mar 2004 B2
6722705 Korkor Apr 2004 B2
6722708 Morohoshi et al. Apr 2004 B2
6762365 Inoue et al. Jul 2004 B2
6767017 Crapart et al. Jul 2004 B2
D495050 Guala Aug 2004 S
6783520 Candray et al. Aug 2004 B1
D497428 Hayamizu Oct 2004 S
6799747 Lai Oct 2004 B1
D498533 Hayamizu Nov 2004 S
6814726 Lauer Nov 2004 B1
6840277 Nimberger Jan 2005 B1
6846021 Rohde et al. Jan 2005 B2
6848602 deCler et al. Feb 2005 B2
6848723 Lamich Feb 2005 B2
6863314 Guest Mar 2005 B2
6871669 Meyer et al. Mar 2005 B2
6871878 Miros Mar 2005 B2
D503778 Wicks Apr 2005 S
6886803 Mikiya et al. May 2005 B2
6897374 Garber et al. May 2005 B2
6899315 Maiville et al. May 2005 B2
6902144 deCler Jun 2005 B2
D507647 Beck et al. Jul 2005 S
6916007 deCler et al. Jul 2005 B2
6916050 Milhas Jul 2005 B2
6926311 Chang et al. Aug 2005 B2
6929246 Arzenton et al. Aug 2005 B2
6945273 Reid Sep 2005 B2
6949084 Marggi et al. Sep 2005 B2
6962275 deCler et al. Nov 2005 B2
6978800 deCler et al. Dec 2005 B2
6981547 Maguire et al. Jan 2006 B2
6997486 Milhas Feb 2006 B2
6997919 Olsen et al. Feb 2006 B2
7005581 Burnette Feb 2006 B2
7011342 Guivarc'h et al. Mar 2006 B2
7014214 Kaneko Mar 2006 B2
D522109 White et al. May 2006 S
7040670 Madden May 2006 B2
7044161 Tiberghien May 2006 B2
7044506 Dong May 2006 B2
D523553 Beck et al. Jun 2006 S
7080665 Whall Jul 2006 B2
7081223 Khoury Jul 2006 B2
7108297 Takayanagi et al. Sep 2006 B2
7118138 Rowley et al. Oct 2006 B1
7128348 Kawamura et al. Oct 2006 B2
7137654 Segal et al. Nov 2006 B2
7140592 Phillips Nov 2006 B2
7147252 Teuscher et al. Dec 2006 B2
7150478 Poirier et al. Dec 2006 B2
7153296 Mitchell Dec 2006 B2
7163022 Whall Jan 2007 B2
D540944 Guala Apr 2007 S
7210917 Lai et al. May 2007 B2
D547446 Racz et al. Jul 2007 S
D550355 Racz et al. Sep 2007 S
D557409 Veliss et al. Dec 2007 S
7316428 Takayanagi et al. Jan 2008 B2
D564660 Hayashi Mar 2008 S
7343931 Packham Mar 2008 B2
D567340 Tiberghien Apr 2008 S
7352771 Garber Apr 2008 B2
D569507 Blanchard May 2008 S
D569955 Chen May 2008 S
7377553 Takayanagi May 2008 B2
D570457 Brown Jun 2008 S
7390029 Matsubara Jun 2008 B2
7394375 Johnson Jul 2008 B2
7434842 Schmidt Oct 2008 B2
7434846 Baumgartner Oct 2008 B2
7448653 Jensen et al. Nov 2008 B2
7464970 Yamada et al. Dec 2008 B2
7467813 Gunderson Dec 2008 B2
7469472 DeCler et al. Dec 2008 B2
7478840 Youssefifar Jan 2009 B2
7488446 Meyer et al. Feb 2009 B2
7494156 Okada Feb 2009 B2
7503595 McKay Mar 2009 B2
7516990 Jamison et al. Apr 2009 B2
7546857 Chadbourne et al. Jun 2009 B2
7547047 deCler et al. Jun 2009 B2
D595845 Miros et al. Jul 2009 S
D595846 Racz et al. Jul 2009 S
D596288 Racz et al. Jul 2009 S
D596739 Ng et al. Jul 2009 S
7562906 Schmidt Jul 2009 B2
7566077 Tsurumi Jul 2009 B2
7581763 Salomon-Bahls Sep 2009 B2
D602128 Williams et al. Oct 2009 S
7614666 Eggert et al. Nov 2009 B2
7631660 deCler et al. Dec 2009 B2
7647954 Garber et al. Jan 2010 B2
7666178 McMichael Feb 2010 B2
D612019 Williams et al. Mar 2010 S
D612021 Schmidt Mar 2010 S
7677608 Takayanagi Mar 2010 B2
D613853 Ng et al. Apr 2010 S
7695020 Schmidt Apr 2010 B2
7708025 Johnson May 2010 B2
7731244 Miros et al. Jun 2010 B2
D619706 Schon et al. Jul 2010 S
7770939 Jensen et al. Aug 2010 B2
7802822 Poder et al. Sep 2010 B2
7806139 Packham et al. Oct 2010 B2
7841357 Rankin Nov 2010 B2
D629894 Lombardi, III et al. Dec 2010 S
7849877 Tan et al. Dec 2010 B2
D630320 Lombardi, III et al. Jan 2011 S
D632783 Maesarapu Feb 2011 S
7878553 Wicks et al. Feb 2011 B2
D634840 Lombardi, III et al. Mar 2011 S
D639398 Wilhelm Jun 2011 S
7954374 Rankin Jun 2011 B2
7954515 Gerst Jun 2011 B2
D642244 Wilhelm Jul 2011 S
7976071 Bibby Jul 2011 B2
D645547 Lombardi, III et al. Sep 2011 S
D649240 Lewis et al. Nov 2011 S
D650478 Lewis Dec 2011 S
D652510 Lombardi, III et al. Jan 2012 S
D652511 Lombardi, III et al. Jan 2012 S
D654573 Lombardi, III et al. Feb 2012 S
8113546 Jensen et al. Feb 2012 B2
D655393 Whitaker Mar 2012 S
D663022 Lombardi, III et al. Jul 2012 S
8235426 Pisula, Jr. et al. Aug 2012 B2
20010017466 Braun Aug 2001 A1
20020022762 Beane et al. Feb 2002 A1
20020070547 Guertin Jun 2002 A1
20020093192 Matkovich Jul 2002 A1
20020140172 Platusich Oct 2002 A1
20020156344 Pasricha et al. Oct 2002 A1
20020185861 Inoue Dec 2002 A1
20030004397 Kameya et al. Jan 2003 A1
20030067162 Welsh et al. Apr 2003 A1
20030193188 Miros Oct 2003 A1
20030230894 Cleveland et al. Dec 2003 A1
20040021318 Fritze et al. Feb 2004 A1
20040056484 Kwon et al. Mar 2004 A1
20040094903 Sutherland May 2004 A1
20040195830 Gilmour Oct 2004 A1
20040199143 Lauer Oct 2004 A1
20040227346 Jamison et al. Nov 2004 A1
20040232696 Andre Nov 2004 A1
20050033237 Fentress et al. Feb 2005 A1
20050046184 Chang Mar 2005 A1
20050056121 Lyman Mar 2005 A1
20050057042 Wicks Mar 2005 A1
20050082828 Wicks et al. Apr 2005 A1
20050087981 Yamada et al. Apr 2005 A1
20050209583 Powers et al. Sep 2005 A1
20050217265 Popp et al. Oct 2005 A1
20050242579 Bright et al. Nov 2005 A1
20050275220 Shu Dec 2005 A1
20060066100 Nakashima et al. Mar 2006 A1
20060152003 Slunick et al. Jul 2006 A1
20060202146 Doyle Sep 2006 A1
20060264814 Sage Nov 2006 A1
20060293629 Cote, Sr. et al. Dec 2006 A1
20070025811 Wilhelm Feb 2007 A1
20070029795 Moner et al. Feb 2007 A1
20070029796 Bibby Feb 2007 A1
20070106213 Spera et al. May 2007 A1
20070137718 Rushlander et al. Jun 2007 A1
20070169825 Packham et al. Jul 2007 A1
20070209716 Rankin Sep 2007 A1
20070284875 Salomon-Bahls et al. Dec 2007 A1
20080007051 Jensen et al. Jan 2008 A1
20080011703 Schmeisser et al. Jan 2008 A1
20080012314 Harger et al. Jan 2008 A1
20080018105 Le Bars Jan 2008 A1
20080048448 Jamison et al. Feb 2008 A1
20080078464 Loewe Apr 2008 A1
20080111371 Feger et al. May 2008 A1
20080111372 Trede et al. May 2008 A1
20080129047 Blivet et al. Jun 2008 A1
20080164694 Zdroik et al. Jul 2008 A1
20080191466 Knipple et al. Aug 2008 A1
20080200901 Rasmussen et al. Aug 2008 A1
20080277923 Brandt et al. Nov 2008 A1
20080277924 Jensen et al. Nov 2008 A1
20080284167 Lim et al. Nov 2008 A1
20080287920 Fangrow et al. Nov 2008 A1
20090079187 Malone Mar 2009 A1
20090127847 Hagen et al. May 2009 A1
20090129047 Park et al. May 2009 A1
20090140519 Pavnaskar et al. Jun 2009 A1
20090167018 Lien Jul 2009 A1
20090187166 Young Jul 2009 A1
20090188575 Williams et al. Jul 2009 A1
20090256355 Wicks et al. Oct 2009 A1
20090261582 Gaudin Oct 2009 A1
20100001516 Pisula, Jr. et al. Jan 2010 A1
20100056975 Dale et al. Mar 2010 A1
20100078934 Matsunaga Apr 2010 A1
20100127492 Poder et al. May 2010 A1
20100185040 Uber et al. Jul 2010 A1
20100194100 Koch Aug 2010 A1
20100276922 Rehder et al. Nov 2010 A1
20100295295 Schmidt Nov 2010 A1
20100301599 Jensen et al. Dec 2010 A1
20100319796 Whitaker Dec 2010 A1
20110012340 Packham et al. Jan 2011 A1
20110127767 Wicks et al. Jun 2011 A1
20110204621 Whitaker et al. Aug 2011 A1
20110204622 Lewis et al. Aug 2011 A1
20120031515 Whitaker Feb 2012 A1
20120068457 Pisula, Jr. et al. Mar 2012 A1
20120299290 Pisula, Jr. et al. Nov 2012 A1
20120299296 Lombardi, III Nov 2012 A1
Foreign Referenced Citations (57)
Number Date Country
479098 Jan 1948 BE
1868896 Mar 1963 DE
3439522 Aug 1985 DE
3533000 Mar 1987 DE
4122455 Jan 1993 DE
19800050 Jul 1998 DE
102005015343 Oct 2006 DE
0360634 Mar 1990 EP
0390746 Oct 1990 EP
0267067 Jul 1991 EP
0482277 Apr 1992 EP
0592823 Apr 1994 EP
0715111 Jun 1996 EP
0865779 Sep 1998 EP
0877891 Nov 1998 EP
0890054 Jan 1999 EP
0982525 Mar 2000 EP
1497582 Jan 2005 EP
1564469 Aug 2005 EP
1843074 Oct 2007 EP
2031965 Nov 1970 FR
2429370 Jan 1980 FR
2808071 Oct 2001 FR
2853043 Oct 2004 FR
2870921 Dec 2005 FR
2903164 Jan 2008 FR
2919372 Jan 2009 FR
583459 Dec 1946 GB
890775 Mar 1962 GB
2177769 Jan 1987 GB
2218166 Nov 1989 GB
2271157 Apr 1994 GB
2379253 Mar 2003 GB
53-006918 Jan 1978 JP
5-223189 Aug 1993 JP
7-145889 Jun 1995 JP
10-169869 Jun 1998 JP
11-82849 Mar 1999 JP
2003-42363 Feb 2003 JP
2003-42368 Feb 2003 JP
6-512540 Apr 2006 JP
2010509553 Mar 2010 JP
WO 93017270 Sep 1993 WO
WO 95008732 Mar 1995 WO
WO 0079172 Dec 2000 WO
WO 2004027269 Apr 2004 WO
WO 2004104466 Dec 2004 WO
WO 2005064216 Jul 2005 WO
WO 2006031958 Mar 2006 WO
WO 2006073778 Jul 2006 WO
WO 2006084171 Aug 2006 WO
WO2006135666 Dec 2006 WO
WO 2007038222 Apr 2007 WO
WO 2007116387 Oct 2007 WO
WO 2007120620 Oct 2007 WO
WO 2008023021 Feb 2008 WO
WO 2009026441 Feb 2009 WO
Non-Patent Literature Citations (15)
Entry
International Search Report and Written Opinion dated Apr. 7, 2011, PCT/US2010/061903, 11 pages.
About Us [online], Thuro Metal Products [retrieved on Apr. 9, 2010], retrieved from the Internet: <URL: http://www.thurometal.com/about.html>, 2 pages.
Barbed Tee Adapter, ½ in to 2/8 in to ½ in [Item # F1728], http://www.horticulturesource.com/product—info.php/products—id/4016/language/en; dated accessed Sep. 14, 2009, 3 pages.
Brochure, “Precision Components”, Value Plastics, Inc., 2002, 132 pages.
Capabilities [online], Jay Manufacturing Corp., retrieved on Apr. 9, 2010, retrieved from the Internet: <URL: http://www.jaymfg.com/capabilities.htm>, 2 pages.
Flojet “Quick Connect” Port System Adapter 90 Elbow Type Quad Port X ½ Hose Barb, http://www.amazon.com/Quick-Connect-Port-System-Quad-Barb-90/dp/B0000AZ771/ref=sr—1—16?s=sporting-goods&ie=UTF8&qid=1300220596&sr=1-16, date accessed Sep. 14, 2009; 3 pages.
High-Flow Quick Disconnect Couplings; http://www.coleparmer.com/catalog/product—view.asp?sku=3130355; date accessed Sep. 14, 2009, 3 pages.
Mills, The Process of Vacuum-forming Plastic Parts, IPFrontline.com [online], retrieved on Apr. 9, 2010, retrieved from the Internet: <URL: http://www.ipfrontline.com/depts/article.asp?id=453&deptid=2>, 3 pages.
Nylon, Polypropylene Kynar (PVDF) Plastic Fittings for Flexible Tubing & Hose, http://www.omega.com/pdf/tubing/fittings—tubing—hose/nylon—poly—kynar/nylon.asp; dated accessed Sep. 14, 2009, 2 pages.
Science of Hose Barbs, Colder Products Company, http://www.pddnet.com/article-the-science-of-hose-barbs/, date accessed Sep. 4, 2009, 6 pages.
Stackable Hose Barb Elbow—½″ CTS x ½ ID Barb, http://www.freshwatersystems.com/p-1714-stackable-hose-barb-elbow-12-cts-x-12-id-barb.aspx?affiliatied=10052&utm—source=shopzilla&utm—medium=Feed&utm—campaign=Product&utm—term=3512-1008, date accessed Sep. 14, 2009, 1 page.
Stainless Steel Overview: History [online], Stainless Steel Industry of North America, retrieved on Apr. 9, 2010, retrieved from the Internet: <URL: http://www.ssina.com/overview/history.html>, 1 page.
European Patent Office; Examination Report dated Nov. 5, 2013; European Patent Application No. 10803697.1; 6 pages.
Communication pursuant to Article 94(3) EPC dated Dec. 18, 2014, International Application No. 10803697.1, 5 pages.
JP Office Action dated Sep. 2, 2014, Application No. 2012-546211, 4 pages.
Related Publications (1)
Number Date Country
20110210541 A1 Sep 2011 US
Provisional Applications (2)
Number Date Country
61289998 Dec 2009 US
61361228 Jul 2010 US