Cable breakout assembly

Information

  • Patent Grant
  • 10606019
  • Patent Number
    10,606,019
  • Date Filed
    Friday, July 29, 2016
    8 years ago
  • Date Issued
    Tuesday, March 31, 2020
    4 years ago
Abstract
A breakout assembly for transitioning a multi-fibre optical cable into one or more individual fibres is disclosed. The breakout assembly includes a first housing segment engageable at a first end to the cable and engageable at a second end with one or more furcation tubes that each receive an individual fibre from the cable, and a second housing segment engageable at a first end to the cable and engageable at a second end with one or more furcation tubes that each receive an individual fibre from the cable. The first housing segment is securable to the second housing segment so as to encapsulate at least a portion of the individual fibres as they break out from the cable.
Description

This application is a National Stage Application of PCT/AU2016/050684, filed on 29 Jul. 2016, which claims benefit of Serial No. 2015207954, filed on 31 Jul. 2015 in Australia and which applications are incorporated herein by reference. To the extent appropriate, a claim of priority is made to each of the above disclosed applications.


BACKGROUND OF THE INVENTION

The present invention relates generally to multi-fibre optical cables and more specifically to a breakout assembly for use with a multi-fibre optical cable.


DESCRIPTION OF THE PRIOR ART

The reference in this specification to any prior publication (or information derived from it), or to any matter which is known, is not, and should not be taken as an acknowledgment or admission or any form of suggestion that the prior publication (or information derived from it) or known matter forms part of the common general knowledge in the field of endeavour to which this specification relates.


Multi-fibre optical cables are often required to be terminated onto single fibre optical connectors. In a typical multi-fibre optical cable, the fibres are typically closely spaced and packed together making it difficult to manipulate and organise individual fibres for termination into discrete connectors. This is particularly true for fibre optic ribbon cable in which the fibres are arranged in a parallel, side by side array within the cable.


The process of separating or spreading individual fibres from the multi-fibre cable for termination is known as breakout or fanout. Typically, as fibres are spread from the cable they are inserted into furcation tubing which adds strength and protection to the individual fibres for handling. During the breakout transition from the multi-fibre cable to individual fibres it is important that the environmental, mechanical and optical integrity of the cable is maintained.


For example, the cable is typically required to withstand specified crush and tensile loads and the optical fibres must have an acceptable degree of optical attenuation or loss. The cables may also be required to prevent ingress of water and moisture.


In the past, furcation tubing has been joined to the multi-fibre cable through heat shrink tubing centred over the breakout region. A degree of tensile strength may be provided by overlapping strength members of the cable and furcation tubing, however often sufficient strength is still lacking and the joint can fail when an installer pulls hard on the end of the cable. Furthermore, when the heat shrink is applied during manufacture, it is possible that some of the fibres may bend or kink around the breakout point which may degrade the optical performance of the fibres.


Attempts have also been made to develop breakout devices for receiving and spreading individual fibres for connectorisation. Such devices are often complex and difficult to assemble and often still provide inadequate mechanical support for the fibres during breakout from the cable.


It is against this background, and the problems and difficulties associated therewith, that the present invention has been developed.


SUMMARY OF THE PRESENT INVENTION

In a first broad form the present invention seeks to provide a breakout assembly for transitioning a multi-fibre optical cable into one or more individual fibres, the breakout assembly including:

    • a) a first housing segment engageable at a first end to the cable and engageable at a second end with one or more furcation tubes that each receive an individual fibre from the cable; and,
    • b) a second housing segment engageable at a first end to the cable and engageable at a second end with one or more furcation tubes that each receive an individual fibre from the cable;
    • wherein, the first housing segment is securable to the second housing segment so as to encapsulate at least a portion of the individual fibres as they break out from the cable.


Typically the second housing segment is inverted relative to the first housing segment, in use.


Typically the first and second housing segments are identical.


Typically each housing segment includes a channel for receiving a portion of the individual fibres.


Typically in use, the channels of each housing segment cooperate to define an enclosed passage which encapsulates the at least a portion of the individual fibres as they break out from the cable.


Typically at least one channel of the first or second housing segment is at least partially filled with a resin adhesive or gel material.


Typically the first and second housing segments are latchable together.


Typically a first pair of latches are spaced apart from a second pair of latches in a direction of elongation of the housing segments.


Typically the first housing segment includes at least one resilient tab and at least one receptacle for respective engagement with a corresponding at least one receptacle and at least one resilient tab of the second housing segment.


Typically one or more furcation tubing connectors extend from the second end of each housing segment.


Typically the one or more furcation tubes are secured to each furcation tubing connector.


Typically the or each furcation tube is crimped onto a respective furcation tubing connector using a crimp sleeve.


Typically a heat shrink is applied over a portion of the or each furcation tube and crimp sleeve.


Typically the channel of each housing segment leads into one or more passageways proximate the second end of each housing segment, each passageway adapted to receive an inner tube of a furcation tube through which an individual fibre is fed.


Typically each housing segment includes a longitudinally extending slot extending from the first end of each housing segment for receiving a portion of the cable.


Typically each housing segment is configured to receive a strength member of the cable.


Typically for each housing segment, the strength member is located through the housing segment such that at least a portion of the strength member is disposed outside the housing segment.


Typically the portion of the strength member disposed outside the housing segment extends between a pair of spaced apart opposing wall portions of the housing segment.


Typically the breakout assembly further includes a swage member that is crimped onto the portion of the strength member disposed outside the housing segment.


Typically the swage member extends substantially between the pair of spaced apart opposing wall portions of the housing segment.


Typically the assembly is capable of withstanding an axial pull force up to and including 450N.


Typically the strength member is a rod or tube.


Typically a heat shrink or overmould is applied over at least a portion of the first and second housing segments.


Typically the breakout assembly is for use with a 12 fibre ribbon cable.


Typically two or four individual fibres exit the assembly for termination onto single fibre optical connectors.


In a second broad form the present invention seeks to provide a multi-fibre optical cable assembly, including:

    • a) a multi-fibre optical cable;
    • b) a breakout assembly for transitioning the multi-fibre optical cable into one or more individual fibres, including:
      • i) a first housing segment engageable at a first end to the cable and engageable at a second end with one or more furcation tubes that each receive an individual fibre from the ribbon cable;
      • ii) a second housing segment engageable at a first end to the cable and engageable at a second end with one or more furcation tubes that each receive an individual fibre from the cable, wherein the second housing segment is securable to the first housing segment so as to encapsulate at least a portion of the individual fibres as they break out from the cable; and
    • c) one or more single fibre optical connectors terminated onto the one or more individual fibres.


In a third broad form the present invention seeks to provide a method of assembling a breakout assembly onto a multi-fibre optical cable, the breakout assembly including a first housing segment and a second housing segment, the method including:

    • a) locating the cable into a first end of the first housing segment;
    • b) securing a plurality of furcation tubes to respective second ends of the first and second housing segments;
    • c) feeding a plurality of individual fibres of the cable into the plurality of furcation tubes; and,
    • d) securing the first housing segment to the second housing segment so as to encapsulate at least a portion of the plurality of individual fibres as they break out from the cable.


Typically each housing segment includes a channel for receiving the at least a portion of the plurality of individual fibres and the method further includes at least partially filling at least one channel of the first or second housing segments with a resin adhesive or gel material.


Typically the method further includes locating a pair of strength members of the cable into the first and second housing segments so that a portion of each strength member is disposed outside of each housing segment.


Typically the method further includes crimping a swage member onto the portion of each strength member disposed outside of each housing segment.


Typically the method further includes covering the breakout assembly by applying a heatshrink or overmould.





BRIEF DESCRIPTION OF THE DRAWINGS

An example of the present invention will now be described with reference to the accompanying drawings, in which:—



FIG. 1A is a schematic cross sectional view of an example of a multi-fibre optical cable;



FIG. 1B is a schematic side view of the cable of FIG. 1A prepared for use with a breakout assembly;



FIG. 2 is a perspective view of an example of a breakout assembly for use with the multi-fibre optical cable of FIG. 1A;



FIG. 3A is a partially exploded view of the breakout assembly shown in FIG. 2;



FIG. 3B is an enlarged view of the partially exploded breakout assembly showing the breakout assembly housing components;



FIG. 4A is a side view of the breakout assembly;



FIG. 4B is a schematic sectional view of the breakout assembly taken through section A-A of FIG. 4A;



FIG. 5 is a flowchart of an example of a method of assembling a breakout assembly onto a multi-fibre optical cable; and



FIG. 6 is a flowchart of a more specific example of a method of assembling a breakout assembly onto a multi-fibre optical cable.





DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

An example of a multi-fibre optical cable 100 will now be described with reference to FIGS. 1A and 1B.


In this example, the cable 100 includes a plurality of optical fibres 104 disposed in a parallel, side by side arrangement known in the art as a ribbon. The fibres 104 are typically encased in a polyethylene (PE) jacket 102 which is covered by an outer cable jacket 101, typically made from nylon. The cable 100 also includes a pair of strength members 103 that extend in a direction of elongation of the cable 100 and which are typically disposed about opposing sides of the cable on either side of the fibre ribbon. The strength members 103 are typically tubes or rods made from a non-metallic material such as fiberglass.


In order to break out individual fibres 104 from the cable 100 for connectorisation onto discrete single fibre optical connectors, the cable 100 is typically prepared as shown in FIG. 1B. In this example, the outer cable jacket, PE jacket and fibres are stripped to a predefined length. As shown the individual fibres 104 are stripped away from the ribbon so that a predefined length of individual fibres extends unsupported from the stripped cable jackets. The cable strength members 103 are trimmed to a predefined length also so that they protrude a distance away from the stripped end of the PE jacket 102.


In this form, a breakout assembly is able to be assembled onto the cable 100 for transitioning the multi-fibre optical cable 100 into one or more individual fibres 104 for connectorisation onto the one of the more discrete single fibre connectors.


An example of a breakout assembly 200 for transitioning a multi-fibre optical cable 100 into one or more individual fibres 104 will now be described with reference to FIG. 2.


In this example, the breakout assembly 200 includes a first housing segment 210 engageable at a first end 201 to the cable 100 and engageable at a second end 203 with one or more furcation tubes 230 that each receive an individual fibre 104 from the cable 100. A second housing segment 220 is engageable at a first end 202 to the cable 100 and engageable at a second end 204 with one or more furcation tubes 230 that each receive an individual fibre 104 from the cable 100.


The first housing segment 210 is securable to the second housing segment 220 so as to encapsulate at least a portion of the individual fibres 104 as they break out from the cable 100. Typically, the housing segments 210, 220 cooperate so as to encapsulate or conceal a transition or breakout region including part of the stripped away PE jacket of the cable 100. In this respect, the first ends 201, 202 of the housing segments 210, 220 may abut the end face of the stripped away outer cable jacket 101 so as to sit flush therewith.


The above described arrangement provides a number of benefits. In particular, the breakout region of the cable 100 and individual fibres 104 spread out therefrom are well protected when the first housing segment 210 is secured to the second housing segment 220. The securement between the housing segments 210, 220 ensures that the environmental protection of the cable 100 is maintained throughout the transition. In particular, water and moisture ingress is maintained as well as ensuring that the transition or breakout region is not exposed to sunlight. The profile of the housing segments 210, 220 is also compact enabling the breakout assembly 200 to be easily handled and used in the field for example to be pulled through ducting and the like.


Breakout sections of cable are known to have higher fragility as the protective coverings of the cable and fibres have been removed. The above described housing segments 210, 220 are able to also maintain the mechanical integrity of the cable by protecting the fibres etc. from crush loads as well as absorbing tensile loads that the cable may be subject to in use. As the furcation tubes 230 are secured to the respective housing sections 210, 220, if the furcation tubes 230 are pulled, the tensile load will be mainly transferred into the housing sections 210, 220 and not the individual fibres or cable more generally.


In the above example, the breakout assembly 200 is used with a 12 fibre ribbon cable and two or four individual fibres 104 exit the assembly 200 for termination onto single fibre optical connectors. In other arrangements, a different number of fibres may be used in the ribbon and any desired number of individual fibres may be separated from the ribbon for connectorisation. Whilst typically advantageous for use with a ribbon cable, the assembly may be adapted as appropriate for use with any oval cable or more generally any multi-fibre optical cable.


In one form, a multi-fibre optical cable assembly may be provided including a multi-fibre optical cable, a breakout assembly for transitioning the multi-fibre optical cable into one or more individual fibres and one or more single fibre optical connectors terminated onto the one or more individual fibres. As previously described, the breakout assembly may include a first housing segment engageable at a first end to the cable and engageable at a second end with one or more furcation tubes that each receive an individual fibre from the cable. A second housing segment engageable at a first end to the cable and engageable at a second end with one or more furcation tubes that each receive an individual fibre from the cable, wherein the second housing segment is securable to the first housing segment so as to encapsulate at least a portion of the individual fibres as they break out from the cable. The above described pre-terminated multi-fibre optical cable assembly may be provided as a connector harness for use by an installer.


A number of further features shall now be described.


Referring to FIGS. 2 and 3A, the first and second housing segments 210, 220 are typically latchable together via integral latches 212, 222. In one example, the assembly 200 includes a first pair of latches 212, 222 spaced apart from a second pair of latches 212, 222 in a direction of elongation of the housing segments 210, 220. Latches 212, 222 are integral with the first and second housing segments 210, 220 respectively and project away from the bodies of each housing segment 210, 220 in a direction substantially orthogonal to the direction of elongation of the housing segments 210, 220. In one example, each latch 212, 222 may be a resilient tab engageable with a complementary catch or receptacle 213, 223 located on the first and second housing segments 210, 220 respectively. In this respect, the first and second housing segments 210, 220 may be clipped together by aligning the segments and pressing them together.


In one example, locating protrusions may also engage into complementary apertures to assist in properly aligning the housing segments 210, 220.


More generally, any suitable number of latch elements may be used to secure the housing sections together. Typically, the first housing segment includes at least one resilient tab and at least one receptacle for respective engagement with a corresponding at least one receptacle and at least one resilient tab of the second housing segment.


In use, the second housing segment 220 is inverted relative to the first housing segment 210. In a preferred arrangement, the first and second housing segments 210, 220 are identical parts such that when the housing segments 210, 220 are secured together, the complete assembly displays rotational symmetry. This is particularly advantageous as only a single mould is required to manufacture the housing segments of the breakout assembly. In this respect, it will be appreciated that typically the housing segments are formed in a plastic injection moulding process.


As shown in FIG. 3A, the first housing segment 210 includes a longitudinally extending slot 211 extending from the first end 201 of the housing segment for receiving a portion of the cable 100. Typically, the slot 211 receives a part of the stripped PE jacket portion of the end of the cable 100. The cable 100 is positioned in the slot 219 so that the end face of the outer jacket 101 abuts the first end 210 of the housing segment 210. The second housing segment 220 has a similar slot for receiving a further portion of the cable with both slots adapted to encapsulate a jacketed portion of the cable 100 when the housing segments 210, 220 are secured together.


Each housing segment 210, 220 typically includes a channel for receiving a portion of the individual fibres 4. As shown most clearly in FIG. 3B for the first housing segment 210, the channel is a recessed portion of an inner surface of the housing segment. The channel is typically funnel shaped having a straight portion 214 which transitions into a diverging portion 214′. In the diverging portion 214′, the individual fibres 104 are spread or splayed outward toward the furcation tubes 230 secured to the respective housing segments 210, 220. The channel in the second housing segment is identically shaped to the channel of the first housing segment. In use, the channels of each housing segment cooperate to define an enclosed passage which encapsulates at least a portion of the individual fibres as they break out from the cable.


If the cable is subjected to extremes of temperature, the cable or single fibre ends may suffer from induced thermal expansion and contraction. As a result, the unsupported section of fibre 104 located in the channels may buckle causing optical transmission losses. In order to mitigate this occurrence, in one example, at least one channel of the first or second housing segment is at least partially filled with a resin adhesive (e.g. epoxy resin) or gel material. The resin or gel material flows around the individual fibres 104 and assists in managing, supporting and locating them as they transition away from the ribbon cable. In this way, the resin or gel can support the individual fibres and prevent them from buckling within the breakout assembly. In one example, the channels of both housing segments are filled with the resin or gel material.


Referring back to FIG. 3A, one or more furcation tubing connectors extend from the second end of each housing segment. In FIG. 3A, a pair of furcation tubing connectors 221 are shown extending away from the second end 204 of the second housing segment 220. Similar connectors extend from the second end of the first housing segment. Furcation tubes or cables 230 are secured to the furcation tubing connectors 221. Typically, the furcation tubes 230 are sleeved over the furcation tubing connectors 221 and crimped securely thereto using a crimp sleeve 236. In one example, the crimp sleeve 236 may be an aluminium crimp sleeve. The connection is typically then completed by applying a heat shrink 234 over a portion of the or each furcation tube 230 and crimp sleeve 236. As shown in FIG. 3A, an inner tube 232 of the furcation cable 230 is typically inserted through an aperture in the end of a furcation tubing connector 221 so as to extend at least partly into the respective housing segment.


In this respect, the channel of each housing segment typically leads into one or more passageways 215, 225 proximate the second end of each housing segment. Each passageway 215, 225 is adapted to receive an inner tube 232 of a furcation tube 230 through which an individual fibre 104 is fed. In one example, for a 250 μm diameter fibre, the inner tube 232 acts as a buffer tube to protect the fibre. The inner tube typically has a diameter of 900 μm. The inner tube 232 is typically covered by a jacket having for example a 2 mm diameter. A furcation tube of this outer diameter makes handling the fibres easier and allows for more robust handling in the field. The above described furcation tubing connection to the housing segments provides robust support for the individual fibres as they are spread from the multi-fibre cable which assists in preventing the fibres from being bent or kinked at the breakout. This in turn ensures that the optical performance of the cable is maintained through the breakout region.


In order to further ensure that the mechanical integrity of the cable is maintained and to further increase the tensile strength of the breakout assembly 200 each housing segment 210, 220 is configured to receive a strength member 103 of the cable 100. For each housing segment 210, 220, the strength member 103 is located through the housing segment 210, 220 such that at least a portion of the strength member 103 is disposed outside the housing segment 210, 220. As shown in FIG. 3B for example, a strength member 103, which is typically a fibreglass rod or tube, is inserted through aperture 228 of wall portion 226 into an opposing aperture (not shown) in an opposing wall portion 227. In this respect, the portion of the strength member 103 disposed outside the housing segment 220 extends between a pair of spaced apart opposing wall portions 226, 227 of the housing segment 220. The second strength member is located in corresponding features of the first housing segment 210.


In order to secure the strength member 103 with respect to the housing segment, a swage member 240 is crimped onto the portion of the strength member 103 disposed outside the housing segment. The swage member 240 includes a channel 242 in which the portion of the strength member disposed outside the housing segment is located. As shown in FIG. 4A, typically the swage member 240 extends substantially between the pair of spaced apart opposing wall portions of the housing segment. In one example, a copper (or aluminium, or other deformable metal) swage member is used. By coupling the strength members 103 of the cable 100 to the housing segments 210, 220 of the breakout assembly 200, the assembly is able to withstand an axial pull force of up to and including 450N.


In FIG. 4B, there is shown a schematic cross section of the breakout assembly 200 taken through the swage members 240. This view provides a schematic representation of the way in which the swage members 240 are crimped around the strength members 103. Additionally, it is shown how channel sections 214, 224 of each housing segment 210, 220 cooperate, in use to form an enclosed passage which encapsulates at least a portion of the individual fibres 104.


The finished breakout assembly 200 is typically covered by applying a heatshrink or overmould over at least a portion of the first and second housing segments 210, 220 for additional environmental and mechanical protection and support.


An example of a broad method of assembling a breakout assembly onto a multi-fibre optical cable will now be described with reference to FIG. 5. In this example, the breakout assembly comprises an apparatus as previously described including a first housing segment and second housing segment. At step 500, the cable is located into a first end of the first housing segment. It is assumed that the cable has already been prepared for breakout as described with respect to FIG. 1B. A plurality of furcation tubes are then secured to respective second ends of the first and second housing segments at step 502. For example, the furcation tubes may be coupled to furcation tubing connectors which extend from the respective second ends of the housing segments. The furcation tubes may be secured to the connectors by crimping them via crimp sleeves for example and then applying a heatshrink over the top.


Next, at step 504 a plurality of individual fibres of the cable are fed into the plurality of furcation tubes. In one example, the fibres may be fed into an inner tube of the furcation tube having a 900 μm diameter. The overall diameter of the furcation tube or cable may be 2 mm. At step 506, the first housing segment is secured to the second housing segment so as to encapsulate at least a portion of a plurality of individual fibres as they break out from the cable. As previously described, the housing segments may be latched or clipped together by integral latch members which engage in corresponding catches or receptacles on the mating housing segment. Typically, the housing segments have channels which receive the individual fibres and which cooperate in use to form an enclosed passage which encapsulates the fibres. Optionally, a resin adhesive (e.g. epoxy resin) or gel material may be applied within the channels of each housing segment so as to flow around the plurality of individual fibres in order to provide support for the unsupported length of each fibre in the breakout or transition region. Typically, the entire breakout out or transition region from multi-fibre cable to individual fibres is encapsulated by the housing segments when they are secured together.


A further specific example of a method of assembling a breakout assembly onto a multi-fibre optical cable will now be described with reference to FIG. 6. In this example, at step 600 the multi-fibre optical cable is located into a first end of the first housing segment. At step 602, the method includes the additional step of locating a pair of strength members of the cable into the first and second housing segments so that a portion of each strength member is disposed outside of each housing segment. A plurality of furcation tubes are secured to the first and second housing segments at step 604. At step 606, the individual fibres are fed into the respective furcation tubes and at step 608, the first and second housing segments are secured together as previously described with respect to the example of FIG. 5.


At step 610, swage members are secured to the strength members, typically by crimping them onto the portion of the strength members disposed outside the housing segments. The swage members typically extend between spaced apart opposing wall portions located on the outer body of the housing segments. Finally, at step 612, the method includes the further step of covering the breakout assembly by applying a heatshrink or overmould over at least a portion of the first and second housing segments.


Throughout this specification and claims which follow, unless the context requires otherwise, the word “comprise”, and variations such as “comprises” or “comprising”, will be understood to imply the inclusion of a stated integer or group of integers or steps but not the exclusion of any other integer or group of integers.


Persons skilled in the art will appreciate that numerous variations and modifications will become apparent. All such variations and modifications which become apparent to persons skilled in the art, should be considered to fall within the spirit and scope that the invention broadly appearing before described.

Claims
  • 1. An assembly for transitioning a multi-fiber optical cable into one or more individual fibers, the assembly comprising: a first housing segment engageable at a first end to the cable, the cable defining a longitudinal axis, the longitudinal axis defining a radial dimension extending away from the longitudinal axis;a second housing segment engageable at a first end to the cable, the first housing segment being securable to the second housing segment so as to encapsulate at least a portion of the individual fibers as they extend from the cable; andfirst and second swage members,wherein each of the first and second housing segment is configured to receive a strength member of the cable such that a swaging portion of each strength member is positioned between a pair of spaced apart opposing wall portions of the corresponding housing segment; andwherein the first and second swage members are configured to be crimped on to the swaging portions of the strength members by pressing the first and second swage members onto the swaging portions of the strength members in directions that are radially toward the longitudinal axis.
  • 2. The assembly of claim 1, wherein each of the swaging portions extends from one of the corresponding opposing wall portions to the other of the corresponding opposing wall portions of the corresponding housing segment.
  • 3. The assembly of claim 2, wherein each of the swage members is configured to extend from one of the corresponding opposing wall portions to the other of the corresponding opposing wall portions of the corresponding housing segment.
  • 4. The assembly of claim 1, further comprising a heatshrink component adapted to cover the first and second housing segments.
  • 5. The assembly of claim 1, wherein each of the first and second housing segment is engageable at a second end with one or more furcation tubes that each receive one of the individual fibers extending from the cable.
  • 6. The assembly of claim 5, wherein one or more furcation tubing connectors extend from the second end of each housing segment.
  • 7. The assembly of claim 6, wherein the one or more furcation tubes are secured to the one or more furcation tubing connectors.
  • 8. The assembly of claim 7, wherein each of the furcation tubes is crimped onto a corresponding furcation tubing connector using a crimp sleeve.
  • 9. The assembly of claim 8, wherein a heat shrink is applied over a portion of each furcation tube and corresponding crimp sleeve.
  • 10. The assembly of claim 1, wherein the first and second housing segments are identical.
  • 11. The assembly of claim 1, wherein each of the housing segments defines a channel for receiving a portion of the individual fibers extending from the cable.
  • 12. The assembly of claim 11, wherein the channels cooperate to define an enclosed passage adapted to encapsulate the portions of the individual fibers extending from the cable.
  • 13. The assembly of claim 12, wherein at least one of the channels is at least partially filled with a resin adhesive or a gel material.
  • 14. The assembly of claim 13, wherein the channel of each housing segment leads into one or more passageways, each passageway adapted to receive an inner tube of a furcation tube through which one of the individual fibers can be fed.
  • 15. The assembly of claim 1, wherein the first and second housing segments are latchable together.
  • 16. The assembly of claim 1, wherein the cable is a ribbon cable.
  • 17. The assembly of claim 1, wherein the strength members are rods or tubes.
  • 18. An assembly, comprising: an optical cable including a plurality of optical fibers and a pair of strength members, the optical cable defining a longitudinal axis, the longitudinal axis defining a radial dimension extending away from the longitudinal axis;a first housing segment engaged at a first end to the cable;a second housing segment engaged at a first end to the cable, the first and second housing segments encapsulating portions of the fibers as they extend from the cable; andfirst and second swage members,wherein each of the first and second housing segment receives one of the strength members such that a swaging portion of each strength member is positioned between a pair of spaced apart opposing wall portions of the corresponding housing segment; andwherein the first and second swage members are crimped on to the swaging portions of the strength members by pressing the first and second swage members onto the swaging portions of the strength members in directions that are radially toward the longitudinal axis.
  • 19. The assembly of claim 18, further comprising one or more single fiber optical connectors terminated onto one or more of the plurality of fibers.
  • 20. A method of assembling an assembly onto a multi-fiber optical cable, the assembly including a first housing segment and a second housing segment, the optical cable defining a longitudinal axis, the longitudinal axis defining a radial dimension extending away from the longitudinal axis, the method including: locating the cable into a first end of the first housing segment;securing the first housing segment to the second housing segment so as to encapsulate at least portions of individual fibers extending from the cable;positioning a pair of strength members of the cable into the first and second housing segments to expose a swaging portion of each strength member; andcrimping a swage member onto the swaging portion of each strength member by pressing the swage members onto the swaging portions of the strength members in directions that are radially toward the longitudinal axis.
  • 21. The method of claim 20, wherein each of the housing segments includes a channel for receiving the portions of individual fibers extending from the cable, and the method further comprises at least partially filling at least one of the channels with a resin adhesive or a gel material.
  • 22. The method of claim 21, further including covering the first and second housing segments by applying a heatshrink or overmould thereto.
  • 23. An assembly for transitioning a multi-fiber optical cable into one or more individual fibers, the assembly comprising: a first housing segment engageable at a first end to the cable;a second housing segment engageable at a first end to the cable, the first housing segment being securable to the second housing segment so as to encapsulate at least a portion of the individual fibers as they extend from the cable; andfirst and second swage members,wherein each of the first and second housing segment is configured to receive a strength member of the cable such that a swaging portion of each strength member is positioned outside the corresponding housing segment and between a pair of spaced apart opposing wall portions of the corresponding housing segment;wherein the first and second swage members are configured to be crimped on to the swaging portions of the strength members; andwherein each of the swaging portions extends from one of the corresponding opposing wall portions to the other of the corresponding opposing wall portions of the corresponding housing segment.
Priority Claims (1)
Number Date Country Kind
2015207954 Jul 2015 AU national
PCT Information
Filing Document Filing Date Country Kind
PCT/AU2016/050684 7/29/2016 WO 00
Publishing Document Publishing Date Country Kind
WO2017/020076 2/9/2017 WO A
US Referenced Citations (282)
Number Name Date Kind
4299244 Hirai Nov 1981 A
4351579 Kordes et al. Sep 1982 A
4435612 Smith Mar 1984 A
4441786 Hulin et al. Apr 1984 A
4453291 Fidych Jun 1984 A
4461529 Fariss Jul 1984 A
4582067 Silverstein et al. Apr 1986 A
4650933 Benda et al. Mar 1987 A
4684211 Weber et al. Aug 1987 A
4768961 Lau Sep 1988 A
4770639 Lau Sep 1988 A
4775121 Carty Oct 1988 A
4791245 Thornley Dec 1988 A
4797114 Lau Jan 1989 A
4820200 Lau Apr 1989 A
4840568 Burroughs et al. Jun 1989 A
4917491 Ring et al. Apr 1990 A
5083346 Orton Jan 1992 A
5133583 Wagman et al. Jul 1992 A
5146532 Hodge Sep 1992 A
5189410 Kosugi et al. Feb 1993 A
5199878 Dewey et al. Apr 1993 A
5214673 Morgenstern et al. May 1993 A
5231688 Zimmer Jul 1993 A
5317663 Beard et al. May 1994 A
5339379 Kutsch et al. Aug 1994 A
5363465 Korkowski et al. Nov 1994 A
5381501 Cardinal et al. Jan 1995 A
5393249 Morgenstern et al. Feb 1995 A
5416874 Giebel et al. May 1995 A
5432875 Korkowski et al. Jul 1995 A
5467062 Burroughs Nov 1995 A
5473718 Sommer Dec 1995 A
5497444 Wheeler Mar 1996 A
5514128 Hillsman et al. May 1996 A
5554026 Van Hale Sep 1996 A
5582525 Louwagie et al. Dec 1996 A
5598500 Crespel Jan 1997 A
5613030 Hoffer et al. Mar 1997 A
5627925 Alferness et al. May 1997 A
5645519 Lee et al. Jul 1997 A
5685741 Dewey et al. Nov 1997 A
5694511 Pimpinella et al. Dec 1997 A
5701380 Larson et al. Dec 1997 A
5717810 Wheeler Feb 1998 A
5754725 Kuder et al. May 1998 A
5863083 Giebel et al. Jan 1999 A
5946440 Puetz Aug 1999 A
5970195 Brown Oct 1999 A
6072932 Bennett et al. Jun 2000 A
6104855 Jeon Aug 2000 A
6116961 Henneberger et al. Sep 2000 A
6208796 Vigliaturo Mar 2001 B1
6226111 Chang et al. May 2001 B1
6259851 Daoud Jul 2001 B1
6263136 Jennings et al. Jul 2001 B1
6307998 Vigliaturo Oct 2001 B2
6328608 Olson et al. Dec 2001 B1
6363183 Koh Mar 2002 B1
6363198 Braga et al. Mar 2002 B1
6370294 Pfeiffer et al. Apr 2002 B1
6389214 Smith et al. May 2002 B1
6418262 Puetz et al. Jul 2002 B1
6421493 Burek et al. Jul 2002 B1
6424781 Puetz et al. Jul 2002 B1
6511330 Norris Jan 2003 B1
6532332 Solheid et al. Mar 2003 B2
6535682 Puetz et al. Mar 2003 B1
6554652 Musolf et al. Apr 2003 B1
6556738 Pfeiffer et al. Apr 2003 B2
6556763 Puetz et al. Apr 2003 B1
6571048 Bechamps et al. May 2003 B1
6579014 Melton et al. Jun 2003 B2
6591051 Solheid et al. Jul 2003 B2
6599024 Zimmel Jul 2003 B2
6614953 Strasser et al. Sep 2003 B2
6614979 Bourdeau Sep 2003 B2
6616459 Norris Sep 2003 B2
6623173 Grois et al. Sep 2003 B1
6632106 Musolf et al. Oct 2003 B2
RE38311 Wheeler Nov 2003 E
6647197 Marrs et al. Nov 2003 B1
6655848 Simmons et al. Dec 2003 B2
6668108 Helkey et al. Dec 2003 B1
6688780 Duran Feb 2004 B2
6719382 Sucharczuk et al. Apr 2004 B2
6738555 Cooke et al. May 2004 B1
6760531 Solheid et al. Jul 2004 B1
6761594 Johnsen et al. Jul 2004 B2
6810193 Muller Oct 2004 B1
6814620 Wu Nov 2004 B1
6822874 Marler Nov 2004 B1
6824312 McClellan et al. Nov 2004 B2
6830465 Norris et al. Dec 2004 B2
6832035 Daoud et al. Dec 2004 B1
6848952 Norris Feb 2005 B2
6850685 Tinucci et al. Feb 2005 B2
6863446 Ngo Mar 2005 B2
6867668 Dagostino et al. Mar 2005 B1
6873772 Nakaya Mar 2005 B2
6885798 Zimmel Apr 2005 B2
6890187 Norris May 2005 B2
6909828 Zimmel et al. Jun 2005 B2
6937807 Franklin et al. Aug 2005 B2
6983095 Reagan et al. Jan 2006 B2
6993237 Cooke et al. Jan 2006 B2
7029322 Ernst et al. Apr 2006 B2
7035510 Zimmel et al. Apr 2006 B2
7118284 Nakajima et al. Oct 2006 B2
7121732 Pimpinella et al. Oct 2006 B2
7142764 Allen et al. Nov 2006 B2
7190874 Barth et al. Mar 2007 B1
7194181 Holmberg et al. Mar 2007 B2
7218827 Vongseng et al. May 2007 B2
7221832 Tinucci May 2007 B2
7233731 Solheid et al. Jun 2007 B2
7269319 Zimmel Sep 2007 B2
7270485 Robinson et al. Sep 2007 B1
7277614 Cody et al. Oct 2007 B2
7280725 Brown et al. Oct 2007 B2
7303220 Zellak Dec 2007 B2
7310474 Kanaski et al. Dec 2007 B2
7333606 Swam et al. Feb 2008 B1
7346254 Kramer et al. Mar 2008 B2
7349616 Castonguay et al. Mar 2008 B1
7376322 Zimmel et al. May 2008 B2
7376323 Zimmel May 2008 B2
7400813 Zimmel Jul 2008 B2
7418181 Zimmel et al. Aug 2008 B2
7418186 Grubish et al. Aug 2008 B1
7440669 Tinucci Oct 2008 B2
7453706 Clark et al. Nov 2008 B2
7470068 Kahle et al. Dec 2008 B2
7485806 Gretz Feb 2009 B1
7495931 Clark et al. Feb 2009 B2
7499622 Castonguay et al. Mar 2009 B2
7606459 Zimmel et al. Oct 2009 B2
7636507 Lu et al. Dec 2009 B2
7641396 Feldner Jan 2010 B2
7664363 Mowery, Sr. Feb 2010 B1
7711236 Gonzalez et al. May 2010 B2
7738759 Parikh et al. Jun 2010 B2
7748911 Keenum et al. Jul 2010 B2
7853112 Zimmel et al. Dec 2010 B2
7885505 Zimmel Feb 2011 B2
7912336 Zimmel Mar 2011 B2
7933484 Hetzer et al. Apr 2011 B2
8081857 Nair et al. Dec 2011 B2
8172465 Kleeberger May 2012 B2
8346045 Zimmel et al. Jan 2013 B2
8380036 Smith et al. Feb 2013 B2
8573855 Nhep Nov 2013 B2
8577199 Pierce et al. Nov 2013 B2
8620130 Cooke et al. Dec 2013 B2
8705930 Lu et al. Apr 2014 B2
8737786 Compton May 2014 B1
8798428 Zimmel et al. Aug 2014 B2
8824850 Garcia et al. Sep 2014 B2
9140872 Sedor et al. Sep 2015 B2
9395509 Petersen et al. Jul 2016 B2
10054753 Petersen et al. Aug 2018 B2
20020062978 Sakabe et al. May 2002 A1
20020131750 Holman et al. Sep 2002 A1
20020141724 Ogawa et al. Oct 2002 A1
20020181896 McClellan et al. Dec 2002 A1
20030031423 Zimmel Feb 2003 A1
20030031437 Simmons et al. Feb 2003 A1
20030081916 Norris May 2003 A1
20030132685 Sucharczuk et al. Jul 2003 A1
20030134541 Johnsen et al. Jul 2003 A1
20030147597 Duran Aug 2003 A1
20030169974 Ngo Sep 2003 A1
20030185535 Tinucci et al. Oct 2003 A1
20030202765 Franklin et al. Oct 2003 A1
20030210875 Wagner et al. Nov 2003 A1
20040094605 Wild et al. May 2004 A1
20040126069 Jong et al. Jul 2004 A1
20040156609 Lanier et al. Aug 2004 A1
20040161970 Wlos et al. Aug 2004 A1
20040184748 Clatanoff et al. Sep 2004 A1
20040240826 Daoud et al. Dec 2004 A1
20040266273 Wu Dec 2004 A1
20050002633 Solheid et al. Jan 2005 A1
20050003707 Wu Jan 2005 A1
20050041926 Elkins, II et al. Feb 2005 A1
20050053341 Zimmel Mar 2005 A1
20050058402 Ernst et al. Mar 2005 A1
20050067847 Zellak Mar 2005 A1
20050105873 Reagan et al. May 2005 A1
20050105879 Kanasaki et al. May 2005 A1
20050111811 Cooke et al. May 2005 A1
20050167147 Marsac et al. Aug 2005 A1
20050232550 Nakajima et al. Oct 2005 A1
20050232551 Chang et al. Oct 2005 A1
20050232565 Heggestad et al. Oct 2005 A1
20050265668 Martin Dec 2005 A1
20050281526 Vongseng et al. Dec 2005 A1
20060083468 Kahle et al. Apr 2006 A1
20060093301 Zimmel et al. May 2006 A1
20060120672 Cody et al. Jun 2006 A1
20060153516 Napiorkowski et al. Jul 2006 A1
20060169469 Eastwood et al. Aug 2006 A1
20060188210 Zimmel Aug 2006 A1
20060233508 Mann et al. Oct 2006 A1
20060269198 Blazer et al. Nov 2006 A1
20060269205 Zimmel Nov 2006 A1
20060269206 Zimmel Nov 2006 A1
20060285807 Lu et al. Dec 2006 A1
20070036503 Solheid et al. Feb 2007 A1
20070047893 Kramer et al. Mar 2007 A1
20070117437 Boehnlein et al. May 2007 A1
20070147765 Gniadek et al. Jun 2007 A1
20070172172 Theuerkorn et al. Jul 2007 A1
20070189692 Zimmel et al. Aug 2007 A1
20070212004 Lu et al. Sep 2007 A1
20080026647 Boehnlein et al. Jan 2008 A1
20080063351 Elkins et al. Mar 2008 A1
20080124039 Gniadek et al. May 2008 A1
20080138020 Robinson et al. Jun 2008 A1
20080138026 Yow et al. Jun 2008 A1
20080164059 Cipolla Jul 2008 A1
20080175541 Lu et al. Jul 2008 A1
20080248673 Boehnlein et al. Oct 2008 A1
20080253730 Cox et al. Oct 2008 A1
20080317415 Hendrickson et al. Dec 2008 A1
20090022468 Zimmel Jan 2009 A1
20090022469 Zimmel et al. Jan 2009 A1
20090035987 Daly et al. Feb 2009 A1
20090060421 Parikh et al. Mar 2009 A1
20090067804 Knorr et al. Mar 2009 A1
20090103881 Gonzalez et al. Apr 2009 A1
20090116806 Zimmel et al. May 2009 A1
20090196553 Anderson et al. Aug 2009 A1
20100027942 Smith et al. Feb 2010 A1
20100030033 Farley et al. Feb 2010 A1
20100054860 Thompson et al. Mar 2010 A1
20100059229 Smith et al. Mar 2010 A1
20100086260 Parikh et al. Apr 2010 A1
20100092136 Nhep Apr 2010 A1
20100150504 Allen et al. Jun 2010 A1
20100158464 Zimmel et al. Jun 2010 A1
20100215331 Gonzalez et al. Aug 2010 A1
20100266244 Lu et al. Oct 2010 A1
20110024103 Storm et al. Feb 2011 A1
20110081121 Le Dissez Apr 2011 A1
20110164853 Corbille et al. Jul 2011 A1
20110182558 Garcia et al. Jul 2011 A1
20110229098 Abernathy et al. Sep 2011 A1
20110257563 Thapliyal et al. Oct 2011 A1
20110262084 Ott Oct 2011 A1
20110284285 Miura et al. Nov 2011 A1
20110317975 Lu et al. Dec 2011 A1
20120008909 Mertesdorf et al. Jan 2012 A1
20120045178 Theuerkorn Feb 2012 A1
20120186845 Eshima et al. Jul 2012 A1
20120230636 Blockley et al. Sep 2012 A1
20120301090 Cline et al. Nov 2012 A1
20120328253 Hurley et al. Dec 2012 A1
20130011105 Barlowe et al. Jan 2013 A1
20130077928 Hsing Mar 2013 A1
20130114937 Zimmel et al. May 2013 A1
20130209042 Belenky et al. Aug 2013 A1
20130209043 Norris Aug 2013 A1
20130294735 Burris et al. Nov 2013 A1
20130330967 Youtsey Dec 2013 A1
20140083229 Kume Mar 2014 A1
20140093217 Lu et al. Apr 2014 A1
20140140664 Islam May 2014 A1
20140219621 Barnette, Jr. et al. Aug 2014 A1
20140233903 Valderrabano Aug 2014 A1
20140241674 Isenhour et al. Aug 2014 A1
20140248798 Youtsey Sep 2014 A1
20150110442 Zimmel et al. Apr 2015 A1
20150260936 Newbury et al. Sep 2015 A1
20150284036 Miles Oct 2015 A1
20150370029 Petersen et al. Dec 2015 A1
20160004016 Zimmel Jan 2016 A1
20160139355 Petersen May 2016 A1
20160178850 Nhep Jun 2016 A1
20160363733 Nielson et al. Dec 2016 A1
20180149823 Wang et al. May 2018 A1
20190056562 Petersen Feb 2019 A1
Foreign Referenced Citations (39)
Number Date Country
408 698 Feb 2002 AT
1289930 Dec 2006 CN
41 30 706 Mar 1993 DE
44 05 459 Aug 1995 DE
202 01 170 May 2002 DE
102 07 337 Nov 2002 DE
10 2004 019 805 Nov 2005 DE
20 2006 006 016 Aug 2006 DE
10 2007 009 223 Aug 2008 DE
0 202 994 Nov 1986 EP
0 339 791 Nov 1989 EP
0 355 639 Feb 1990 EP
0 490 698 Jun 1992 EP
0 646 811 Apr 1995 EP
0 730 177 Sep 1996 EP
0 828 356 Mar 1998 EP
1 092 996 Apr 2001 EP
1 107 031 Jun 2001 EP
1 179 745 Feb 2002 EP
1 473 578 Nov 2004 EP
1 589 361 Oct 2005 EP
1129287 Oct 1968 GB
2 300 978 Nov 1996 GB
H01-317824 Dec 1989 JP
9636896 Nov 1996 WO
0075706 Dec 2000 WO
0239170 May 2002 WO
02099528 Dec 2002 WO
02103429 Dec 2002 WO
03093889 Nov 2003 WO
2006127397 Nov 2006 WO
2010042507 Apr 2010 WO
2015200321 Dec 2015 WO
2015200327 Dec 2015 WO
2016110245 Jul 2016 WO
2016123092 Aug 2016 WO
2017161310 Sep 2017 WO
2018044729 Mar 2018 WO
2018208518 Nov 2018 WO
Non-Patent Literature Citations (5)
Entry
International Search Report and Written Opinion of the International Searching Authority for corresponding International Patent Application No. PCT/AU2016/050684 dated Oct. 25, 2016, 11 pages.
Exhibit A: Fanout product by ADC Telecommunications, Inc., 2 pages, admitted as prior art as of Oct. 13, 2016.
Exhibit B: Fanout Product by ADC Telecommunications, Inc., 5 pages, admitted as prior art as of Oct. 13, 2016.
Exhibit C: Fanout Product by ADC Telecommunications, Inc., 7 pages, admitted as prior art as of Oct. 13, 2016.
24 Fiber Transition Housing by ADC Telecommunications, Inc., 2 pages, admitted as prior art as of Jun. 25, 2010.
Related Publications (1)
Number Date Country
20190004272 A1 Jan 2019 US