Cable connector for electronic battery tester

Information

  • Patent Grant
  • 10222397
  • Patent Number
    10,222,397
  • Date Filed
    Tuesday, September 22, 2015
    8 years ago
  • Date Issued
    Tuesday, March 5, 2019
    5 years ago
Abstract
A battery tester including a battery tester cable, a cable pod coupled to an end of the battery tester cable, and a battery tester housing including a cavity configured to receive the cable pod. The cable pod and the cavity include mating parts configured to mate the cable pod within the cavity in at least two different preset orientations. In some examples, the orientations are changeable and securable manually.
Description
BACKGROUND

The present embodiments relate to electronic battery testers of the type used to test storage batteries. Also, the present embodiments relate to cables which are used to couple such electronic battery testers to storage batteries.


Storage batteries have long been used to provide power to various types of systems such as automobiles or as standby power sources. In order to fully utilize such batteries, it is often desirable to perform a test on the battery which provides an indication related to the condition of the battery. For example, such a test can provide an indication that a battery is weak and should be replaced, or that a battery is discharged and should be charged.


Battery tests can be as simple as a visual inspection to more complex tests such as measuring the specific gravity of acid used in the battery. A simple electronic battery test can be based upon the voltage measured across the battery. Another electronic battery test is a load test in which a load is applied to the battery and the response of the battery is observed. A less intrusive way of measuring the condition of a battery is based upon a dynamic parameter of the battery. Such a measurement technique has been pioneered by Midtronics, Inc. of Willowbrook, Ill. and Dr. Keith S. Champlin as shown and described in U.S. Pat. No. 3,873,911, issued Mar. 25, 1975, to Champlin; U.S. Pat. No. 3,909,708, issued Sep. 30, 1975, to Champlin; U.S. Pat. No. 4,816,768, issued Mar. 28, 1989, to Champlin; U.S. Pat. No. 4,825,170, issued Apr. 25, 1989, to Champlin; U.S. Pat. No. 4,881,038, issued Nov. 14, 1989, to Champlin; U.S. Pat. No. 4,912,416, issued Mar. 27, 1990, to Champlin; U.S. Pat. No. 5,140,269, issued Aug. 18, 1992, to Champlin; U.S. Pat. No. 5,343,380, issued Aug. 30, 1994; U.S. Pat. No. 5,572,136, issued Nov. 5, 1996; U.S. Pat. No. 5,574,355, issued Nov. 12, 1996; U.S. Pat. No. 5,583,416, issued Dec. 10, 1996; U.S. Pat. No. 5,585,728, issued Dec. 17, 1996; U.S. Pat. No. 5,589,757, issued Dec. 31, 1996; U.S. Pat. No. 5,592,093, issued Jan. 7, 1997; U.S. Pat. No. 5,598,098, issued Jan. 28, 1997; U.S. Pat. No. 5,656,920, issued Aug. 12, 1997; U.S. Pat. No. 5,757,192, issued May 26, 1998; U.S. Pat. No. 5,821,756, issued Oct. 13, 1998; U.S. Pat. No. 5,831,435, issued Nov. 3, 1998; U.S. Pat. No. 5,871,858, issued Feb. 16, 1999; U.S. Pat. No. 5,914,605, issued Jun. 22, 1999; U.S. Pat. No. 5,945,829, issued Aug. 31, 1999; U.S. Pat. No. 6,002,238, issued Dec. 14, 1999; U.S. Pat. No. 6,037,751, issued Mar. 14, 2000; U.S. Pat. No. 6,037,777, issued Mar. 14, 2000; U.S. Pat. No. 6,051,976, issued Apr. 18, 2000; U.S. Pat. No. 6,081,098, issued Jun. 27, 2000; U.S. Pat. No. 6,091,245, issued Jul. 18, 2000; U.S. Pat. No. 6,104,167, issued Aug. 15, 2000; U.S. Pat. No. 6,137,269, issued Oct. 24, 2000; U.S. Pat. No. 6,163,156, issued Dec. 19, 2000; U.S. Pat. No. 6,172,483, issued Jan. 9, 2001; U.S. Pat. No. 6,172,505, issued Jan. 9, 2001; U.S. Pat. No. 6,222,369, issued Apr. 24, 2001; U.S. Pat. No. 6,225,808, issued May 1, 2001; U.S. Pat. No. 6,249,124, issued Jun. 19, 2001; U.S. Pat. No. 6,259,254, issued Jul. 10, 2001; U.S. Pat. No. 6,262,563, issued Jul. 17, 2001; U.S. Pat. No. 6,294,896, issued Sep. 25, 2001; U.S. Pat. No. 6,294,897, issued Sep. 25, 2001; U.S. Pat. No. 6,304,087, issued Oct. 16, 2001; U.S. Pat. No. 6,310,481, issued Oct. 30, 2001; U.S. Pat. No. 6,313,607, issued Nov. 6, 2001; U.S. Pat. No. 6,313,608, issued Nov. 6, 2001; U.S. Pat. No. 6,316,914, issued Nov. 13, 2001; U.S. Pat. No. 6,323,650, issued Nov. 27, 2001; U.S. Pat. No. 6,329,793, issued Dec. 11, 2001; U.S. Pat. No. 6,331,762, issued Dec. 18, 2001; U.S. Pat. No. 6,332,113, issued Dec. 18, 2001; U.S. Pat. No. 6,351,102, issued Feb. 26, 2002; U.S. Pat. No. 6,359,441, issued Mar. 19, 2002; U.S. Pat. No. 6,363,303, issued Mar. 26, 2002; U.S. Pat. No. 6,377,031, issued Apr. 23, 2002; U.S. Pat. No. 6,392,414, issued May 21, 2002; U.S. Pat. No. 6,417,669, issued Jul. 9, 2002; U.S. Pat. No. 6,424,158, issued Jul. 23, 2002; U.S. Pat. No. 6,441,585, issued Aug. 17, 2002; U.S. Pat. No. 6,437,957, issued Aug. 20, 2002; U.S. Pat. No. 6,445,158, issued Sep. 3, 2002; U.S. Pat. No. 6,456,045; U.S. Pat. No. 6,466,025, issued Oct. 15, 2002; U.S. Pat. No. 6,465,908, issued Oct. 15, 2002; U.S. Pat. No. 6,466,026, issued Oct. 15, 2002; U.S. Pat. No. 6,469,511, issued Nov. 22, 2002; U.S. Pat. No. 6,495,990, issued Dec. 17, 2002; U.S. Pat. No. 6,497,209, issued Dec. 24, 2002; U.S. Pat. No. 6,507,196, issued Jan. 14, 2003; U.S. Pat. No. 6,534,993; issued Mar. 18, 2003; U.S. Pat. No. 6,544,078, issued Apr. 8, 2003; U.S. Pat. No. 6,556,019, issued Apr. 29, 2003; U.S. Pat. No. 6,566,883, issued May 20, 2003; U.S. Pat. No. 6,586,941, issued Jul. 1, 2003; U.S. Pat. No. 6,597,150, issued Jul. 22, 2003; U.S. Pat. No. 6,621,272, issued Sep. 16, 2003; U.S. Pat. No. 6,623,314, issued Sep. 23, 2003; U.S. Pat. No. 6,633,165, issued Oct. 14, 2003; U.S. Pat. No. 6,635,974, issued Oct. 21, 2003; U.S. Pat. No. 6,696,819, issued Feb. 24, 20144; U.S. Pat. No. 6,707,303, issued Mar. 16, 2004; U.S. Pat. No. 6,737,831, issued May 18, 2004; U.S. Pat. No. 6,744,149, issued Jun. 1, 2004; U.S. Pat. No. 6,759,849, issued Jul. 6, 2004; U.S. Pat. No. 6,781,382, issued Aug. 24, 2004; U.S. Pat. No. 6,788,025, filed Sep. 7, 2004; U.S. Pat. No. 6,795,782, issued Sep. 21, 2004; U.S. Pat. No. 6,805,090, filed Oct. 19, 2004; U.S. Pat. No. 6,806,716, filed Oct. 19, 2004; U.S. Pat. No. 6,850,037, filed Feb. 1, 2005; U.S. Pat. No. 6,850,037, issued Feb. 1, 2005; U.S. Pat. No. 6,871,151, issued Mar. 22, 2005; U.S. Pat. No. 6,885,195, issued Apr. 26, 2005; U.S. Pat. No. 6,888,468, issued May 3, 2005; U.S. Pat. No. 6,891,378, issued May 10, 2005; U.S. Pat. No. 6,906,522, issued Jun. 14, 2005; U.S. Pat. No. 6,906,523, issued Jun. 14, 2005; U.S. Pat. No. 6,909,287, issued Jun. 21, 2005; U.S. Pat. No. 6,914,413, issued Jul. 5, 2005; U.S. Pat. No. 6,913,483, issued Jul. 5, 2005; U.S. Pat. No. 6,930,485, issued Aug. 16, 2005; U.S. Pat. No. 6,933,727, issued Aug. 23, 200; U.S. Pat. No. 6,941,234, filed Sep. 6, 2005; U.S. Pat. No. 6,967,484, issued Nov. 22, 2005; U.S. Pat. No. 6,998,847, issued Feb. 14, 2006; U.S. Pat. No. 7,003,410, issued Feb. 21, 2006; U.S. Pat. No. 7,003,411, issued Feb. 21, 2006; U.S. Pat. No. 7,012,433, issued Mar. 14, 2006; U.S. Pat. No. 7,015,674, issued Mar. 21, 2006; U.S. Pat. No. 7,034,541, issued Apr. 25, 2006; U.S. Pat. No. 7,039,533, issued May 2, 2006; U.S. Pat. No. 7,058,525, issued Jun. 6, 2006; U.S. Pat. No. 7,081,755, issued Jul. 25, 2006; U.S. Pat. No. 7,106,070, issued Sep. 12, 2006; U.S. Pat. No. 7,116,109, issued Oct. 3, 2006; U.S. Pat. No. 7,119,686, issued Oct. 10, 2006; and U.S. Pat. No. 7,126,341, issued Oct. 24, 2006; U.S. Pat. No. 7,154,276, issued Dec. 26, 2006; U.S. Pat. No. 7,198,510, issued Apr. 3, 2007; U.S. Pat. No. 7,363,175, issued Apr. 22, 2008; U.S. Pat. No. 7,208,914, issued Apr. 24, 2007; U.S. Pat. No. 7,246,015, issued Jul. 17, 2007; U.S. Pat. No. 7,295,936, issued Nov. 13, 2007; U.S. Pat. No. 7,319,304, issued Jan. 15, 2008; U.S. Pat. No. 7,363,175, issued Apr. 22, 2008; U.S. Pat. No. 7,398,176, issued Jul. 8, 2008; U.S. Pat. No. 7,408,358, issued Aug. 5, 2008; U.S. Pat. No. 7,425,833, issued Sep. 16, 2008; U.S. Pat. No. 7,446,536, issued Nov. 4, 2008; U.S. Pat. No. 7,479,763, issued Jan. 20, 2009; U.S. Pat. No. 7,498,767, issued Mar. 3, 2009; U.S. Pat. No. 7,501,795, issued Mar. 10, 2009; U.S. Pat. No. 7,505,856, issued Mar. 17, 2009; U.S. Pat. No. 7,545,146, issued Jun. 9, 2009; U.S. Pat. No. 7,557,586, issued Jul. 7, 2009; U.S. Pat. No. 7,595,643, issued Sep. 29, 2009; U.S. Pat. No. 7,598,699, issued Oct. 6, 2009; U.S. Pat. No. 7,598,744, issued Oct. 6, 2009; U.S. Pat. No. 7,598,743, issued Oct. 6, 2009; U.S. Pat. No. 7,619,417, issued Nov. 17, 2009; U.S. Pat. No. 7,642,786, issued Jan. 5, 2010; U.S. Pat. No. 7,642,787, issued Jan. 5, 2010; U.S. Pat. No. 7,656,162, issued Feb. 2, 2010; U.S. Pat. No. 7,688,074, issued Mar. 30, 2010; U.S. Pat. No. 7,705,602, issued Apr. 27, 2010; U.S. Pat. No. 7,706,992, issued Apr. 27, 2010; U.S. Pat. No. 7,710,119, issued May 4, 2010; U.S. Pat. No. 7,723,993, issued May 25, 2010; U.S. Pat. No. 7,728,597, issued Jun. 1, 2010; U.S. Pat. No. 7,772,850, issued Aug. 10, 2010; U.S. Pat. No. 7,774,151, issued Aug. 10, 2010; U.S. Pat. No. 7,777,612, issued Aug. 17, 2010; U.S. Pat. No. 7,791,348, issued Sep. 7, 2010; U.S. Pat. No. 7,808,375, issued Oct. 5, 2010; U.S. Pat. No. 7,924,015, issued Apr. 12, 2011; U.S. Pat. No. 7,940,053, issued May 10, 2011; U.S. Pat. No. 7,940,052, issued May 10, 2011; U.S. Pat. No. 7,959,476, issued Jun. 14, 2011; U.S. Pat. No. 7,977,914, issued Jul. 12, 2011; U.S. Pat. No. 7,999,505, issued Aug. 16, 2011; U.S. Pat. No. D643,759, issued Aug. 23, 2011; U.S. Pat. No. 8,164,343, issued Apr. 24, 2012; U.S. Pat. No. 8,198,900, issued Jun. 12, 2012; U.S. Pat. No. 8,203,345, issued Jun. 19, 2012; U.S. Pat. No. 8,237,448, issued Aug. 7, 2012; U.S. Pat. No. 8,306,690, issued Nov. 6, 2012; U.S. Pat. No. 8,344,685, issued Jan. 1, 2013; U.S. Pat. No. 8,436,619, issued May 7, 2013; U.S. Pat. No. 8,442,877, issued May 14, 2013; U.S. Pat. No. 8,493,022, issued Jul. 23, 2013; U.S. Pat. No. D687,727, issued Aug. 13, 2013; U.S. Pat. No. 8,513,949, issued Aug. 20, 2013; U.S. Pat. No. 8,674,654, issued Mar. 18, 2014; U.S. Pat. No. 8,674,711, issued Mar. 18, 2014; U.S. Pat. No. 8,704,483, issued Apr. 22, 2014; U.S. Pat. No. 8,738,309, issued May 27, 2014; U.S. Pat. No. 8,754,653, issued Jun. 17, 2014; U.S. Pat. No. 8,872,516, issued Oct. 28, 2014; U.S. Pat. No. 8,872,517, issued Oct. 28, 2014; U.S. Pat. No. 8,958,998, issued Feb. 17, 2015; U.S. Pat. No. 8,963,550, issued Feb. 24, 2015; U.S. Pat. No. 9,018,958, issued Apr. 28, 2015; U.S. Pat. No. 9,052,366, issued Jun. 9, 2015; U.S. Ser. No. 09/780,146, filed Feb. 9, 2001, entitled STORAGE BATTERY WITH INTEGRAL BATTERY TESTER; U.S. Ser. No. 09/756,638, filed Jan. 8, 2001, entitled METHOD AND APPARATUS FOR DETERMINING BATTERY PROPERTIES FROM COMPLEX IMPEDANCE/ADMITTANCE; U.S. Ser. No. 09/862,783, filed May 21, 2001, entitled METHOD AND APPARATUS FOR TESTING CELLS AND BATTERIES EMBEDDED IN SERIES/PARALLEL SYSTEMS; U.S. Ser. No. 09/880,473, filed Jun. 13, 2001; entitled BATTERY TEST MODULE; U.S. Ser. No. 10/109,734, filed Mar. 28, 2002, entitled APPARATUS AND METHOD FOR COUNTERACTING SELF DISCHARGE IN A STORAGE BATTERY; U.S. Ser. No. 10/263,473, filed Oct. 2, 2002, entitled ELECTRONIC BATTERY TESTER WITH RELATIVE TEST OUTPUT; U.S. Ser. No. 09/653,963, filed Sep. 1, 2000, entitled SYSTEM AND METHOD FOR CONTROLLING POWER GENERATION AND STORAGE; U.S. Ser. No. 10/174,110, filed Jun. 18, 2002, entitled DAYTIME RUNNING LIGHT CONTROL USING AN INTELLIGENT POWER MANAGEMENT SYSTEM; U.S. Ser. No. 10/258,441, filed Apr. 9, 2003, entitled CURRENT MEASURING CIRCUIT SUITED FOR BATTERIES; U.S. Ser. No. 10/681,666, filed Oct. 8, 2003, entitled ELECTRONIC BATTERY TESTER WITH PROBE LIGHT; U.S. Ser. No. 60/587,232, filed Dec. 14, 2004, entitled CELLTRON ULTRA, U.S. Ser. No. 60/653,537, filed Feb. 16, 2005, entitled CUSTOMER MANAGED WARRANTY CODE; U.S. Ser. No. 60/665,070, filed Mar. 24, 2005, entitled OHMMETER PROTECTION CIRCUIT; U.S. Ser. No. 60/694,199, filed Jun. 27, 2005, entitled GEL BATTERY CONDUCTANCE COMPENSATION; U.S. Ser. No. 60/705,389, filed Aug. 4, 2005, entitled PORTABLE TOOL THEFT PREVENTION SYSTEM, U.S. Ser. No. 11/207,419, filed Aug. 19, 2005, entitled SYSTEM FOR AUTOMATICALLY GATHERING BATTERY INFORMATION FOR USE DURING BATTERY TESTER/CHARGING, U.S. Ser. No. 60/712,322, filed Aug. 29, 2005, entitled AUTOMOTIVE VEHICLE ELECTRICAL SYSTEM DIAGNOSTIC DEVICE, U.S. Ser. No. 60/713,168, filed Aug. 31, 2005, entitled LOAD TESTER SIMULATION WITH DISCHARGE COMPENSATION, U.S. Ser. No. 60/731,881, filed Oct. 31, 2005, entitled PLUG-IN FEATURES FOR BATTERY TESTERS; U.S. Ser. No. 60/731,887, filed Oct. 31, 2005, entitled AUTOMOTIVE VEHICLE ELECTRICAL SYSTEM DIAGNOSTIC DEVICE; U.S. Ser. No. 60/751,853, filed Dec. 20, 2005, entitled BATTERY MONITORING SYSTEM; U.S. Ser. No. 60/751,853, filed Dec. 20, 2005, entitled BATTERY MONITORING SYSTEM; U.S. Ser. No. 11/356,443, filed Feb. 16, 2006, entitled ELECTRONIC BATTERY TESTER WITH NETWORK COMMUNICATION; U.S. Ser. No. 60/847,064, filed Sep. 25, 2006, entitled STATIONARY BATTERY MONITORING ALGORITHMS; U.S. Ser. No. 60/950,182, filed Jul. 17, 2007, entitled BATTERY TESTER FOR HYBRID VEHICLE; U.S. Ser. No. 60/973,879, filed Sep. 20, 2007, entitled ELECTRONIC BATTERY TESTER FOR TESTING STATIONARY BATTERIES; U.S. Ser. No. 60/992,798, filed Dec. 6, 2007, entitled STORAGE BATTERY AND BATTERY TESTER; U.S. Ser. No. 61/061,848, filed Jun. 16, 2008, entitled KELVIN CLAMP FOR ELECTRONICALLY COUPLING TO A BATTERY CONTACT; U.S. Ser. No. 12/697,485, filed Feb. 1, 2010, entitled ELECTRONIC BATTERY TESTER; U.S. Ser. No. 12/712,456, filed Feb. 25, 2010, entitled METHOD AND APPARATUS FOR DETECTING CELL DETERIORATION IN AN ELECTROCHEMICAL CELL OR BATTERY; U.S. Ser. No. 61/311,485, filed Mar. 8, 2010, entitled BATTERY TESTER WITH DATABUS FOR COMMUNICATING WITH VEHICLE ELECTRICAL SYSTEM; U.S. Ser. No. 61/313,893, filed Mar. 15, 2010, entitled USE OF BATTERY MANUFACTURE/SELL DATE IN DIAGNOSIS AND RECOVERY OF DISCHARGED BATTERIES; U.S. Ser. No. 12/769,911, filed Apr. 29, 2010, entitled STATIONARY BATTERY TESTER; U.S. Ser. No. 61/330,497, filed May 3, 2010, entitled MAGIC WAND WITH ADVANCED HARNESS DETECTION; U.S. Ser. No. 61/348,901, filed May 27, 2010, entitled ELECTRONIC BATTERY TESTER; U.S. Ser. No. 61/351,017, filed Jun. 3, 2010, entitled IMPROVED ELECTRIC VEHICLE AND HYBRID ELECTRIC VEHICLE BATTERY MODULE BALANCER; U.S. Ser. No. 12/818,290, filed Jun. 18, 2010, entitled BATTERY MAINTENANCE DEVICE WITH THERMAL BUFFER; U.S. Ser. No. 61/373,045, filed Aug. 12, 2010, entitled ELECTRONIC BATTERY TESTER FOR TESTING STATIONARY STORAGE BATTERY; U.S. Ser. No. 12/888,689, filed Sep. 23, 2010, entitled BATTERY TESTER FOR ELECTRIC VEHICLE; U.S. Ser. No. 61/411,162, filed Nov. 8, 2010, entitled ELECTRONIC BATTERY TESTER; U.S. Ser. No. 13/037,641, filed Mar. 1, 2011, entitled MONITOR FOR FRONT TERMINAL BATTERIES; U.S. Ser. No. 13/098,661, filed May 2, 2011, entitled METHOD AND APPARATUS FOR MEASURING A PARAMETER OF A VEHICLE ELECTRICAL SYSTEM; U.S. Ser. No. 13/113,272, filed May 23, 2011, entitled ELECTRONIC STORAGE BATTERY DIAGNOSTIC SYSTEM; U.S. Ser. No. 13/152,711, filed Jun. 3, 2011, entitled BATTERY PACK MAINTENANCE FOR ELECTRIC VEHICLE; U.S. Ser. No. 13/205,949, filed Aug. 9, 2011, entitled ELECTRONIC BATTERY TESTER FOR TESTING STORAGE BATTERY; U.S. Ser. No. 61/558,088, filed Nov. 10, 2011, entitled BATTERY PACK TESTER; U.S. Ser. No. 13/357,306, filed Jan. 24, 2012, entitled STORAGE BATTERY AND BATTERY TESTER; U.S. Ser. No. 61/665,555, filed Jun. 28, 2012, entitled HYBRID AND ELECTRIC VEHICLE BATTERY MAINTENANCE DEVICE; U.S. Ser. No. 13/668,523, filed Nov. 5, 2012, entitled BATTERY TESTER FOR ELECTRIC VEHICLE; U.S. Ser. No. 13/672,186, filed Nov. 8, 2012, entitled BATTERY PACK TESTER; U.S. Ser. No. 61/777,360, filed Mar. 12, 2013, entitled DETERMINATION OF STARTING CURRENT IN AN AUTOMOTIVE VEHICLE; U.S. Ser. No. 61/777,392, filed Mar. 12, 2013, entitled DETERMINATION OF CABLE DROP DURING A STARTING EVENT IN AN AUTOMOTIVE VEHICLE; U.S. Ser. No. 13/827,128, filed Mar. 14, 2013, entitled HYBRID AND ELECTRIC VEHICLE BATTERY MAINTENANCE DEVICE; U.S. Ser. No. 61/789,189, filed Mar. 15, 2013, entitled CURRENT CLAMP WITH JAW CLOSURE DETECTION; U.S. Ser. No. 61/824,056, filed May 16, 2013, entitled BATTERY TESTING SYSTEM AND METHOD; U.S. Ser. No. 61/859,991, filed Jul. 30, 2013, entitled METHOD AND APPARATUS FOR MONITORING A PLURALITY OF STORAGE BATTERIES IN A STATIONARY BACK-UP POWER SYSTEM; U.S. Ser. No. 14/039,746, filed Sep. 27, 2013, entitled BATTERY PACK MAINTENANCE FOR ELECTRIC VEHICLE; U.S. Ser. No. 61/915,157, filed Dec. 12, 2013, entitled BATTERY TESTER AND BATTERY REGISTRATION TOOL; U.S. Ser. No. 61/928,167, filed Jan. 16, 2014, entitled BATTERY CLAMP WITH ENDOSKELETON DESIGN; U.S. Ser. No. 14/204,286, filed Mar. 11, 2014, entitled CURRENT CLAMP WITH JAW CLOSURE DETECTION; U.S. Ser. No. 14/276,276, filed May 13, 2014, entitled BATTERY TESTING SYSTEM AND METHOD; U.S. Ser. No. 62/024,037, filed Jul. 14, 2014, entitled COMBINATION SERVICE TOOL; U.S. Ser. No. 62/055,884, filed Sep. 26, 2014, entitled CABLE CONNECTOR FOR ELECTRONIC BATTERY TESTER; U.S. Ser. No. 14/565,689, filed Dec. 10, 2014, entitled BATTERY TESTER AND BATTERY REGISTRATION TOOL; U.S. Ser. No. 14/598,445, filed Jan. 16, 2015, entitled BATTERY CLAMP WITH ENDOSKELETON DESIGN; U.S. Ser. No. 62/107,648, filed Jan. 26, 2015, entitled ALTERNATOR TESTER; U.S. Ser. No. 62/137,491, filed Mar. 24, 2015, entitled BATTERY MAINTENANCE SYSTEM; U.S. Ser. No. 62/154,251, filed Apr. 29, 2015, entitled CALIBRATION AND PROGRAMMING OF IN-VEHICLE BATTERY SENSORS; U.S. Ser. No. 62/155,045, filed Apr. 30, 2015, entitled CALIBRATION AND PROGRAMMING OF IN-VEHICLE BATTERY SENSORS; U.S. Ser. No. 62/161,555, filed May 14, 2015, entitled ALTERNATOR TESTER, U.S. Ser. No. 14/799,120, filed Jul. 14, 2015, entitled AUTOMOTIVE MAINTENANCE SYSTEM; all of which are incorporated herein by reference in their entireties.


Despite the aforementioned examples, there is a need for improvement in connecting cables to a portable battery tester in a manner that enhances convenience of handling, hanging or otherwise positioning the tester when carrying out battery test operations.


SUMMARY

In an example embodiment described herein, a battery tester includes a battery tester cable, a cable pod coupled to an end of the battery tester cable, and a battery tester housing including a cavity configured to receive the cable pod. The cable pod and the cavity include mating parts configured to mate the cable pod within the cavity in at least two different preset orientations. In some examples, the orientations are changeable and securable manually.


In another example embodiment described herein, a battery tester includes battery tester circuitry configured to provide two Kelvin connections such that four-terminal sensing can occur when the battery tester circuitry is coupled with a battery tester cable that is coupled with two terminals of a battery. Such a battery tester includes a battery tester housing configured to contain the battery tester circuitry and receive a cable pod configured to provide an interface between the battery tester circuitry and the battery tester cable. The cable pod and the battery tester housing include mating parts configured to mate with each other in at least two different preset orientations such that the cable pod and the battery tester housing attach to each other in at least two corresponding orientations that are changeable manually a cable connector configured to couple to a battery tester cable; and


In another example described herein, a cable pod, such as one configured to attach to a battery tester housing, includes a plurality of tester connector parts including mating parts configured to mate with corresponding pod connector parts in at least two different preset orientations in a cavity of a battery tester housing. This mating can occur such that the cable pod can attach to the battery tester housing within the cavity in at least two corresponding orientations manually.





BRIEF DESCRIPTION OF THE DRAWINGS


FIG. 1 is a simplified schematic diagram showing an example cable for coupling an electronic battery tester to a storage battery.



FIG. 2 illustrates an example embodiment of battery tester housing.



FIGS. 3-6 illustrate example embodiments of cable pods that connect to example battery tester housing, such as the housing illustrated in FIG. 2.



FIGS. 7A-7D show an example alternative securing mechanism for securing a cable pod to battery tester housing (such as the housing illustrated in FIG. 2) using spring loaded fasteners.



FIG. 8 shows an example embodiment of a cable pod that connects to battery tester housing (such as the housing illustrated in FIG. 2), which includes another example alternative securing mechanism for securing a cable pod to battery tester housing using an example simple lock and key mechanism.



FIGS. 9A and 9B show an example alternative securing mechanism for securing a cable pod to a battery tester housing using the example simple lock and key mechanism.



FIGS. 9C and 9D show an example alternative securing mechanism for securing a cable pod to a battery tester housing using an example split pin.



FIG. 10 a simplified circuit diagram of example battery tester circuitry.





DETAILED DESCRIPTION OF ILLUSTRATIVE EMBODIMENTS


FIG. 1 is a simplified schematic diagram which shows an electronic battery tester 10 coupled to a storage battery 12 by a battery tester cable 14. In some embodiments, electronic battery tester 10 may be a hand-held or portable tester. In one embodiment, electronic battery tester 10 is of the type which determines a condition of battery 12 based upon a dynamic parameter of the battery 12 (such as a voltage drop across terminals 12A and 12B of battery 12). In some other embodiments, other techniques that do not utilize dynamic parameters may be employed in a battery tester that is used to test a storage battery.


As shown, a first end of battery tester cable 14 includes two battery connectors configurable to fasten to two respective terminals of battery 12. Also shown, is a second end of the cable 14 coupled to connector 24. The second end of cable 14 may be configured to fasten to the connector 24. The connector 24 may be or include one of the example cable pods described herein.


In the embodiment shown in FIG. 1, the dynamic parameter is measured through Kelvin connections to terminals of the battery. A Kelvin connection may include a precision electrical potential contact with a current carrying component or reference point in such a way that at least reduces possible effects of contact resistance. Cable 14 include clamps 16 and 18 which provide Kelvin connections to electrical terminals 12A and 12B, respectively. In this example embodiment two Kelvin connections are illustrated. In other words, a four-terminal sensing (4T sensing) is shown. A 4T sensing can include an electrical impedance measuring technique that uses separate pairs of current-carrying and voltage-sensing electrodes to make possibly more accurate measurements than two-terminal (2T) sensing.


As shown in FIG. 1, cable 14 includes first and second cables 20 and 22 and clamps 16 and 18. Clamps 16 and 18 are coupled to cables 20 and 22, respectively. The cables 20 and 22 extend between clamps 16 and 18 and a connector 24. The connector 24 is coupled to electronic battery tester 10. Cables 20 and 22 may be bonded or otherwise coupled together partially along their length as they extend from connector 24. Cables 20 and 22 separate at some point so that clamps 16 and 18 can be split apart to couple to terminals 12A and 12B of battery 12. In the embodiment shown in FIG. 1, the cables 20 and 22 each include two individual electrical wires used to provide Kelvin connections. The two individual electrical wires of each of cables 20 and 22 may each be electrically insulated from each other and carried in an insulating sheath. Some other embodiments may not use Kelvin connections (such as in examples using 2T sensing) and, in such embodiments, cables 20 and 22 may each include only one electrical wire. 4T sensing is explained further with respect to FIG. 10.


In example embodiments described in connection with FIGS. 2-6, the electrical connector 24 coupled to electronic battery tester 10 includes a cable pod connector that is manually attachable and detachable to battery tester 10. In some embodiments, a cable pod can be attachable and detachable manually to a battery tester without a tool such as a screw driver.



FIGS. 2-6 show an exterior of battery tester 10 having a housing 26 that is configured to receive a cable pod 28 shown in FIGS. 3-6. Housing 26 can have battery tester circuitry within an internal cavity (not shown). Such battery testing circuitry can be coupled to the battery tester cable 14 and such circuitry can be configured with the battery tester cable to provide two Kelvin connections with the two battery connectors when fastened to the two respective terminals of the battery 12 such that four-terminal sensing can occur (such as depicted in FIG. 10). In some other examples (not depicted), the battery tester circuitry can be configured with the battery tester cable to provide two connections with the two battery connectors when fastened to the two respective terminals of the battery such that two-terminal sensing can occur. Also, housing 26 includes an external cavity 30 that has a size and shape that corresponds to a size and shape of cable pod 28.


As shown in FIGS. 3-6, cable pod 28 includes a main connector body 32 that includes a rectangular shape. Main connector body 32 has first and second ends 34 and 36 and first and second sides 38 and 40. Cable pod 28 also includes first and second extended portions 42 and 44 that extend outwardly from sides 38 and 40, respectively, and are positioned near opposite ends 34 and 36, respectively. Extended portions 42 and 44 include downward projections 45 and 47 that can fit into and may contact corresponding portions of a bottom surface of cavity 30 when cable pod 28 is positioned within cavity 30. Cable 14 is coupled to first extended portion 42.


The shape and size of external cavity 30 corresponds to the shape and size of the cable pod 28. Accordingly, cavity 30 includes a rectangular main connector receiving portion 46 that receives main connector body 32 of cable pod 28. Main connector receiving portion 46 of cavity 30 has first and second ends 48 and 50 and first and second sides 52 and 54. Also included in cavity 30 are first and second channels 56 and 58 that extend from sides 52 and 54, respectively. Channels 56 and 58 are configured to receive first and second extended portions 42 and 44 of cable pod 28, respectively.


To secure cable pod 28 within cavity 30, both cable pod 28 and cavity 30 include engagement features. In cavity 30, engagement features include slots 68 and fastener holes 70. In an example, holes 70 may be threaded holes. Cavity 30 includes projections 72 that mate slots 68. Cavity 30 also includes fastener bosses 74 that align with holes 70 when cable pod 28 is fitted into cavity 30. Once pod 28 is fitted with cavity 30, fasteners (not shown), such as threaded fasteners (e.g., screws), may be inserted into holes 70 and bosses 74 and tightened to secure cable pod 28 with cavity 30. In the example where the holes 70 include threaded holes, the bosses 74 may include threaded receiving holes and the pod 28 may be secured to the cavity 30 by threaded fasteners screwed into holes of the pod and bosses.


Alternatively or in addition to the depicted example for securing cable pod 28 with cavity 30, an embodiment of the pod and electronic battery tester may include a variation of the threaded fastener and hole pairings or a different type of fasting mechanism. For example, a shaft or dowel may be fitted for corresponding holes or bosses of a pod and housing of a battery tester and such a shaft or dowel may be secured by one or more corresponding pins (such as split pins or spring pins) that insert into a hole on an upper and/or lower portion of the shaft or dowel. In another example configuration, merely a pin (such as a split pin) may be used to secure a pod to a tester.


Specifically, some examples of the tester may include securing parts configured to secure the cable pod within the cavity of the tester housing of the tester in at least one of the orientations described herein. The battery tester housing and the cable pod may each include at least two holes. The at least two holes of the battery tester housing may be configured to align with the at least two holes of the cable pod such that the securing parts can mate with the at least two holes of the battery tester housing and the cable pod to secure the cable pod within the cavity in at least one of the orientations described herein. In such examples, the at least two holes of the battery tester housing and the cable pod may include threaded holes and the securing parts may include corresponding threaded fasteners.


Additionally or alternatively, the cable pod may be attachable and detachable to the cavity of the battery tester housing manually without use of an additional device or tool. In such an example, the securing parts may include dowels with fins that are configured to: retract when inserted through the at least two holes of the battery tester housing and the cable pod; and extend such that top surfaces of the fins catch bottom surfaces of the battery tester housing and the cable pod in way that secures the cable pod within the cavity in at least one of the orientations described herein. Alternatively, in such an example, the securing parts may include at least two dowels with rectangular extensions. The at least two holes of the battery tester housing and the cable pod may configured to align with each other such that the at least two dowels can be inserted into the at least two holes of the battery tester housing and the cable pod and subsequently turned such that top surfaces of the rectangular extensions catch bottom surfaces of the battery tester housing and the cable pod in way that secures the cable pod within the cavity in at least one of the orientations described herein. Also, the securing parts may include at least two split pins that each are configured to be squeezed through the at least two holes of the battery tester housing and the cable pod and secure the battery tester housing and the cable pod when positioned through the holes and released such that respective feet of the at least two split pins fit into corresponding small openings within the cavity in at least one of the orientations described herein.



FIGS. 7A, 7B, 7C, and 7D show an example alternative securing mechanism for securing a cable pod (such as the pod 28) to an electronic battery tester using spring loaded fasteners. FIGS. 8, 9A, and 9B show another example alternative securing mechanism for securing a pod to an electronic battery tester using a simple lock and key mechanism.


As shown in FIGS. 7A-7D, dowel 84 can be inserted into respective holes 70 and 75 of the cable pod 28 and the bosses 74. The dowel 84 includes fins 86a and 86b that are extended in FIGS. 7A and 7C and retracted in FIGS. 7B and 7D. The fins 86a and 86b can retract into the dowel 84 such that the dowel can be inserted into the holes 70 and 75 (as shown in FIG. 7B). Fins 86a and 86b can also extend out from dowel 84 such that once the dowel has been inserted into holes 70 and 75, respective top surfaces of fins 86a and 86b can catch respective bottom surfaces 80 and 82 of cable pod 28 and housing 26. By catching the respective bottom surfaces 80 and 82, the dowel 84 is locked into its position shown in FIG. 7C and consequently cable pod 28 is secured to housing 26. As shown, bottom surface 80 is adjacent to and immediately below holes 70, and bottom surface 82 is adjacent to and immediately below holes 75. In such an example, bosses 74 may each include one of holes 75 and small openings 98 that provide respective open spaces for fins 86b to extend into. Also, FIGS. 5 and 6 show the holes 70 and 75 overlapping such that dowel 84 can be inserted into the holes and fins 86a and 86b can retract and then catch bottom surfaces 80 and 82 of cable pod 28 and housing 26, respectively.


As shown in FIG. 7B, edges of holes 70 and 75 may cause fins 86a and 86b to retract. In such an example, fins 86a and 86b may be loosely coupled to a hinge within dowel 84 such that the fins can extend and retract from respective openings of the dowel with at most a minimum force applied in either direction on the fins. Respective springs (not shown) may also be coupled with dowel 84 and fins 86a and 86b such that a force stronger than the minimum force is needed to be applied to the fins to cause the fins to retract. In such an example, at most a minimum force is needed to extend the fins.


As shown in FIG. 7D, button 88 attached to an upper portion of dowel 84 may be pressed to cause fins 86a and 86b to retract into the dowel. In such an instance, couplings between button 88 and fins 86a and 86b may include at least one spring. When button 88 is pressed downward (as shown by the downward arrow in FIG. 7D), the fins 86a and 86b retract and dowel 84 can be pulled out through holes 70 and 75; otherwise top surfaces of fins 86a and 86b catch bottom surfaces 80 and 82, respectively.



FIG. 8 shows an alternative instance of cable pod 28 and hosing 26 of tester 10. This alternative instance provides a securing mechanism for securing pod 28 to electronic battery tester 10 using a simple lock and key mechanism. As shown in FIG. 8 holes 70 and 75 are replaced by holes 90 and 92. Holes 90 and 92 include slot portions 91 and 93, respectively, and the slot portions can be aligned with each other as shown in FIGS. 8 and 9A. Also shown, bosses 74 include respective instances of holes 92, in this example.


As shown by FIGS. 8 and 9A, dowel 94 can be inserted into holes 90 and 92 when rectangular extensions 95a and 95b of the dowel are aligned with slot portions 91 and 93, respectively. In other words, rectangular extensions 95a and 95b of dowel 94 can line up with slot portions 91 and 93, respectively, such that the dowel can be inserted into holes 90 and 92. As shown by FIG. 9B, dowel 94 can be rotated once within holes 90 and 92 such that respective upper surfaces of rectangular extensions 95a and 95b can catch respective bottom surfaces 80 and 82 of cable pod 28 and housing 26. By catching the respective bottom surfaces 80 and 82, the dowel 94 is locked into its position shown in FIG. 9B and consequently cable pod 28 is secured to housing 26. Bottom surface 80 is adjacent to and immediately below holes 90. In an example, bottom surface 82 is adjacent to and immediately below holes 92. In another example, the bottom surface 82 is adjacent to and immediately below a lower portion of holes 92 and bosses 74. In such an example, bosses 74 may each include one of holes 92 (such as shown in FIG. 8) and small openings 98 that provide respective open spaces for rectangular extension 95b to turn into.


In another example, as shown in FIGS. 9C and 9D, a simple split pin arrangement may secure the pod to the housing. For example, split pin 96 with feet 97a and 97b can be configured such that it can be squeezed (as shown by the arrows in FIG. 9C) and inserted through holes 70 and 75. Respective small openings 98 can be included amongst the inner sides of the holes 75 at respective bottom-side portions. This configuration provides for split pin 96 to insert into the holes 70 and 75 and then release to expand such that feet 97b of the split pin extend horizontally to fit into the small openings 98 and secure the pod 28 to the housing 26. Feet 97a and 97b can also extend out from the body of the split pin 96 such that once the split pin has been inserted into holes 70 and 75, respective top surfaces of feet 97a and 97b can catch respective bottom surfaces 80 and 82 of cable pod 28 and housing 26. By catching the respective bottom surfaces 80 and 82, the split pin 96 is locked into its position (as shown in FIG. 9D) and consequently cable pod 28 is secured to housing 26.


In another example, not depicted, cable connections to the housing of a tester may include twist lock and quick release mechanisms. Such a scheme may include a twist lock where the pod is twisted to be locked to the housing, or a fastener is inserted and twisted (such as dowel 94 shown in FIGS. 9A and 9B) to lock the pod to the housing. The quick release mechanism may include parts that enable a release between the pod and housing without performing the reverse operations of the lock operations, such as a reverse twist and pull of the pod and/or fastener from the housing. The quick release mechanism may include a simple manipulation of a lever or a press of a button. Whether a twist lock and quick release mechanism or another type of fastening and release mechanism is used, such mechanisms can be configured to provide at least two orientations of the securing of a cable pod to tester housing.


For example, the pod 28 can be positioned and secured with the cavity 30 in at least the two different orientations shown in FIGS. 5 and 6. As shown, the at least two different orientations are at least substantially opposed to each other and are preset according to the structure of the pod 28 and the cavity 30. From a different perspective, FIG. 3 shows cable pod 28 oriented such that first extended portion 42 of cable pod 28 is positioned to fit within first channel 56 of cavity 30. Accordingly, in the first orientation shown in FIG. 3, the second extended portion 44 of cable pod 28 is positioned to fit within second channel 58 of cavity 30. FIG. 5 shows cable pod 28 oriented such that first extended portion 42 of cable pod 28 is fitted within first channel 56 of cavity 30 and the second extended portion 44 of cable pod 28 is fitted within second channel 58 of cavity 30. In the second orientation, shown from a different perspective in FIG. 4, the first extended portion 42 of cable pod 28 is positioned to fit within second channel 58 of cavity 30 and the second extended portion 44 of cable pod 28 is positioned to fit within the first channel 56 of cavity 30. FIG. 6 shows the first extended portion 42 of cable pod 28 is fitted within second channel 58 of cavity 30 and the second extended portion 44 of cable pod 28 is fitted within the first channel 56 of cavity 30. In an example, the orientation shown in FIG. 5 may represent a first orientation of at least two different preset orientations including the battery tester cable oriented out of a top surface of the battery tester. Also, in such an example, the orientation shown in FIG. 6 may represent a second orientation of the at least two different preset orientations including the battery tester cable oriented out of a bottom surface of the battery tester.


In an example not depicted, the battery tester may include a manually extendable and retractable hook. In such an example, the hook may also be adjustable such that it is positioned at an opposite end of the tester from the battery tester cable.


The cable pod 28 includes electrical connectors 60 and 62 and cavity 30 includes electrical connectors 64 and 66. Connectors 60 and 62 can be electrically coupled to connectors 64 and 66, respectively, when of cable pod 28 is at least fitted within cavity 30. In an example, electrical coupling may occur once cable pod 28 is secured within cavity 30. As shown in FIGS. 2-6, electrical connectors 64 and 66 include reversible electrical connectors. The reversible connectors can provide electrical connection of cable wires to circuitry within the housing 26 when cable pod 28 is positioned and secured with cavity 30 in the first or second orientation.


Reversible electrical connectors 64 and 66 include key receiving features 76 and 78, respectively. Key receiving feature 76 faces second end 50 of main connector receiving portion 46 of cavity 30. Key receiving feature 78 faces first end 48 of main connector receiving portion 46 of cavity 30. Each of reversible electrical connectors 64 and 66 also includes a plurality of pin connections 80. Key receiving features 76 and 78 are configured to receive keys 77 and 79 included in connectors 60 and 62 of cable pod 28 in the first orientation, respectively. The reverse occurs in the second orientation.


In some embodiments, in order to facilitate electrical connection in both connection orientations, pins connections 80 may be divided into two groups of pin connections. For example, in the first orientation, only pins connections 82 of reversible electrical connectors 64 and 66 may couple to pin connections (not shown) in connectors 60 and 62 of cable pod 28 to provide electrical connections. In the second orientation, only pin connections 84 of reversible electrical connectors 64 and 66 may couple to pin connections in connectors 60 and 62 of cable pod 28 to provide electrical connections. In some other embodiments, instead of two connectors 60 and 62, cable pod 28 may include only one connector 60. In such embodiments, pin connections 80 in connectors 64 and 66 in cavity 30 are not divided into two groups. Instead, each of connectors 64 and 66 separately include the pin connections to connect to electrical circuitry within housing 26. Thus, in examples with only connector 60, in the first orientation, the single connector 60 of cable pod 28 couples only to connector 64 in cavity 30 to provide the electrical connection. In the second orientation, the single connector 60 of cable pod 28 couples only to connector 66 in cavity 30 to provide the electrical connection. Either way, the connections can include Kelvin connections as further described with respect to FIG. 10.



FIG. 10 a simplified circuit diagram of battery tester circuitry that includes battery tester circuitry 100. Circuitry 100 may be within housing 26. Circuitry 100 is shown coupled to battery 12 via cable 14, cable pod 28, and reversible electrical connectors 64 and 66. Circuitry 100 can be configured to determine the conductance (GBAT) of battery 12 and the voltage potential (VBAT) between terminals 12A and 12B. Circuitry 100 includes current source 102, differential amplifier 104, analog-to-digital converter 106 and microprocessor 108.


In operation, current source 102 is controlled by microprocessor 108 and can provide a current in the direction shown by the arrow in FIG. 10. In one embodiment, the signal outputted by the current source 102 is a square wave or a pulse or other signal with a time varying component including a transient signal.


Amplifier 104 is capacitively coupled to battery 12 through capacitors C1 and C2. Amplifier 104 has an output electrically coupled to an input of analog-to-digital converter 106. Amplifier 104 is electrically coupled to terminals 12A and 12B of battery 12 through capacitors C1 and C2, respectively, and provides an output related to the voltage potential difference between terminals 12A and 12B. In some examples, amplifier 104 may have a high input impedance.


Circuitry 100 also includes a second differential amplifier 117 having inverting and non-inverting inputs electrically coupled to terminals 12A and 12B, respectively. Amplifier 117 is electrically coupled to measure the open circuit potential voltage (VBAT) of battery 12 between terminals 12A and 12B. The output of amplifier 117, which is an analog signal, is communicated to analog-to-digital converter 106 and then converted into a digital signal such that the voltage across terminals 12A and 12B can be measured by microprocessor 108.


As depicted in FIG. 10, circuitry 100 can be electrically coupled to battery 12 through a four-point connection technique known as a Kelvin connection. A Kelvin connection allows current I to be injected into battery 12 through a first pair of terminals while the voltage V across the terminals 12A and 12B is measured by a second pair of connections. Where little current flows through amplifier 104, the voltage drop across the inputs to amplifier 104 is substantially identical to the voltage drop across terminals 12A and 12B of battery 12. The output of differential amplifier 104 is then converted to a digital format and is provided to microprocessor 108.


Microprocessor 108 is electrically coupled to system clock 110, memory 112, visual output 114 and analog-to-digital converter 106. Microprocessor 108 is configured to receive an input from input device 113 and an input/output (I/O) port 115. Microprocessor 108 is also configured to communicate an output to output device 114 and the I/O port 115. Microprocessor 108 operates at a frequency determined by system clock 110 and in accordance with programming instructions stored in memory 112, to measure the voltage across terminals 12A and 12B.


Microprocessor 108 may also determine the dynamic conductance of battery 12 by applying a current pulse I using current source 102. The microprocessor determines the change in battery voltage due to the current pulse I using amplifier 104 and analog-to-digital converter 106. The value of current I generated by current source 102 may be predetermined and is stored in memory 112. In one embodiment, current I may be obtained by applying a load to battery 12. Microprocessor 108 can calculate the conductance of battery 12 using the following equation:

Conductance=GBAT=ΔI/ΔV  Equation 1


In Equation 1, ΔI is the change in current flowing through battery 12 due to current source 102, and ΔV is the change in battery voltage due to applied current ΔI. Microprocessor 108 determines a condition of battery 12 based on such measurements. Note that although a current is described, any forcing function with a time varying component may be used and the source may be active or a passive load. Although measurement of dynamic conductance is described, any dynamic parameter may be measured.


Although the some of the example embodiments show cable pod 28 and cavity 30 having a particular shape, it should be noted that, in different embodiments, cable pod 28 and cavity 30 may be of any suitable shape and configuration.


Although the present disclosure provides only the example embodiments described herein, those skilled in the art will recognize that changes may be made in form and detail without departing from the spirit and scope of the disclosure.

Claims
  • 1. A battery tester, comprising: a battery tester cable comprising a plurality of cable wires;a cable pod coupled to an end of the battery tester cable, the cable pod having a first extended portion coupled to the end of the battery tester cable and a second extended portion opposite the first extended portion, the cable pod further including first and second connectors electrically coupled to the cable wires; anda battery tester housing including a cavity configured to receive the cable pod and having first and second channels extending therefrom, wherein the cable pod and the cavity include mating parts configured to mate the cable pod within the cavity in at least two different preset orientations and wherein the battery tester cable and the first extended portion extend in the first channel away from the battery tester housing in a first direction and the second extended portion fits in the second channel when the cable pod and cavity are oriented in a first of the at least two different preset orientations, and the battery tester cable and the first extended portion extend in a second direction in the second channel and the second extended portion fits in the first channel when the cable pod and cavity are oriented in a second of the at least two different preset orientations, the battery tester housing further including batter tester circuitry carried therein and coupled to reversible connectors in the cavity which provide a reversible connection between the battery tester circuitry and the first and second connectors of the cable pod.
  • 2. The battery tester of claim 1, wherein the at least two different preset orientations are at least substantially opposed to each other.
  • 3. The battery tester of claim 2, wherein a first orientation of the at least two different preset orientations includes the battery tester cable oriented out of a top surface of the battery tester, and wherein a second orientation of the at least two different preset orientations includes the battery tester cable oriented out of a bottom surface of the battery tester.
  • 4. The battery tester of claim 1, wherein the battery tester cable includes: a first end with two battery connectors configurable to fasten to two respective terminals of a battery; anda second end including the end of the battery tester cable coupled to the cable pod.
  • 5. The battery tester of claim 4, wherein the battery tester circuitry is configured with the battery tester cable to provide two Kelvin connections with the two battery connectors when fastened to the two respective terminals of the battery such that four-terminal sensing can occur.
  • 6. The battery tester of claim 4, and wherein the battery tester circuitry is configured with the battery tester cable to provide two connections with the two battery connectors when fastened to the two respective terminals of the battery such that two-terminal sensing can occur.
  • 7. The battery tester of claim 1, further comprising a manually extendable and retractable hook.
  • 8. The battery tester of claim 1, further comprising securing parts configured to secure the cable pod within the cavity in either of the at least two different preset orientations.
  • 9. The battery tester of claim 8, wherein the battery tester housing and the cable pod each include at least two holes, wherein the at least two holes of the battery tester housing are configured to align with the at least two holes of the cable pod such that the securing parts can mate with the at least two holes of the battery tester housing and the cable pod to secure the cable pod within the cavity in either of the at least two different preset orientations.
  • 10. The battery tester of claim 9, wherein the at least two holes of the battery tester housing and the cable pod include threaded holes and the securing parts include corresponding threaded fasteners.
  • 11. The battery tester of claim 9, wherein the cable pod is attachable and detachable to the cavity of the battery tester housing manually without use of an additional device or tool.
  • 12. The battery tester of claim 11, wherein the securing parts include dowels with fins that are configured to: retract when inserted through the at least two holes of the battery tester housing and the cable pod; andextend such that top surfaces of the fins catch bottom surfaces of the battery tester housing and the cable pod in way that secures the cable pod within the cavity in either of the at least two different preset orientations.
  • 13. The battery tester of claim 11, wherein the securing parts include at least two dowels with rectangular extensions, and wherein the at least two holes of the battery tester housing and the cable pod are configured to align with each other such that the at least two dowels can be inserted into the at least two holes of the battery tester housing and the cable pod and subsequently turned such that top surfaces of the rectangular extensions catch bottom surfaces of the battery tester housing and the cable pod in way that secures the cable pod within the cavity in either of the at least two different preset orientations.
  • 14. The battery tester of claim 11, wherein the securing parts include at least two split pins that each are configured to be squeezed through the at least two holes of the battery tester housing and the cable pod and secure the battery tester housing and the cable pod when positioned through the holes and released such that respective feet of the at least two split pins fit into corresponding small openings within the at least two holes of the battery tester housing.
  • 15. The battery tester of claim 11, wherein the cable pod and the battery tester housing are configured to attach to each other by a twist lock.
  • 16. The battery tester of claim 15, wherein the cable pod and the battery tester housing are configured to detach from each other by a quick release.
CROSS-REFERENCE TO RELATED APPLICATION

The present application is based on and claims the benefit of U.S. Provisional Patent Application Ser. No. 62/055,884, filed Sep. 26, 2014, the content of which is hereby incorporated by reference in its entirety.

US Referenced Citations (1004)
Number Name Date Kind
85553 Adams Jan 1869 A
2000665 Neal May 1935 A
2254846 Heyer Sep 1941 A
2417940 Lehman Mar 1947 A
2437772 Wall Mar 1948 A
2514745 Dalzell Jul 1950 A
2727221 Springg Dec 1955 A
3025455 Jonsson Mar 1962 A
3178686 Mills Apr 1965 A
3215194 Sununu et al. Nov 1965 A
3223969 Alexander Dec 1965 A
3267452 Wolf Aug 1966 A
3356936 Smith Dec 1967 A
3562634 Latner Feb 1971 A
3593099 Scholl Jul 1971 A
3607673 Seyl Sep 1971 A
3652341 Halsall et al. Mar 1972 A
3676770 Sharaf et al. Jul 1972 A
3699433 Smith, Jr. Oct 1972 A
3729989 Little May 1973 A
3745441 Soffer Jul 1973 A
3750011 Kreps Jul 1973 A
3753094 Furuishi et al. Aug 1973 A
3776177 Bryant et al. Dec 1973 A
3796124 Crosa Mar 1974 A
3808522 Sharaf Apr 1974 A
3811089 Strezelewicz May 1974 A
3816805 Terry Jun 1974 A
3850490 Zehr Nov 1974 A
3857082 Van Opijnen Dec 1974 A
3873911 Champlin Mar 1975 A
3876931 Godshalk Apr 1975 A
3879654 Kessinger Apr 1975 A
3886426 Daggett May 1975 A
3886443 Miyakawa et al. May 1975 A
3889248 Ritter Jun 1975 A
3906329 Bader Sep 1975 A
3909708 Champlin Sep 1975 A
3920284 Lane et al. Nov 1975 A
3936744 Perlmutter Feb 1976 A
3939400 Steele Feb 1976 A
3946299 Christianson et al. Mar 1976 A
3947757 Grube et al. Mar 1976 A
3969667 McWilliams Jul 1976 A
3979664 Harris Sep 1976 A
3984762 Dowgiallo, Jr. Oct 1976 A
3984768 Staples Oct 1976 A
3989544 Santo Nov 1976 A
3997830 Newell et al. Dec 1976 A
4008619 Alcaide et al. Feb 1977 A
4023882 Pettersson May 1977 A
4024953 Nailor, III May 1977 A
4047091 Hutchines et al. Sep 1977 A
4053824 Dupuis et al. Oct 1977 A
4056764 Endo et al. Nov 1977 A
4057313 Polizzano Nov 1977 A
4070624 Taylor Jan 1978 A
4086531 Bernier Apr 1978 A
4106025 Katz Aug 1978 A
4112351 Back et al. Sep 1978 A
4114083 Benham et al. Sep 1978 A
4126874 Suzuki et al. Nov 1978 A
4160916 Papasideris Jul 1979 A
4176315 Sunnarborg Nov 1979 A
4178546 Hulls et al. Dec 1979 A
4193025 Frailing et al. Mar 1980 A
4207610 Gordon Jun 1980 A
4207611 Gordon Jun 1980 A
4217645 Barry et al. Aug 1980 A
4218745 Perkins Aug 1980 A
4280457 Bloxham Jul 1981 A
4297639 Branham Oct 1981 A
4307342 Peterson Dec 1981 A
4315204 Sievers et al. Feb 1982 A
4316185 Watrous et al. Feb 1982 A
4322685 Frailing et al. Mar 1982 A
4351405 Fields et al. Jun 1982 A
4352067 Ottone Sep 1982 A
4360780 Skutch, Jr. Nov 1982 A
4361809 Bil et al. Nov 1982 A
4363407 Buckler et al. Dec 1982 A
4369407 Korbell Jan 1983 A
4379989 Kurz et al. Apr 1983 A
4379990 Sievers et al. Apr 1983 A
4385269 Aspinwall et al. May 1983 A
4390828 Converse et al. Jun 1983 A
4392101 Saar et al. Jul 1983 A
4396880 Windebank Aug 1983 A
4408157 Beaubien Oct 1983 A
4412169 Dell'Orto Oct 1983 A
4423378 Marino et al. Dec 1983 A
4423379 Jacobs et al. Dec 1983 A
4424491 Bobbett et al. Jan 1984 A
4425791 Kling Jan 1984 A
4441359 Ezoe Apr 1984 A
4459548 Lentz et al. Jul 1984 A
4514694 Finger Apr 1985 A
4520353 McAuliffe May 1985 A
4521498 Juergens Jun 1985 A
4560230 Inglis Dec 1985 A
4564798 Young Jan 1986 A
4620767 Woolf Nov 1986 A
4626765 Tanaka Dec 1986 A
4633418 Bishop Dec 1986 A
4637359 Cook Jan 1987 A
4643511 Gawlik Feb 1987 A
4659977 Kissel et al. Apr 1987 A
4663580 Wortman May 1987 A
4665370 Holland May 1987 A
4667143 Cooper et al. May 1987 A
4667279 Maier May 1987 A
4678998 Muramatsu Jul 1987 A
4679000 Clark Jul 1987 A
4680528 Mikami et al. Jul 1987 A
4686442 Radomski Aug 1987 A
4697134 Burkum et al. Sep 1987 A
4707795 Alber et al. Nov 1987 A
4709202 Koenck et al. Nov 1987 A
4710861 Kanner Dec 1987 A
4719428 Liebermann Jan 1988 A
4723656 Kiernan et al. Feb 1988 A
4743855 Randin et al. May 1988 A
4745349 Palanisamy et al. May 1988 A
4773011 VanHoose Sep 1988 A
4781629 Mize Nov 1988 A
D299909 Casey Feb 1989 S
4816768 Champlin Mar 1989 A
4820966 Fridman Apr 1989 A
4825170 Champlin Apr 1989 A
4826457 Varatta May 1989 A
4847547 Eng, Jr. et al. Jul 1989 A
4849700 Morioka et al. Jul 1989 A
4874679 Miyagawa Oct 1989 A
4876495 Palanisamy et al. Oct 1989 A
4881038 Champlin Nov 1989 A
4885523 Koench Dec 1989 A
4888716 Ueno Dec 1989 A
4901007 Sworm Feb 1990 A
4907176 Bahnick et al. Mar 1990 A
4912416 Champlin Mar 1990 A
4913116 Katogi et al. Apr 1990 A
4926330 Abe et al. May 1990 A
4929931 McCuen May 1990 A
4931738 MacIntyre et al. Jun 1990 A
4932905 Richards Jun 1990 A
4933845 Hayes Jun 1990 A
4934957 Bellusci Jun 1990 A
4937528 Palanisamy Jun 1990 A
4947124 Hauser Aug 1990 A
4949046 Seyfang Aug 1990 A
4956597 Heavey et al. Sep 1990 A
4965738 Bauer et al. Oct 1990 A
4968941 Rogers Nov 1990 A
4968942 Palanisamy Nov 1990 A
4969834 Johnson Nov 1990 A
4983086 Hatrock Jan 1991 A
5004979 Marino et al. Apr 1991 A
5030916 Bokitch Jul 1991 A
5032825 Kuznicki Jul 1991 A
5034893 Fisher Jul 1991 A
5037335 Campbell Aug 1991 A
5037778 Stark et al. Aug 1991 A
5047722 Wurst et al. Sep 1991 A
5081565 Nabha et al. Jan 1992 A
5083076 Scott Jan 1992 A
5087881 Peacock Feb 1992 A
5095223 Thomas Mar 1992 A
5108320 Kimber Apr 1992 A
5109213 Williams Apr 1992 A
5126675 Yang Jun 1992 A
5130658 Bohmer Jul 1992 A
5140269 Champlin Aug 1992 A
5144218 Bosscha Sep 1992 A
5144248 Alexandres et al. Sep 1992 A
D330338 Wang Oct 1992 S
5159272 Rao et al. Oct 1992 A
5160881 Schramm et al. Nov 1992 A
5164653 Reem Nov 1992 A
5167529 Verge Dec 1992 A
5168208 Schultz et al. Dec 1992 A
5170124 Blair et al. Dec 1992 A
5179335 Nor Jan 1993 A
5187382 Kondo Feb 1993 A
5194799 Tomantschger Mar 1993 A
5204611 Nor et al. Apr 1993 A
5214370 Harm et al. May 1993 A
5214385 Gabriel et al. May 1993 A
5223747 Tschulena Jun 1993 A
5241275 Fang Aug 1993 A
5254952 Salley Oct 1993 A
5266880 Newland Nov 1993 A
5278759 Berra et al. Jan 1994 A
5281919 Palanisamy Jan 1994 A
5281920 Wurst Jan 1994 A
5295078 Stich et al. Mar 1994 A
5296823 Dietrich Mar 1994 A
5298797 Redl Mar 1994 A
5300874 Shimamoto et al. Apr 1994 A
5302902 Groehl Apr 1994 A
5309052 Kim May 1994 A
5313152 Wozniak et al. May 1994 A
5315287 Sol May 1994 A
5321626 Palladino Jun 1994 A
5321627 Reher Jun 1994 A
5323337 Wilson et al. Jun 1994 A
5325041 Briggs Jun 1994 A
5331268 Patino et al. Jul 1994 A
5332927 Paul et al. Jul 1994 A
5336993 Thomas et al. Aug 1994 A
5338515 Dalla Betta et al. Aug 1994 A
5339018 Brokaw Aug 1994 A
5343380 Champlin Aug 1994 A
5345384 Przybyla et al. Sep 1994 A
5347163 Yoshimura Sep 1994 A
5349535 Gupta Sep 1994 A
5352968 Reni et al. Oct 1994 A
5357519 Martin et al. Oct 1994 A
5365160 Leppo et al. Nov 1994 A
5365453 Startup et al. Nov 1994 A
5369364 Renirie et al. Nov 1994 A
5381096 Hirzel Jan 1995 A
5384540 Dessel Jan 1995 A
5387871 Tsai Feb 1995 A
5394093 Cervas Feb 1995 A
5402007 Center et al. Mar 1995 A
5410754 Klotzbach et al. Apr 1995 A
5412308 Brown May 1995 A
5412323 Kato et al. May 1995 A
5425041 Seko et al. Jun 1995 A
5426371 Salley et al. Jun 1995 A
5426416 Jefferies et al. Jun 1995 A
5430645 Keller Jul 1995 A
5432025 Cox Jul 1995 A
5432426 Yoshida Jul 1995 A
5434495 Toko Jul 1995 A
5435185 Eagan Jul 1995 A
5442274 Tamai Aug 1995 A
5445026 Eagan Aug 1995 A
5449996 Matsumoto et al. Sep 1995 A
5449997 Gilmore et al. Sep 1995 A
5451881 Finger Sep 1995 A
5453027 Buell et al. Sep 1995 A
5457377 Jonsson Oct 1995 A
5459660 Berra Oct 1995 A
5462439 Keith Oct 1995 A
5469043 Cherng et al. Nov 1995 A
5485090 Stephens Jan 1996 A
5486123 Miyazaki Jan 1996 A
5488300 Jamieson Jan 1996 A
5504674 Chen et al. Apr 1996 A
5508599 Koenck Apr 1996 A
5519383 De La Rosa May 1996 A
5528148 Rogers Jun 1996 A
5537967 Tashiro et al. Jul 1996 A
5541489 Dunstan Jul 1996 A
5546317 Andrieu Aug 1996 A
5548273 Nicol et al. Aug 1996 A
5550485 Falk Aug 1996 A
5561380 Sway-Tin et al. Oct 1996 A
5562501 Kinoshita et al. Oct 1996 A
5563496 McClure Oct 1996 A
5572136 Champlin Nov 1996 A
5573611 Koch et al. Nov 1996 A
5574355 McShane et al. Nov 1996 A
5578915 Crouch, Jr. et al. Nov 1996 A
5583416 Klang Dec 1996 A
5585416 Audett et al. Dec 1996 A
5585728 Champlin Dec 1996 A
5589757 Klang Dec 1996 A
5592093 Klingbiel Jan 1997 A
5592094 Ichikawa Jan 1997 A
5596260 Moravec et al. Jan 1997 A
5596261 Suyama Jan 1997 A
5598098 Champlin Jan 1997 A
5602462 Stich et al. Feb 1997 A
5606242 Hull et al. Feb 1997 A
5614788 Mullins et al. Mar 1997 A
5621298 Harvey Apr 1997 A
5631536 Tseng May 1997 A
5631831 Bird et al. May 1997 A
5633985 Severson et al. May 1997 A
5637978 Kellett et al. Jun 1997 A
5642031 Brotto Jun 1997 A
5644212 Takahashi Jul 1997 A
5650937 Bounaga Jul 1997 A
5652501 McClure et al. Jul 1997 A
5653659 Kunibe et al. Aug 1997 A
5654623 Shiga et al. Aug 1997 A
5656920 Cherng et al. Aug 1997 A
5661368 Deol et al. Aug 1997 A
5666040 Bourbeau Sep 1997 A
5675234 Greene Oct 1997 A
5677077 Faulk Oct 1997 A
5684678 Barrett Nov 1997 A
5685734 Kutz Nov 1997 A
5691621 Phuoc et al. Nov 1997 A
5699050 Kanazawa Dec 1997 A
5701089 Perkins Dec 1997 A
5705929 Caravello et al. Jan 1998 A
5707015 Guthrie Jan 1998 A
5710503 Sideris et al. Jan 1998 A
5711648 Hammerslag Jan 1998 A
5712795 Layman et al. Jan 1998 A
5717336 Basell et al. Feb 1998 A
5717937 Fritz Feb 1998 A
5721688 Bramwell Feb 1998 A
5732074 Spaur et al. Mar 1998 A
5739667 Matsuda et al. Apr 1998 A
5744962 Alber et al. Apr 1998 A
5745044 Hyatt, Jr. et al. Apr 1998 A
5747189 Perkins May 1998 A
5747909 Syverson et al. May 1998 A
5747967 Muljadi et al. May 1998 A
5754417 Nicollini May 1998 A
5757192 McShane et al. May 1998 A
5760587 Harvey Jun 1998 A
5772468 Kowalski et al. Jun 1998 A
5773962 Nor Jun 1998 A
5773978 Becker Jun 1998 A
5778326 Moroto et al. Jul 1998 A
5780974 Pabla et al. Jul 1998 A
5780980 Naito Jul 1998 A
5789899 van Phuoc et al. Aug 1998 A
5793359 Ushikubo Aug 1998 A
5796239 van Phuoc et al. Aug 1998 A
5808469 Kopera Sep 1998 A
5811979 Rhein Sep 1998 A
5818201 Stockstad et al. Oct 1998 A
5818234 McKinnon Oct 1998 A
5820407 Morse et al. Oct 1998 A
5821756 McShane et al. Oct 1998 A
5821757 Alvarez et al. Oct 1998 A
5825174 Parker Oct 1998 A
5831435 Troy Nov 1998 A
5832396 Moroto et al. Nov 1998 A
5850113 Weimer et al. Dec 1998 A
5862515 Kobayashi et al. Jan 1999 A
5865638 Trafton Feb 1999 A
5869951 Takahashi Feb 1999 A
5870018 Person Feb 1999 A
5871858 Thomsen et al. Feb 1999 A
5872443 Williamson Feb 1999 A
5872453 Shimoyama et al. Feb 1999 A
5883306 Hwang Mar 1999 A
5884202 Arjomand Mar 1999 A
5895440 Proctor et al. Apr 1999 A
5903154 Zhang et al. May 1999 A
5903716 Kimber et al. May 1999 A
5912534 Benedict Jun 1999 A
5914605 Bertness Jun 1999 A
5916287 Arjomand et al. Jun 1999 A
5927938 Hammerslag Jul 1999 A
5929609 Joy et al. Jul 1999 A
5935180 Fieramosca et al. Aug 1999 A
5939855 Proctor et al. Aug 1999 A
5939861 Joko et al. Aug 1999 A
5945829 Bertness Aug 1999 A
5946605 Takahisa et al. Aug 1999 A
5950144 Hall et al. Sep 1999 A
5951229 Hammerslag Sep 1999 A
5953322 Kimball Sep 1999 A
5955951 Wischerop et al. Sep 1999 A
5961561 Wakefield, II Oct 1999 A
5961604 Anderson et al. Oct 1999 A
5963012 Garcia et al. Oct 1999 A
5969625 Russo Oct 1999 A
5973598 Beigel Oct 1999 A
5978805 Carson Nov 1999 A
5982138 Krieger Nov 1999 A
5990664 Rahman Nov 1999 A
6002238 Champlin Dec 1999 A
6005489 Siegle et al. Dec 1999 A
6005759 Hart et al. Dec 1999 A
6008652 Theofanopoulos et al. Dec 1999 A
6009369 Boisvert et al. Dec 1999 A
6016047 Notten et al. Jan 2000 A
6031354 Wiley et al. Feb 2000 A
6031368 Klippel et al. Feb 2000 A
6037745 Koike et al. Mar 2000 A
6037751 Klang Mar 2000 A
6037777 Champlin Mar 2000 A
6037778 Makhija Mar 2000 A
6037749 Parsonage Apr 2000 A
6046514 Rouillard et al. Apr 2000 A
6051976 Bertness Apr 2000 A
6055468 Kaman et al. Apr 2000 A
6061638 Joyce May 2000 A
6064372 Kahkoska May 2000 A
6072299 Kurle et al. Jun 2000 A
6072300 Tsuji Jun 2000 A
6075339 Reipur et al. Jun 2000 A
6081098 Bertness et al. Jun 2000 A
6081109 Seymour et al. Jun 2000 A
6081154 Ezell et al. Jun 2000 A
6087815 Pfeifer et al. Jul 2000 A
6091238 McDermott Jul 2000 A
6091245 Bertness Jul 2000 A
6094033 Ding et al. Jul 2000 A
6097193 Bramwell Aug 2000 A
6100670 Levesque Aug 2000 A
6100815 Pailthorp Aug 2000 A
6104167 Bertness et al. Aug 2000 A
6113262 Purola et al. Sep 2000 A
6114834 Parise Sep 2000 A
6121880 Scott et al. Sep 2000 A
6136914 Hergenrother et al. Oct 2000 A
6137269 Champlin Oct 2000 A
6140797 Dunn Oct 2000 A
6141608 Rother Oct 2000 A
6144185 Dougherty et al. Nov 2000 A
6147598 Murphy et al. Nov 2000 A
6149653 Deslauriers Nov 2000 A
6150793 Lesesky et al. Nov 2000 A
6158000 Collins Dec 2000 A
6161640 Yamaguchi Dec 2000 A
6163156 Bertness Dec 2000 A
6164063 Mendler Dec 2000 A
6167349 Alvarez Dec 2000 A
6172483 Champlin Jan 2001 B1
6172505 Bertness Jan 2001 B1
6177737 Palfey et al. Jan 2001 B1
6181545 Amatucci et al. Jan 2001 B1
6184655 Malackowski Feb 2001 B1
6184656 Karunasiri et al. Feb 2001 B1
6191557 Gray et al. Feb 2001 B1
6202739 Pal et al. Mar 2001 B1
6211651 Nemoto Apr 2001 B1
6211653 Stasko Apr 2001 B1
6215275 Bean Apr 2001 B1
6218805 Melcher Apr 2001 B1
6218936 Imao Apr 2001 B1
6222342 Eggert et al. Apr 2001 B1
6222369 Champlin Apr 2001 B1
D442503 Lundbeck et al. May 2001 S
6225808 Varghese et al. May 2001 B1
6225898 Kamiya et al. May 2001 B1
6236186 Helton et al. May 2001 B1
6236332 Conkright et al. May 2001 B1
6236949 Hart May 2001 B1
6238253 Qualls May 2001 B1
6242887 Burke Jun 2001 B1
6242921 Thibedeau et al. Jun 2001 B1
6249124 Bertness Jun 2001 B1
6250973 Lowery et al. Jun 2001 B1
6252942 Zoiss Jun 2001 B1
6254438 Gaunt Jul 2001 B1
6255826 Ohsawa Jul 2001 B1
6259170 Limoge et al. Jul 2001 B1
6259254 Klang Jul 2001 B1
6262563 Champlin Jul 2001 B1
6262692 Babb Jul 2001 B1
6263268 Nathanson Jul 2001 B1
6263322 Kirkevold et al. Jul 2001 B1
6271643 Becker et al. Aug 2001 B1
6271748 Derbyshire et al. Aug 2001 B1
6272387 Yoon Aug 2001 B1
6275008 Arai et al. Aug 2001 B1
6285191 Gollomp et al. Sep 2001 B1
6294896 Champlin Sep 2001 B1
6294897 Champlin Sep 2001 B1
6304087 Bertness Oct 2001 B1
6307349 Koenck et al. Oct 2001 B1
6310481 Bertness Oct 2001 B2
6313607 Champlin Nov 2001 B1
6313608 Varghese et al. Nov 2001 B1
6316914 Bertness Nov 2001 B1
6320385 Ng et al. Nov 2001 B1
6323650 Bertness et al. Nov 2001 B1
6324042 Andrews Nov 2001 B1
6329793 Bertness et al. Dec 2001 B1
6331762 Bertness Dec 2001 B1
6332113 Bertness Dec 2001 B1
6346795 Haraguchi et al. Feb 2002 B2
6347958 Tsai Feb 2002 B1
6351102 Troy Feb 2002 B1
6356042 Kahlon et al. Mar 2002 B1
6356083 Ying Mar 2002 B1
6359441 Bertness Mar 2002 B1
6359442 Henningson et al. Mar 2002 B1
6363303 Bertness Mar 2002 B1
RE37677 Irie Apr 2002 E
6377031 Karuppana et al. Apr 2002 B1
6384608 Namaky May 2002 B1
6388448 Cervas May 2002 B1
6389337 Kolls May 2002 B1
6392414 Bertness May 2002 B2
6396278 Makhija May 2002 B1
6407554 Godau et al. Jun 2002 B1
6411098 Laletin Jun 2002 B1
6417669 Champlin Jul 2002 B1
6420852 Sato Jul 2002 B1
6424157 Gollomp et al. Jul 2002 B1
6424158 Klang Jul 2002 B2
6433512 Birkler et al. Aug 2002 B1
6437957 Karuppana et al. Aug 2002 B1
6441585 Bertness Aug 2002 B1
6445158 Bertness et al. Sep 2002 B1
6448778 Rankin Sep 2002 B1
6449726 Smith Sep 2002 B1
6456036 Thandiwe Sep 2002 B1
6456045 Troy et al. Sep 2002 B1
6465908 Karuppana et al. Oct 2002 B1
6466025 Klang Oct 2002 B1
6466026 Champlin Oct 2002 B1
6469511 Vonderhaar et al. Oct 2002 B1
6473659 Shah et al. Oct 2002 B1
6477478 Jones et al. Nov 2002 B1
6495990 Champlin Dec 2002 B2
6497209 Karuppana et al. Dec 2002 B1
6500025 Moenkhaus et al. Dec 2002 B1
6501243 Kaneko Dec 2002 B1
6505507 Imao Jan 2003 B1
6507196 Thomsen et al. Jan 2003 B2
6526361 Jones et al. Feb 2003 B1
6529723 Bentley Mar 2003 B1
6531848 Chitsazan et al. Mar 2003 B1
6532425 Boost et al. Mar 2003 B1
6533316 Breed et al. Mar 2003 B2
6534992 Meissner et al. Mar 2003 B2
6534993 Bertness Mar 2003 B2
6536536 Gass et al. Mar 2003 B1
6544078 Palmisano et al. Apr 2003 B2
6545599 Derbyshire et al. Apr 2003 B2
6556019 Bertness Apr 2003 B2
6566883 Vonderhaar et al. May 2003 B1
6570385 Roberts et al. May 2003 B1
6577107 Kechmire Jun 2003 B2
6586941 Bertness et al. Jul 2003 B2
6597150 Bertness et al. Jul 2003 B1
6599243 Woltermann et al. Jul 2003 B2
6600815 Walding Jul 2003 B1
6611740 Lowrey et al. Aug 2003 B2
6614349 Proctor et al. Sep 2003 B1
6618644 Bean Sep 2003 B2
6621272 Champlin Sep 2003 B2
6623314 Cox et al. Sep 2003 B1
6624635 Lui Sep 2003 B1
6628011 Droppo et al. Sep 2003 B2
6629054 Makhija et al. Sep 2003 B2
6633165 Bertness Oct 2003 B2
6635974 Karuppana et al. Oct 2003 B1
6636790 Lightner et al. Oct 2003 B1
6667624 Raichle et al. Dec 2003 B1
6679212 Kelling Jan 2004 B2
6686542 Zhang Feb 2004 B2
6696819 Bertness Feb 2004 B2
6707303 Bertness et al. Mar 2004 B2
6732031 Lightner et al. May 2004 B1
6736941 Oku et al. May 2004 B2
6737831 Champlin May 2004 B2
6738697 Breed May 2004 B2
6740990 Tozuka et al. May 2004 B2
6744149 Karuppana et al. Jun 2004 B1
6745153 White et al. Jun 2004 B2
6759849 Bertness Jul 2004 B2
6771073 Henningson et al. Aug 2004 B2
6777945 Roberts et al. Aug 2004 B2
6781344 Hedegor et al. Aug 2004 B1
6781382 Johnson Aug 2004 B2
6784635 Larson Aug 2004 B2
6784637 Raichle et al. Aug 2004 B2
6788025 Bertness et al. Sep 2004 B2
6795782 Bertness et al. Sep 2004 B2
6796841 Cheng et al. Sep 2004 B1
6805090 Bertness et al. Oct 2004 B2
6806716 Bertness et al. Oct 2004 B2
6825669 Raichle et al. Nov 2004 B2
6832141 Skeen et al. Dec 2004 B2
6842707 Raichle et al. Jan 2005 B2
6845279 Gilmore et al. Jan 2005 B1
6850037 Bertness Feb 2005 B2
6856162 Greatorex et al. Feb 2005 B1
6856972 Yun et al. Feb 2005 B1
6871151 Bertness Mar 2005 B2
6885195 Bertness Apr 2005 B2
6888468 Bertness May 2005 B2
6891378 Bertness et al. May 2005 B2
6895809 Raichle May 2005 B2
6904796 Pacsai et al. Jun 2005 B2
6906522 Bertness et al. Jun 2005 B2
6906523 Bertness et al. Jun 2005 B2
6906624 McClelland et al. Jun 2005 B2
6909287 Bertness Jun 2005 B2
6909356 Brown et al. Jun 2005 B2
6911825 Namaky Jun 2005 B2
6913483 Restaino et al. Jul 2005 B2
6914413 Bertness et al. Jul 2005 B2
6919725 Bertness et al. Jul 2005 B2
6930485 Bertness et al. Aug 2005 B2
6933727 Bertness et al. Aug 2005 B2
6941234 Bertness et al. Sep 2005 B2
6957133 Hunt et al. Oct 2005 B1
6967484 Bertness Nov 2005 B2
6972662 Ohkawa et al. Dec 2005 B1
6983212 Burns Jan 2006 B2
6988053 Namaky Jan 2006 B2
6993421 Pillar et al. Jan 2006 B2
6998847 Bertness et al. Feb 2006 B2
7003410 Bertness et al. Feb 2006 B2
7003411 Bertness Feb 2006 B2
7012433 Smith et al. Mar 2006 B2
7015674 Vonderhaar Mar 2006 B2
7029338 Orange et al. Apr 2006 B1
7034541 Bertness et al. Apr 2006 B2
7039533 Bertness et al. May 2006 B2
7042346 Paulsen May 2006 B2
7049822 Kung May 2006 B2
7058525 Bertness et al. Jun 2006 B2
7069979 Tobias Jul 2006 B2
7081755 Klang et al. Jul 2006 B2
7089127 Thibedeau et al. Aug 2006 B2
7098666 Patino Aug 2006 B2
7102556 White Sep 2006 B2
7106070 Bertness et al. Sep 2006 B2
7116109 Klang Oct 2006 B2
7119686 Bertness et al. Oct 2006 B2
7120488 Nova et al. Oct 2006 B2
7126341 Bertness et al. Oct 2006 B2
7129706 Kalley Oct 2006 B2
7154276 Bertness Dec 2006 B2
7170393 Martin Jan 2007 B2
7173182 Katsuyama et al. Feb 2007 B2
7177925 Carcido et al. Feb 2007 B2
7182147 Cutler et al. Feb 2007 B2
7184866 Squires Feb 2007 B2
7184905 Stefan Feb 2007 B2
7198510 Bertness Apr 2007 B2
7200424 Tischer et al. Apr 2007 B2
7202636 Reynolds et al. Apr 2007 B2
7208914 Klang Apr 2007 B2
7209850 Brott et al. Apr 2007 B2
7209860 Trsar et al. Apr 2007 B2
7212887 Shah et al. May 2007 B2
7212911 Raichle et al. May 2007 B2
7219023 Banke et al. May 2007 B2
7233128 Brost et al. Jun 2007 B2
7235977 Koran et al. Jun 2007 B2
7246015 Bertness et al. Jul 2007 B2
7251551 Mitsueda Jul 2007 B2
7272519 Lesesky et al. Sep 2007 B2
7287001 Falls et al. Oct 2007 B1
7295936 Bertness et al. Nov 2007 B2
7301303 Hulden Nov 2007 B1
7319304 Veloo et al. Jan 2008 B2
7339477 Puzio et al. Mar 2008 B2
7363175 Bertness et al. Apr 2008 B2
7376497 Chen May 2008 B2
7398176 Bertness Jul 2008 B2
7408358 Knopf Aug 2008 B2
7425833 Bertness et al. Sep 2008 B2
7446536 Bertness Nov 2008 B2
7453238 Melichar Nov 2008 B2
7479763 Bertness Jan 2009 B2
7498767 Brown et al. Mar 2009 B2
7501795 Bertness et al. Mar 2009 B2
7505856 Restaino et al. Mar 2009 B2
7538571 Raichle et al. May 2009 B2
7545146 Klang et al. Jun 2009 B2
7557586 Vonderhaar et al. Jul 2009 B1
7590476 Shumate Sep 2009 B2
7592776 Tsukamoto et al. Sep 2009 B2
7595643 Klang Sep 2009 B2
7598699 Restaino et al. Oct 2009 B2
7598743 Bertness Oct 2009 B2
7598744 Bertness et al. Oct 2009 B2
7619417 Klang Nov 2009 B2
7642786 Philbrook Jan 2010 B2
7642787 Bertness et al. Jan 2010 B2
7656162 Vonderhaar et al. Feb 2010 B2
7657386 Thibedeau et al. Feb 2010 B2
7667437 Johnson et al. Feb 2010 B2
7679325 Seo Mar 2010 B2
7684908 Ogilvie et al. Mar 2010 B1
7688074 Cox et al. Mar 2010 B2
7690573 Raichle et al. Apr 2010 B2
7696759 Raichle et al. Apr 2010 B2
7698179 Leung et al. Apr 2010 B2
7705602 Bertness Apr 2010 B2
7706991 Bertness et al. Apr 2010 B2
7710119 Bertness May 2010 B2
7723993 Klang May 2010 B2
7728556 Yano et al. Jun 2010 B2
7728597 Bertness Jun 2010 B2
7729880 Mashburn Jun 2010 B1
7743788 Schmitt Jun 2010 B2
7751953 Namaky Jul 2010 B2
7772850 Bertness Aug 2010 B2
7774130 Pepper Aug 2010 B2
7774151 Bertness Aug 2010 B2
7777612 Sampson et al. Aug 2010 B2
7791348 Brown et al. Sep 2010 B2
7808375 Bertness et al. Oct 2010 B2
7848857 Nasr et al. Dec 2010 B2
7883002 Jin et al. Feb 2011 B2
7902990 Delmonico et al. Mar 2011 B2
7914350 Bozich Mar 2011 B1
7924015 Bertness Apr 2011 B2
7940052 Vonderhaar May 2011 B2
7940053 Brown et al. May 2011 B2
D643759 Bertness Aug 2011 S
7990155 Henningson Aug 2011 B2
7999505 Bertness Aug 2011 B2
8024083 Chenn Sep 2011 B2
8047868 Korcynski Nov 2011 B1
8164343 Bertness Apr 2012 B2
8198900 Bertness et al. Jun 2012 B2
8203345 Bertness Jun 2012 B2
8222868 Buckner Jul 2012 B2
8226008 Raichle et al. Jul 2012 B2
8306690 Bertness Nov 2012 B2
8310271 Raichle et al. Nov 2012 B2
8344685 Bertness et al. Jan 2013 B2
8436619 Bertness et al. May 2013 B2
8442877 Bertness et al. May 2013 B2
8449560 Roth May 2013 B2
8493022 Bertness Jul 2013 B2
D687727 Kehoe et al. Aug 2013 S
8594957 Gauthier Nov 2013 B2
8674654 Bertness Mar 2014 B2
8704483 Bertness et al. Apr 2014 B2
8738309 Bertness May 2014 B2
8754653 Volderhaar et al. Jun 2014 B2
8827729 Gunreben Sep 2014 B2
8872516 Bertness Oct 2014 B2
8872517 Philbrook et al. Oct 2014 B2
8958998 Bertness Feb 2015 B2
8963550 Bertness et al. Feb 2015 B2
9018958 Bertness Apr 2015 B2
9037394 Fernandes May 2015 B2
9052366 Bertness Jun 2015 B2
9229062 Stukenberg Jan 2016 B2
9244100 Coleman et al. Jan 2016 B2
9255955 Bertness Feb 2016 B2
9312575 Stukenberg Apr 2016 B2
9419311 Bertness Aug 2016 B2
9496720 McShane Nov 2016 B2
9588185 Champlin Mar 2017 B2
9639899 Gersitz May 2017 B1
9923289 Bertness Mar 2018 B2
20010012738 Duperret Aug 2001 A1
20010033169 Singh Oct 2001 A1
20010035737 Nakanishi et al. Nov 2001 A1
20010048215 Breed et al. Dec 2001 A1
20010048226 Nada Dec 2001 A1
20020003423 Bertness et al. Jan 2002 A1
20020004694 McLeod Jan 2002 A1
20020007237 Phung et al. Jan 2002 A1
20020010558 Bertness et al. Jan 2002 A1
20020021135 Li et al. Feb 2002 A1
20020027346 Breed et al. Mar 2002 A1
20020030495 Kechmire Mar 2002 A1
20020036504 Troy et al. Mar 2002 A1
20020041175 Lauper et al. Apr 2002 A1
20020044050 Derbyshire et al. Apr 2002 A1
20020047711 Bertness et al. Apr 2002 A1
20020050163 Makhija et al. May 2002 A1
20020065619 Bertness May 2002 A1
20020074398 Lancos et al. Jun 2002 A1
20020116140 Rider Aug 2002 A1
20020118111 Brown et al. Aug 2002 A1
20020121901 Hoffman Sep 2002 A1
20020128985 Greenwald Sep 2002 A1
20020130665 Bertness et al. Sep 2002 A1
20020153864 Bertness Oct 2002 A1
20020171428 Bertness Nov 2002 A1
20020176010 Wallach et al. Nov 2002 A1
20020193955 Bertness Dec 2002 A1
20030006779 Youval Jan 2003 A1
20030009270 Breed Jan 2003 A1
20030017753 Palmisano et al. Jan 2003 A1
20030025481 Bertness Feb 2003 A1
20030030442 Sugimoto Feb 2003 A1
20030036909 Kato Feb 2003 A1
20030040873 Lesesky et al. Feb 2003 A1
20030060953 Chen Mar 2003 A1
20030078743 Bertness et al. Apr 2003 A1
20030088375 Bertness et al. May 2003 A1
20030090272 Bertness May 2003 A1
20030114206 Timothy Jun 2003 A1
20030124417 Bertness et al. Jul 2003 A1
20030128011 Bertness et al. Jul 2003 A1
20030128036 Henningson et al. Jul 2003 A1
20030137277 Mori et al. Jul 2003 A1
20030155930 Thomsen Aug 2003 A1
20030169018 Berels et al. Sep 2003 A1
20030169019 Oosaki Sep 2003 A1
20030171111 Clark Sep 2003 A1
20030173971 Bertness Sep 2003 A1
20030177417 Malhotra et al. Sep 2003 A1
20030184262 Makhija Oct 2003 A1
20030184264 Bertness Oct 2003 A1
20030184306 Bertness et al. Oct 2003 A1
20030187556 Suzuki Oct 2003 A1
20030194672 Roberts et al. Oct 2003 A1
20030197512 Miller et al. Oct 2003 A1
20030212311 Nova et al. Nov 2003 A1
20030214395 Flowerday et al. Nov 2003 A1
20030224241 Takada et al. Dec 2003 A1
20030236656 Dougherty Dec 2003 A1
20040000590 Raichle et al. Jan 2004 A1
20040000891 Raichle et al. Jan 2004 A1
20040000893 Raichle et al. Jan 2004 A1
20040000913 Raichle et al. Jan 2004 A1
20040000915 Raichle et al. Jan 2004 A1
20040002824 Raichle et al. Jan 2004 A1
20040002825 Raichle et al. Jan 2004 A1
20040002836 Raichle et al. Jan 2004 A1
20040032264 Schoch Feb 2004 A1
20040036443 Bertness Feb 2004 A1
20040044452 Bauer et al. Mar 2004 A1
20040044454 Ross et al. Mar 2004 A1
20040046564 Klang Mar 2004 A1
20040049361 Hamdan et al. Mar 2004 A1
20040051532 Smith et al. Mar 2004 A1
20040051533 Namaky Mar 2004 A1
20040051534 Kobayashi et al. Mar 2004 A1
20040054503 Namaky Mar 2004 A1
20040064225 Jammu et al. Apr 2004 A1
20040065489 Aberle Apr 2004 A1
20040088087 Fukushima et al. May 2004 A1
20040104728 Bertness et al. Jun 2004 A1
20040108855 Raichle Jun 2004 A1
20040108856 Johnson Jun 2004 A1
20040113494 Karuppana et al. Jun 2004 A1
20040113588 Mikuriya et al. Jun 2004 A1
20040145342 Lyon Jul 2004 A1
20040145371 Bertness Jul 2004 A1
20040150494 Yoshida Aug 2004 A1
20040157113 Klang Aug 2004 A1
20040164706 Osborne Aug 2004 A1
20040172177 Nagai et al. Sep 2004 A1
20040178185 Yoshikawa et al. Sep 2004 A1
20040189309 Bertness et al. Sep 2004 A1
20040199343 Cardinal et al. Oct 2004 A1
20040207367 Taniguchi et al. Oct 2004 A1
20040221641 Moritsugu Nov 2004 A1
20040227523 Namaky Nov 2004 A1
20040239332 Mackel et al. Dec 2004 A1
20040251876 Bertness et al. Dec 2004 A1
20040257084 Restaino Dec 2004 A1
20050007068 Johnson et al. Jan 2005 A1
20050009122 Whelan et al. Jan 2005 A1
20050017726 Koran et al. Jan 2005 A1
20050017952 His Jan 2005 A1
20050021197 Zimmerman Jan 2005 A1
20050021294 Trsar et al. Jan 2005 A1
20050021475 Bertness Jan 2005 A1
20050025299 Tischer et al. Feb 2005 A1
20050043868 Mitcham Feb 2005 A1
20050057256 Bertness Mar 2005 A1
20050060070 Kapolka et al. Mar 2005 A1
20050073314 Bertness et al. Apr 2005 A1
20050076381 Gross Apr 2005 A1
20050077904 Bertness Apr 2005 A1
20050096809 Skeen et al. May 2005 A1
20050102073 Ingram May 2005 A1
20050119809 Chen Jun 2005 A1
20050128083 Puzio et al. Jun 2005 A1
20050128902 Tsai Jun 2005 A1
20050133245 Katsuyama Jun 2005 A1
20050134282 Averbuch Jun 2005 A1
20050143882 Umezawa Jun 2005 A1
20050159847 Shah et al. Jul 2005 A1
20050162172 Bertness Jul 2005 A1
20050168226 Quint et al. Aug 2005 A1
20050173142 Cutler et al. Aug 2005 A1
20050182536 Doyle et al. Aug 2005 A1
20050184732 Restaino Aug 2005 A1
20050206346 Smith et al. Sep 2005 A1
20050212521 Bertness et al. Sep 2005 A1
20050213874 Kline Sep 2005 A1
20050218902 Restaino et al. Oct 2005 A1
20050231205 Bertness et al. Oct 2005 A1
20050254106 Silverbrook et al. Nov 2005 A9
20050256617 Cawthorne et al. Nov 2005 A1
20050258241 McNutt et al. Nov 2005 A1
20050264296 Philbrook Dec 2005 A1
20050269880 Konishi Dec 2005 A1
20050273218 Breed Dec 2005 A1
20060012330 Okumura et al. Jan 2006 A1
20060017447 Bertness Jan 2006 A1
20060026017 Walkder Feb 2006 A1
20060030980 St. Denis Feb 2006 A1
20060038572 Philbrook Feb 2006 A1
20060043976 Gervais Mar 2006 A1
20060061469 Jaeger Mar 2006 A1
20060076923 Eaves Apr 2006 A1
20060079203 Nicolini Apr 2006 A1
20060089767 Sowa Apr 2006 A1
20060095230 Grier et al. May 2006 A1
20060102397 Buck May 2006 A1
20060152224 Kim et al. Jul 2006 A1
20060155439 Slawinski Jul 2006 A1
20060161313 Rogers et al. Jul 2006 A1
20060161390 Namaky et al. Jul 2006 A1
20060217914 Bertness Sep 2006 A1
20060244457 Henningson Nov 2006 A1
20060282323 Walker et al. Dec 2006 A1
20070005201 Chenn Jan 2007 A1
20070024460 Clark Feb 2007 A1
20070026916 Juds et al. Feb 2007 A1
20070046261 Porebski Mar 2007 A1
20070088472 Ganzhorn et al. Apr 2007 A1
20070108942 Johnson et al. May 2007 A1
20070159177 Bertness et al. Jul 2007 A1
20070182576 Proska et al. Aug 2007 A1
20070194791 Huang Aug 2007 A1
20070194793 Bertness Aug 2007 A1
20070205752 Leigh Sep 2007 A1
20070205983 Naimo Sep 2007 A1
20070210801 Krampitz Sep 2007 A1
20070259256 Le Canut et al. Nov 2007 A1
20070279066 Chism Dec 2007 A1
20080023547 Raichle Jan 2008 A1
20080036421 Seo Feb 2008 A1
20080053716 Scheucher Mar 2008 A1
20080059014 Nasr et al. Mar 2008 A1
20080064559 Cawthorne Mar 2008 A1
20080086246 Bolt et al. Apr 2008 A1
20080094068 Scott Apr 2008 A1
20080103656 Lipscomb May 2008 A1
20080106267 Bertness May 2008 A1
20080169818 Lesesky et al. Jul 2008 A1
20080179122 Sugawara Jul 2008 A1
20080194984 Keefe Aug 2008 A1
20080303528 Kim Dec 2008 A1
20080303529 Nakamura et al. Dec 2008 A1
20080315830 Bertness Dec 2008 A1
20090006476 Andreasen et al. Jan 2009 A1
20090011327 Okumura et al. Jan 2009 A1
20090013521 Okumura et al. Jan 2009 A1
20090024266 Bertness Jan 2009 A1
20090024419 McClellan Jan 2009 A1
20090085571 Bertness Apr 2009 A1
20090146800 Grimlund et al. Jun 2009 A1
20090160395 Chen Jun 2009 A1
20090198372 Hammerslag Aug 2009 A1
20090203247 Fifelski Aug 2009 A1
20090237029 Andelfinger Sep 2009 A1
20090237086 Andelfinger Sep 2009 A1
20090247020 Gathman et al. Oct 2009 A1
20090259432 Liberty Oct 2009 A1
20090265121 Rocci Oct 2009 A1
20090276115 Chen Nov 2009 A1
20090311919 Smith et al. Dec 2009 A1
20100023198 Hamilton Jan 2010 A1
20100039065 Kinkade Feb 2010 A1
20100052193 Sylvester Mar 2010 A1
20100066283 Kitanaka Mar 2010 A1
20100088050 Keuss Apr 2010 A1
20100117603 Makhija May 2010 A1
20100145780 Nishikawa et al. Jun 2010 A1
20100214055 Fuji Aug 2010 A1
20100314950 Rutkowski et al. Dec 2010 A1
20110004427 Gorbold et al. Jan 2011 A1
20110015815 Bertness Jan 2011 A1
20110106280 Zeier May 2011 A1
20110161025 Tomura Jun 2011 A1
20110215767 Johnson et al. Sep 2011 A1
20110218747 Bertness Sep 2011 A1
20110267067 Bertness et al. Nov 2011 A1
20110273181 Park et al. Nov 2011 A1
20110294367 Moon Dec 2011 A1
20110300416 Bertness Dec 2011 A1
20120041697 Stukenberg Feb 2012 A1
20120046807 Ruther Feb 2012 A1
20120046824 Ruther et al. Feb 2012 A1
20120062237 Robinson Mar 2012 A1
20120074904 Rutkowski et al. Mar 2012 A1
20120116391 Houser May 2012 A1
20120249069 Ohtomo Oct 2012 A1
20120256494 Kesler Oct 2012 A1
20120256568 Lee Oct 2012 A1
20120274331 Liu Nov 2012 A1
20120293372 Amendolare Nov 2012 A1
20130099747 Baba Apr 2013 A1
20130115821 Golko May 2013 A1
20130158782 Bertness et al. Jun 2013 A1
20130172019 Youssef Jul 2013 A1
20130288706 Yu Oct 2013 A1
20130311124 Van Bremen Nov 2013 A1
20130314041 Proebstle Nov 2013 A1
20140002021 Bertness Jan 2014 A1
20140002094 Champlin Jan 2014 A1
20140099830 Byrne Apr 2014 A1
20140117997 Bertness May 2014 A1
20140194084 Noonan Jul 2014 A1
20140225622 Kudo Aug 2014 A1
20140239964 Gach Aug 2014 A1
20150093922 Bosscher Apr 2015 A1
20150115720 Hysell Apr 2015 A1
20150168499 Palmisano Jun 2015 A1
20150221135 Hill Aug 2015 A1
20160011271 Bertness Jan 2016 A1
20160091571 Salo, III Mar 2016 A1
20160216335 Bertness Jul 2016 A1
20160238667 Palmisano et al. Aug 2016 A1
20160266212 Carlo Sep 2016 A1
20160285284 Matlapudi et al. Sep 2016 A1
20160321897 Lee Nov 2016 A1
20160336623 Nayar Nov 2016 A1
20170093056 Salo, III et al. Mar 2017 A1
20170373410 Lipkin et al. Dec 2017 A1
20180113171 Bertness Apr 2018 A1
Foreign Referenced Citations (88)
Number Date Country
2470964 Jan 2002 CN
201063352 May 2008 CN
103091633 May 2013 CN
29 26 716 Jan 1981 DE
40 07 883 Sep 1991 DE
196 38 324 Sep 1996 DE
10 2008 036 595 Feb 2010 DE
0 022 450 Jan 1981 EP
0 391 694 Apr 1990 EP
0 476 405 Sep 1991 EP
0 637 754 Feb 1995 EP
0 772 056 May 1997 EP
0 982 159 Mar 2000 EP
1 810 869 Nov 2004 EP
1 786 057 May 2007 EP
1 807 710 Jul 2007 EP
1 807 710 Jan 2010 EP
2 302 724 Mar 2011 EP
2 749 397 Dec 1997 FR
154 016 Nov 1920 GB
2 029 586 Mar 1980 GB
2 088 159 Jun 1982 GB
2 246 916 Oct 1990 GB
2 275 783 Jul 1994 GB
2 353 367 Feb 2001 GB
2 387 235 Oct 2003 GB
59-17892 Jan 1984 JP
59-17893 Jan 1984 JP
59017894 Jan 1984 JP
59215674 Dec 1984 JP
60225078 Nov 1985 JP
62-180284 Aug 1987 JP
63027776 Feb 1988 JP
03274479 Dec 1991 JP
03282276 Dec 1991 JP
4-8636 Jan 1992 JP
04095788 Mar 1992 JP
04131779 May 1992 JP
04372536 Dec 1992 JP
05211724 Aug 1993 JP
5216550 Aug 1993 JP
7-128414 May 1995 JP
09061505 Mar 1997 JP
10056744 Feb 1998 JP
10232273 Sep 1998 JP
11103503 Apr 1999 JP
11-150809 Jun 1999 JP
11-271409 Oct 1999 JP
2001-023037 Jan 2001 JP
2001057711 Feb 2001 JP
2003-346909 Dec 2003 JP
2005-238969 Sep 2005 JP
2006331976 Dec 2006 JP
2009-244166 Oct 2009 JP
2009-261174 Nov 2009 JP
2010-172122 May 2010 JP
2010-172142 Aug 2010 JP
2089015 Aug 1997 RU
WO 9322666 Nov 1993 WO
WO 9405069 Mar 1994 WO
WO 9601456 Jan 1996 WO
WO 9606747 Mar 1996 WO
WO 9628846 Sep 1996 WO
WO 9701103 Jan 1997 WO
WO 9744652 Nov 1997 WO
WO 9804910 Feb 1998 WO
WO 9821132 May 1998 WO
WO 9858270 Dec 1998 WO
WO 9923738 May 1999 WO
WO 9956121 Nov 1999 WO
WO 0016083 Mar 2000 WO
WO 0062049 Oct 2000 WO
WO 0067359 Nov 2000 WO
WO 0159443 Feb 2001 WO
WO 0116614 Mar 2001 WO
WO 0116615 Mar 2001 WO
WO 0151947 Jul 2001 WO
WO 03047064 Jun 2003 WO
WO 03076960 Sep 2003 WO
WO 2004047215 Jun 2004 WO
WO 2007075403 Jul 2007 WO
WO 2009004001 Jan 2009 WO
WO 2010007681 Jan 2010 WO
WO 2010035605 Apr 2010 WO
WO 2010042517 Apr 2010 WO
WO 2011153419 Dec 2011 WO
WO 2012078921 Jun 2012 WO
WO 2013070850 May 2013 WO
Non-Patent Literature Citations (97)
Entry
“Electrochemical Impedance Spectroscopy in Battery Development and Testing”, Batteries International, Apr. 1997, pp. 59 and 62-63.
“Battery Impedance”, by E. Willihnganz et al., Electrical Engineering, Sep. 1959, pp. 922-925.
“Determining The End of Battery Life”, by S. DeBardelaben, IEEE, 1986, pp. 365-368.
“A Look at the Impedance of a Cell”, by S. Debardelaben, IEEE, 1988, pp. 394-397.
“The Impedance of Electrical Storage Cells”, by N.A. Hampson et al., Journal of Applied Electrochemistry, 1980, pp. 3-11.
“A Package for Impedance/Admittance Data Analysis”, by B. Boukamp, Solid State Ionics, 1986, pp. 136-140.
“Precision of Impedance Spectroscopy Estimates of Bulk, Reaction Rate, and Diffusion Parameters”, by J. Macdonald et al., J. Electroanal, Chem., 1991, pp. 1-11.
Internal Resistance: Harbinger of Capacity Loss in Starved Electrolyte Sealed Lead Acid Batteries, by Vaccaro, F.J. et al., AT&T Bell Laboratories, 1987 IEEE, Ch. 2477, pp. 128,131.
IEEE Recommended Practice for Maintenance, Testings, and Replacement of Large Lead Storage Batteries for Generating Stations and Substations, The Institute of Electrical and Electronics Engineers, Inc., ANSI/IEEE Std. 450-1987, Mar. 9, 1987, pp. 7-15.
“Field and Laboratory Studies to Assess the State of Health of Valve-Regulated Lead Acid Batteries: Part I Conductance/Capacity Correlation Studies”, by D. Feder et al., IEEE, Aug. 1992, pp. 218-233.
“JIS Japanese Industrial Standard-Lead Acid Batteries for Automobiles”, Japanese Standards Association UDC, 621.355.2:629.113.006, Nov. 1995.
“Performance of Dry Cells”, by C. Hambuechen, Preprint of Am. Electrochem. Soc., Apr. 18-20, 1912, paper No. 19, pp. 1-5.
“A Bridge for Measuring Storage Battery Resistance”, by E. Willihncanz, The Electrochemical Society, preprint 79-20, Apr. 1941, pp. 253-258.
National Semiconductor Corporation, “High Q Notch Filter”, Mar. 1969, Linear Brief 5, Mar. 1969.
Burr-Brown Corporation, “Design a 60 Hz Notch Filter with the UAF42”, Jan. 1994, AB-071, 1994.
National Semiconductor Corporation, “LMF90—4th—Order Elliptic Notch Filter”, Dec. 1994, RRD-B30M115, Dec. 1994.
“Alligator Clips with Wire Penetrators”, J.S. Popper, Inc. product information, downloaded from http://www.jspopper.com/, prior to Oct. 1, 2002.
“#12: LM78S40 Simple Switcher DC to DC Converter”, ITM e-Catalog, downloaded from http://www.pcbcafe.com, prior to Oct. 1, 2002.
“Simple DC-DC Converts Allows Use of Single Battery”, Electronix Express, downloaded from http://www.elexp.com/t_dc-dc.htm, prior to Oct. 1, 2002.
“DC-DC Converter Basics”, Power Designers, downloaded from http://www.powederdesigners.com/InforWeb.design_center/articles/DC-DC/converter.shtm, prior to Oct. 1, 2002.
“Notification of Transmittal of The International Search Report or the Declaration”, PCT/US02/29461, filed Sep. 17, 2002 and dated Jan. 3, 2003.
“Notification of Transmittal of The International Search Report or the Declaration”, PCT/US03/07546, filed Mar. 13, 2003 and dated Jul. 4, 2001.
“Notification of Transmittal of The International Search Report or the Declaration”, PCT/US03/06577, filed Mar. 5, 2003 and dated Jul. 24, 2003.
“Notification of Transmittal of The International Search Report or the Declaration”, PCT/US03/07837, filed Mar. 14, 2003 and dated Jul. 4, 2003.
“Improved Impedance Spectroscopy Technique For Status Determination of Production Li/SO2 Batteries”, Terrill Atwater et al., pp. 10-113, (1992).
“Notification of Transmittal of The International Search Report or the Declaration”, PCT/US03/41561; Search Report completed Apr. 13, 2004, dated May 6, 2004.
“Notification of Transmittal of The International Search Report or the Declaration”, PCT/US03/27696, filed Sep. 4, 2003 and dated Apr. 15, 2004.
“Programming Training Course, 62-000 Series Smart Engine Analyzer”, Testproducts Division, Kalamazoo, Michigan, pp. 1-207, (1984).
“Operators Manual, Modular Computer Analyzer Model MCA 3000”, Sun Electric Corporation, Crystal Lake, Illinois, pp. 1-1-14-13, (1991).
Supplementary European Search Report Communication for Appl. No. 99917402.2; dated Sep. 7, 2004.
“Dynamic modelling of lead/acid batteries using impedance spectroscopy for parameter identification”, Journal of Power Sources, pp. 69-84, (1997).
Notification of Transmittal of The International Search Report for PCT/US03/30707, filed Sep. 30, 2003 and dated Nov. 24, 2004.
“A review of impedance measurements for determination of the state-of-charge or state-of-health of secondary batteries”, Journal of Power Sources, pp. 59-69, (1998).
“Search Report Under Section 17” for Great Britain Application No. GB0421447.4, date of search Jan. 27, 2005, dated Jan. 28, 2005.
“Results of Discrete Frequency Immittance Spectroscopy (DFIS) Measurements of Lead Acid Batteries”, by K.S. Champlin et al., Proceedings of 23rd International Teleco Conference (INTELEC), published Oct. 2001, IEE, pp. 433-440.
“Examination Report” from the UK Patent Office for App. No. 0417678.0; dated Jan. 24, 2005.
Wikipedia Online Encyclopedia, Inductance, 2005, http://en.wikipedia.org/wiki/inductance, pp. 1-5, mutual Inductance, pp. 3,4.
“Professional BCS System Analyzer Battery-Charger-Starting”, pp. 2-8, (2001).
Young Illustrated Encyclopedia Dictionary of Electronics, 1981, Parker Publishing Company, Inc., pp. 318-319.
“DSP Applications in Hybrid Electric Vehicle Powertrain”, Miller et al., Proceedings of the American Control Conference, Sand Diego, CA, Jun. 1999; 2 ppg.
“Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration” for PCT/US2008/008702 filed Jul. 2008; 15 pages.
“A Microprocessor-Based Control System for a Near-Term Electric Vehicle”, Bimal K. Bose; IEEE Transactions on Industry Applications, vol. IA-17, No. 6, Nov./Dec. 1981; 0093-9994/81/1100-0626$00.75 © 1981 IEEE, 6 pages.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority, or the Declaration for PCT/US2011/038279 filed May 27, 2011, dated Sep. 16, 2011, 12 pages.
U.S. Appl. No. 60/387,912, filed Jun. 13, 2002 which is related to U.S. Pat. No. 7,089,127.
“Conductance Testing Compared to Traditional Methods of Evaluating the Capacity of Valve-Regulated Lead-Acid Batteries and Predicting State-of-Health”, by D. Feder et al., May 1992, pp. 1-8; (13 total pgs.).
“Field and Laboratory Studies to Assess the State of Health of Valve-Regulated Lead Acid Batteries: Part I—Conductance/Capacity Correlation Studies”, by D. Feder at al., Oct. 1992, pp. 1-15; (19 total pgs.).
“Field Application of Conductance Measurements Use to Ascertain Cell/Battery and Inter-Cell Connection State-of-Health in Electric Power Utility Applications”, by M. Hlavec et al., Apr. 1993, pp. 1-14; (19 total pgs.).
“Conductance Testing of Standby Batteries in Signaling and Communications Applications for the Purpose of Evaluating Battery State-of-Health”, by S. McShane, Apr. 1993, pp. 1-9; (14 total pgs.).
“Condutance Monitoring of Recombination Lead Acid Batteries”, by B. Jones, May 1993, pp. 1-6; (11 total pgs.).
“Evaluating the State-of-Health of Lead Acid Flooded and Valve-Regulated Batteries: A Comparison of Conductance Testing vs. Traditional Methods”, by M. Hlavac et al., Jun. 1993, pp. 1-15; (20 total pgs.).
“Updated State of Conductance/Capacity Correlation Studies to Determine the State-of-Health of Automotive SLI and Standby Lead Acid Batteries”, by D. Feder et al., Sep. 1993, pp. 1-17; (22 total pgs.).
“Field and Laboratory Studies to Access the State-of-Health of Valve-Regulated Lead-Acid Battery Technologies Using Conductance Testing Part II—Further Conductance/Capacity Correlation Studies”, by M. Hlavac et al., Sep. 1993, pp. 1-9; (14 total pgs.).
“Field Experience of Testing VRLA Batteries by Measuring Conductance”, by M.W. Kniveton, May 1994, pp. 1-4; (9 total pgs.).
“Reducing the Cost of Maintaining VRLA Batteries in Telecom Applications”, by M.W. Kniveton, Sep. 1994, pp. 1-5; (10 total pgs.).
“Analysis and Interpretation of Conductance Measurements used to Access the State-of-Health of Valve Regulated Lead Acid Batteries Part III: Analytical Techniques”, by M. Hlavac, Nov. 1994, 9 pgs; (13 total pgs.).
“Testing 24 Volt Aircraft Batteries Using Midtronics Conductance Technology”, by M. Hlavac et al., Jan. 1995, 9 pgs; (13 total pgs.).
“VRLA Battery Monitoring Using Conductance Technology Part IV: On-Line State-of-Health Monitoring and Thermal Runaway Detection/Prevention”, by M. Hlavac et al., Oct. 1995, 9 pgs; (13 total pgs.).
“VRLA Battery Conductance Monitoring Part V: Strategies for VRLA Battery Testing and Monitoring in Telecom Operating Environments”, by M. Hlavac et al., Oct. 1996, 9 pgs; (13 total pgs.).
“Midpoint Conductance Technology Used in Telecommunication Stationary Standby Battery Applications Part VI: Considerations for Deployment of Midpoint Conductance in Telecommunications Power Applications”, by M. Troy et al., Oct. 1997, 9 pgs; (13 total pgs.).
“Impedance/Conductance Measurements as an Aid to Determining Replacement Strategies”, M. Kniveton, Sep. 1998, pp. 297-301; (9 total pgs.).
“A Fundamentally New Approach to Battery Performance Analysis Using DFRA™/DTIS™ Technology”, by K. Champlin et al., Sep. 2000, 8 pgs; (12 total pgs.).
“Battery State of Health Monitoring, Combining Conductance Technology With Other Measurement Parameters for Real-Time Battery Performance Analysis”, by D. Cox et la., Mar. 2000, 6 pgs; (10 total pgs.).
Search Report and Written Opinion from PCT Application No. PCT/US2011/026608, dated Aug. 29, 2011, 9 pgs.
Examination Report under section 18(3) for corresponding Great Britain Application No. GB1000773.0, dated Feb. 6, 2012, 2 pages.
Communication from GB1216105.5, dated Sep. 21, 2012.
Notification of Transmittal of the International Search Report and Written Opinion from PCT/US2011/039043, dated Jul. 26, 2012.
Notification of Transmittal of the International Search Report and Written Opinion from PCT/US2011/053886, dated Jul. 27, 2012.
“Field Evaluation of Honda's EV PLUS Battery Packs”, by A. Paryani, IEEE AES Systems Magazine, Nov. 2000, pp. 21-24.
Search Report from PCT/US2011/047354, dated Nov. 11, 2011.
Written Opinion from PCT/US2011/047354, dated Nov. 11, 2011.
First Office Action (Notification of Reasons for Rejections) dated Dec. 3, 2013 in related Japanese patent application No. 2013-513370, 9 pgs. Including English Translation.
Official Action dated Jan. 22, 2014 in Korean patent application No. 10-2012-7033020, 2 pgs including English Translation.
Official Action dated Feb. 20, 2014 in Korean patent application No. 10-2013-7004814, 6 pgs including English Translation.
First Office Action for Chinese Patent Application No. 201180011597.4, dated May 6, 2014, 20 pages.
Office Action from Korean Application No. 10-2012-7033020, dated Jul. 29, 2014.
Office Action for Chinese Patent Application No. 201180038844.X, dated Jul. 1, 2014.
Office Action for Chinese Patent Application No. 201180030045.8, dated Jul. 21, 2014.
Office Action for German Patent Application No. 1120111020643 dated Aug. 28, 2014.
Office Action from Japanese Patent Application No. 2013-513370, dated Aug. 5, 2014.
Office Action from Japanese Patent Application No. 2013-531839, dated Jul. 8, 2014.
Office Action for German Patent Application No. 103 32 625.1, dated Nov. 7, 2014, 14 pages.
Office Action from Chinese Patent Application No. 201180038844.X, dated Dec. 8, 2014.
Office Action from CN Application No. 201180011597.4, dated Jan. 6, 2015.
Office Action for Chinese Patent Application No. 201180030045.8, dated Mar. 24, 2015.
Office Action for Japanese Patent Application No. 2013-531839, dated Mar. 31, 2015.
Notification of Transmittal of the International Search Report and Written Opinion from PCT/US2014/069661, dated Mar. 26, 2015.
Office Action for Chinese Patent Application No. 201180038844.X, dated Jun. 8, 2015.
Office Action from Chinese Patent Application No. 201180011597.4 dated Jun. 3, 2015.
European Search Report from European Application No. EP 15151426.2, dated Jun. 1, 2015.
Notification of Transmittal of the International Search Report and the Written Opinion from PCT/US2016/014867, dated Jun. 3, 2016.
Office Action from Japanese Patent Application No. 2015-014002, dated Jul. 19, 2016.
Notification of Transmittal of the International Search Report and the Written Opinion of the International Searching Authority from PCT/US2016/02696, dated Aug. 24, 2016.
Office Action from German Patent Application No. 10393251.8, dated Nov. 4, 2016, including English translation.
Office Action from European Patent Application No. 15 151 426.2-1801, dated Aug. 28, 2017, 2 pages.
Office Action from German Patent Application No. 112011101892.4, dated Sep. 7, 2017.
Office Action from Japanese Patent Application No. 2017-026740, dated Jan. 9, 2018.
Office Action from Chinese Patent Application No. 201480066251.8, dated May 29, 2018.
Related Publications (1)
Number Date Country
20160091571 A1 Mar 2016 US
Provisional Applications (1)
Number Date Country
62055884 Sep 2014 US